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The signs in elliptic nets

Amir Akbary, Manoj Kumar and Soroosh Yazdani

Abstract. We give a generalization of a theorem of Silverman and
Stephens regarding the signs in an elliptic divisibility sequence to the
case of an elliptic net. We also describe applications of this theorem in
the study of the distribution of the signs in elliptic nets and generating
elliptic nets using the denominators of the linear combination of points
on elliptic curves.
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1. Introduction

Definition 1.1. An elliptic sequence (Wn) over a field K is a sequence of
elements of K satisfying the nonlinear recurrence

(1.1) Wm+nWm−n = Wm+1Wm−1W
2
n −Wn+1Wn−1W

2
m

for all m,n ∈ Z. An elliptic sequence is said to be nondegenerate if

W1W2W3 6= 0.

Furthermore, if W1 = 1, we call it a normalized elliptic sequence.

We can show that for a nondegenerate elliptic sequence W0 = 0 (let
m = n = 1 in (1.1)), W1 = ±1 (let m = 2, n = 1 in (1.1)), and W−n = −Wn.
The nontrivial examples of elliptic sequences can be obtained by addition of
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points on cubics. Let E be a cubic curve, defined over a field K, given by
the Weierstrass equation f(x, y) = 0, where

(1.2) f(x, y) := y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6; ai ∈ K.

Let Ens(K) be the collection of nonsingular K-rational points of E. It is
known that Ens(K) forms a group. Moreover, there are polynomials φn, ψn,
and ωn ∈ Z[a1, a2, a3, a4, a6][x, y] such that for any P ∈ Ens(K) we have

nP =

(
φn(P )

ψ2
n(P )

,
ωn(P )

ψ3
n(P )

)
.

In addition, ψn satisfies the recursion

(1.3) ψm+nψm−n = ψm+1ψm−1ψ
2
n − ψn+1ψn−1ψ

2
m.

The polynomial ψn is called the n-th division polynomial associated to E.
(See [4, Chapter 2] for the basic properties of division polynomials.) The
equation (1.3) shows that (ψn(P )) is an elliptic sequence over K. A re-
markable fact, first observed by Ward for integral (integer-valued) elliptic
sequences, is that any normalized nondegenerate elliptic sequence can be
realized as a sequence (ψn(P )). A concrete version of this statement is given
in the following proposition (See [12, Theorem 4.5.3]).

Proposition 1.2 (Swart). Let (Wn) be a normalized nondegenerate elliptic
sequence. Then there is a cubic curve E with equation f(x, y) = 0, where
f(x, y) is given by (1.2) and with

a1 =
W4 +W 5

2 − 2W2W3

W 2
2W3

, a2 =
W2W

2
3 +W4 +W 5

2 −W2W3

W 3
2W3

,

a3 = W2, a4 = 1, a6 = 0,

such that Wn = ψn((0, 0)), where ψn is the n-th division polynomial associ-
ated to E.

We call the pair (E, (0, 0)) in the above proposition a curve-point pair
associated with the elliptic sequence (Wn). Any two curve-point pairs asso-
ciated to an elliptic sequence (Wn) are uni-homothetic (see [11, Section 6.2]
for definition). A normalized nondegenerate elliptic sequence (Wn) is called
nonsingular if the cubic curve E in a curve-point pair (E,P ) associated to
(Wn) is an elliptic curve (a nonsingular cubic).

Ward’s version of the above proposition is stated for normalized, nonde-
generate, integral elliptic divisibility sequences (i.e. an integer-valued elliptic
sequence with the property that Wm |Wn if m | n). However, examining its
proof reveals that in fact it is a theorem for any normalized, nondegenerate,
elliptic sequence defined over a subfield of C. Moreover Ward represents the
terms of such elliptic sequences as values of certain elliptic functions at cer-
tain complex numbers. To explain Ward’s representation, one observes that
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for the n-th division polynomial ψn of an elliptic curve E, defined over a
subfield K of C, we have

ψn(P ) = (−1)n
2−1 σ(nz; Λ)

σ(z; Λ)n2

for a complex number z and a lattice Λ (See [8, Chapter VI, Exercise 6.15]
and [3, Theorem 2.3.5] for a proof). The lattice Λ is the lattice associated to
E over C and σ(z; Λ) is the Weierstrass σ-function associated to Λ defined
as

σ(z; Λ) := z
∏
ω∈Λ
ω 6=0

(
1− z

ω

)
e

z
ω

+ 1
2( z

ω )
2

.

More precisely, Ward proved the following assertion.

Theorem 1.3 (Ward). Let (Wn) be a normalized, nondegenerate, nonsingu-
lar elliptic divisibility sequence defined over a subfield K of complex numbers.
Then there is a lattice Λ ⊂ C and a complex number z ∈ C such that

(1.4) Wn =
σ(nz; Λ)

σ(z; Λ)n2 for all n ≥ 1.

Further, the Eisenstein series g2(Λ) and g3(Λ) associated to the lattice Λ
and the Weierstrass values ℘(z; Λ) and ℘′(z; Λ) associated to the point z
on the elliptic curve C/Λ are in the field Q(W2,W3,W4). In other words
g2(Λ), g3(Λ), ℘(z; Λ), ℘′(z; Λ) are all defined over K.

The above version of Ward’s theorem is [9, Theorem 3]. In [9] Silverman
and Stephens proved a formula regarding signs in an unbounded, normalized,
nondegenerate, nonsingular, real elliptic sequence. (The results of [9] are
stated for integral elliptic divisibility sequences. However, their results hold
more generally for real elliptic sequences.) In order to describe Silverman–
Stephens’s theorem we need to set up some notation.

Notation 1.4. For an elliptic curve E defined over R, we let Λ ⊂ C be its
corresponding lattice. Let E(R) be the group of R-rational points of E. For
a point P ∈ E(R) we let z be the corresponding complex number under the
isomorphism E(C) ∼= C/Λ. From the theory of elliptic curves we know that
there exists a unique q = e2πiτ , where τ is in the upper half-plane, such that
R∗/qZ ∼= E(R) (see Theorem 2.4). Let u ∈ R∗ be the corresponding real
number to the point P ∈ E(R), where P 6= O (the point at infinity).We
assume that u is normalized such that it satisfies q < |u| < 1 if q > 0 and
q2 < u < 1 if q < 0 (see Lemma 2.1). Finally, for any nonzero real number
x, we define the parity of x by

Sign[x] = (−1)Parity[x],where Parity[x] ∈ Z/2Z.

The following is [9, Theorem 1].
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Theorem 1.5 (Silverman–Stephens). Let (Wn) be an unbounded, normal-
ized, nonsingular, nondegenerate (integral) elliptic divisibility sequence. Let
(E,P ) be a curve-point pair corresponding to (Wn). Assume conventions
given in Notation 1.4. Then possibly after replacing (Wn) by the related

sequence ((−1)n
2−1Wn), there is an irrational number β ∈ R, given in Ta-

ble 1.1, so that if q < 0, or q > 0 and u > 0,

Parity[Wn] ≡ bnβc (mod 2),

and if q > 0 and u < 0,

Parity[Wn] ≡

{
bnβc+ n/2 (mod 2) if n is even,

(n− 1)/2 (mod 2) if n is odd.

Here b.c denotes the greatest integer function.

q u β

q > 0
u > 0 logq u

u < 0 logq |u|

q < 0 u > 0
1

2
log|q| u

Table 1.1. Explicit expressions for β

In this paper we give a generalization of Silverman–Stephens’s theorem
in the context of elliptic nets.

