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Weighted estimates for rough bilinear
singular integrals via sparse domination

Alexander Barron

Abstract. We prove weighted estimates for rough bilinear singular in-
tegral operators with kernel

K(y1, y2) =
Ω((y1, y2)/|(y1, y2)|)

|(y1, y2)|2d ,

where yi ∈ Rd and Ω ∈ L∞(S2d−1) with
∫
S2d−1 Ωdσ = 0. The argument

is by sparse domination of rough bilinear operators, via an abstract
theorem that is a multilinear generalization of recent work by Conde-
Alonso, Culiuc, Di Plinio and Ou, 2016. We also use recent results due
to Grafakos, He, and Honźık, 2015, for the application to rough bilinear
operators. In particular, since the weighted estimates are proved via
sparse domination, we obtain some quantitative estimates in terms of
the Ap characteristics of the weights. The abstract theorem is also shown
to apply to multilinear Calderón–Zygmund operators with a standard
smoothness assumption. Due to the generality of the sparse domination
theorem, future applications not considered in this paper are expected.
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1. Introduction

The study of rough singular integral operators dates back to Calderón
and Zygmund’s classic papers [4] and [5]. In [5] the authors proved that if
Ω ∈ L logL(Sn−1) with

∫
Sn−1 Ω dσ = 0, then the operator

RΩf(x) := p.v.

∫
Rn

Ω(y/|y|)
|y|n

f(x− y)dy

is bounded on Lp(Rn) for 1 < p <∞. Hoffman [22] and Christ and Rubio de
Francia [6], [7] proved such operators are bounded from L1 → L1,∞ for small
dimensions, and weak-(1, 1) boundedness in arbitrary dimensions was later
proved by Seeger [33] and Tao [35] (in a more general setting). The weighted
theory for such operators was developed during this time as well; for some
examples, see the work by Duoandikoetxea [15] and Watson [36]. More
recently, Conde-Alonso, Culiuc, Di Plinio, and Ou [9] have shown that the
bilinear form associated to a rough operator RΩ can be bounded by positive
sparse forms (defined below), proving quantitative weighted estimates for
RΩ as an easy corollary. Also see the recent work by Hytönen, Roncal,
and Tapiola [23], where the authors establish quantitative estimates using a
different method.

We are interested in the bilinear analogues of the operators RΩ. The
study of these operators originates with work by Coifman and Meyer [8].
Suppose Ω ∈ Lq(S2d−1) for some q > 1 with

∫
S2d−1 Ω dσ = 0, and define the

rough bilinear operator

TΩ(f1, f2)(x)(1)

= p.v.

∫
Rd

∫
Rd
f1(x− y1)f2(x− y2)

Ω((y1, y2)/|(y1, y2)|)
|(y1, y2)|2d

dy1dy2.

Grafakos, He, and Honźık [19] have proved using a wavelet decomposition
that if Ω ∈ L∞(S2d−1) then

‖TΩ‖Lp1 (Rd)×Lp2 (Rd)→Lp(Rd) <∞



WEIGHTED ESTIMATES FOR ROUGH BILINEAR OPERATORS 781

when 1 < p1, p2 <∞ and 1
p1

+ 1
p2

= 1
p . Also see [19] for references to earlier

work. In this paper we develop a weighted theory for the rough bilinear
operators TΩ, using a multilinear generalization of the sparse domination
theory from [9] along with the results by Grafakos, He, and Honźık. Below
we briefly review some elements of the sparse domination theory, and then
state the main results of the paper.

Recall that a collection of cubes P is said to be η-sparse if for each Q ∈ P
there is EQ ⊂ Q such that |EQ| ≥ η|Q|, and such that EQ ∩ EQ′ = ∅ when
Q 6= Q′ (here 0 < η < 1). We will work with positive sparse forms. Let S
be a sparse collection of cubes in Rd and suppose ~p = (p1, p2, . . . , pm+1) is
an (m+ 1)-tuple of exponents. We define the form

PSF~pS(f1, . . . , fm+1) :=
∑
Q∈S
|Q|

m+1∏
i=1

(fi)pi,Q,

where
(f)q,Q = |Q|−1/q‖f1Q‖q.

These operators were initially studied in [1], [12], [13], motivated by ear-
lier pointwise estimates in the sparse domination theory (see [25], [28], [29],
and [30] for some examples). Techniques involving positive sparse forms
have lead to several interesting results, and can overcome some technical
obstacles appearing in earlier work. For example, one can avoid the reliance
on maximal truncation estimates present in [25], [29] by using sparse form
methods. See [9], [24] [26], and [27] for examples of recent developments. A
common theme in the theory, present in this paper as well, is that sparse
bounds yield quantitative weighted estimates for operators as straightfor-
ward corollaries.

Our main result is the following theorem.

Theorem 1. Suppose TΩ is the rough bilinear singular integral operator
defined in (1), with Ω ∈ L∞(S2d−1) and

∫
S2d−1 Ω = 0. Then for any 1 <

p <∞, there is a constant Cp > 0 so that

|〈TΩ(f1, f2), f3〉| ≤ Cp‖Ω‖L∞(S2d−1) sup
S

PSF
(p,p,p)
S (f1, f2, f3).

Here the supremum is taken over all sparse collections S with some fixed
sparsity constant η that does not depend on the functions. This theorem
is a consequence of a more general multilinear sparse domination result,
which is stated in Section 2. As an application of Theorem 1 we derive
weighted estimates for TΩ. Recall the Ap class of weights w, where w ∈ Ap
for 1 < p <∞ if w > 0, w ∈ L1

loc, and

[w]Ap := sup
Q⊂Rd
cubes

(
1

|Q|

∫
Q
w dx

)(
1

|Q|

∫
Q
w
− 1
p−1 dx

)p−1

<∞.

Below we write Lp(w) for the space Lp with measure w(x)dx.
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Corollary 1.1. Fix 1 < p1, p2 <∞ and 1
2 < p <∞ such that 1

p1
+ 1

p2
= 1

p .

Then for all weights (wp1
1 , w

p2
2 ) in (Ap1 , Ap2), there is a constant C depending

on [wp1 ]Ap1 , [w
p2 ]Ap2 , d, p1 and p2 such that

‖TΩ(f1, f2)‖Lp(wp1w
p
2) ≤ C‖f1‖Lp1 (w

p1
1 )‖f2‖Lp2 (w

p2
2 )

for all fi ∈ Lpi(wpii ).

These estimates were originally proved by Cruz-Uribe and Naibo in [11]
with a different technique. Our proof uses the sparse domination from The-
orem 1 along with methods from [12], [30], [31] and extrapolation. Note the
following special case of Corollary 1.1 in the single-weight case.

Corollary 1.2. Suppose 1 < q <∞ and Ω ∈ L∞(S2d−1) with∫
S2d−1

Ω dσ = 0.

Then if w ∈ Aq, there is a constant C = C(w, q,Ω) such that

‖TΩ(f, g)‖Lq/2(w) ≤ C‖f‖Lq(w)‖g‖Lq(w)

for all f, g ∈ Lp(w).

We provide a separate proof of this corollary in Section 5.1 that indicates
how to track the dependence of C on [w]Ap . The proof of Corollary 1.2 is
again a consequence of sparse domination and extrapolation.

We can also prove weighted estimates with respect to the more general
multilinear Muckenhoupt classes. In particular, suppose

∑3
i=1

1
qi

= 1 with

1 < q1, q2, q3 <∞ and let v1, v2, v3 be strictly positive functions such that

3∏
i=1

v
1
qi
i = 1.

Define

[~v]
A~p
~q

:= sup
Q

3∏
i=1

(
1

|Q|

∫
Q
v

pi
pi−qi
i

) 1
pi
− 1
qi

for any tuple ~p = (p1, p2, p3) with 1 ≤ pi < qi < ∞ for i = 1, 2, 3. Notice
that we assume vi > 0 for each i, but we do not assume that vi ∈ L1

loc. This
multilinear class was originally introduced in [31] with ~p = (1, 1, 1), and used
in [12] for more general ~p. In the case when ~p = (1, 1, 1), it is the natural
weight class associated to the maximal operator

M(~f)(x) := sup
x∈Q

2∏
i=1

1

|Q|

∫
Q
|fi(yi)|dyi.

We will prove the following in Section 5.2.
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Corollary 1.3. Suppose the tuples ~p, ~q and the functions v1, v2, v3 are de-
fined as above, with pi > 1 for i = 1, 2, 3. Also let

σ = v
−q′3/q3
3 = v

− q2
q1+q2

1 v
− q1
q1+q2

2 ,

where q′3 is the conjugate of q3. Then if [~v]
A~p
~q
<∞ and Ω ∈ L∞(S2d−1) with∫

S2d−1 Ω = 0, we have

‖TΩ(f1, f2)‖
Lq
′
3 (σ)
≤ CΩ,d,pi,qi [~v]

max
{

qi
qi−pi

}
A~p
~q

‖f1‖Lq1 (v1)‖f2‖Lq2 (v2)

for all fi ∈ Lqi(vi), i = 1, 2.

We will see in Section 5.2 below that Corollary 1.1 and Corollary 1.3
can both be deduced from the same lemma, which is a consequence of the
sparse domination. However, the class [~v]

A~p
~q

is in general strictly larger than

Aq1 × Aq2 since, for example, v1 and v2 do not have to be in L1
loc (see [31]

for some examples when ~p = (1, 1, 1)).

