New York Journal of Mathematics

New York J. Math. 23 (2017) 1265–1272.

Compactness of Hankel operators with conjugate holomorphic symbols on complete Reinhardt domains in \mathbb{C}^2

Timothy G. Clos

ABSTRACT. In this paper we characterize compact Hankel operators with conjugate holomorphic symbols on the Bergman space of bounded convex Reinhardt domains in \mathbb{C}^2 . We also characterize compactness of Hankel operators with conjugate holomorphic symbols on smooth bounded pseudoconvex complete Reinhardt domains in \mathbb{C}^2 .

Contents

1.	Introduction	1265
2.	Preliminary lemmas	1267
3.	Proof of Theorem 1	1270
4.	Proof of Theorem 2	1272
References		1272

1. Introduction

We assume $\Omega \subset \mathbb{C}^2$ is a bounded convex Reinhardt domain. We denote the Bergman space with the standard Lebesgue measure on Ω as $A^2(\Omega)$. Recall that the Bergman space $A^2(\Omega)$ is the space of holomorphic functions on Ω that are square integrable on Ω under the standard Lebesgue measure. The Bergman space is a closed subspace of $L^2(\Omega)$. Therefore there exists an orthogonal projection $P: L^2(\Omega) \to A^2(\Omega)$ called the Bergman projection. The Hankel operator with symbol ϕ is defined as $H_{\phi}g = (I - P)(\phi g)$ for all $g \in A^2(\Omega)$. If $\phi \in L^{\infty}(\Omega)$, then H_{ϕ} is a bounded operator, however, the converse is not necessarily true. In one complex variable on the unit disk, Axler in [1] showed that the Hankel operator with conjugate holomorphic symbol ϕ is bounded if and only if $\overline{\phi}$ is in the Bloch space. There are unbounded, holomorphic functions in the Bloch space, as it only specifies a

Received April 13, 2017.

²⁰¹⁰ Mathematics Subject Classification. 32A07 (primary); 47B35 (secondary).

 $Key\ words\ and\ phrases.$ Hankel operator, compactness, conjugate holomorphic symbol, complete Reinhardt domain.

growth rate of the derivative of the function near the boundary of the disk. Namely, an analytic function ϕ is in the Bloch space if

$$\sup\left\{(1-|z|^2)|\phi'(z)|:z\in\mathbb{D}\right\}<\infty.$$

Let $h \in A^2(\Omega)$ so that the Hankel operator $H_{\overline{h}}$ is compact on $A^2(\Omega)$. The Hankel operator with an $L^2(\Omega)$ symbol may only be densely defined, since the product of L^2 functions may not be in L^2 . However, if compactness of the Hankel operator is also assumed, then the Hankel operator with an L^2 symbol is defined on all of $A^2(\Omega)$.

We wish to use the geometry of the boundary of Ω to give conditions on h. For example, if Ω is the bidisk, Le in [5, Corollary 1] shows that if $h \in A^2(\mathbb{D}^2)$ such that $H_{\overline{h}}$ is compact on $A^2(\mathbb{D}^2)$ then $h \equiv c$ for some $c \in \mathbb{C}$. In one variable, Axler in [1] showed that $H_{\overline{g}}$ is compact on $A^2(\mathbb{D})$ if and only if g is in the little Bloch space. That is, $\lim_{|z|\to 1^-} (1-|z|^2)|g'(z)| = 0$. If the symbol h is smooth up to the boundary of a smooth bounded convex domain in \mathbb{C}^2 , Čučković and Şahutoğlu in [3] showed that Hankel operator H_h is compact if and only if h is holomorphic along analytic disks in the boundary of the domain.