Definition 1.6. Let Λ ⊂ C be a fixed lattice corresponding to an elliptic
curve E/C. For an n-tuple v = (v1, v2, . . . , vn) ∈ Zn, define a function Ωv

(with respect to Λ) on Cn in variable z = (z1, z2, . . . , zn) as follows:

Ωv(z; Λ) = (−1)

n∑
i=1

v2
i −

∑
1≤i<j≤n

vivj − 1

(1.5)

· σ(v1z1 + v2z2 + · · ·+ vnzn; Λ)
n∏
i=1

σ(zi; Λ)2v2i−
∑n

j=1 vivj
∏

1≤i<j≤n
σ(zi + zj ; Λ)vivj

,

where σ(z; Λ) is the Weierstrass σ-function.

In [11, Theorem 3.7] it is shown that if P = (P1, P2, . . . , Pn) is an n-tuple
consisting of n points in E(C) such that Pi 6= O for each i and Pi ±Pj 6= O
for 1 ≤ i < j ≤ n, and z = (z1, z2, . . . , zn) in Cn be such that each zi
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corresponds to Pi under the isomorphism C/Λ ∼= E(C), then Ωv := Ωv(z; Λ)
satisfies the recursion
(1.6)

Ωp+q+sΩp−qΩr+sΩr + Ωq+r+sΩq−rΩp+sΩp + Ωr+p+sΩr−pΩq+sΩq = 0,

for all p,q, r, s ∈ Zn. In [11], Stange generalized the concept of an elliptic
sequence to an n-dimensional array, called an elliptic net.

Definition 1.7. Let A be a free Abelian group of finite rank, and R be an
integral domain. Let 0 and 0 be the additive identity elements of A and R
respectively. An elliptic net is any map W : A → R for which W (0) = 0,
and that satisfies

(1.7) W (p + q + s)W (p− q)W (r + s)W (r)

+W (q + r + s)W (q− r)W (p + s)W (p)

+W (r + p + s)W (r− p)W (q + s)W (q) = 0,

for all p,q, r, s ∈ A. We identify the rank of W with the rank of A.

Note that for A = Z, s = 0, r = 1, and W (1) = 1 the recursion (1.7)
reduces to (1.1). Also it is known that the solutions of (1.1) also satisfy the
recurrence (1.7). Thus elliptic nets are generalizations of elliptic sequences.
Moreover, in light of (1.6) the function

Ψ(P;E) : Zn −→ C
v 7−→ Ψv(P;E) = Ωv(z; Λ)

is an elliptic net with values in C. Observe that Ψnei(P) = ψn(Pi), where ei
denotes the ith standard basis vector for Zn.

Definition 1.8. The function Ψ(P;E) is called the elliptic net associated
to E (over C) and P. The value Ψv(P;E) = Ωv(z; Λ) is called the v-th net
polynomial associated to E and P.

We note that if P1, P2, . . . , Pn are n linearly independent points in E(R)
then by [11, Theorem 7.4] we have Ψv(P;E) 6= 0 for v 6= 0. We prove the
following generalization of Theorem 1.5 regarding the signs in Ψ(P, E).

Theorem 1.9. Let E be an elliptic curve defined over R and

P = (P1, P2, . . . , Pn)

be an n-tuple consisting of n linearly independent points in E(R). Let Λ, q, zi,
and ui be as defined in Notation 1.4. Assume that u1, u2, . . . , un > 0
or there exists a nonnegative integer k such that u1, u2, . . . , uk < 0 and
uk+1, uk+2, . . . , un > 0. Then there are n irrational numbers β1, β2, . . . , βn,
which are Q-linearly independent, given by rules similar to Table 1.1, such
that the parity of Ψv(P;E) (= Ωv(z; Λ)), possibly after replacing Ψv(P;E)
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with (−1)

n∑
i=1

v
2
i −

∑
1≤i<j≤n

vivj − 1

Ψv(P;E), is given by

Parity[Ψv(P;E)] ≡

⌊
n∑
i=1

viβi

⌋
+

∑
1≤i<j≤n

bβi + βjcvivj (mod 2),(1.8)

if all ui > 0, but if u1, u2, . . . , uk < 0 and uk+1, uk+2, . . . , un > 0, we have
two cases:

(1) If
k∑
i=1

vi is even, we have

Parity[Ψv(P;E)] ≡
∑

1≤i<j≤k
bβi + βjcvivj +

∑
k+1≤i<j≤n

bβi + βjcvivj(1.9a)

+
⌊ n∑
i=1

viβi

⌋
+

k∑
i=1

⌊vi
2

⌋
(mod 2).

(2) If

k∑
i=1

vi is odd, we have

Parity[Ψv(P;E)] ≡
∑

1≤i<j≤k
bβi + βjcvivj +

∑
k+1≤i<j≤n

bβi + βjcvivj(1.9b)

+
k∑
i=1

⌊vi
2

⌋
(mod 2).

Note that in the above theorem all ui > 0 is the same as k = 0, which

leads to
∑k

i=1 vi = 0 always being even. Thus (1.9a) for k = 0 reduces to
(1.8). The method of the proof of the above theorem follows closely the
techniques devised in the proof of Theorem 1 of [9] for the case n = 1,
however the proof of Theorem 1.9 involves analyzing more cases since the
expression (1.5), for n > 1, includes some new terms.

We also prove a generalization of Theorem 1.5 for sign of certain elliptic
nets that are not necessarily given as values of net polynomials. In order
to describe our result, we need to review some concepts from the theory of
elliptic nets as developed in [11].

Definition 1.10. Let W : Zn → R be an elliptic net. Let

B = {e1, e2, . . . , en}

be the standard basis of Zn. We say W is nondegenerate if

W (ei), W (2ei) 6= 0

for all 1 ≤ i ≤ n, and

W (ei ± ej) 6= 0
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for 1 ≤ i, j ≤ n, i 6= j. If n = 1, we need an additional condition that
W (3ei) 6= 0. If any of the above conditions is not satisfied we say that W is
degenerate.

Definition 1.11. Let W : Zn −→ R be an elliptic net. Then we say that
W is normalized if W (ei) = 1 for all 1 ≤ i ≤ n and W (ei + ej) = 1 for all
1 ≤ i < j ≤ n.

In [11, Theorem 7.4] a generalization of Theorem 1.3 in the context of
elliptic nets is given. More precisely it is proved that for a normalized and
nondegenerate elliptic net W : Zn −→ K there exists a cubic curve E and
a collection of points P on E such that W can be realized as an elliptic net
associated to E and P. (Theorem 7.4 of [11] is also applicable to elliptic
nets over a field K that is not contained in C.) We call W nonsingular if E
in the curve-point pair (E,P) associated to W is an elliptic curve. We also
need the following concept for our second generalization of Theorem 1.5.

Definition 1.12. A function f : Zn −→ R∗ is called a quadratic form if

(1.10) f(a + b + c)f(a + b)−1f(b + c)−1f(c + a)−1f(a)f(b)f(c) = 1,

for a,b, c ∈ Zn.

An example of a quadratic form is the function

f(v1, v2, . . . , vn) =
n∏
i=1

p
v2i
i

∏
1≤i<j≤n

q
vivj
ij ,

where pi, qij ∈ R∗. As we mentioned before, Theorem 1.9 can be stated as
a theorem for the sign of certain elliptic nets. Our next theorem establishes
such a result for nonsingular, nondegenerate elliptic nets.

Theorem 1.13. Let W : Zn −→ R be a nonsingular, nondegenerate elliptic
net. Assume that W (v) 6= 0 for v 6= 0. Then, possibly after replacing W (v)
with either g(v)W (v) or −g(v)W (v) for a quadratic form g : Zn → R∗, there
are n irrational numbers β1, β2, . . . , βn, given by rules similar to Table 1.1,
that can be calculated using an elliptic curve associated to W and points on
it, such that

Parity[W (v)] ≡

⌊
n∑
i=1

viβi

⌋
(mod 2),(1.11)

Parity[W (v)](1.12)

≡


⌊ n∑
i=1

viβi

⌋
+

k∑
i=1

⌊vi
2

⌋
(mod 2) if

k∑
i=1

vi is even,

k∑
i=1

⌊vi
2

⌋
(mod 2) if

k∑
i=1

vi is odd.
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Here (1.11) is applicable when all ui > 0 and (1.12) is applicable if

u1, u2, . . . , uk < 0 and uk+1, uk+2, . . . , un > 0.