Sample Application. We note that the Calderón commutator

C(a, f)(x) = p.v.

∫
R

A(x)−A(y)

(x− y)2
f(y)dy,

where a is the derivative of A, is an example of the rough bilinear operators
considered in this paper [8]. Let e(t) = 1 if t > 0 and e(t) = 0 if t < 0. Then
we can write this operator as

p.v.

∫
R

∫
R
K(x− y, x− z)f(y)a(z)dydz

with

K(y, z) =
e(z)− e(z − y)

y2
=:

Ω((y, z)/|(y, z)|)
|(y, z)|2

.

Moreover, Ω is odd and bounded, so Theorem 1 and the weighted corollaries
all apply to C(a, f).

1.1. Structure of paper. The proof of Theorem 1 is broken up into two
parts. We begin by formulating an abstract sparse domination theorem in
the multilinear setting (Theorem 2 below), a result that generalizes Theorem
C in [9] by Conde-Alonso, Culiuc, Di Plinio, and Ou. The proof of this
theorem is similar to their result, so it is deferred to Section 6. In the second
part of the paper we use the deep results of Grafakos, He, and Honźık to
show that the assumptions of Theorem 2 are satisfied by the rough bilinear
operators TΩ. Along the way we also prove a sparse domination result
for multilinear Calderón–Zygmund operators with a standard smoothness
assumption, as defined by Grafakos and Torres in [21]. This is the content of
Theorem 3 below. This sparse domination result for multilinear Calderón–
Zygmund operators uses different methods than the recent paper by K.
Li [32], and in particular avoids reliance on maximal truncations. As a
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corollary we can partially recover the weighted estimates from [30]. Finally,
in Section 5 we prove the weighted estimates outlined in the corollaries
above.

Theorem 2 is independently interesting, and due to its generality we ex-
pect it to be useful for analyzing other multilinear operators in the future.
We also note that Theorem 1 only applies when Ω ∈ L∞(S2d−1), since
we need some analogue of the classical Calderón–Zygmund size condition.
Sparse domination when Ω ∈ Lq(S2d−1) for other values of q, or when Ω is
in some Orlicz-Lorentz space, is still an open problem. In fact, the full range
of boundedness of TΩ when Ω ∈ Lq(S2d−1) for 2 < q < ∞ is not known. It
is also unknown whether TΩ is bounded anywhere for q < 2. See [19] for
more details.

1.2. Acknowledgments. The author would like to thank Francesco Di
Plinio for suggesting the problem that led to this paper, and for reading
early drafts and making many helpful suggestions along the way. Section 5
in particular benefited from these suggestions. The author would also like
to thank Jill Pipher for many helpful conversations.

1.3. Notation and definitions. Given a dyadic cube L, we let

sL = log2(length(L))

and let L̂ be the 25-fold dilate of L. Throughout the paper we fix a dyadic
lattice D in Rd. A collection of disjoint cubes P ⊂ D will be called a stopping
collection with top Q if its elements are contained in 3Q and satisfy the
following separation properties:

(i) If L,R ∈ P and |sL − sR| ≥ 8, then 7L ∩ 7R = ∅.
(ii)

⋃
L∈P

3L∩2Q6=∅
9L ⊂

⋃
L∈P L.

This definition is taken from [9] (the particular constants here are chosen
for technical reasons related to the proof of Theorem 2 below).

Throughout the paper we use cα to represent a positive constant depend-
ing on the parameter α that may change line to line. We often write A . B
to mean A ≤ cB, where c is a positive constant depending on the dimension
d, the multilinearity term m, or relevant exponents. For E ⊂ Rd we let |E|
denote its Lebesgue measure and 1E its indicator function. Finally, we will
use Mp(f)(x) to denote the p-th Hardy–Littlewood maximal function

Mp(f)(x) = sup
x∈Q

(
1

|Q|

∫
Q
|f(y)|pdy

)1/p

(here the supremum is taken over cubes Q ⊂ Rd containing x). Recall that
Mp is bounded on Lr(Rd) when r > p. We also write Mw

p (f) to denote the
p-th maximal function associated to a weight w. This operator satisfies the
same boundedness properties as the standard maximal operator when w is
doubling (and in particular when w ∈ Aq for some q).
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2. Abstract sparse theorem in multilinear setting

In this section we formulate an abstract sparse domination result which
we will apply in Section 4 to prove Theorem 1. Let T be a bounded m-
linear operator mapping Lr1 × · · · × Lrm → Lα for some ri, α ≥ 1 with
1
r1

+ · · · + 1
rm

= 1
α , and assume T is given by integration against a kernel

K(x1, . . . , xm+1) away from the diagonal. We will assume the kernel of T
has a decomposition

(2) K(x1, . . . , xm, xm+1) =
∑
s∈Z

Ks(x1, . . . , xm, xm+1),

such that in the support of Ks we have |xk − xl| ≤ 2s for all l, k. We also
define

[K]p := sup
s∈Z

2
mds
p′ sup

y∈Rd

(
‖Ks(y, ·+ y, . . . , ·+ y)‖Lp(Rmd)

+ ‖Ks(·+ y, y, ·+ y, . . . , ·+ y)‖Lp(Rmd) + . . .
)

(the last ‘. . . ’ indicates the other possible symmetric terms), and require
that

(3) [K]p <∞.
This is an abstract analogue of the basic size estimate for multilinear Calde-
rón–Zygmund kernels, see [21] and Section 3 below. We will refer to condi-
tions (2) and (3) as the (S) (single-scale) properties.

Since the operators under consideration are m-linear, we will have to deal
with (m+ 1)-linear forms of type∫

Rn
T (f1, . . . , fm)(x)fm+1(xm+1) dxm+1.

We define Λνµ(f1, . . . , fm+1) to be the form∫
R(m+1)d

∑
µ<s<ν

Ks(x1, . . . , xm+1)f1(x1) . . . fm+1(xm+1) dx1 . . . dxm+1,

and always assume µ > 0 and ν <∞. Finally, we will assume the following
uniform estimate on the truncations: given 1

r1
+ · · ·+ 1

rm
= 1

α as above,

CT (r1, . . . , rm, α) := sup ‖Λνµ‖Lr1×···×Lrm×Lα′→C <∞.
Here the supremum is taken over all finite truncations. From now on the
truncation bounds µ, ν will be omitted from the notation unless explicitly
needed, and we will write CT in place of CT (r1, . . . , rm, α).

2.1. Remark on truncations. We assume below that our operator is
truncated to finitely many scales, and prove estimates that are uniform in
the number of truncations. The justification for this assumption is sketched
below. The argument is a straightforward generalization of a result that can
be found in [34] Ch. 1, section 7.2.
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Let T ε denote our operator truncated at scales larger than ε and smaller
than 1/ε. Fix fi ∈ Lri with compact support, 1 ≤ i ≤ m. By the uniform
bound assumption on CT , after passing to a subsequence we can assume
T ε(f1, . . . , fm) converges weakly in Lα to some T0(f1, . . . , fm). It is clear
from the weak convergence that T0 must be multilinear. We claim that if
Qi is a cube in Rn then

(T − T0)(f11Q1 , . . . , fm1Qm)(xm+1)(4)

= 1Q1(xm+1) . . .1Qm(xm+1)(T − T0)(f1, . . . , fm)(xm+1) a.e.

In fact, the support restriction on the kernel of T − T ε shows that the
integral vanishes if xm+1 /∈ Qi for any i, provided ε is small enough. Then
the identity follows from the weak convergence of T ε. Using multilinearity
we can extend (4) to simple functions, and then using the boundedness of T
we see that (4) holds with gi ∈ Lri in place of 1Qi . In particular, let Ej be

an increasing sequence of open sets that exhaust Rd, and suppose fi ∈ Lri
with support in Eji . Then we must have

(T − T0)(f1, . . . , fm)(xm+1)

= f1(xm+1) . . . fm(xm+1)(T − T0)(1Ej1 , . . . ,1Ejm )(xm+1) a.e.

It follows that T differs from the limit T0 by a multiplication operator,
provided

(T − T0)(1Ej1 , . . . ,1Ejm )(xm+1) =: φ(xm+1)

forms a coherent function with respect to the Eji . This is clear as in the
linear case. Moreover, φ ∈ L∞ since there exists cT > 0 such that

cT > sup
fi∈Lri

cpt. supp

‖(T − T0)(f1, . . . , fm)‖Lα
‖f1‖Lr1 . . . ‖fm‖Lrm

= sup
fi∈Lri

cpt. supp

‖φ · f1 . . . fm‖Lα
‖f1‖Lr1 . . . ‖fm‖Lrm

≥ ‖φ‖L∞ .

Therefore, as long as we can prove admissible bounds for multiplication
operators of the form Aφ(f1, . . . , fm) = φ · f1 . . . fm, with φ ∈ L∞, we are
justified in working with a finite (but otherwise arbitrary) number of scales.

