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Compactness of Hankel operators with
conjugate holomorphic symbols on
complete Reinhardt domains in C2

Timothy G. Clos

Abstract. In this paper we characterize compact Hankel operators
with conjugate holomorphic symbols on the Bergman space of bounded
convex Reinhardt domains in C2. We also characterize compactness
of Hankel operators with conjugate holomorphic symbols on smooth
bounded pseudoconvex complete Reinhardt domains in C2.
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1. Introduction

We assume Ω ⊂ C2 is a bounded convex Reinhardt domain. We denote
the Bergman space with the standard Lebesgue measure on Ω as A2(Ω).
Recall that the Bergman space A2(Ω) is the space of holomorphic functions
on Ω that are square integrable on Ω under the standard Lebesgue measure.
The Bergman space is a closed subspace of L2(Ω). Therefore there exists an
orthogonal projection P : L2(Ω) → A2(Ω) called the Bergman projection.
The Hankel operator with symbol φ is defined as Hφg = (I − P )(φg) for all
g ∈ A2(Ω). If φ ∈ L∞(Ω), then Hφ is a bounded operator, however, the
converse is not necessarily true. In one complex variable on the unit disk,
Axler in [1] showed that the Hankel operator with conjugate holomorphic
symbol φ is bounded if and only if φ is in the Bloch space. There are
unbounded, holomorphic functions in the Bloch space, as it only specifies a
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growth rate of the derivative of the function near the boundary of the disk.
Namely, an analytic function φ is in the Bloch space if

sup
{

(1− |z|2)|φ′(z)| : z ∈ D
}
<∞.

Let h ∈ A2(Ω) so that the Hankel operator Hh is compact on A2(Ω). The

Hankel operator with an L2(Ω) symbol may only be densely defined, since
the product of L2 functions may not be in L2. However, if compactness of
the Hankel operator is also assumed, then the Hankel operator with an L2

symbol is defined on all of A2(Ω).
We wish to use the geometry of the boundary of Ω to give conditions

on h. For example, if Ω is the bidisk, Le in [5, Corollary 1] shows that if
h ∈ A2(D2) such that Hh is compact on A2(D2) then h ≡ c for some c ∈ C.

In one variable, Axler in [1] showed that Hg is compact on A2(D) if and
only if g is in the little Bloch space. That is, lim|z|→1−(1− |z|2)|g′(z)| = 0.
If the symbol h is smooth up to the boundary of a smooth bounded convex
domain in C2, Čučković and Şahutoğlu in [3] showed that Hankel operator
Hh is compact if and only if h is holomorphic along analytic disks in the
boundary of the domain.

In this paper we will use the following notation.

St = {z ∈ C : |z| = t},
T2 = S1 × S1 = {z ∈ C : |z| = 1} × {w ∈ C : |w| = 1},

Dr = {z ∈ C : |z| < r}

for any r, t > 0. If r = 1 we write

D = {z ∈ C : |z| < 1}.

We say ∆ ⊂ bΩ is an analytic disk if there exists a function

h = (h1, h2) : D→ bΩ

so that each component function is holomorphic on D and the image

h(D) = ∆.

An analytic disk is said to be trivial if it is degenerate (that is, ∆ = (c1, c2)
for some constants c1 and c2).

In [2] we considered bounded convex Reinhardt domains in C2. We char-
acterized nontrivial analytic disks in the boundary of such domains.

We defined

ΓΩ =
⋃
{φ(D) : φ : D→ bΩ are holomorphic, nontrivial}

and showed that

ΓΩ = Γ1 ∪ Γ2

where either Γ1 = ∅ or

Γ1 = Dr1 × Ss1
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and likewise either Γ2 = ∅ or

Γ2 = Ss2 × Dr2
for some r1, r2, s1, s2 > 0.

Remark 1. We only consider domains in C2 as opposed to domains in Cn
for n ≥ 3 because a full geometric characterization of analytic structure in
higher dimensions is unknown.

The main results are the following theorems.

Theorem 1. Let Ω ⊂ C2 be a bounded convex Reinhardt domain. Let
f ∈ A2(Ω) so that Hf is compact on A2(Ω). If Γ1 6= ∅, then f is a function

of z2 alone. If Γ2 6= ∅, then f is a function of z1 alone.

Corollary 1. Let Ω ⊂ C2 be a bounded convex Reinhardt domain. Suppose
Γ1 6= ∅ and Γ2 6= ∅. Let f ∈ A2(Ω) so that Hf is compact on A2(Ω). Then

there exists c ∈ C so that f ≡ c.

Theorem 2. Let Ω ⊂ C2 be a C∞-smooth bounded pseudoconvex complete
Reinhardt domain. Let f ∈ A2(Ω) such that Hf is compact on A2(Ω).

Suppose either of the following conditions hold:

(1) There exists a holomorphic function F = (F1, F2) : D → bΩ so that
both F1 and F2 are not identically constant.