In this paper we will use the following notation.

$$S_t = \{ z \in \mathbb{C} : |z| = t \},$$
$$\mathbb{T}^2 = S_1 \times S_1 = \{ z \in \mathbb{C} : |z| = 1 \} \times \{ w \in \mathbb{C} : |w| = 1 \},$$
$$\mathbb{D}_r = \{ z \in \mathbb{C} : |z| < r \}$$

for any r, t > 0. If r = 1 we write

$$\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \}.$$

We say $\Delta \subset b\Omega$ is an analytic disk if there exists a function

$$h = (h_1, h_2) : \mathbb{D} \to b\Omega$$

so that each component function is holomorphic on \mathbb{D} and the image

$$h(\mathbb{D}) = \Delta$$

An analytic disk is said to be trivial if it is degenerate (that is, $\Delta = (c_1, c_2)$ for some constants c_1 and c_2).

In [2] we considered bounded convex Reinhardt domains in \mathbb{C}^2 . We characterized nontrivial analytic disks in the boundary of such domains.

We defined

$$\Gamma_{\Omega} = \bigcup \{ \phi(\mathbb{D}) : \phi : \mathbb{D} \to b\Omega \text{ are holomorphic, nontrivial} \}$$

and showed that

$$\Gamma_{\Omega} = \Gamma_1 \cup \Gamma_2$$

where either $\Gamma_1 = \emptyset$ or

$$\Gamma_1 = \mathbb{D}_{r_1} \times S_{s_1}$$

and likewise either $\Gamma_2 = \emptyset$ or

$$\Gamma_2 = S_{s_2} \times \overline{\mathbb{D}}_{r_2}$$

for some $r_1, r_2, s_1, s_2 > 0$.

Remark 1. We only consider domains in \mathbb{C}^2 as opposed to domains in \mathbb{C}^n for $n \geq 3$ because a full geometric characterization of analytic structure in higher dimensions is unknown.

The main results are the following theorems.

Theorem 1. Let $\Omega \subset \mathbb{C}^2$ be a bounded convex Reinhardt domain. Let $f \in A^2(\Omega)$ so that $H_{\overline{f}}$ is compact on $A^2(\Omega)$. If $\Gamma_1 \neq \emptyset$, then f is a function of z_2 alone. If $\Gamma_2 \neq \emptyset$, then f is a function of z_1 alone.

Corollary 1. Let $\Omega \subset \mathbb{C}^2$ be a bounded convex Reinhardt domain. Suppose $\Gamma_1 \neq \emptyset$ and $\Gamma_2 \neq \emptyset$. Let $f \in A^2(\Omega)$ so that $H_{\overline{f}}$ is compact on $A^2(\Omega)$. Then there exists $c \in \mathbb{C}$ so that $f \equiv c$.

Theorem 2. Let $\Omega \subset \mathbb{C}^2$ be a C^{∞} -smooth bounded pseudoconvex complete Reinhardt domain. Let $f \in A^2(\Omega)$ such that $H_{\overline{f}}$ is compact on $A^2(\Omega)$. Suppose either of the following conditions hold:

- (1) There exists a holomorphic function $F = (F_1, F_2) : \mathbb{D} \to b\Omega$ so that both F_1 and F_2 are not identically constant.
- (2) $\Gamma_1 \neq \emptyset$ and $\Gamma_2 \neq \emptyset$.

Then $f \equiv c$ for some $c \in \mathbb{C}$.

2. Preliminary lemmas

As a bit of notation to simplify the reading, we will use the multi-index notation. That is, we will write

$$z = (z_1, z_2)$$

and

$$z^{\alpha} = z_1^{\alpha_1} z_2^{\alpha_2}$$

and $|\alpha| = \alpha_1 + \alpha_2$. We say $\alpha = \beta$ if $\alpha_1 = \beta_1$ and $\alpha_2 = \beta_2$. If either $\alpha_1 \neq \beta_1$ or $\alpha_2 \neq \beta_2$ we say $\alpha \neq \beta$.

It is well known that for bounded complete Reinhardt domains in \mathbb{C}^2 , the monomials

$$\left\{\frac{z^{\alpha}}{\|z^{\alpha}\|_{L^{2}(\Omega)}}: \alpha \in \mathbb{Z}^{2}_{+}\right\}$$

form an orthonormal basis for $A^2(\Omega)$.