2.2. The abstract theorem. Assume we are given some stopping collec-
tion of cubes P with top Q. We will use the space Yp = Yp(P) from [9],
with norm ‖ · ‖Yp defined by

(5) ‖h‖Yp :=

max

(∥∥∥h1Rd\
⋃
L∈P L

∥∥∥
∞
, sup
L∈P

inf
x∈L̂

Mph(x)

)
if p <∞

‖h‖∞ if p =∞

(recall from above that L̂ is the 25-fold dilate of L). We let ‖b‖Xp denote the

Yp-norm of b when b =
∑

L∈P bL with bL supported on L ∈ P, and use Ẋp
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to signal that
∫
bL = 0 for each L. Observe that these norms are increasing

in p, a property we use many times below. Also recall that if h ∈ Yp there is
a natural Calderón–Zygmund decomposition of h associated to the stopping
collection P: we can split h = g + b, where

(6) b =
∑
L∈P

(
h− 1

|L|

∫
L
h

)
1L

and
‖g‖Y∞ ≤ 25d‖h‖Yp , b ∈ Ẋp, ‖b‖Ẋp ≤ 25d+1‖h‖Yp .

Given a cube L, define

ΛL(f1, . . . , fm, fm+1) :=Λmin(sL,top trunc)(f11L, f2, . . . , fm, fm+1)

=Λmin(sL,top trunc)(f11L, f213L, . . . , fm13L, fm+113L),

meaning the truncation from above never exceeds the scale of L. The second
equality follows from the support condition on the kernel imposed by (2).
For simplicity we often write ΛsL to indicate that all truncations are at or
below level sL. We will work with

(7) ΛP(f1, . . . , fm, fm+1) := ΛQ(f1, . . . , fm+1)−
∑
L∈P
L⊂Q

ΛL(f1, . . . , fm+1)

(as above, Q is the top cube of the stopping collection P). Note that ΛP
is not symmetric in all of its arguments, due to some lack of symmetry
in definitions. However, we will see below that ΛP is ‘almost’ symmetric,
meaning it is symmetric up to a controllable error term.

We can now state the abstract sparse domination theorem.

Theorem 2. Let T be an m-linear operator with kernel K as above, such
that K can be decomposed as in (2) and CT <∞. Also let Λ be the (m+1)-
linear form associated to T . Assume there exist 1 ≤ p1, . . . , pm, pm+1 ≤
∞ and some positive constant CL such that the following estimates hold
uniformly over all finite truncations, all dyadic lattices D, and all stopping
collections P:

|ΛP(b, g2, g3, . . . , gm+1)| ≤ CL|Q|‖b‖Ẋp1
‖g2‖Yp2

‖g3‖Yp3
. . . ‖gm+1‖Ypm+1

(8)

|ΛP(g1, b, g3, . . . , gm+1)| ≤ CL|Q|‖g1‖Y∞‖b‖Ẋp2
‖g3‖Yp3

. . . ‖gm+1‖Ypm+1

|ΛP(g1, g2, b, g4, . . . , gm+1)| ≤ CL|Q|‖g1‖Y∞‖g2‖Y∞‖b‖Ẋp3
‖g4‖Yp4

. . . ‖gm+1‖Ypm+1

...

|ΛP(g1, g2, . . . , gm, b)| ≤ CL|Q|‖g1‖Y∞‖g2‖Y∞ . . . ‖gm‖Y∞‖b‖Ẋpm+1
.

Also let ~p = (p1, . . . , pm+1). Then there is some constant cd depending on
the dimension d such that

sup
µ,ν
|Λνµ(f1, . . . , fm, fm+1)| ≤ cd [CT + CL] sup

S
PSFS;~p(f1, . . . , fm, fm+1)
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for all fj ∈ Lpj (Rd) with compact support, where the supremum is taken
with respect to all sparse collections S with some fixed sparsity constant that
depends only on d,m.

2.3. Some remarks on Theorem 2. We will prove in Section 6.1 that
the multiplication operators Aφ considered above in Remark 2.1 satisfy ad-
missible PSF bounds. Therefore Theorem 2 implies

|Λ(f1, . . . , fm, fm+1)| ≤ cd [CT + CL] sup
S

PSF~pS(f1, . . . , fm, fm+1)

when fj ∈ L∞(Rd) with compact support. If Λ extends boundedly to

Lq1(Rd) × · · · × Lqm+1(Rd), we can use standard density arguments to lift
the PSF bound to the case where fi ∈ Lqi(Rd).

We also provide some more motivation for the estimates (8). Let P
be a stopping collection of dyadic cubes with top Q and suppose b =∑

L∈P bL with bL supported in L. Also assume g1, g2, . . . , gm+1 are func-
tions supported in 3Q. If we fix L ∈ P with scale sL, then by definition
ΛP(bL, g2, . . . , gm+1) splits as

ΛP(bL, g2, . . . , gm+1) = ΛsQ(bL, g2, . . . , gm+1)−ΛsL(bL, g213L, . . . , gm+113L).

Now let s be a fixed scale with s ≤ sL. Then the piece of ΛP(bL, g2, . . . , gm+1)
corresponding to this scale can be written as∫

R(m+1)d

KsbL(x1)
(
g2(x2) . . . gm+1(xm+1)

− g213L(x2) . . . gm+113L(xm+1)
)
d~x

=

∫
R(m+1)d

KsbL (g213L . . . gm+113L − g213L . . . gm+113L) d~x

= 0.

Here we’ve used the truncation of the kernel: since x1 ∈ L and |x1 − xi| ≤
2s ≤ 2sL for any i, we must have xi ∈ 3L for each i. Therefore all scales s
entering into ΛP(bL, g2, . . . , gm+1) satisfy s > sL, and as a consequence we
have the decomposition

ΛP(bL, g2, . . . , gm+1) =

∫
R(m+1)d

∑
l≥1

KsL+lbL(x1)g2(x2) . . . gm+1(xm+1)d~x.

Summing over L ∈ P then gives

ΛP(b, g2, . . . , gm+1) =
∑
L∈P

∫
R(m+1)d

∑
l≥1

KsL+lbL(x1)g2(x2) . . . gm+1(xm+1)d~x

(9)

=

∫
R(m+1)d

∑
s

∑
l≥1

Ksbs−l(x1)g2(x2) . . . gm+1(xm+1)d~x,
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where

bs−l =
∑
L∈P

sL=s−l

bL.

The representation (9) often enables one to verify the estimates (8) in prac-
tice. We will see this in the case of multilinear Calderón–Zygmund operators
below in Section 3. In Appendix A we prove the following result about the
adjoint forms:

Proposition 2.1. Let b, g1, . . . , gm+1 be defined as above, fix 1 < p ≤ ∞,
and suppose [K]p′ <∞. If we set

bin =
∑
L∈P

3L∩2Q 6=∅

bL,

then

ΛP(g1, b, g3, . . . , gm+1)

=

∫
R(m+1)d

∑
s

∑
l≥1

Ksb
in
s−l(x2)g1(x1)g3(x3) . . . gm+1(xm+1)d~x + φ,

where φ is an error term that satisfies the estimate

|φ| . [K]p′ |Q|‖b‖X1‖g1‖Yp‖g3‖Yp . . . ‖gm+1‖Yp .

An analogous decomposition holds for each of the other forms

ΛP(g1, g2, b, g4, . . . , gm+1), . . . ,ΛP(g1, . . . , gm−1, b, gm+1),ΛP(g1, . . . , gm, b),

with error terms satisfying the same bounds (with obvious changes in indi-
cies).

In practice the error term φ does not cause any issues. This quantifies
the ‘almost symmetry’ of ΛP mentioned above.

The proof of Theorem 2 is similar to the proof of the abstract Theorem C
in [9], so we postpone the argument to Section 6 below.

3. Multilinear Calderón–Zygmund operators

In this section we use Theorem 2 to prove sparse bounds for multilinear
Calderón–Zygmund (CZ) operators that satisfy a certain smoothness condi-
ton (defined below). For the theory of these operators see [18] or [21]. In the
process we prove an estimate which is necessary for the proof of Theorem 1
given in Section 4 below. The reader who who wishes to skip to the proof of
Theorem 1 only needs to be familiar with the statement of Proposition 3.3
and the list of inequalities immediately following its proof.
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Fix an m-linear CZ operator T with kernel K. We have to suitably
decompose the kernel to verify the initial assumptions of Theorem 2. Recall
that we have the basic size estimate

|K(x1, . . . , xm, xm+1)| ≤ CK
(max
i 6=j
|xi − xj |)md

,

where 1 ≤ i, j ≤ m+1. This estimate motivates the following decomposition.
Let ~x = (x1, . . . , xm, xm+1) with xi ∈ Rd, and define

M~x = (max
i 6=j
|xi − xj |)md

and
Mij = {~x ∈ R(m+1)d : M~x = |xi − xj |}.

Note that there are m(m− 1)/2 such sets Mij . Also define M∗ij be the open

subset of R(m+1)d where

|xi − xj | >
1

2
|xk − xl|

for all k, l. Let ψij be a smooth partition of unity of R(m+1)d\{0} subordi-
nated to the open cover {M∗ij}, such that ψij = 1 on Mij . Let Kij = ψijK,
so that our operator splits as

T (f1, . . . , fm)(xm+1) =
∑
i,j

∫
Rmd

Kij(x1, . . . , xm, xm+1)f1(x1) . . . fm(xm)d~x.

Now choose the integer l so that 2l−1 < m(m− 1)/2 ≤ 2l and set

As = {~x ∈ R(m+1)d : 2s−l−1 <
m∑
i=1

m∑
j=i+1

|xi − xj | ≤ 2s−1}.

Let φ be a smooth radial function supported in A0 such that
∑

s φ(2−s~x) = 1
for ~x 6= 0, and write φs(~x) = φ(2−s~x). Finally, let

Kij
s (~x) = ψij(~x)φs(~x)K(~x).