Again note that for k = 0 the formula (1.12) reduces to (1.11). Next we
describe some applications of Theorem 1.9 and Theorem 1.13.

Definition 1.14. For v = (v1, v2, . . . , vn) ∈ Nn, let (S(v)) be an n-dimen-
sional array of integers. For j ∈ {0, 1, . . . ,m− 1} and m ≥ 2 denote

C(m, j;V1, V2, . . . , Vn)

= #
{
v; 1 ≤ vi ≤ Vi for 1 ≤ i ≤ n and S(v) ≡ j (mod m)

}
.

The array (S(v)) is said to be uniformly distributed mod m if

lim
V1,V2,...,Vn→∞

C(m, j;V1, V2, . . . , Vn)

V1V2 . . . Vn
=

1

m
,

for j = 0, 1, . . . ,m− 1. We say that the signs in an n-dimensional array S :
Zn → R∗ are uniformly distributed if the array (Parity[S(v)]) is uniformly
distributed mod 2.

Note that here the restriction to v ∈ Nn is for the simplicity of presen-
tation and similar results will hold for v ∈ Zn. By employing formulas in
Theorem 1.9 and Theorem 1.13 we establish the following result.

Theorem 1.15. Let Ψ(P;E) and W (v) be as in Theorem 1.9 and Theo-
rem 1.13. Then the signs in Ψ(P;E) and W (v) are uniformly distributed.

In order to explain the second application of our results we first introduce
the concept of a denominator net. Let E/Q be an elliptic curve given by a
Weierstrass equation with integer coefficients. If P ∈ E(Q) is a nontorsion
point (i.e., nP 6= O for any n) then we have that

nP =

(
AnP
D2
nP

,
BnP
D3
nP

)
,

where AnP , BnP , and DnP > 0 are integers (See [10, Chapter III, Section
2]). The sequence (DnP ) is called an elliptic denominator sequence asso-
ciated to the curve E and the point P. It can be shown that (DnP ) is a
divisibility sequence. Several authors have studied the sequence (DnP ). In
fact, Shipsey [6, Section 4.4] has shown a way of assigning signs to the se-
quence (DnP ) so that the resulting sequence becomes an elliptic divisibility
sequence (Note that DnP > 0 for all n by our definition). The concept of an
elliptic denominator sequence has been generalized to higher ranks and it is
called an elliptic denominator net. If P = (P1, P2, . . . , Pn) is an n-tuple of
linearly independent points in E(Q). Then for v = (v1, v2, . . . , vn) ∈ Zn we
can write

v ·P = v1P1 + v2P2 + · · ·+ vnPn =

(
Av·P
D2

v·P
,
Bv·P
D3

v·P

)
,
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where Av·P, Bv·P, and Dv·P > 0 are integers. Then (Dv·P) is called the
elliptic denominator net associated to an elliptic curve E and a collection
of points P. As a consequence of Theorem 1.9 and Proposition 1.7 of [1], we
describe how in certain cases one can assign signs to a denominator net in
order to obtain an elliptic net. We first need to establish a connection be-
tween the denominator sequence (Dv·P) and an scaled version of the elliptic
net Ψv(P;E). For v ∈ Zn, let

(1.13) Ψ̂v(P;E) = Fv(P)Ψv(P;E),

where F (P) : Zn −→ Q∗ is the quadratic form given by

(1.14) Fv(P) =
∏

1≤i≤j≤n
γ
vivj
ij ,

with

γii = Dei·P = DPi , and γij =
DPi+Pj

DPiDPj

for i 6= j.

The following assertion is proved in [1, Proposition 1.7].

Proposition 1.16. Let E be an elliptic curve defined over Q given by the
Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, ai ∈ Z.

Let P = (P1, P2, . . . , Pn) be an n-tuple of linearly independent points in
E(Q) so that each Pi (mod `) is nonsingular for every prime `. Then we
have

(1.15) Dv·P = |Ψ̂v(P;E)|
for all v ∈ Zn.

By employing Theorem 1.9, we have the following direct corollary of
Proposition 1.16, which gives a way for generating elliptic nets from de-
nominator nets.

Corollary 1.17. Assume the conditions of Proposition 1.16. Define a map
W : Zn −→ Q by

(1.16) W (v) = (−1)Parity[Ψv(P;E)]Dv·P ,

where Ψ(P;E) is the elliptic net associated to E and the collection of points
P. Then W is an elliptic net.

In the next section we will review preliminaries needed in the proofs and
in Sections 3 and 4 we prove our main results on the signs in elliptic nets.
In Section 5 we illustrate our results by providing several examples. Finally
in Sections 6 and 7 we give proofs of our results on uniform distribution of
signs and on relation with denominator sequences.

Acknowledgement. The authors would like to thank the referee for her/his
many helpful suggestions and comments.
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2. Preliminaries

We will follow the conventions described in Notation 1.4. We first show
that the claimed normalization in Notation 1.4 is possible.

Lemma 2.1. Let q ∈ R be such that 0 < |q| < 1 and u0 ∈ R>0 \ qZ. Then
the following statements hold:

(i) For 0 < q < 1 there exists an integer k such that 0 < q < qku0 < 1.
(ii) For −1 < q < 0 there exists an integer k with 0 < q2 < qku0 < 1.

Proof. (i) Let k0 = min{k ∈ Z | qku0 < 1}. Then

qk0u0 < 1 and qk0−1u0 > 1.

We claim that q < qk0u0 < 1. Clearly qk0u0 < 1. If qk0u0 ≤ q then

qk0−1u0 ≤ 1

which contradicts the minimality of k0. So the claim holds.
(ii) If −1 < q < 0, then 0 < q2 < 1, so the result follows from part (i). �

Thus, letting u = qku0 in the above lemma will result in the desired
normalization.

Let Λτ be the normalized lattice with basis [τ, 1], where τ is in the upper
half-plane. From [7, Chapter I, Theorem 6.4] we know that, the q-expansion
of the σ-function σ(z; Λτ ) is given by

(2.1) σ(z; Λτ ) = − 1

2πi
e

1
2
z2η(1)−πiz(1− w)

∏
m≥1

(1− qmw)(1− qmw−1)

(1− qm)2
,

where w = e2πiz, q = e2πiτ , and η(1) is the quasi-period associated to the
period 1 in the lattice Λτ . The next proposition gives the q-expansion for
the numerator in the expression for Ωv(z; Λτ ) in (1.5).

Proposition 2.2. Let

v = (v1, v2, . . . , vn) ∈ Zn,
z = (z1, z2, . . . , zn) ∈ Cn.

Let wj = e2πizj for j = 1, 2, . . . n and q = e2πiτ . Then

σ(v · z; Λτ ) = − 1

2πi
e

1
2

(v·z)2η(1)−πi(v·z)

1−
n∏
j=1

w
vj
j

(2.2)

·
∏
m≥1

(1− qm
∏n
j=1w

vj
j )(1− qm

∏n
j=1w

−vj
j )

(1− qm)2
,

where v · z = v1z1 + v2z2 + · · ·+ vnzn.
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Proof. The result is obtained by replacing z with

v · z = v1z1 + v2z2 + · · ·+ vnzn

in (2.1). Observe that the map z 7−→ v1z1 + v2z2 + + · · · vnzn, corresponds
to w 7−→

∏n
j=1w

vj
j . �

The next proposition provides a q-expansion for Ωv(z; Λτ ) defined in Def-
inition 1.6.