We denote

$$\frac{z^{\alpha}}{\|z^{\alpha}\|_{L^{2}(\Omega)}} = e_{\alpha}(z)$$

Definition 1. For $\beta = (\beta_1, \beta_2) \in \mathbb{Z}^2$, we define

$$G_{\beta} := \left\{ \psi \in L^{2}(\Omega) : \psi(\zeta z) = \zeta^{\beta} \psi(z) \text{ a.e. } z \in \Omega \text{ a.e } \zeta \in \mathbb{T}^{2} \right\}.$$

Note this definition makes sense in the case Ω is a Reinhardt domain, and is the same as the definition of quasi-homogeneous functions in [5].

Lemma 1. Let $\Omega \subset \mathbb{C}^2$ be a bounded complete Reinhardt domain. G_{α} as defined above are closed subspaces of $L^2(\Omega)$ and for $\alpha \neq \beta$,

$$G_{\alpha} \perp G_{\beta}.$$

Proof. The proof that G_{β} is a closed subspace of $L^2(\Omega)$ is similar to [5]. Without loss of generality, suppose $\alpha_1 \neq \beta_1$. Since Ω is a complete Reinhardt domain, one can 'slice' the domain similarly to [4]. That is,

$$\Omega = \bigcup_{z_2 \in H_{\Omega}} (\Delta_{|z_2|} \times \{z_2\})$$

where $H_{\Omega} \subset \mathbb{C}$ is a disk centered at 0 and

$$\Delta_{|z_2|} = \{ z \in \mathbb{C} : |z| < r_{|z_2|} \}$$

is a disk with radius depending on $|z_2|$. As we shall see, the proof relies on the radial symmetry of both H_{Ω} and $\Delta_{|z_2|}$.

Let $f \in G_{\alpha}$, $g \in G_{\beta}$, $z_1 = r_1\zeta_1$, $z_2 = r_2\zeta_2$ for $(\zeta_1, \zeta_2) \in \mathbb{T}^2$, and $r_1, r_2 \ge 0$. Then we have

$$\begin{split} \langle f,g \rangle \\ &= \int_{\Omega} f(z) \overline{g(z)} dV(z) \\ &= \int_{H_{\Omega}} \int_{0 \leq r_1 \leq r_{|z_2|}} \int_{\mathbb{T}} \zeta_1^{\alpha_1} \overline{\zeta_1}^{\beta_1} f(r_1,z_2) \overline{g(r_1,z_2)} r_1 d\sigma(\zeta_1) dr_1 dV(z_2). \end{split}$$

Since $\alpha_1 \neq \beta_1$,

$$\int_{\mathbb{T}} \zeta_1^{\alpha_1} \overline{\zeta_1}^{\beta_1} d\sigma(\zeta_1) = 0.$$

This completes the proof.

In the case of a bounded convex Reinhardt domain in \mathbb{C}^2 , one can use the 'slicing' approach in [4] to explicitly compute $P(\overline{z}^j e_n)$.

Lemma 2. Let $\Omega \subset \mathbb{C}^2$ be a bounded complete Reinhardt domain. Then the Hankel operator with symbol $\overline{z}^j \overline{w}^k$ applied to the orthonormal basis vector e_n has the following form:

$$H_{\overline{z}^j}e_n(z) = \frac{\overline{z}^j z^n}{\|z^n\|}$$

1268

if either $n_1 - j_1 < 0$ or $n_2 - j_2 < 0$. If $n_1 - j_1 \ge 0$ and $n_2 - j_2 \ge 0$ then we can express the Hankel operator applied to the standard orthonormal basis as

$$H_{\overline{z}^{j}}e_{n}(z) = \frac{\overline{z}^{j}z^{n}}{\|z^{n}\|} - \frac{z^{n-j}\|z^{n}\|}{\|z^{n-j}\|^{2}}.$$