Notice that if ~x ∈Mij ∩As, then |xi−xj | ∼ 2s. This leads to the decompo-
sition

Kij(x1, . . . , xm, xm+1) =
∑
s

Kij
s (x1, . . . , xm, xm+1)

=
∑
s

Kij(x1, . . . , xm, xm+1)φs(~x).

Observe that if |xi−xj | ∼ 2s in the region M∗ij then necessarily |xk−xl| ≤ 2s

for all other pairs, since |xk − xl| ≤ 2|xi − xj | in M∗ij . Given 1 ≤ p <∞ we
can easily prove the single-scale size estimate

(10)

(∫
Rmd
|Kij

s (~x)|p
)1/p

. 2
−mds

p′
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for each i, j. This bound holds uniformly in the free variable. One also has

‖Kij
s ‖L∞(Rmd) < 2−mds,

with a similar interpretation for the free variable. Therefore [K]p < ∞ in
this setting, for 1 ≤ p ≤ ∞. We are also free to assume that T satisfies
the uniform truncation bound CT (r1, . . . , rm, α) <∞ for some collection of
exponents with 1

r1
+ · · ·+ 1

rm
= 1

α (see [18], [21]).
Assume for the rest of the section that P is a fixed stopping collection of

cubes with top Q. We will work towards a proof of the estimates (8) needed
to apply Theorem 2 in this context. We begin by proving a single-scale
estimate in a slightly more abstract setting, which will be useful for the rest
of the paper.

3.1. Single-scale estimates. Suppose b =
∑

L∈P bL with bL supported in
L. Also pick functions g1, . . . , gm+1 supported in 3Q. The following lemma
applies to all kernels K =

∑
s∈ZKs satisfying the (S) properties (2) and (3)

from Section 2.

Lemma 3.1. Suppose b, g1, g2, . . . , gm+1 are defined as above and 1 < β ≤
∞. Let T be an m-linear operator with kernel K, such that K satisfies the
(S) properties with [K]β′ <∞. For a fixed l ≥ 1 we have∫

R(m+1)d

∑
s

|Ks| · |bs−l|(x1)|g2(x2)| . . . |gm+1(xm+1)| d~x

. [K]β′ |Q|‖b‖X1‖g2‖Yβ . . . ‖gm+1‖Yβ .

Symmetric estimates also hold for the other tuples

(g1, b, g3, . . . , gm+1), . . . , (g1, . . . , gm, b).

Proof. From (9), we see that it is enough to show that if L ∈ P and
s = sL + l, then∫

R(m+1)d

|Ks||bL(x1)||g2(x2)| . . . |gm+1(xm+1)|d~x

. [K]β′ |L|‖b‖X1‖g2‖Yβ . . . ‖gm+1‖Yβ .

We can then sum over L and use disjointness to complete the proof. Begin
by fixing x1 ∈ L, with the goal of proving an L∞x1

bound for∫
Rmd
|Ks(x1, . . . , xm+1)||g2(x2)| . . . |gm+1(xm+1)|dx2 . . . dxm+1.

We change variables and set zi = xi − x1 for i = 2, . . . ,m + 1. Notice that
the support of Ks implies |zi| . 2s for each i. Now for all such x1,
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∫
Rmd
|Ks(x1, x2, . . . , xm+1)||g2(x2)| . . . |gm+1(xm+1)|dz2 . . . dzm+1.

≤
(∫

Rmd
|Ks(x1, z2 + x1, . . . , zm+1 + x1)|β′dz2 . . . dzm+1

)1/β′

×
m+1∏
i=2

(∫
B(x1,2s+10)

|gi|βdzi

)1/β

≤ 2
−mds

β [K]β′ ·
m+1∏
i=2

(∫
B(x1,2s+10)

|gi|βdzi

)1/β

. [K]β′
m+1∏
i=2

inf
L̂
Mβ(gi)·

. [K]β′‖g2‖Yβ . . . ‖gm+1‖Yβ .

Note that s > sL and x1 ∈ L, so L̂ is contained in B(x1, 2
s+10). This justifies

adding the infinums in the fourth line. As a consequence, we get∫
R(m+1)d

|Ks||bL(x1)||g2(x2)| . . . |gm+1(xm+1)|d~x

. [K]β′ |L|‖b‖X1‖g2‖Yβ . . . ‖gm+1‖Yβ ,

since ‖bL‖L1 . |L|‖b‖X1 . This completes the proof of the main estimate. The
relevant estimates for the tuples (g1, b, g3, . . . , gm+1), etc., can be proved in
just the same way using the representations from Proposition 2.1. Note that
the error term φ from this proposition has an acceptable contribution. �

If Λ is the (m+ 1)-linear form associated to an m-linear CZ operator T ,
then from (9) we see that

ΛP(b, g2, . . . , gm+1)(11)

=

∫
R(m+1)d

∑
ij

∑
s

∑
l≥1

Kij
s bs−l(x1)g2(x2) . . . gm+1(xm+1)d~x.

The number of pairs i, j is bounded by a constant depending only on m, so
it is clear that the result of Lemma 3.1 applies to this operator as well (with
a possibly different constant).

3.2. Cancellation estimates. Let T be an m-linear Calderón–Zygmund
operator as defined above, such that

(12) |K(x1, x2, . . . , xm+1)−K(x′, x2, . . . , xm+1)| ≤ A|x1 − x′|ε

(max
i 6=j
|xi − xj |)2d+ε

for some 0 < ε ≤ 1 whenever |x1−x′| ≤ 1
m+1(|x2−x1|+· · ·+|xm+1−x1|), and

suppose that symmetric estimates hold with respect to the other variables
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xi (with the same constant). If CK is the constant from the basic Calderón–
Zygmund size estimate, we also assume that CK ≤ A. We then call (12)
the ‘ε-smoothness’ property of T , and A the ‘smoothness’ constant. We
will use (12) to sum over l in the context of Lemma 3.1, and as a result
prove the required estimates (8) for the sparse bound. It is possible that
this smoothness condition may be relaxed, but it is all we need below for
the proof of Theorem 1.

Suppose b =
∑

L∈P bL and g1, . . . , gm+1 are as in the last section, with the
additional property that

∫
bL = 0 for each L. We will use the cancellation

of b and (12) to estimate

ΛP(b, g2, . . . , gm+1), . . . ,ΛP(g1, . . . , gm, b).

Before proceeding, we need to prove a technical lemma related to the trun-
cation.

Lemma 3.2. Suppose |x1 − x′| ≤ 2s−l for some integer l ≥ 1, and let

ψijs (x1, . . . , xm+1) = ψij(x1, . . . , xm+1)φs(x1, . . . , xm+1).

Then ∣∣∣∣∣∑
i,j

K(x1, x2, . . . , xm+1)ψijs (x1, x2, . . . , xm+1)(13)

−K(x′, x2, . . . , xm+1)ψijs (x′, x2, . . . , xm+1)

∣∣∣∣∣
.
∑
i,j

1M∗ij (~x)φs(x1, . . . , xm+1)
∣∣K(x1, . . . , xm+1)−K(x′, . . . , xm+1)

∣∣
+ 2−l‖∇φ0‖∞|K(x′, . . . , xm+1)|.

Symmetric estimates also hold for the other variables under suitable assump-
tions.

Proof. We will prove the lemma for the pair x1, x
′. The proof for the

other variables is identical. For notational simplicity, below we will write

K = K(x1, . . . , xm+1) and K̃ = K(x′, x2, . . . , xm+1). After adding and sub-

tracting K̃ · ψijs to each term of the sum, we can estimate (13) by

∑
ij

|K − K̃|ψijs (~x) +

∣∣∣∣∣∣
∑
ij

(ψijs (x′, x2, . . . xm+1)− ψijs (x1, . . . , xm+1))

∣∣∣∣∣∣ · |K̃|.
So we have to show that∣∣∣∣∣∣

∑
ij

(ψijs (x′, x2, . . . xm+1)− ψijs (x1, . . . , xm+1))

∣∣∣∣∣∣ . 2−l‖φ′0‖∞
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when |x1 − x′| ≤ 2s−l. Note that under this hypothesis

|φs(x1, x2, . . . , xm+1)− φs(x′, x2, . . . , xm+1)| . ‖∇φ0‖∞2−s|x′ − x1|

. 2−l‖∇φ0‖∞,
by the scaling and smoothness of φs. Summing over i, j and applying this
estimate proves the lemma. �

We can now prove the main result of the section.

Proposition 3.3. Let K be an m-linear Calderón–Zygmund kernel such
that the ε-smoothness condition (12) holds with constant Aε. Fix 1 < p ≤ ∞.
Then ∣∣∣∣∣∑

ij

∑
l≥1

∫
R(m+1)d

∑
s

Kij
s · bs−l(x1)g2(x2) . . . gm+1(xm+1)d~x

∣∣∣∣∣
.ε Aε|Q|‖b‖Ẋ1

‖g2‖Yp . . . ‖gm+1‖Yp .

Analogous estimates also hold for Λ(g1, b, g3, . . . , gm+1), . . . ,Λ(g1, . . . , gm, b).