Proposition 2.3. Let

v = (v1, v2, . . . , vn) ∈ Zn,
z = (z1, z2, . . . , zn) ∈ Cn.

Let wj = e2πizj for j = 1, 2, . . . n and q = e2πiτ . Then we have

Ωv(z; Λτ ) = (2πi)

n∑
j=1

v2
j −

∑
1≤j<k≤n

vjvk − 1

·
n∏
j=1

w
v2j−vj

2
j

·

θ
( n∏
j=1

w
vj
j , q

)
n∏
j=1

θ(wj , q)
2v2j−

∑n
k=1 vjvk

∏
1≤j<k≤n

θ(wjwk, q)
vjvk

,

where

θ(wj , q) = (1− wj)
∏
m≥1

(1− qmwj)(1− qmw−1
j )

(1− qm)2
.

Proof. The proof is computational and follows by substituting the q-ex-
pansions (2.1) and (2.2) in (1.5). The one thing to note is that the product
expansion of Ωv(z; Λτ ) is independent of η(1). It disappears after substitut-
ing the q-expansions and simplifying the terms. �

For q = e2πiτ with τ in the upper half-plane, let Eq be the elliptic curve
defined as

Eq : y2 + xy = x3 + a4(q)x+ a6(q),

where
a4(q) = −5

∑
n≥1

n3qn

1− qn

and

a6(q) = − 5

12

∑
n≥1

n3qn

1− qn
− 7

12

∑
n≥1

n5qn

1− qn
.
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Let

φ : C∗/qZ ∼−→ Eq(C)(2.3)

be the C-analytic isomorphism given in [7, Chapter V, Theorem 1.1]. We
are only concerned with elliptic nets with values in R. By [11, Theorem 7.4]
we know that such elliptic nets come from elliptic curves defined over R.
So from now on we assume that our elliptic curves are defined over R. The
following theorem will play an important role in our investigations.

Theorem 2.4. Let E/R be an elliptic curve. Then the following assertions
hold:

(a) There is a unique q ∈ R with 0 < |q| < 1 such that

E ∼=/R Eq

(i.e., E is R-isomorphic to Eq).
(b) The composition of the isomorphism in part (a) with the isomor-

phism φ defined in (2.3), yields an isomorphism

ψ : C∗/qZ ∼−→ E(C)

which commutes with complex conjugation. Thus ψ is defined over
R and moreover,

ψ : R∗/qZ ∼−→ E(R)

is an R-analytic isomorphism.

Proof. See [7, Chapter V, Theorem 2.3]. �

Let E/R be an elliptic curve and let Λ be the lattice associated with
E such that E(C) ∼= C/Λ. We denote by π : Eq → E the isomorphism
in Theorem 2.4(a). Let τ be a complex number associated to q such that
q = e2πiτ and let Λτ be the lattice generated by [τ, 1]. Since E ∼= Eq,
there exists an α ∈ C∗ such that Λ = αΛτ . Then the multiplication by α
carries C/Λτ isomorphically to C/Λ. If we let zi to be the corresponding
complex number to Pi ∈ E(R) under the isomorphism E(C) ∼= C/Λ, then
zi/α will be the corresponding complex number to π−1(Pi) ∈ Eq(R) under
the isomorphism Eq(C) ∼= C/Λτ . From part (b) of Theorem 2.4, the map

ψ = π ◦ φ : C∗/qZ ∼−→ Eq(C)
∼−→ E(C)

is an isomorphism, moreover the map ψ (restricted to R∗/qZ)

ψ : R∗/qZ ∼−→ Eq(R)
∼−→ E(R)

is an R-isomorphism. Thus from the construction of ψ, we can consider
ui = e2πizi/α as a representative in R∗/qZ for ψ−1(Pi). Since ψ is an R-
isomorphism we have that ui ∈ R∗.
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Next let Ψv(P, E) = Ωv(z; Λ) be the value of the v-th net polynomial at
P. Then for v = (v1, v2, . . . , vn) ∈ Zn, fixed z = (z1, z2, . . . , zn) ∈ Cn, and
Λ, we have

Ωv(z; Λ) = Ωv(z;αΛτ ) = (α−1)

n∑
i=1

v2
i −

∑
1≤i<j≤n

vivj − 1

Ωv(α−1z; Λτ ).

Here we have used the fact that for a nonzero α ∈ C∗ we have σ(αz;αΛ) =
ασ(z; Λ). Now substituting the value of Ωv

(
α−1z; Λτ

)
from Proposition 2.3

yields

Ωv(z; Λ) =

(
2πi

α

) n∑
j=1

v2
j −

∑
1≤j<k≤n

vjvk − 1

(2.4)

·
n∏
j=1

u

v2j−vj
2

j

θ
( n∏
j=1

u
vj
j , q

)
n∏
j=1

θ(uj , q)
2v2j−

∑n
k=1 vjvk

∏
1≤j<k≤n

θ(ujuk, q)
vjvk

,

where

θ(uj , q) = (1− uj)
∏
m≥1

(1− qmuj)(1− qmu−1
j )

(1− qm)2
.

In the following two sections, we compute the parity of terms in the right
hand side of (2.4).

3. Proof of Theorem 1.13

Proposition 3.1. Assume the assumptions of Theorem 1.9 and let

θ

 n∏
j=1

u
vj
j , q


be as defined in (2.4). Then if there exists a nonnegative integer k such that
u1, u2, . . . , uk < 0 and uk+1, uk+2, . . . , un > 0, we have

Parity

θ
 n∏
j=1

u
vj
j , q

 ≡ {b ∑n
i=1 viβi c (mod 2) if

∑k
i=1 vi is even,

0 (mod 2) if
∑k

i=1 vi is odd,

where βi is given in Table 1.1.

Proof. Let u1, u2, u3, . . . , uk < 0 and uk+1, uk+2, uk+3, . . . , un > 0. (Note
that for k = 0, this reduces to ui > 0 for 1 ≤ i ≤ n.) For all ui < 0 we can
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write ui = (−1)|ui|. Thus the expansion for θ
(∏n

i=1 u
vi
i , q

)
can be rewritten

as

(3.1)

(
1− (−1)

∑k
i=1 vi

n∏
i=1

|ui|vi
)

·
∏
m≥1

(1− qm(−1)
∑k

i=1 vi
∏n
i=1 |ui|vi)(1− qm(−1)

∑k
i=1 vi

∏n
i=1 |ui|−vi)

(1− qm)2
.

We consider cases according to the sign of q.

Case I. Suppose that q > 0. Then from the above expression we deduce

that if
∑k

i=1 vi is odd then θ
(∏n

i=1 u
vi
i , q

)
is positive. For the case that∑k

i=1 vi is even, the factor 1−
∏n
i=1 |ui|vi may be positive or negative. Thus

we further split into two cases.

Subcase I. Assume that 1−
∏n
i=1 |ui|vi > 0. We observe that for all m ≥ 1

we have qm < 1, and so 1− qm
∏n
i=1 |ui|vi > 0. However,

1− qm
n∏
i=1

|ui|−vi < 0 ⇐⇒ m <

n∑
i=1

vi logq |ui|.

Hence for this case there are
⌊ ∑n

i=1 vi logq |ui|
⌋

negative signs in the ex-

pression (3.1) for θ
(∏n

i=1 u
vi
i , q

)
.

Subcase II. Assume that 1−
∏n
i=1 |ui|vi < 0. Following a similar argument

to that used in Subcase I we have that,

1− qm
n∏
i=1

|ui|vi < 0 ⇐⇒ m <
n∑
i=1

(−vi) logq |ui|.

Observe that since 1 −
∏n
i=1 |ui|vi < 0, we have

∑n
i=1(−vi) logq |ui| > 0.