Furthermore, for any monomial

$$\overline{w}^j w^n \in G_{n-j}$$

the projection

$$(I-P)(\overline{w}^j w^n) \in G_{n-j}.$$

Proof. We have

$$\begin{split} &P(\overline{z}^{j}e_{n})(z) \\ &= \int_{\Omega} \overline{w}^{j} \frac{w^{n}}{\|w^{n}\|} \sum_{l \in \mathbb{Z}^{2}_{+}} \overline{e_{l}(w)}e_{l}(z)dV(z,w) \\ &= \int_{H_{\Omega}} \int_{w_{1} \in \Delta_{|w_{2}|}} \overline{w_{1}}^{j_{1}} \overline{w_{2}}^{j_{2}} \frac{w_{1}^{n_{1}}w_{2}^{n_{2}}}{\|z^{n}\|} \\ &\quad \cdot \sum_{l_{1},l_{2}=0}^{\infty} \overline{e_{l_{1},l_{2}}(w_{1},w_{2})}e_{l_{1},l_{2}}(z_{1},z_{2})dA_{1}(w_{1})dA_{2}(w_{2}) \\ &= \sum_{l_{1},l_{2}=0}^{\infty} \frac{z_{1}^{l_{1}}z_{2}^{l_{2}}}{\|z^{n}\|\|\|z^{l}\|^{2}} \int_{H_{\Omega}} \overline{w_{2}}^{j_{2}+l_{2}}w_{2}^{n_{2}} \int_{w_{1} \in \Delta_{|w_{2}|}} \overline{w_{1}}^{j_{1}+l_{1}}w_{1}^{n_{1}}dA_{1}(w_{1})dA_{2}(w_{2}). \end{split}$$

Converting to polar coordinates and using the orthogonality of $\{e^{in\theta}:n\in\mathbb{Z}\}$ and the fact that

$$\int_{w_1 \in \Delta_{|w_2|}} \overline{w_1}^{j_1 + l_1} w_1^{n_1} dA_1(w_1)$$

is a radial function of w_2 and H_{Ω} is radially symmetric, we have the only nonzero term in the previous sum is when $n_2 - j_2 = l_2$ and $n_1 - j_1 = l_1$. Therefore, we have $P(\overline{w}^j e_n)(z) = 0$ if $n_2 - j_2 < 0$ or $n_1 - j_1 < 0$. Otherwise, if $n_2 - j_2 \ge 0$ and $n_1 - j_1 \ge 0$, we have

$$P(\overline{w}^j e_n)(z) = \frac{z^{n-j} ||z^n||}{||z^{n-j}||^2}.$$

Therefore, we have

$$H_{\overline{w}^{j}}e_{n}(z) = \frac{\overline{z}^{j}z^{n}}{\|z^{n}\|} - \frac{z^{n-j}\|z^{n}\|}{\|z^{n-j}\|^{2}}$$

if $n_2 - k \ge 0$ and $n_1 - j \ge 0$ otherwise

$$H_{\overline{w}^j}e_n(z) = \frac{\overline{z}^j z^n}{\|z^n\|}$$

if either $n_2 - k < 0$ or $n_1 - j < 0$. This also shows that the subspaces G_{α} remain invariant under the projection (I - P), at least for monomial symbols.

Lemma 3. For every $\alpha \geq 0$, the product Hankel operator

$$H^*_{\overline{z}^{\alpha}}H_{\overline{z}^{\alpha}}: A^2(\Omega) \to A^2(\Omega)$$

is a diagonal operator with respect to the standard orthonormal basis

 $\{e_j: j \in \mathbb{Z}^2_+\}.$

Proof. Assume without loss of generality, $j \neq l$. We have

We have $\overline{z}^{\alpha} e_j \in G_{j-\alpha}$, $\overline{z}^{\alpha} e_l \in G_{l-\alpha}$. By Lemma 2, $(I-P)\overline{z}^{\alpha} e_j \in G_{j-\alpha}$.