Proof. By (9), it suffices to prove∑
l≥cm

∣∣∣∣∣
∫
R(m+1)d

∑
i,j

Kij
sL+lbL(x1)g2(x2) . . . gm+1(xm1)d~x

∣∣∣∣∣(14)

.ε Aε|L|‖b‖Ẋ1
‖g2‖Yp . . . ‖gm+1‖Yp ,

where cm is some constant depending on the multilinearity parameter m, to
be determined below. We can then use disjointness of the collection to sum
over L, and finitely many applications of Lemma 3.1 to handle the cases
where l < cm. Let x′ = cL, the center of L. Note that if s = sL + l then
|x1 − x′| ≤ 2s−l since x1 ∈ L. We use the mean-zero condition on bL to

replace
∑

i,jK
ij
sL+l(x1, x2, . . . , xm+1) by

(15)
∑
i,j

(
Kij
sL+l(x1, x2, . . . , xm+1)−Kij

sL+l(x
′, x2, . . . , xm+1)

)
,

and then estimate (15) using Lemma 3.2. To complete the proof, we can
argue as in the proof of Lemma 3.1, using the cancellation estimate (12) in

place of the basic size estimate for |Kij
s | (with s = sL + l).

We now sketch the rest of the proof. Set F = K − K̃ and observe that
the first term from the estimate in (13) contributes∑
ij

∫
R(m+1)d

1M∗ij (~x)φs(~x)|F (x1, . . . , xm+1)bL(x1)g2(x2) . . . gm+1(xm+1)|d~x.

We now fix x1 ∈ L, with the goal of proving an L∞x1
bound for∫

suppKij
s

|F (x1, . . . , xm+1)||g2(x2)| . . . |gm+1(xm+1)|dx2 . . . dxm+1.
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Once again make the change of variables zi = xi − x1 for i = 2, . . . ,m + 1,
so in particular |zi| . 2s.

We proceed as in Lemma 3.1, with F (x1, x1 + z2, . . . , x1 + z2) in place of
the Ks term. The only change is in the estimate involving the kernel term.
Since we are working at scale ∼ s, in any region M∗ij there is some uniform

constant αm depending only on m such that |xi − xj | > 2s−αm . Therefore
we must have either |x1 − xi| ≥ 2s−αm−1 or |x1 − xj | ≥ 2s−αm−1. It follows

that we can choose some uniform cm such that if l ≥ cm and |x1−x′| ≤ 2s−l,
then

|x1 − x′| ≤
1

m+ 1
(|z2|+ · · ·+ |zm+1|).

So we can apply the cancellation estimate (12) for

|F (x1, x1 + z2, . . . , x1 + zm+1)|.

A straightforward calculation shows that for this choice of s and any i, j and
x1 ∈ L, we have

(16)

(∫
supp Kij

s (x1, ·)

|x1 − x′|εp
′

(|xi − xj |)2dp′+εp′
dx2 . . . dxm+1

)1/p′

. 2−εl2
−mds

p .

This allows us to proceed as in the proof of Lemma 3.1, with an addition of
the 2−εl term. The second term from Lemma 3.2 can be handled using the
same methods from Lemma 3.1. Since the number of pairs i, j is bounded
by some cm, we ultimately see that the left side of (14) is bounded by

cm
∑
l≥1

(2−εl + 2−l‖∇φ0‖∞)Aε|L|‖b‖Ẋ1
‖g2‖Yp . . . ‖gm+1‖Yp

.ε Aε|L|‖b‖Ẋ1
‖g2‖Yp . . . ‖gm+1‖Yp ,

and summing over L proves the desired estimate. To prove the remaining
part of the proposition, use the representations from Proposition 2.1 and
repeat the argument just given with respect to the new variables. �

As a consequence of the preceding proposition and (9), we see that

|ΛP(b, g2, g3, . . . , gm+1)| ≤ Aε|Q|‖b‖Ẋ1
‖g2‖Yp‖g3‖Yp . . . ‖gm+1‖Yp

|ΛP(g1, b, g3, . . . , gm+1)| ≤ Aε|Q|‖g1‖Yp‖b‖Ẋ1
‖g3‖Yp . . . ‖gm+1‖Yp

|ΛP(g1, g2, b, g4, . . . , gm+1)| ≤ Aε|Q|‖g1‖Yp‖g2‖Yp‖b‖Ẋ1
‖g4‖Yp . . . ‖gm+1‖Yp

...

|ΛP(g1, g2, . . . , gm, b)| ≤ Aε|Q|‖g1‖Yp‖g2‖Yp . . . ‖gm‖Yp‖b‖Ẋ1
,

where Aε is the smoothness constant from (12). These estimates hold uni-
formly over finite truncations and stopping collections. We can therefore
apply Theorem 2 to prove the following.
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Theorem 3. Let T be an m-linear Calderón–Zygmund operator satisfying
the ε-smoothness condition (12) with constant Aε. Suppose T is bounded
from Lr1(Rd)× · · · × Lrm(Rd)→ Lα(Rd), such that CT (r1, . . . , rm, α) <∞.
Also fix 1 < p ≤ ∞. If Λ is the (m + 1)-linear form associated to T , then
for any f1, . . . , fm+1 with f1 ∈ L1(Rd) and fi ∈ Lp(Rd) for i = 2, . . . ,m+ 1,
we have

|Λ(f1, f2, . . . , fm+1)| ≤ cd [CT +Aε] sup
S

PSF
(1,p,...,p)
S (f1, f2, . . . , fm+1).

As we mentioned in the introduction, sparse domination results for multi-
linear Calderón–Zygmund operators have been known for a few years. The
main novelty here is that we do not appeal to local mean oscillation [30]
or maximal truncation estimates [32]. We obtain a subset of the known
weighted estimates for multilinear Calderón–Zygmund operators as an easy
corollary of Theorem 3. See [3] and [30] for some examples.

Remark. The same sparse domination result will hold if we assume an
abstract Dini condition for the kernel, as in Lemma 3.2 in [9]. Given 1 <
p ≤ ∞, let

Γp(h) = (‖Ks(x, x+ ·, . . . , x+ ·)−Ks(x+ h, x+ ·, . . . , x+ ·)‖p + . . . ) .

The last ‘. . . ’ before the end of the parenthesis indicates the other possible
symmetric terms. Now define

ωj,p(K) := sup
s∈Z

2
sdm
p′ sup

x∈Rd
sup
h∈Rd

‖h‖∞<2s−j−cm

Γp(h).

Then if [K]p <∞ and

[K]1,p :=

∞∑
j=1

ωj,p(K) <∞,

we can prove an analogue of Proposition 3.3 and show that the assumptions
of Theorem 2 are satisfied. The argument is similar to the proof of Lem-
ma 3.2 in [9]. However, note that we would have to do essentially the same
amount of work as above to check that this condition is satisfied by the
ε-smooth Calderón–Zygmund operators considered in this section.

4. Rough bilinear singular integrals

In this section we use our sparse domination theorem to prove Theorem 1.
Recall that

TΩ(f1, f2)(x) = p.v.

∫
Rd

∫
Rd
f1(x−y1)f2(x−y2)

Ω((y1, y2)/|(y1, y2)|)
|(y1, y2)|2d

dy1dy2,

with Ω ∈ L∞(S2d−1) and
∫
S2d−1 Ω = 0. We will use the results from the

paper [19] by Grafakos, He, and Honźık. We quickly review their initial
decomposition of the kernel K of TΩ. Let {βj}j∈Z be a smooth partition of
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unity on R2d\{0}, with βj adapted to the annulus {2j−1 < |z| < 2j+1}. Let
∆j denote the standard Littlewood-Paley operator localizing frequencies at
scale 2j . Then define Ki

j = ∆j−iβiK and decompose K =
∑

j∈ZKj , with

Kj =
∑
i∈Z

Ki
j .

Write T j for the operator associated to the kernel Kj .

Proposition 4.1 (Prop. 3 and 5 in [19]). There exists 0 < δ < 1 so that

‖Tj(f1, f2)‖L1 ≤ C2−δj‖Ω‖∞‖f‖L2‖g‖L2

when j ≥ 0, and

‖Tj(f1, f2)‖L1 ≤ C2−(1−δ)|j|‖Ω‖∞‖f‖L2‖g‖L2

when j < 0.

Proposition 4.2 (Lemma 10 in [19]). Fix any j ∈ Z and 0 < η < 1.
The kernel of Tj is a bilinear Calderón–Zygmund kernel that satisfies the

η-smoothness condition (12) with constant Aj,η ≤ Cd,η‖Ω‖∞2|j|η.

By Proposition 4.2 we can apply Proposition 3.3 at each scale j, with
resulting constant Aj,η ≤ Cd,η‖Ω‖∞2|j|η. The η can be arbitrarily small, so
we will be able to interpolate with the bound from Proposition 4.1 and then
sum over j to get the required estimates for the sparse-form bound of TΩ.

4.1. Interpolation lemmas. Assume below that a stopping collection P
with top Q has been fixed. The following lemmas allow us to interpolate
bounds between various X·(P) and Y·(P) spaces in the trilinear setting. A
more general interpolation theorem for these spaces should be available, but
we only prove two particular results needed for the proof of Theorem 1.

Lemma 4.3. Fix any 0 < ε < 1
8 and suppose p = 1 + 4ε. Let Λ be a

(sub)-trilinear form such that

|Λ(b, g, h)| ≤ A1‖b‖Ẋ1
‖g‖Yp‖h‖Yp

and

|Λ(b, g, h)| ≤ A2‖b‖Ẋ2
‖g‖Y2‖h‖Y∞ .

Then if q = p+ 4ε and q < r <∞, we have

|Λ(f1, f2, f3)| ≤ (A1)1−ε(A2)ε‖f1‖Ẋq‖f2‖Yq‖f3‖Yr .