(2) Γ1 6= ∅ and Γ2 6= ∅.
Then f ≡ c for some c ∈ C.

2. Preliminary lemmas

As a bit of notation to simplify the reading, we will use the multi-index
notation. That is, we will write

z = (z1, z2)

and

zα = zα1
1 zα2

2

and |α| = α1 + α2. We say α = β if α1 = β1 and α2 = β2. If either α1 6= β1

or α2 6= β2 we say α 6= β.
It is well known that for bounded complete Reinhardt domains in C2, the

monomials {
zα

‖zα‖L2(Ω)
: α ∈ Z2

+

}
form an orthonormal basis for A2(Ω).

We denote
zα

‖zα‖L2(Ω)
= eα(z)
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Definition 1. For β = (β1, β2) ∈ Z2, we define

Gβ :=
{
ψ ∈ L2(Ω) : ψ(ζz) = ζβψ(z) a.e. z ∈ Ω a.e ζ ∈ T2

}
.

Note this definition makes sense in the case Ω is a Reinhardt domain, and
is the same as the definition of quasi-homogeneous functions in [5].

Lemma 1. Let Ω ⊂ C2 be a bounded complete Reinhardt domain. Gα as
defined above are closed subspaces of L2(Ω) and for α 6= β,

Gα ⊥ Gβ.

Proof. The proof that Gβ is a closed subspace of L2(Ω) is similar to [5].
Without loss of generality, suppose α1 6= β1. Since Ω is a complete Reinhardt
domain, one can ’slice’ the domain similarly to [4]. That is,

Ω =
⋃

z2∈HΩ

(∆|z2| × {z2})

where HΩ ⊂ C is a disk centered at 0 and

∆|z2| = {z ∈ C : |z| < r|z2|}

is a disk with radius depending on |z2|. As we shall see, the proof relies on
the radial symmetry of both HΩ and ∆|z2|.

Let f ∈ Gα, g ∈ Gβ, z1 = r1ζ1, z2 = r2ζ2 for (ζ1, ζ2) ∈ T2, and r1, r2 ≥ 0.
Then we have

〈f, g〉

=

∫
Ω
f(z)g(z)dV (z)

=

∫
HΩ

∫
0≤r1≤r|z2|

∫
T
ζα1

1 ζ1
β1
f(r1, z2)g(r1, z2)r1dσ(ζ1)dr1dV (z2).

Since α1 6= β1, ∫
T
ζα1

1 ζ1
β1
dσ(ζ1) = 0.

This completes the proof. �

In the case of a bounded convex Reinhardt domain in C2, one can use the
‘slicing’ approach in [4] to expilictly compute P (zjen).

Lemma 2. Let Ω ⊂ C2 be a bounded complete Reinhardt domain. Then the
Hankel operator with symbol zjwk applied to the orthonormal basis vector
en has the following form:

Hzjen(z) =
zjzn

‖zn‖
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if either n1 − j1 < 0 or n2 − j2 < 0. If n1 − j1 ≥ 0 and n2 − j2 ≥ 0 then we
can express the Hankel operator applied to the standard orthonormal basis
as

Hzjen(z) =
zjzn

‖zn‖
− zn−j‖zn‖
‖zn−j‖2

.

Furthermore, for any monomial

wjwn ∈ Gn−j
the projection

(I − P )(wjwn) ∈ Gn−j .

Proof. We have

P (zjen)(z)

=

∫
Ω
wj

wn

‖wn‖
∑
l∈Z2

+

el(w)el(z)dV (z, w)

=

∫
HΩ

∫
w1∈∆|w2|

w1
j1w2

j2w
n1
1 wn2

2

‖zn‖

·
∞∑

l1,l2=0

el1,l2(w1, w2)el1,l2(z1, z2)dA1(w1)dA2(w2)

=
∞∑

l1,l2=0

zl11 z
l2
2

‖zn‖‖‖zl‖2

∫
HΩ

w2
j2+l2wn2

2

∫
w1∈∆|w2|

w1
j1+l1wn1

1 dA1(w1)dA2(w2).

Converting to polar coordinates and using the orthogonality of {einθ : n ∈ Z}
and the fact that ∫

w1∈∆|w2|

w1
j1+l1wn1

1 dA1(w1)

is a radial function of w2 and HΩ is radially symmetric, we have the only
nonzero term in the previous sum is when n2 − j2 = l2 and n1 − j1 = l1.
Therefore, we have P (wjen)(z) = 0 if n2− j2 < 0 or n1− j1 < 0. Otherwise,
if n2 − j2 ≥ 0 and n1 − j1 ≥ 0, we have

P (wjen)(z) =
zn−j‖zn‖
‖zn−j‖2

.