By Lemma 1, G_{α} are mutually orthogonal. Therefore,

$$(I-P)(\overline{z}^{\alpha}e_j), \overline{z}^{\alpha}e_l\rangle = 0$$

unless j = l.

Using Lemma 2 and Lemma 3, let us compute the eigenvalues of

$$H^*_{\overline{z}^{\alpha}}H_{\overline{z}^{\alpha}}.$$

Let us first assume $n - \alpha \ge 0$. We have

$$\langle H_{\overline{z}^{\alpha}}^* H_{\overline{z}^{\alpha}} e_n, e_n \rangle = \left\langle \frac{\overline{z}^{\alpha} z^n}{\|z^n\|} - \frac{z^{n-\alpha} \|z^n\|}{\|z^{n-\alpha}\|^2}, \frac{\overline{z}^{\alpha} z^n}{\|z^n\|} \right\rangle$$
$$= \frac{\|\overline{z}^{\alpha} z^n\|^2}{\|z^n\|^2} - \frac{\|z^n\|^2}{\|z^{n-\alpha}\|^2}.$$

If $n - \alpha < 0$, we have

$$\langle H_{\overline{z}^{\alpha}}^* H_{\overline{z}^{\alpha}} e_n, e_n \rangle = \frac{\|\overline{z}^{\alpha} z^n\|^2}{\|z^n\|^2}.$$

3. Proof of Theorem 1

Proof. Assume $f \in A^2(\Omega)$ and $H_{\overline{f}}$ is compact on $A^2(\Omega)$. Then, we can represent

$$f = \sum_{j,k=0}^{\infty} c_{j,k,f} z_1^j z_2^k$$

almost everywhere (with respect to the Lebesgue volume measure on Ω). Let

 $\{e_m: m \in \mathbb{Z}^2_+\}$

be the standard orthonormal basis for $A^2(\Omega)$. Then

$$\left\|H_{\overline{f}}e_m\right\|^2 \to 0$$

1270

as $|m| \to \infty$. Using the mutual orthogonality of the subspaces G_{α} , we get

$$\|H_{\overline{f}}e_m\|^2 = \langle (I-P)(\overline{f}e_m), \overline{f}e_m \rangle$$
$$= \left\langle \sum_{j,k=0}^{\infty} (I-P)(\overline{c_{j,k,f}z_1}^j \overline{z_2}^k e_m), \sum_{s,p=0}^{\infty} \overline{c_{s,p,f}z_1}^s \overline{z_2}^p e_m \right\rangle$$
$$= \sum_{j,k=0}^{\infty} \left\| H_{\overline{c_{j,k,f}z_1^j z_2^k}} e_m \right\|^2$$
$$\geq \left\| H_{\overline{c_{j,k,f}z_1^j z_2^k}} e_m \right\|^2$$

for every $(j,k) \in \mathbb{Z}^2_+$. Taking limits as $|m| \to \infty$, we have

$$\lim_{|m|\to\infty} \left\| H_{\overline{c_{j,k,f}z_1^j z_2^k}} e_m \right\|^2 = 0$$

for all $(j,k) \in \mathbb{Z}_+^2$. The Hankel operators

$$H^*_{\overline{c_{j,k,f}z_1^j z_2^k}} H_{\overline{c_{j,k,f}z_1^j z_2^k}}$$

are diagonal by Lemma 3, with eigenvalues

$$\lambda_{j,k,m} = \left\| H_{\overline{c_{j,k,f} z_1^j z_2^k}} e_m \right\|^2$$

This shows that

$$H^{*}_{\overline{c_{j,k,f}z_{1}^{j}z_{2}^{k}}}H_{\overline{c_{j,k,f}z_{1}^{j}z_{2}^{k}}}$$

are compact for every $(j,k) \in \mathbb{Z}_+^2$. Then

$$H_{\overline{c_{j,k,f}z_1^j z_2^k}}$$

are compact on $A^2(\Omega)$.