Proof. We can assume A2 < A1. We also make the normalizations A1 = 1
and

‖f1‖Ẋq = ‖f2‖Yq = ‖f3‖Yr = 1.

It will now be enough to prove that

|Λ(f1, f2, f3)| . Aε2.
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Pick λ ≥ 1 and define f>λ = f1|f |>λ. We decompose f1 = b1 + g1, where

b1 :=
∑
R∈P

(
(f1)>λ −

1

|R|

∫
R

(f1)>λ

)
1R.

For i = 2, 3 we also decompose fi = bi + gi with bi := (fi)>λ. Using the
normalization assumption and the definition of the Y spaces, it is straight-
forward to verify the following estimates:

‖g1‖Ẋp . 1, ‖g1‖Ẋ2
. λ1− q

2 , ‖b1‖Ẋ1
. λ1−q(17)

‖g2‖Y2 . λ
1− q

2 , ‖b2‖Yp . λ
1− q

p

‖g3‖Y∞ . λ, ‖b3‖Yp . λ
1− r

p .

Note that g1 ∈ Ẋ2 since f1 and b1 are supported on cubes in P, with mean
zero on each cube. We now estimate |Λ(f1, f2, f3)| by the sum of eight terms

|Λ(g1, g2, g3)|+ |Λ(b1, g2, g3)|+ |Λ(g1, b2, g3)|+ |Λ(g1, g2, b3)|
+ |Λ(b1, b2, g3)|+ |Λ(b1, g2, b3)|+ |Λ(g1, b2, b3)|+ |Λ(b1, b2, b3)|.

Applying the estimates in (17), we get

|Λ(g1, g2, g3)| . A2‖g1‖Ẋ2
‖g2‖Y2‖g3‖Y∞ . A2λ

3−q.

For the remaining seven terms, we use the first assumption

|Λ(b, g, h)| ≤ ‖b‖Ẋ1
‖g‖Yp‖h‖Yp ,

along with suitable estimates from (17). Here it is crucial that g1, b1 ∈ Ẋ2.
Ultimately we conclude

|Λ(f1, f2, f3)| . λ1−q + λ
1− q

p + λ
1− r

p + λ1−qλ
1− q

p + λ1−qλ
1− r

p + λ
1− q

pλ
1− r

p

+ λ1−qλ
1− q

pλ
1− r

p +A2λ
3−q.

Let α = 1− q
p and notice that −4ε < α < −ε and α = max(1−q, 1− q

p , 1−
r
p).

We can simplify the previous estimate to get

|Λ(f1, f2, f3)| . 3λα + 3λ2α + λ3α +A2λ
3−q

. λα
(
7 +A2λ

3−q−α)
. λ−ε

(
7 +A2λ

3−q+4ε
)
.

We set λ = A−3+q−4ε
2 . Since A2 < 1 and q < 2 this is admissible and we

conclude that

|Λ(f1, f2, f3)| . A(−3+q−4ε)(−ε)
2 . A3ε+4ε2−qε

2 . Aε2.

This completes the proof. �
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Lemma 4.4. Fix any 0 < ε < 1
8 and set p = 1+4ε. Let Λ be a (sub)-trilinear

form such that

|Λ(g, h, b)| ≤ A1‖g‖Yp‖h‖Yp‖b‖Ẋ1

and

|Λ(g, h, b)| ≤ A2‖g‖Y2‖h‖Y2‖b‖Y∞ .
Then if q = p+ 4ε and q < r <∞, we have

|Λ(f1, f2, f3)| ≤ (A1)1−ε(A2)ε‖f1‖Yq‖f2‖Yq‖f3‖Ẋr .

Proof. The argument is almost identical to the proof of Lemma 4.3. In this
case we decompose f3 = g3 + b3 with

b3 =
∑
R∈P

(
(f3)>λ −

1

|R|

∫
R

(f3)>λ

)
1R.

For i = 1, 2 we let fi = gi + bi with gi = (fi)≤λ, and then proceed as in
Lemma 4.3. �

4.2. The sparse bound. We can now prove Theorem 1. Let TΩ be a rough
bilinear operator defined as above, with Ω ∈ L∞(S2d−1). Such operators
TΩ satisfy the standard Calderón–Zygmund size estimate, so the single-
scale properties (S) hold. The proof that CTΩ

< ∞ for some tuple of
exponents is also straightforward. In particular, inspection of the proofs of
Propositions 4.1 and 4.2 in [19] shows that the same estimates hold for Tj
if one replaces the kernel of Tj by

K̃j :=

∞∑
i=−∞

ai ·Ki
j ,

with ai ∈ {0, 1} but otherwise arbitrary. Moreover, these estimates are
uniform over the choice of ai. Any truncation of the kernel of T leads to
a special case of this small modification, and therefore the L2 × L2 → L1

estimate of Proposition 4.1 still holds. Likewise, the Calderón–Zygmund
smoothness estimate from Proposition 4.2 holds uniformly over the choice
of ai. This is once again obvious from the proof in [19]. It follows that
CTΩ

(2, 2, 1) < ∞. We must now verify the estimates (8) for (q1, q2, q3) =
(r, r, r), where r > 1.

Fix 0 < η < 1. Since T j is a bilinear Calderón–Zygmund kernel satisfying
the η-smoothness condition (12) with constant A ≤ Cd,η‖Ω‖∞2|j|η, we see
from Proposition 3.3 that

|Λj(b, g, h)| ≤ Cd,η,p‖Ω‖∞2|j|η|Q|‖b‖Ẋ1
‖g‖Yp‖h‖Yp

for any 1 < p ≤ ∞. From Proposition 4.1 we also have

|Λj(b, g, h)| . 2−c|j|‖Ω‖∞|Q|‖b‖Ẋ2
‖g‖Y2‖h‖Y∞ ,
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where c is some positive constant independent of j. Interpolating via Lemma
4.3, we find that for any 0 < ε < 1

8 there are 1 < q < r so that

|Λj(b, g, h)| .ε,η (2η|j|)1−ε(2−c|j|)ε|Q|‖Ω‖∞‖b‖Ẋq‖g‖Yq‖h‖Yr
.ε,η 2η|j|2−ηε|j|2−cε|j||Q|‖Ω‖∞‖b‖Ẋq‖g‖Yq‖h‖Yr .

Suppose we have chosen η so that η < c
8 . If we let ε = η

c then 0 < ε < 1
8 ,

and therefore

|Λj(b, g, h)| .ε,η 2−ηε|j||Q|‖Ω‖∞‖b‖Ẋq‖g‖Yq‖h‖Yr .

This is summable over j ∈ Z. Hence if ΛP is the form associated to TΩ,
truncated to some finite number of scales, we can conclude that

(18) |ΛP(b, g, h)| . |Q|‖Ω‖∞‖b‖Ẋq‖g‖Yq‖h‖Yr .

By symmetry, the same argument also yields

(19) |ΛP(g, b, h)| . |Q|‖Ω‖∞‖g‖Yq‖b‖Ẋq‖h‖Yr .

These estimates are uniform over all finite truncations and stopping col-
lections. Finally, we argue as above and interpolate using Lemma 4.4 to
prove

(20) |ΛP(g, h, b)| . |Q|‖Ω‖∞‖g‖Yq‖h‖Yq‖b‖Ẋr ,
which is once again uniform over truncations and stopping collections.

The estimates (18), (19), (20) show that the form associated to a rough
bilinear operator TΩ satisfies assumption (8) of Theorem 2 with tuple (r, r, r),
since the Yq norm is increasing in q. It is clear that we can take any r > 1,
so this completes the proof of Theorem 1.

5. Weighted estimates

We now prove the weighted estimates claimed in Corollary 1.2 and Corol-
lary 1.1. We assume that the reader is familiar with basic results from the
theory of Ap weights, for example the openness property

(21) [w]Ap−η . [w]Ap when η = cd,p[w]1−p
′

Ap

(see [17] or [34] for a proof). Below we always assume that Ω ∈ L∞(S2d−1)
with mean zero.

5.1. Single weight — proof of Corollary 1.2. The argument is a com-
bination of known results from the sparse domination theory. It suffices to
prove the desired estimate for fixed p > 2. We can then apply the multilinear
extrapolation theory due to Grafakos and Martell, in particular Theorem 2
in [20]. Fix 2 < p <∞ and w ∈ Ap, with the goal of showing that

‖TΩ(f, g)‖Lp/2(w) ≤ Cp,Ωcw‖f‖Lp(w)‖g‖Lp(w).

Define

σ = w
− 2
p−2
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and notice that

w
2
pσ

p−2
p = 1.

Let r = (p/2)′ = p
p−2 , and choose qi = 1 + εi for εi > 0, such that qi < r and

qi < p. By Theorem 1 and duality considerations, it will be enough to show
that for any sparse collection S,

(22) PSF
(q1,q2,q3)
S (f, g, h) .p cw‖f‖Lp(w)‖g‖Lp(w)‖h‖Lr(σ).

We begin by quoting the estimate

PSF
(1,1,q3)
S (g1, g2, g3) .p γ

max( p
p−1

, p
2

)
w ‖g1‖Lp(w)‖g2‖Lp(w)‖g3‖Lr(σ)

with

γw = sup
Q

(
1

|Q|

∫
Q
w
− 1
p−1

)2− 2
p
(

1

|Q|

∫
Q
σ

q3
q3−r

) 1
q3
− 1
r

.