Hence there are in total
⌊
−
∑n

i=1 vi logq |ui|
⌋
+1 negative signs in expression

(3.1) for θ
(∏n

i=1 u
vi
i , q

)
. (The addition of 1 in the count of negative signs

comes from the factor 1−
∏n
i=1 |ui|vi .)

Note that since P1, P2, . . . , Pn are linearly independent in E(R), then by

[11, Theorem 7.4] we have θ
(∏n

j=1 u
vj
j , q

)
6= 0. Thus the subcase

1−
n∏
i=1

|ui|vi = 0

does not occur.

Now we claim that
∑n

i=1 vi logq |ui| is not an integer. More generally, we
claim that logq |u1|, logq |u2|, . . . , logq |un|, and 1 are linearly independent
over Q. To see this suppose that there are integers k0, k1, k2, . . . , kn not all
zero such that the sum

∑n
i=1 ki logq |ui|+ k0 = 0. Equivalently we have that
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i=1 kizi = −k0. Note that 1 ∈ Λτ , so under the isomorphism C/Λτ ∼= E(C)

integers are mapped to the identity element of E(C). Thus
∑n

i=1 kizi = −k0

under the isomorphism C/Λτ ∼= E(C) leads to
∑n

i=1 kiPi = O. This contra-
dicts our assumption that the points P1, P2, . . . , Pn are linearly independent
in E(R). Hence we have that logq |u1|, logq |u2|, . . . , logq |un|, and 1 are lin-
early independent over Q. (This also shows that each number logq |ui| is
irrational.) Therefore the number

∑n
i=1 vi logq |ui| can not be an integer.

Using this fact and the property of the greatest integer function that

(3.2) bxc+ b−xc =

{
0 if x ∈ Z,
−1 if x 6∈ Z,

we see that the number of negative signs in Subcase II is

−

⌊
n∑
i=1

vi logq |ui|

⌋
.

Therefore we can combine the results from these two subcases to get that

Parity

[
θ

(
n∏
i=1

uvii , q

)]
≡

⌊
n∑
i=1

viβi

⌋
(mod 2) if

k∑
i=1

vi is even,(3.3)

where βi = logq |ui| for all 1 ≤ i ≤ n.

Case II. Suppose that q < 0. Let x =
∏n
i=1 u

vi
i . Note that in this case

ui > 0 for 1 ≤ i ≤ n, hence x > 0. From definition of θ we have

θ

(
n∏
i=1

uvii , q

)
= θ(x, q)

= (1− x)
∏
m≥1

(1− xqm)(1− xq−m)

(1− qm)2

= (1− x)

∏
m≥1

(1− xq2m)(1− xq−2m)

(1− q2m)2


·

∏
m≥1

(1− xq2m+1)(1− xq−2m−1)

(1− q2m+1)2


= θ(x, q2)

∏
m≥1

(1− xq2m+1)(1− xq−2m−1)

(1− q2m+1)2
.

Note that 1−xq2m+1 and 1−xq−2m−1 are both positive, since q is assumed
to be negative. As a result∏

m≥1

(1− xq2m+1)(1− xq−2m−1)

(1− q2m+1)2
> 0,
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and we get Sign [θ(x, q)] = Sign
[
θ(x, q2)

]
. Since q2 > 0 and ui > 0, applying

(3.3) we get

Parity

[
θ
( n∏
i=1

uvii , q
)]
≡ Parity

[
θ
( n∏
i=1

uvii , q
2
)]
≡

⌊
n∑
i=1

viβi

⌋
(mod 2),

(3.4)

where βi = logq2 ui = 1
2 log|q| ui. �

We record two immediate corollaries from this proposition, which we will
use in the next section.

Corollary 3.2. Assume that ui and q are normalized so that if q > 0 then
q < |ui| < 1, and for q < 0 we have q2 < ui < 1. Then θ(ui, q) > 0.

Proof. If q > 0 and ui < 0, then by Proposition 3.1 for vi = 1 (odd) we
have

Parity [θ(ui, q)] ≡ 0 (mod 2).

Also if q > 0 and ui > 0 or q < 0, then by Proposition 3.1 for k = 0 (even),
we have

Parity [θ(ui, q)] ≡ bβic = 0 (mod 2),

since 0 < βi < 1. Thus in both cases θ(ui, q) is positive. �

Corollary 3.3. Assume that ui, q, and βi are defined as in Proposition 3.1.
Then

Parity [θ(uiuj , q)] ≡

{
bβi + βjc (mod 2) if uiuj > 0,

0 (mod 2) if uiuj < 0.

Proof. It follows from the result of Proposition 3.1. �

We now proceed with the main proof of this section.

Proof of Theorem 1.13. First of all note that for a nonsingular nonde-
generate elliptic net W : Zn −→ R there exists an elliptic curve E defined
over R and a collection P = (P1, P2, . . . , Pn) of points in E(R), such that

W (v) = f(v)Ψv(P;E)

for any v ∈ Zn. Here f : Zn −→ R∗ is a quadratic form and Ψ(P;E) is the
elliptic net associated to P and E. Moreover, since W (v) 6= 0 for v 6= 0 we
have that P1, P2, . . . , Pn are n linearly independent points in E(R) (see [11,
Theorem 7.4]). Next observe that in the expression (2.4) the numbers uj and
q are in R∗. Therefore the products containing uj and q are also in R. Also by
[11, Theorem 4.4], since E is defined over R then Ψv(P;E) ∈ R. Hence from

(2.4) we conclude that (2πi/α)

∑n
i=1 v

2
i −

∑
1≤i<j≤n vivj − 1 ∈ R∗. Note that

this statement is true for all v ∈ Zn, therefore for n ≥ 2, taking v1 = 1, v2 =
2 and vi = 0 for all 3 ≤ i ≤ n, we get that (2πi/α)2 ∈ R∗. Furthermore,
taking v1 = 2 and vi = 0 for all 2 ≤ i ≤ n shows that (2πi/α)3 ∈ R∗. Since
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(2πi/α)2 and (2πi/α)3 ∈ R∗, we have that 2πi/α ∈ R∗. A similar result also
holds if n = 1, by choosing v1 = 2 and 3. Hence 2πi/α is either a positive
real number or a negative real number. Thus, after possibly replacing W (v)

with (−1)

n∑
i=1

v
2
i −

∑
1≤i<j≤n

vivj − 1

W (v), we have

Sign[W (v)] = Sign [g(v)] Sign

[
n∏
i=1

u
(v2i−vi)/2
i

]
Sign

θ
 n∏
j=1

u
vj
j , q

 ,
(3.5)

where

g(v) =
f1(v)

n∏
j=1

θ(uj , q)
2v2j−

∑n
k=1 vjvk

∏
1≤j<k≤n

θ(ujuk, q)
vjvk

.

Here, if ε = (−1)

n∑
i=1

v
2
i −

∑
1≤i<j≤n

vivj − 1

and if W (v) was replaced by εW (v), then
f1(v) = εf(v). Otherwise f1(v) = f(v). Observe that g(v) is a quadratic
form. From (3.5) we have

Parity[W (v)](3.6)

= Parity [g(v)] + Parity

[
n∏
i=1

u
(v2i−vi)/2
i

]
+ Parity

θ
 n∏
j=1

u
vj
j , q

 .
We next deal with Parity

[∏n
i=1 u

(v2i−vi)/2
i

]
. If all ui > 0 this value is zero.

Now assume that u1, u2, u3, . . . , uk < 0 and uk+1, uk+2, uk+3 . . . un > 0.
Looking at values of vi modulo 4, we get that

Parity

[
n∏
i=1

u
(v2i−vi)/2
i

]
≡

k∑
i=1

⌊vi
2

⌋
(mod 2).(3.7)

Next we define H : Zn −→ Z as follows. If u1, u2, u3, . . . , uk < 0 and
uk+1, uk+2, uk+3 . . . un > 0, we set

H(v) =


⌊ n∑
i=1

viβi

⌋
+

k∑
i=1

⌊vi
2

⌋
if

k∑
i=1

vi is even,

k∑
i=1

⌊vi
2

⌋
if

k∑
i=1

vi is odd.