Without loss of generality, assume $\Gamma_1 \neq \emptyset$. Then there exists a holomorphic function $F = (F_1, F_2) : \mathbb{D} \to b\Omega$ so that F_2 is identically constant and F_1 is nonconstant. Therefore, by [2], the composition

$$\overline{c_{j,k,f}F_1(z)^jF_2(z)^k}$$

must be holomorphic in z. This cannot occur unless $\overline{c_{j,k,f}} = 0$ for j > 0. Therefore, using the representation

$$f = \sum_{j,k=0}^{\infty} c_{j,k,f} z_1^j z_2^k$$

we have $f = \sum_{k=0}^{\infty} c_{0,k,f} z_2^k$ almost everywhere. By holomorphicity of f and the identity principle, this implies

$$f \equiv \sum_{k=0}^{\infty} c_{0,k,f} z_2^k.$$

Hence f is a function of only z_2 . The proof is similar if $\Gamma_2 \neq \emptyset$.

4. Proof of Theorem 2

Using the same argument in the proof of Theorem 1, one can show compactness of $H_{\overline{t}}$ implies compactness of

$$H_{\overline{c_{j,k,f}z_1^j z_2^k}}$$

for every $j, k \in \mathbb{Z}_+$. Hence by [3, Corollary 1], for any holomorphic function $\phi = (\phi_1, \phi_2) : \mathbb{D} \to b\Omega$, we have

$$\overline{c_{j,k,f}}\overline{\phi_1}^j\overline{\phi_2}^k$$

must be holomorphic. If we assume condition two in Theorem 2, then it follows that $f \equiv c_{0,0,f}$. Assuming condition one in Theorem 2, we may assume ϕ_1 and ϕ_2 are not identically constant. Thus $c_{j,k,f} = 0$ for j > 0 or k > 0 and so $f \equiv c_{0,0,f}$.

Acknowledgements. I wish to thank Sönmez Şahutoğlu, Trieu Le, and the referee for their valuable comments on a preliminary version of this manuscript.

References

- AXLER, SHELDON. The Bergman space, the Bloch space, and commutators of multiplication operators. *Duke Math. J.* 53 (1986), no. 2, 315–332. MR0850538, Zbl 0633.47014, doi: 10.1215/S0012-7094-86-05320-2.
- [2] CLOS, TIMOTHY G.; ŞAHUTOĞLU, SÖNMEZ. Compactness of Hankel operators with continuous symbols. *Complex Anal. and Oper. Theory*, (2017), to appear. arXiv:1608.08670v2.
- [3] ČUČKOVIĆ, ŽELJKO; ŞAHUTOĞLU, SÖNMEZ. Compactness of Hankel operators and analytic discs in the boundary of pseudoconvex domains. J. Funct. Anal. 256 (2009), no. 11, 3730–3742. MR2514058, Zbl 1171.47022, arXiv:0809.1901, doi: 10.1016/j.jfa.2009.02.018.
- [4] ČUČKOVIĆ, ŽELJKO; ŞAHUTOĞLU, SÖNMEZ. Compactness of products of Hankel operators on convex Reinhardt domains in C². New York J. Math. 20 (2014), 627-643. MR3262024, Zbl 1306.47037, arXiv:1201.4835, http://nyjm.albany.edu/j/ 2014/20-31v.pdf.
- [5] LE, TRIEU. Compact Hankel operators on generalized Bergman spaces of the polydisc. Integral Equations Operator Theory 67 (2010), no. 3, 425–438. MR2660469, Zbl 1237.47031, doi: 10.1007/s00020-010-1788-5.

(Timothy Clos) DEPARTMENT OF MATHEMATICS AND STATISTICS, THE UNIVERSITY OF TOLEDO, 2801 WEST BANCROFT STREET, TOLEDO, OH 43606 timothy.clos@utoledo.edu

This paper is available via http://nyjm.albany.edu/j/2017/23-55.html.