This can be proved using techniques from [12] or [30] (see, for example,
Theorem 3 in [12] and its proof). Now write the term involving σ as(

1

|Q|

∫
Q
w1+α

) 1
q3
− 1
r

, 1 + α =
1− 1

r
1
q3
− 1

r

.

We can apply the reverse Hölder inequality if we choose ε3 correctly (as we
are free to do), and after some straightforward calculation this leads to the
estimate

γw .p cw,p[w]
2
p

Ap
,

where cw,p is a power of the constant appearing in the reverse Hölder in-
equality. Hence

PSF
(1,1,q3)
S (g1, g2, g3)(23)

.p cw,p[w]
2
p
·max( p

p−1
, p
2

)

Ap
‖g1‖Lp(w)‖g2‖Lp(w)‖g3‖Lr(σ),

and cw,p can be computed explicitly in terms of [w]Ap (see, for example,
Chapter 7.2 in [17]). We can lift (23) to a bound for PSFq1,q2,q3S (f, g, h)
using an inequality due to Di Plinio and Lerner ([14], Proposition 4.1):

(24) (f)1+ε,Q ≤ (f)1,Q + 2dε(M1+εf)1,Q.

Recall also that

‖Mq‖Lp(w)→Lp(w) . [w]
q
p−q
A p
q

when p > q (see [2]). Using the openness of the At classes, we see that if
ε1, ε2 are chosen properly then in fact

(25) ‖Mqi‖Lp(w)→Lp(w) . [w]

(
qi
p−qi

)(
1

1−p

)
Ap
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for i = 1, 2. Now apply (24) to the q1- and q2-averages occurring in the form

PSF
(q1,q2,q3)
S (f, g, h) to get

PSF(q1,q2,q3)(f, g, h) . PSF(1,1,q3)(f, g, h) + c′wPSF(1,1,q3)(f,M1+ε2g, h)

+ c′wPSF(1,1,q3)(M1+ε1f, g, h)

+ c′wPSF(1,1,q3)(M1+ε1f,M1+ε2g, h),

with c′w appearing from (24) and the openness estimate. Then (23) and (25)
imply the claimed boundedness. If αw is the constant appearing in (23), we

see as a consequence that TΩ : Lp(w)× Lp(w)→ Lp/2(w) with constant

Cw . (αw + c′w) · [w]

(
q1
p−q1

)(
1

1−p

)
Ap

[w]

(
q2
p−q2

)(
1

1−p

)
Ap

.

Note that c′w can also be computed explicitly in terms of [w]Ap , after solving
for the ε1, ε2 used above and using (21).

5.2. Multiple weights. We prove Corollaries 1.1 and 1.3. Suppose v1, v2,
v3 are strictly positive functions such that

3∏
i=1

v
1
qi
i = 1

for some qi ≥ 1 with
∑3

i=1
1
qi

= 1. Let ~p = (p1, p2, p3) be any tuple of

exponents with 1 < pi < qi, and recall that

[~v]
A~p
~q

= sup
Q

3∏
i=1

(
1

|Q|

∫
Q
v

pi
pi−qi
i

) 1
pi
− 1
qi

,

with the supremum taken over cubes Q ⊂ Rd. We can argue as in the proof
of Lemma 6.1 in [12] to prove that for any sparse collection S we have

PSF~pS(f1, f2, f3) ≤

(
c~p,~q[~v]

max
{

qi
qi−pi

}
A~p
~q

)
3∏
i=1

‖fi‖Lqi (vi)

when [~v]
A~p
~q

is finite. Applying Theorem 1 yields the following result.

Lemma 5.1. Let v1, v2, v3 and ~p, ~q be as above. Also assume [~v]
A~p
~q
< ∞.

Then

|〈TΩ(f1, f2), f3〉| ≤ CΩ,~p,~q[~v]
max

{
qi

qi−pi

}
A~p
~q

3∏
i=1

‖fi‖Lqi (vi)

for fi ∈ Lqi(vi).

The reader can consult [12] for the explicit value of the constant. Corollary
1.3 immediately follows from this lemma by duality. We now show that
Corollary 1.1 is also a consequence.

By using multilinear extrapolation techniques from [16], [20], it is enough
to prove the claimed estimate of Corollary 1.1 when qi = 3 for each i = 1, 2, 3.
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Write ~3 = (3, 3, 3), and suppose ~p = (1 + ε, 1 + ε, 1 + ε) for some small ε > 0.
Observe that if t > 0 is chosen properly, then there is some absolute C > 0
such that

(26) [v1+t
i ]A3 ≤ C[vi]A3 , i = 1, 2.

This estimate can be proved using the openness property and reverse Hölder
estimates as in the last section; see [10], Section 3.7, for a more general
version of this inequality. Now Lemma 5.1 implies that

TΩ : L3(v1)× L3(v2)→ L3/2(v
−1/2
3 )

with operator norm bounded by Cε[~v]3
A~p
~3

. Hence it will be enough to prove

(27) [~v]
A~p
~3

≤ [v1+t
1 ]

1
3(1+t)

A3
· [v1+t

2 ]
1

3(1+t)

A3

with 1 + t = 2(1+ε)
2−ε , since we can then apply (26) after choosing ε correctly

(as we are free to do). One can prove (27) by using Hölder’s inequality; we
omit the details.

6. Proof of Theorem 2

Here we prove our multilinear sparse domination theorem, and also re-
solve the technical issue related to multiplication operators discussed in Re-
marks 2.1 and 2.3 above.

6.1. Construction of the sparse collection. Suppose we are given a
form Λ as in the statement of Theorem 2 with CT = CT (r1, . . . , rm, α), and
Λ truncated to a finite (but otherwise arbitrary) number of scales. Given
fi ∈ Lpi(Rd) with compact support, we would like to construct a sparse
collection of cubes S so that

|Λ(f1, . . . , fm+1)| ≤ cd [CL + CT ]
∑
R∈S
|R|

m+1∏
i=1

(fi)pi,R.

We will generalize the iterative argument from [9]. The following lemma is
crucial for the induction step.

Lemma 6.1. Let Q be a fixed dyadic cube and P a stopping collection with
top Q. If the estimates (8) hold, then

|ΛsQ(h11Q, h213Q, . . . , hm+113Q)|
≤ Cd|Q|‖h1‖Yp1‖h2‖Yp2 . . . ‖hm+1‖Ypm+1

+
∑
L∈P
L⊂Q

|ΛsL(h11L, h213L, . . . , hm+113L)|.
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Proof. We can assume supph1 ⊂ Q and supphi ⊂ 3Q for 2 ≤ i ≤ m + 1.
By definition of ΛP we have

ΛsQ(h1, h2, . . . , hm+1) = ΛP(h1, h2, . . . , hm+1)

+
∑
L∈P
L⊂Q

ΛsL(h11L, h213L, . . . , hm+113L),

so it is enough to estimate ΛP(h1, h2, . . . , hm+1). For each j perform the
Calderón–Zygmund (CZ) decomposition (6) of hj with respect to P. Then
hj = bj + gj with

bj =
∑
L∈P

bjL, bjL := (hj − (hj)L) 1L

and

‖gj‖Y∞ . ‖hj‖Ypj , ‖bj‖Ẋpj . ‖hj‖Ypj .

We now decompose ΛP(h1, h2, . . . , hm+1) using the CZ decomposition. If
we let fhi(0) = gi and fhi(1) = bi, we see that the form breaks up into the
2m+1 terms

(28)
∑

0≤k1,...,km+1≤1

ΛP(fh1(k1), fh2(k2), . . . , fhm+1(km+1)).

From the definition of ΛP and the pairwise disjointness of elements of P,
we see that finiteness of CT implies

|ΛP(g1, g2, . . . gm+1)| ≤ CT ‖g1‖Lr1 . . . ‖gm‖Lrm‖gm+1‖Lα′

+ CT
∑
L∈P
L⊂Q

‖g11L‖Lr1 . . . ‖gm+113L‖Lα′

≤ cdCT |Q|‖g1‖Yr1‖g2‖Yr2 . . . ‖gm+1‖Yα′
≤ cdCT |Q|‖h1‖Yp1‖h2‖Yp2 . . . ‖hm+1‖Ypm+1

.

Here we’ve used

1

r1
+ · · ·+ 1

rm
+

1

α′
=

1

α
+

1

α′
= 1,

the disjointness of L ∈ P, and the ‖gj‖Y∞ bound. We can now use (8) and
the CZ estimates to control the remaining terms by the desired quantity.
For example,

|ΛP(b1, g2, . . . , gm+1)| ≤ CL|Q|‖b1‖Ẋp1‖g2‖Yp2 . . . ‖gm+1‖Ypm+1

≤ cdCL|Q|‖h1‖Yp1‖h2‖Yp2 . . . ‖hm+1‖Ypm+1

by the first estimate in (8) and the CZ properties. The other estimates
are similar. We use the last estimate in (8) to control the single term
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ΛP(g1, g2, . . . , gm, bm+1):

|ΛP(g1, g2, . . . , gm, bm+1)|
≤ CL|Q|‖g1‖Y∞‖g2‖Y∞ . . . ‖gm‖Y∞‖bm+1‖Ẋpm+1

≤ cdCL|Q|‖h1‖Yp1‖h2‖Yp2 . . . ‖hm‖Ypm‖hm+1‖Ypm+1
.