From (3.6), Proposition 3.1, (3.7), and the expressions for H(v), we conclude
that

Parity[g(v)W (v)] ≡ H(v) (mod 2).

The proof is complete. �
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4. Proof of Theorem 1.9

Proof of Theorem 1.9. First, note that in the proof of Proposition 3.1 we
showed that β1, . . . , βn are n irrational numbers that are linearly indepen-
dent over Q. Moreover, as described in the proof of Theorem 1.13, 2πi/α in
(2.4) is a nonzero real number. From now on, without loss of generality, we
will assume that 2πi/α > 0. (Note that if 2πi/α < 0 we can compute the

sign of Ωv(z; Λ) by considering (−1)

∑n
i=1 v

2
i −

∑
1≤i<j≤n vivj − 1

Ωv(z; Λ).)
Since 2πiα−1 > 0, it does not play any role in determining the sign of (2.4).
Thus from (2.4) we have that Parity

[
Ωv(z; Λ)

]
in Z/2Z is equal to

Parity

[
n∏
i=1

u
(v2i−vi)/2
i

]
+ Parity

[
θ

(
n∏
i=1

uvii , q

)](4.1)

+ Parity

[
n∏
i=1

θ(ui, q)
2v2i−

∑n
j=1 vivj

]
+ Parity

 ∏
1≤i<j≤n

θ(uiuj , q)
vivj

 .
The first two terms of the above sum were computed in (3.7) and Proposi-
tion 3.1 respectively. By Corollary 3.2, we get that θ(ui, q) > 0, so the third
summand is even. Thus,

(4.2) Parity

[
n∏
i=1

θ(ui, q)
2v2i−

∑n
j=1 vivj

]
≡ 0 (mod 2).

Finally, for the last summand we have

Parity

 ∏
1≤i<j≤n

θ(uiuj , q)
vivj

 ≡ ∑
1≤i<j≤n

vivj Parity [θ(uiuj , q)] (mod 2).

Note that in the range 1 ≤ i < j ≤ n, we have uiuj < 0 only when 1 ≤ i ≤
k < j ≤ n. (That is, uiuj > 0 when 1 ≤ i < j ≤ k or k + 1 ≤ i < j ≤ n.)
By Corollary 3.3 we have

Parity [θ(uiuj , q)] ≡

{
0 (mod 2) if 1 ≤ i ≤ k < j ≤ n,
bβi + βjc (mod 2) otherwise.

Therefore we get

Parity

 ∏
1≤i<j≤n

θ(uiuj , q)
vivj

(4.3)

≡
∑

1≤i<j≤n
vivj Parity [θ(uiuj , q)]

≡
∑

1≤i<j≤k
vivjbβi + βjc+

∑
k+1≤i<j≤n

vivjbβi + βjc (mod 2).
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Now applying (3.7), Proposition 3.1, (4.2), and (4.3) in (4.1) yield

Parity[Ωv(z; Λ)]

≡



∑
1≤i<j≤k

bβi + βjcvivj +
∑

k+1≤i<j≤n
bβi + βjcvivj

+
⌊ n∑

i=1

viβi

⌋
+

k∑
i=1

⌊vi
2

⌋
(mod 2) if

∑k
i=1 vi is even,

∑
1≤i<j≤k

bβi + βjcvivj +
∑

k+1≤i<j≤n
bβi + βjcvivj

+

k∑
i=1

⌊vi
2

⌋
(mod 2) if

∑k
i=1 vi is odd. �

5. Numerical Examples

We now give illustrations of various cases of Theorem 1.9 with the help
of some examples. For sake of simplicity we only give examples for rank 2
elliptic nets. All the computations were done using mathematical software
SAGE.

Keeping the assumptions and notations used in Theorem 1.9, for the case

n = 2, the sign of either Ψv(P;E) or (−1)v
2
1+v22−v1v2−1Ψv(P;E), can be

computed using one of the following parity formulas:

Parity[Ψv(P ;E)](5.1)

≡
⌊
v1β1 + v2β2

⌋
+
⌊
β1 + β2

⌋
v1v2 (mod 2)

Parity[Ψv(P ;E)](5.2)

≡


⌊
v1β1 + v2β2

⌋
+
⌊v1

2

⌋
(mod 2) if v1 is even,⌊v1

2

⌋
(mod 2) if v1 is odd.

Parity[Ψv(P ;E)](5.3)

≡


⌊
v1β1 + v2β2

⌋
+
⌊v2

2

⌋
(mod 2) if v2 is even,⌊v2

2

⌋
(mod 2) if v2 is odd.

Parity[Ψv(P ;E)](5.4)

≡



⌊
v1β1 + v2β2

⌋
+
⌊
β1 + β2

⌋
v1v2

+
⌊v1

2

⌋
+
⌊v2

2

⌋
(mod 2) if v1 + v2 is even,⌊

β1 + β2

⌋
v1v2 +

⌊v1

2

⌋
+
⌊v2

2

⌋
(mod 2) if v1 + v2 is odd.
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Here the two irrational numbers β1 and β2 are given by the rules in Table 1.1.
The formula (5.1) is used when u1 > 0 and u2 > 0 and formula (5.2) is used
for the case when u1 < 0 and u2 > 0. We use the formula (5.3) when u1 > 0
and u2 < 0. Finally the formula (5.4) is used when both u1 < 0 and u2 < 0.

We have verified the truth of the above formulas for several rank 2 elliptic
net W (v1, v2) in the range 0 ≤ v1 ≤ 500 and 0 ≤ v2 ≤ 500. Thus the results
have been verified for 25 × 104 of values of W (v1, v2) and the same for the
negative indices as well.

Example 5.1. Let E be the elliptic curve defined over R given by the
Weierstrass equation y2 +xy = x3−x2−4x+4. Let P1 = (69/25,−532/125)
and P2 = (2,−2) be two points in E(R). Let P = (P1, P2). The following
table presents the values of Ψv(P;E) for v = (v1, v2) in the range 0 ≤ v1 ≤ 3
and 0 ≤ v2 ≤ 5.

...
−832 1232600000 430685595625000000 3330569636331576171875000000

112 −12560000 −18772893750000 121093285553785156250000
· · · −4 −165500 −141878687500 −1754232556789062500 · · ·

−2 −150 196317500 −1270400610718750
1 95 152725 −181061702375
0 5 −3595 63803440

...

Table 5.1. Elliptic net Ψ(P;E) associated to elliptic curve
E : y2 + xy = x3 − x2 − 4x + 4 and points P1 =
(69/25,−532/125), P2 = (2,−2).

In the above array the bottom left corner represents the value Ψ(0,0)(P;E)
and the upper right corner represents Ψ(3,5)(P;E).

There is an isomorphism E(R) ∼= R∗/qZ such that P1 ↔ u1 and P2 ↔ u2

with the explicit values

q = 0.0001199632944492781512985480142643667840 . . . . . . ,

u1 = 0.0803285719586868777961922659399264909608 . . . . . . ,

u2 = 0.03600942542966326797848808049477306988456 . . . . . .

Since u1, u2 > 0, by employing Theorem 1.9, the sign of Ψv(P;E) up to a

factor of (−1)v
2
1+v22−v1v2−1 can be calculated by (5.1). Since Theorem 1.9

gives either sign of Ψv(P;E) or (−1)v
2
1+v22−v1v2−1Ψv(P;E).

By computing the sign of Ψ(2,2)(P;E) using (5.1) we conclude that in this
case the parity is given by the formula

Parity[Ψv(P;E)]

≡
⌊
v1β1 + v2β2

⌋
+
⌊
β1 + β2

⌋
v1v2 + (v1 + v2 + v1v2 + 1) (mod 2)

with
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β1 = 0.2793020829801927957749331343976812416467 . . . ,

β2 = 0.3681717984734797193981452826601334954064 . . . .