Therefore, we have

Hwjen(z) =
zjzn

‖zn‖
− zn−j‖zn‖
‖zn−j‖2

if n2 − k ≥ 0 and n1 − j ≥ 0 otherwise

Hwjen(z) =
zjzn

‖zn‖
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if either n2 − k < 0 or n1 − j < 0. This also shows that the subspaces
Gα remain invariant under the projection (I − P ), at least for monomial
symbols. �

Lemma 3. For every α ≥ 0, the product Hankel operator

H∗zαHzα : A2(Ω)→ A2(Ω)

is a diagonal operator with respect to the standard orthonormal basis

{ej : j ∈ Z2
+}.

Proof. Assume without loss of generality, j 6= l. We have

〈H∗zαHzαej , el〉 = 〈Hzαej , Hzαel〉
= 〈(I − P )(zαej), z

αel〉.
We have zαej ∈ Gj−α, zαel ∈ Gl−α. By Lemma 2,

(I − P )zαej ∈ Gj−α.
By Lemma 1, Gα are mutually orthogonal. Therefore,

〈(I − P )(zαej), z
αel〉 = 0

unless j = l. �

Using Lemma 2 and Lemma 3, let us compute the eigenvalues of

H∗zαHzα .

Let us first assume n− α ≥ 0. We have

〈H∗zαHzαen, en〉 =

〈
zαzn

‖zn‖
− zn−α‖zn‖
‖zn−α‖2

,
zαzn

‖zn‖

〉
=
‖zαzn‖2

‖zn‖2
− ‖zn‖2

‖zn−α‖2
.

If n− α < 0, we have

〈H∗zαHzαen, en〉 =
‖zαzn‖2

‖zn‖2
.

3. Proof of Theorem 1

Proof. Assume f ∈ A2(Ω) and Hf is compact on A2(Ω). Then, we can
represent

f =

∞∑
j,k=0

cj,k,fz
j
1z
k
2

almost everywhere (with respect to the Lebesgue volume measure on Ω).
Let

{em : m ∈ Z2
+}

be the standard orthonormal basis for A2(Ω). Then∥∥Hfem
∥∥2 → 0
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as |m| → ∞. Using the mutual orthogonality of the subspaces Gα, we get

‖Hfem‖
2 = 〈(I − P )(fem), fem〉

=

〈 ∞∑
j,k=0

(I − P )(cj,k,fz1
jz2

kem),
∞∑

s,p=0

cs,p,fz1
sz2

pem

〉

=

∞∑
j,k=0

∥∥∥∥Hcj,k,f z
j
1z
k
2

em

∥∥∥∥2

≥
∥∥∥∥Hcj,k,f z

j
1z
k
2

em

∥∥∥∥2

for every (j, k) ∈ Z2
+. Taking limits as |m| → ∞, we have

lim
|m|→∞

∥∥∥∥Hcj,k,f z
j
1z
k
2

em

∥∥∥∥2

= 0

for all (j, k) ∈ Z2
+. The Hankel operators

H∗
cj,k,f z

j
1z
k
2

H
cj,k,f z

j
1z
k
2

are diagonal by Lemma 3, with eigenvalues

λj,k,m =

∥∥∥∥Hcj,k,f z
j
1z
k
2

em

∥∥∥∥2

.

This shows that
H∗
cj,k,f z

j
1z
k
2

H
cj,k,f z

j
1z
k
2

are compact for every (j, k) ∈ Z2
+. Then

H
cj,k,f z

j
1z
k
2

are compact on A2(Ω).
Without loss of generality, assume Γ1 6= ∅. Then there exists a holomor-

phic function F = (F1, F2) : D → bΩ so that F2 is identically constant and
F1 is nonconstant. Therefore, by [2], the composition

cj,k,fF1(z)jF2(z)k

must be holomorphic in z. This cannot occur unless cj,k,f = 0 for j > 0.
Therefore, using the representation

f =
∞∑

j,k=0

cj,k,fz
j
1z
k
2

we have f =
∑∞

k=0 c0,k,fz
k
2 almost everywhere. By holomorphicity of f and

the identity principle, this implies

f ≡
∞∑
k=0

c0,k,fz
k
2 .
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Hence f is a function of only z2. The proof is similar if Γ2 6= ∅. �

4. Proof of Theorem 2

Using the same argument in the proof of Theorem 1, one can show com-
pactness of Hf implies compactness of

H
cj,k,f z

j
1z
k
2

for every j, k ∈ Z+. Hence by [3, Corollary 1], for any holomorphic function
φ = (φ1, φ2) : D→ bΩ, we have

cj,k,fφ1
j
φ2

k

must be holomorphic. If we assume condition two in Theorem 2, then it
follows that f ≡ c0,0,f . Assuming condition one in Theorem 2, we may
assume φ1 and φ2 are not identically constant. Thus cj,k,f = 0 for j > 0 or
k > 0 and so f ≡ c0,0,f .
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