To bound the remaining terms, we choose from the first m inequalities in
(8). If there are more than one bi terms in the particular piece of (28) we
wish to control, we let bn be the first mean-zero term that appears (ordered
from left to right) and then apply the n-th estimate in the list (8), ordered
from top to bottom. Then applying the CZ properties as above yields the
desired estimates. �

The construction of the collection S now proceeds as in [9], with minor
changes to account for the addition of more functions. For this reason we
sketch the proof here, and send the reader to [9] for the finer details.

We will construct the required sparse collection S iteratively by decom-
posing exceptional sets of the form

(29) EQ :=

{
x ∈ 3Q : max

i=1,...,m+1

Mpi(fi13Q)(x)

(fi)pi,3Q
≥ Cd

}
,

where Cd is some constant depending on the dimension. Notice that if Cd
is chosen large enough, then by the maximal theorem we can assume

(30) |EQ| ≤ 2−cd|Q|

for some uniform c > 0.
We begin the argument by fixing fi ∈ Lpj (Rd) with compact support,

i = 1, . . . ,m+1. We may assume we have chosen our dyadic lattice D so that
there is Q0 ∈ D with supp(f1)⊂ Q0 and supp(fi)⊂ 3Q0 for i = 2, . . . ,m+ 1,
such that sQ0 is bigger than the largest scale occurring in the truncation of
Λ. We let S0 = {Q0} and E0 = 3Q0, and then define (using definition (29))

E1 := EQ0 , S1 := maximal cubes L ∈ D such that 9L ⊂ E1.

It is easy to verify that P1(Q0) := S1 is a stopping collection with top Q0,
such that |Q0\E1| ≥ (1−2−cd)|Q0|. By maximality and the definition of the
exceptional set EQ0 we have

‖fj‖Ypj (P1(Q0)) ≤ Cd(fi)pi,3Q0 , i = 1, . . . ,m+ 1,
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so applying Lemma 6.1 yields

|Λ(f1, f2, . . . , fm+1)| = |ΛsQ0 (f11Q0 , f213Q0 , . . . , fm+113Q0)|

≤ Cd|Q0|
m+1∏
i=1

(fi)pi,3Q0

+
∑

L∈P1(Q0)
L⊂Q0

|ΛsL(f11L, f213L, . . . , fm+113L)|.

This is the base case that sets up the recursive argument. For each L ∈
P1(Q0) we apply the above argument with L in place of Q0, defining

E2 =
⋃

L∈P1(Q0)

EL

and
S2 := maximal cubes R ∈ D such that 9R ⊂ E2.

For each L ∈ P1(Q0) we also define

P2(L) = {R ∈ S2 : R ⊂ 3L},
which can be shown to be a stopping collection with top L (the argument
is the same as in [9]). Now we apply Lemma 6.1 to estimate each piece of
the sum ∑

L∈P1(Q0)
L⊂Q0

|ΛsL(h11L, h213L, . . . , hm+113L)|,

using the stopping collection P2(L) in the application to the term

|ΛsL(f11L, f213L, . . . , fm+113L)|.
We then repeat the process just described at the next level.

Since we are working with finitely many scales the process eventually
terminates with the desired sparse form bound. The sparse collection S
consists of all cubes chosen in the various stopping collections constructed
along the way. Condition (30) at each level guarantees the sparsity of these
cubes.

6.2. Multiplication operators. Let Aφ : Lr1 × · · · × Lrm → Lα be the
multiplication operator described in Remark 2.1, with

φ ∈ L∞ and
1

r1
+ · · ·+ 1

rm
=

1

α
.

We let
A(f1, . . . fm+1) = 〈Aφ(f1, . . . , fm), fm+1〉.

Using a simpler version of the stopping-time argument from Section 6.1, it
is easy to see that

|A(f1, . . . , fm, fm+1)| .φ sup
S

PSF
(1,1,...,1)
S (f1, . . . , fm+1)
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when fi ∈ Lri∩L∞ with compact support. Let P be any stopping collection
with top Q and b =

∑
L∈P bL with bL supported on L, and observe that if

AP(b, g2, . . . , gm+1) := A(b13Q, g213Q, . . . , gm+113Q)

−
∑
R∈P
R⊂Q

A(b13R, g213R, . . . , gm+113R)

then in fact

AP(b, g2, . . . , gm+1) = 0.

Similarly AP(g1, b, g3, . . . , gm+1), . . . , AP(g1, . . . , gm, b) all vanish. Hence we
can repeat the argument given in the proof of Theorem 2, avoiding most of
the technical complications. In particular, if fi = gi + bi with gi the ‘good’
terms from the Calderón–Zygmund decomposition relative to P, then we
can argue as in the proof of Lemma 6.1 to show

|AP(g1, . . . , gm+1)| . ‖φ‖L∞ |Q|‖f1‖Y1‖f2‖Y1 . . . ‖fm+1‖Y1 .

We just saw that all other terms of AP(g1 + b1, . . . , gm+1 + bm+1) vanish, so
we can easily run the stopping-time argument given in the last section to

prove the claimed PSF
(1,...,1)
S bound.

Appendix A. Adjoint forms

We prove Proposition 2.1. The argument is almost identical to the proof
of the linear variant from [9], so we only provide a sketch. Below we will
call two dyadic cubes L,R neighbors and write L ∼ R if 7L ∩ 7R 6= ∅ and
|sL − sR| < 8. By separation property (i), if L,R ∈ P are distinct cubes
with 7L ∩ 7R 6= ∅, L ∼ R.

Let P be a stopping collection with top Q. Let b =
∑

L∈P bL as in the
last sections. We want to show that

ΛP(g1, b, g3, . . . , gm+1), . . . ,ΛP(g1, . . . , gm, b)

can be decomposed in the same way as ΛP(b, g2, . . . , gm+1), up to a control-
lable error term. We first analyze ΛP(g1, . . . , gm, b). Below we assume g1 is
supported in Q and gi is supported in 3Q for i ≥ 2.

As in the appendix in [9], split b = bin + bout with

bin =
∑
L∈P

3L∩2Q6=∅

bL.

Fix any R ⊂ Q. Using the support of the kernel, it is easy to see that if
s < sR then∫

R(m+1)d

Ks(x1, . . . , xm)g1(x1)1R(x1)g2(x2)

. . . gm(xm)bout(xm+1)dx1 . . . dxm+1
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is identically zero. This is because dist(supp bout, R) ≥ l(R)/2, since bout is
supported on L with 3L ∩ 2Q = ∅, but R ⊂ Q. Therefore

ΛP(g1, . . . , gm, b
out)

=

∫
R(m+1)d

∑
i,j

Kij
sQ

(~x)g1(x1) . . . gm(xm)bout(xm+1)d~x

−
∑
R∈P
R⊂Q

∫
R(m+1)d

∑
i,j

Kij
sR

(~x)g11R(x1) . . . gm(xm)bout(xm+1)d~x.

There is only one scale in the kernel in each integral, so we can estimate
each term as in Lemma 3.1 and sum over R to see that

|ΛP(g1, . . . , gm, b
out)| . [K]p′ |Q|‖b‖X1‖g1‖Yp . . . ‖gm‖Yp .

We now have to analyze ΛP(g1, . . . , gm, b
in). As in the appendix of [9], it

is enough to show that

ΛP(g1, . . . , gm, b
in)(31)

=

ΛsQ(g1, . . . , gm, b
in)−

∑
L∈P

3L∩2Q 6=∅

ΛsL(g1, . . . , gm, bL)


+ φ(g1, . . . , gm, b),

where φ is some error term satisfying the same estimate as

|ΛP(g1, . . . , gm, b
out)|.

Then we can decompose the term in parenthesis as in Section 3, and use
symmetry of the kernel to prove the desired estimates for ΛP(g1, . . . , gm, b).

The proof of (31) is almost the same as the linear case in [9]. The main
observation is that∑

R∈P
R⊂Q

ΛsR(g11R, g2, . . . , gm, b
in)(32)

=
∑
R∈P
R⊂Q

∑
L∈P

3L∩3R 6=∅
3L∩2Q 6=∅

ΛsR(g11R, g2, . . . , gm, bL),

since ΛR(g11R, g2, . . . , gm, bL) = 0 if 3L ∩ 3R = ∅. In particular this implies
that L ∼ R, so if R is fixed then the number of terms in the second sum in
(32) is bounded by a universal dimensional constant. It is easy to show that

|ΛsR(g11R, g2, . . . , gm, bL)− ΛsL(g11R, g2, . . . , gm, bL)|
. |L|[K]p′‖g1‖Yp . . . ‖gm‖Yp‖b‖X1 ,

since |sL − sR| < 8 (apply single-scale estimates, noting that the number of
such estimates will be bounded by a dimensional constant). With the help
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of the separation properties we then can replace each ΛsR in (32) by ΛsL ,
up to an admissible error term φ. Now repeat the rest of the argument from
[9], with trivial changes to account for the addition of more functions, to
show that the remaining terms are of the form (31).

Also observe that there was nothing special about the choice of the
position of b in the above argument, so the same reasoning applies to
ΛP(g1, b, g3, . . . , gm+1),ΛP(g1, g2, b, g4, . . . , gm+1), etc. This proves Propo-
sition 2.1, up to the trivial steps we have omitted.
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[19] Grafakos, Loukas; He, Danqing; Honźık, Petr. Rough bilinear singular inte-
grals. Preprint, 2015. arXiv:1509.06099.
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