Next we illustrate the truth of our formula using two special cases.

Sign[Ψ(1,3)(P;E)] = (−1)bβ1+3β2c+3bβ1+β2c+8 = −1

and

Sign[Ψ(3,4)(P;E)] = (−1)b3β1+4β2c+12bβ1+β2c+20 = 1,

which agree with the signs from the above table.

Example 5.2. Let E be the elliptic curve defined over R given by the Weier-
strass equation y2 +xy = x3−x2− 4x+ 4. Let P1 = (−1, 3) and P2 = (3, 2)
be two points in E(R) so that P = (P1, P2). The following table presents the
values of Ψv(P;E) for v = (v1, v2) in the range 0 ≤ v1 ≤ 3 and 0 ≤ v2 ≤ 6.

...
−219900856 71486913947 48178148140103 −112925826309806338
−495235 58762243 3246745150 −20471103308793
−749 170718 −24093133 −16532329817

· · · 62 2291 −154139 −28273396 · · ·
7 67 −1256 −101083
1 4 3 −1579
0 1 5 −94

...

Table 5.2. Elliptic net Ψ(P;E) associated to elliptic curve
E : y2 + xy = x3 − x2 − 4x + 4 and points P1 = (−1, 3),
P2 = (3,−2).

In this case there is an isomorphism E(R) ∼= R∗/qZ such that P1 ←→ u1

and P2 ←→ u2 with the explicit values

q = 0.0001199632944492781512985480142643667840 . . . . . . ,

u1 = −0.283422955948679072053638499724508663516 . . . . . . ,

u2 = 0.00129667871977447963166306014589504823338 . . . . . .

Observe that q is the same as in the previous example. Further since u1 < 0
and u2 > 0, by using Theorem 1.9, parity of Ψv(P;E) is either given by
(5.2) or

Parity[Ψv(P;E)](5.5)

≡


⌊
v1β1 + v2β2

⌋
+
⌊v1

2

⌋
+ v2 + 1 (mod 2) if v1 is even⌊v1

2

⌋
(mod 2) if v1 is odd
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with

β1 = 0.1396510414900963978874665671988406208233 . . . ,

β2 = 0.7363435969469594387962905653202669908128 . . . .

By computing the sign of Ψ(2,2)(P;E) using (5.2) and (5.5) we conclude
that in this case the parity is given by formula (5.5). Next we illustrate the
truth of our formula using two special cases.

Sign[Ψ(2,3)(P;E)] = (−1)Parity[Ψ(2,3)(P;E)] = (−1)b2β1+3β2c+b1c+3+1 = −1

and

Sign[Ψ(1,5)(P;E)] = (−1)b
1
2
c = 1

Again these agree with the signs from the above table.

Example 5.3. Let E be the elliptic curve defined over R given by the Weier-
strass equation y2 + y = x3 + x2− 2x. Let P1 = (−1, 1) and P2 = (0,−1) be
two points in E(R). Let P = (P1, P2). The following table presents the val-
ues of Ψv(P;E) for v = (v1, v2) in the range −5 ≤ v1 ≤ 5 and −2 ≤ v2 ≤ 2.

...
535 44 −7 −1 1 −1 −4 17 151 −55 −106201

1187 67 1 −2 −1 1 1 −5 26 709 −19061
· · · −3376 129 19 −3 −1 0 1 3 −19 −129 3376 · · ·

19061 −709 −26 5 −1 −1 1 2 −1 −67 −1187
106201 55 −151 −17 4 1 −1 1 7 −44 −535

...

Table 5.3. Elliptic net Ψ(P;E) associated to elliptic curve
E : y2 + y = x3 + x2 − 2x and points P1 = (−1, 1), P2 =
(0,−1).

The above array is centered at Ψ(0,0)(P;E) = 0. The bottom left corner
represent the value Ψ(−5,−2)(P;E) and the upper right corner represents

Ψ(5,2)(P;E). For this example we have the isomorphism E(R) ∼= R∗/qZ
such that P1 ←→ u1 and P2 ←→ u2 with the explicit values

q = 0.00035785976153723480818280896702856223292 . . . . . . ,

u1 = −0.2170771835085414203450101536155224134341 . . . . . . ,

u2 = −0.0077622720300518161218942441500824493219 . . . . . . .
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Since u1 < 0 and u2 < 0, by using Theorem 1.9, sign of Ψv(P;E) is given
by either (5.4) or

Parity[Ψv(P ;E)](5.6)

≡



⌊
v1β1 + v2β2

⌋
+
⌊
β1 + β2

⌋
v1v2+⌊v1

2

⌋
+
⌊v2

2

⌋
+ v1v2 + 1 (mod 2) if v1 + v2 is even⌊

β1 + β2

⌋
v1v2 +

⌊v1

2

⌋
+
⌊v2

2

⌋
(mod 2) if v1 + v2 is odd

with

β1 = 0.1924929051139423228173765652973000996307 . . . . . . ,

β2 = 0.6122563386959476420220464745591944344939 . . . . . . .

By computing the sign of Ψ(2,2)(P;E) using (5.4) and (5.6) we conclude that
in this case the parity is given by formula (5.6).

Example 5.4. Let E be the elliptic curve defined over R given by Weier-
strass equation y2 = x3 − 7x+ 10. Let P1 = (−2, 4) and P2 = (1, 2) be two
linear independent points in E(R). Let P = (P1, P2). The following table
presents the values of Ψv(P;E) for v = (v1, v2) in the range 0 ≤ v1 ≤ 4 and
0 ≤ v2 ≤ 6.

...
−54525952 1086324736 81340137472 −15800157077504 −29481936481157120
−163840 −950272 131956736 30954979328 −31977195339776
−2048 −17408 280576 85124096 30585993216

· · · 32 −352 −9440 979488 449423648 · · ·
4 −4 −276 −16028 8814788
1 3 −31 −1697 67225
0 1 8 −409 −65488

...

Table 5.4. Elliptic net Ψ(P;E) associated to elliptic curve
E : y2 = x3 − 7x+ 10 and points P1 = (−2, 4), P2 = (1, 2).

In the above array the bottom left corner represents the value Ψ(0,0)(P;E)
and the upper right corner represents Ψ(4,6)(P;E). In this case there is an

isomorphism E(R) ∼= R∗/qZ such that P1 ←→ u1 and P2 ←→ u2 with
explicit values

q = −0.0004077489822343239057667854741817549172 . . . . . . ,

u1 = 0.001201936348983837429349696735400418601519 . . . . . . ,

u2 = 0.008992979917906651664620780969726498312814 . . . . . .

Since u1, u2 > 0, by using Theorem 1.9 and calculating the sign of

Ψ(2,2)(P;E),
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we observe that the sign of Ψv(P;E) in this case is given by (5.1) with

β1 = 0.4307458699792390794239197192204249668246 . . . . . . ,

β2 = 0.3018191057841811111031361738974315389666 . . . . . . .

6. Uniform distribution of signs

Definition 6.1. Let (S(v)) be an n-dimensional array of real numbers. For
any a and b with 0 ≤ a < b ≤ 1 and for any positive integers V1, V2, . . . , Vn
denote

C
(
[a, b); V1, V2, . . . , Vn

)
= #

{
v = (v1, v2, . . . , vn); 1 ≤ vi ≤ Vi for 1 ≤ i ≤ n and {S(v)} ∈ [a, b)

}
,

where {S(v)} is the fractional part of S(v). Then the array (S(v)) is said
to be uniformly distributed mod 1 if

lim
V1,V2,...,Vn→∞

C([a, b);V1, V2, . . . , Vn)

V1V2 . . . Vn
= b− a.

Lemma 6.2 (Weyl Criterion). The array (S(v)) is uniformly distributed
mod 1 if and only if

lim
V1,V2,...,Vn→∞

1

V1V2 . . . Vn

∑
1≤v1≤V1

∑
1≤v2≤V2

. . .
∑

1≤vn≤Vn

e2πihS(v) = 0

for all integers h 6= 0.

Proof. The proof follows along the same lines as the proof for 2-dimensional
case. See [2, Chapter 1, Theorem 2.9]. �

Proposition 6.3. Let θ1 be an irrational number and let θ2, θ3, . . . , θn, and
θ0 be arbitrary real numbers. Then the array (v1θ1 + v2θ2 + · · ·+ vnθn + θ0)
is uniformly distributed mod 1.

Proof. This is a direct consequence of Theorem 6.2. See also [2, Example
2.9]. �

The following proposition is a generalization of a part of Theorem 3.1 of
[5] for sequences to arrays.

Proposition 6.4. For an irrational number θ1 and real numbers θ2, . . . θn,
θ0, the array

(6.1)
(⌊
v1θ1 + v2θ2 + · · ·+ vnθn + θ0

⌋)
is uniformly distributed mod m.

Proof. Proposition 6.3 for the irrational number θ1/m and real numbers

θ2/m, . . . , θn/m, θ0/m yields that the array of real numbers (v1
θ1
m + v2

θ2
m +
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· · ·+ vn
θn
m + θ0

m ) is uniformly distributed mod 1. Thus we conclude that the
array of fractional part{

v1
θ1

m
+ v2

θ2

m
+ · · ·+ vn

θn
m

+
θ0

m

}
= v1

θ1

m
+ v2

θ2

m
+ · · ·+ vn

θn
m

+
θ0

m
−
⌊
v1
θ1

m
+ v2

θ2

m
+ · · ·+ vn

θn
m

+
θ0

m

⌋
is uniformly distributed in the unit interval [0, 1). By multiplying the terms
of the array ({v1θ1/m+v2θ2/m+ · · ·+vnθn/m+θ0/m}) with m we see that
the array of real numbers

v1θ1 + v2θ2 + · · ·+ vnθn + θ0 −m
⌊
v1
θ1

m
+ v2

θ2

m
+ · · ·+ vn

θn
m

+
θ0

m

⌋
is uniformly distributed over the interval [0,m) on the real line. Hence by
taking the integer parts of the terms of the above array we conclude that
the terms of the array

(6.2)⌊
v1θ1 + v2θ2 + · · ·+ vnθn + θ0 −m

⌊
v1
θ1

m
+ v2

θ2

m
+ · · ·+ vn

θn
m

+
θ0

m

⌋⌋
=
⌊
v1θ1 + v2θ2 + · · ·+ vnθn + θ0

⌋
−m

⌊
v1
θ1

m
+ v2

θ2

m
+ · · ·+ vn

θn
m

+
θ0

m

⌋
are uniformly distributed modulo m. Furthermore, the removal of the terms
mbv1θ1/m+ v2θ2/m+ · · ·+ vnθn/m+ θ0/mc, from the array (6.2), does not
effect the uniform distribution mod m. �

Corollary 6.5. Let (S(v)) be an array of integers that is uniformly dis-
tributed mod m. Let (c(v)) be an integer array which is constant mod m.
Then the array (S(v) + c(v)) is uniformly distributed mod m. In particular,
under the assumptions of Theorem 6.4, the sequence

(6.3)
(⌊
v1θ1 + v2θ2 + · · ·+ vnθn + θ0

⌋
+ c(v)

)
is uniformly distributed mod m for a fixed real number θ0.

Proof. The first assertion follows from Definition 1.14. The second one
follows from Proposition 6.4 and the first assertion. �

Proof of Theorem 1.15. Let (S(v)) be the n-dimensional array given by
the formulas at the right-hand side of the congruences (1.8), (1.9a), and
(1.9b). We show that (S(v)) is uniformly distributed mod 2. In order to
do this, we consider (S(v)) as union of 2n subarrays (S`(v)) (1 ≤ ` ≤ 2n)
according to the parity of vi’s. It is enough to prove that (S`(v)) is uniformly
distributed mod 2.

For fixed `, the expression for S`(v) is one of the three formulas given in
the right-hand side of the congruences (1.8), (1.9a), and (1.9b). We consider
three cases.
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Case I. From (1.8) we have

S`(v) =

⌊
n∑
i=1

viβi

⌋
+

∑
1≤i<j≤n

bβi + βjcvivj .

Since βi’s are fixed irrational numbers and the parity of vi’s are fixed,
(
∑

1≤i<j≤nbβi + βjcvivj) is a fixed array (c(v)) mod 2 and thus, by Corol-

lary 6.5, (S`(v)) is uniformly distributed mod 2.

Case II. Similar to Case I, ∑
1≤i<j≤k

bβi + βjcvivj +
∑

k+1≤i<j≤n
bβi + βjcvivj


is a fixed array (c(v)) mod 2. Thus, from (1.9a), we have

S`(v) ≡

⌊
n∑
i=1

viβi

⌋
+

k∑
i=1

⌊vi
2

⌋
+ c(v) (mod 2)

≡

⌊
k∑
i=1

⌊vi
2

⌋
(2βi + 1) +

n∑
i=k+1

⌊vi
2

⌋
(2βi) +

n∑
i=1

ηiβi

⌋
+ c(v) (mod 2),

where ηi ∈ {0, 1} according to the parity of vi. Since βi’s are fixed irrational
numbers and the parity of vi’s are fixed,

∑n
i=1 ηiβi is a fixed real number θ0

and thus, by Corollary 6.5, (S`(v)) is uniformly distributed mod 2.

Case III. Similar to Case II, ∑
1≤i<j≤k

bβi + βjcvivj +
∑

k+1≤i<j≤n
bβi + βjcvivj


is a fixed array (c(v)) mod 2. Thus, from (1.9b), we have

S`(v) ≡
k∑
i=1

⌊vi
2

⌋
+ c(v) (mod 2),

which is uniformly distributed mod 2 by Corollary 6.5 and the fact that(∑k
i=1

⌊
vi
2

⌋)
is uniformly distributed mod m. This completes the proof. �

Remark 6.6. We remark that inclusion of the factor

(−1)

n∑
i=1

v2
i −

∑
1≤i<j≤n

vivj − 1
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does not affect the result of Theorem 1.15. Note that

Parity

(−1)

n∑
i=1

v2
i −

∑
1≤i<j≤n

vivj − 1

 ≡
∑

1≤i≤j≤n
vivj + 1 (mod 2),

which is a constant for vi’s with fixed parities. Thus, we can apply Corol-
lary 6.5.

7. Relation with denominator sequences

Proof of Corollary1.17. First of all observe that since all the terms of a
denominator net is positive hence the quadratic form given by (1.14) is also
positive. Therefore from (1.13) it follows that

(7.1) Parity[Ψv(P;E)] = Parity[Ψ̂v(P;E)].

Now consider W (v) : Zn −→ Q such that

|W (v)| = Dv·P for all v ∈ Zn,

and define

Sign[W (v)] = (−1)Parity[Ψv(P;E)],

where the Parity[Ψv(P;E)] is given in Theorem 1.9. Thus,

(7.2) W (v) = (−1)Parity[Ψv(P;E)]Dv·P.

By employing (1.15) and (7.1) we rewrite (7.2) as

W (v) = (−1)Parity[Ψ̂v(P;E)]|Ψ̂v(P;E)|

= Sign[Ψ̂v(P;E)]|Ψ̂v(P;E)|

= Ψ̂v(P;E).

Hence W (v) is an elliptic net by [11, Proposition 6.1] and the fact that
Ψv(P;E) is an elliptic net. �
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