New York Journal of Mathematics

New York J. Math. 23 (2017) 699–709.

On approximate Connes-amenability of enveloping dual Banach algebras

Ahmad Shirinkalam and Abdolrasoul Pourabbas

ABSTRACT. For a Banach algebra \mathcal{A} , we introduce various approximate virtual diagonals such as approximate WAP-virtual diagonal and approximate virtual diagonal.

For the enveloping dual Banach algebra $F(\mathcal{A})$ of \mathcal{A} , we show that $F(\mathcal{A})$ is approximately Connes-amenable if and only if \mathcal{A} has an approximate WAP-virtual diagonal.

Further, for a discrete group G, we show that if the group algebra $\ell^1(G)$ has an approximate WAP-virtual diagonal, then it has an approximate virtual diagonal.

CONTENTS

1.	Introduction and preliminaries	699
2.	Approximate Connes-amenability of $F(\mathcal{A})$	701
3.	Approximate-type virtual diagonals	705
References		708

1. Introduction and preliminaries

The notion of approximate Connes-amenability for a dual Banach algebra was first introduced by Esslamzadeh *et al.* (2012). A dual Banach algebra \mathcal{A} is called approximately Connes-amenable if for every normal dual \mathcal{A} bimodule X, every w^* -continuous derivation $D : \mathcal{A} \to X$ is approximately inner, that is, there exists a net $(x_{\alpha}) \subseteq X$ such that $D(b) = \lim_{\alpha} b \cdot x_{\alpha} - x_{\alpha} \cdot b$ $(b \in \mathcal{A}).$

Let \mathcal{A} be a Banach algebra and let X be a Banach \mathcal{A} -bimodule. An element $x \in X$ is called weakly almost periodic if the module maps

 $\mathcal{A} \to X; \quad a \mapsto a \cdot x \quad \text{and} \quad a \mapsto x \cdot a$

are weakly compact. The set of all weakly almost periodic elements of X is denoted by WAP(X), which is a norm-closed subspace of X.

Received January 31, 2015.

²⁰¹⁰ Mathematics Subject Classification. Primary: 46H20; Secondary: 46H25, 46H35.

Key words and phrases. Enveloping dual Banach algebra, Approximate Connesamenable, Approximate WAP-virtual diagonal, Approximate virtual diagonal.

For a Banach algebra \mathcal{A} , one of the most important subspaces of \mathcal{A}^* is WAP(\mathcal{A}^*), which is left introverted in the sense of [Ll97, §1]. Runde (2004) observed that, the space $F(\mathcal{A}) = \text{WAP}(\mathcal{A}^*)^*$ is a dual Banach algebra with the first Arens product inherited from \mathcal{A}^{**} . He also showed that $F(\mathcal{A})$ is a *canonical* dual Banach algebra associated to \mathcal{A} (see [Ll97] or [Run04, Theorem 4.10] for more details).

Choi *et al.* (2014) called $F(\mathcal{A})$ the enveloping dual Banach algebra associated to \mathcal{A} and they studied Connes-amenability of $F(\mathcal{A})$. Indeed, they introduced the notion of WAP-virtual diagonal for a Banach algebra \mathcal{A} and they showed that for a given Banach algebra \mathcal{A} , the dual Banach algebra $F(\mathcal{A})$ is Connes-amenable if and only if \mathcal{A} admits a WAP-virtual diagonal. They also showed that for a group algebra $L^1(G)$, the existence of a virtual diagonal is equivalent to the existence of a WAP-virtual diagonal. As a consequence $L^1(G)$ is amenable if and only if $F(L^1(G))$ is Connes-amenable, a fact that previously was shown by Runde (2004).

Motivated by these results, we investigate an *approximate* analogue of WAP-virtual diagonal related to approximate Connes-amenability of $F(\mathcal{A})$. Indeed, we introduce a notion of an approximate WAP-virtual diagonal for \mathcal{A} and we show that $F(\mathcal{A})$ is approximately Connes-amenable if and only if \mathcal{A} has an approximate WAP-virtual diagonal. We also introduce various notions of approximate-type virtual diagonals for a Banach algebra -such as approximate virtual diagonal- and we show that for a discrete group G, if $\ell^1(G)$ has an approximate WAP-virtual diagonal, then it has an approximate virtual diagonal.

Given a Banach algebra \mathcal{A} , its unitization is denoted by \mathcal{A}^{\sharp} . For a Banach \mathcal{A} -bimodule X, the topological dual space X^* of X becomes a Banach \mathcal{A} -bimodule via the following actions

(1.1)
$$\langle x, a \cdot \varphi \rangle = \langle x \cdot a, \varphi \rangle,$$

 $\langle x, \varphi \cdot a \rangle = \langle a \cdot x, \varphi \rangle \qquad (a \in \mathcal{A}, x \in X, \varphi \in X^*).$

Definition 1.1. A Banach algebra \mathcal{A} is called dual, if it is a dual Banach space with a predual \mathcal{A}_* such that the multiplication in \mathcal{A} is separately $\sigma(\mathcal{A}, \mathcal{A}_*)$ -continuous [Run01, Definition 1.1]. Equivalently, a Banach algebra \mathcal{A} is dual if it has a (not necessarily unique) predual \mathcal{A}_* which is a closed submodule of \mathcal{A}^* [Run02, Exercise 4.4.1].

Let \mathcal{A} be a dual Banach algebra and let a dual Banach space X be an \mathcal{A} -bimodule. An element $x \in X$ is called normal, if the module actions $a \mapsto a \cdot x$ and $a \mapsto x \cdot a$ are $w^* - w^*$ -continuous. The set of all normal elements in X is denoted by X_{σ} . We say that X is normal if $X = X_{\sigma}$.

Recall that for a Banach algebra \mathcal{A} and a Banach \mathcal{A} -bimodule X, a bounded linear map $D: \mathcal{A} \to X$ is called a bounded derivation if

$$D(ab) = a \cdot D(b) + D(a) \cdot b$$

700

for every $a, b \in \mathcal{A}$. A derivation $D : \mathcal{A} \to X$ is called inner if there exists an element $x \in X$ such that for every $a \in \mathcal{A}$,

$$D(a) = \operatorname{ad}_x(a) = a \cdot x - x \cdot a.$$

A dual Banach algebra \mathcal{A} is called Connes-amenable if for every normal dual \mathcal{A} -bimodule X, every $w^* - w^*$ -continuous derivation $D : \mathcal{A} \to X$ is inner [Run04, Definition 1.5].

Following [CSS15], for a given Banach algebra \mathcal{A} and a Banach \mathcal{A} -bimodule X, the \mathcal{A} -bimodule WAP (X^*) is denoted by $F_{\mathcal{A}}(X)_*$ and its dual space WAP $(X^*)^*$ is denoted by $F_{\mathcal{A}}(X)$. Choi *et al.* [CSS15, Theorem 4.3] showed that if X is a Banach \mathcal{A} -bimodule, then $F_{\mathcal{A}}(X)$ is a normal dual $F(\mathcal{A})$ bimodule. Since WAP (X^*) is a closed subspace of X^* , we have a quotient map $q: X^{**} \to F_{\mathcal{A}}(X)$. Composing the canonical inclusion map $X \hookrightarrow X^{**}$ with q, we obtain a continuous \mathcal{A} -bimodule map $\eta_X : X \to F_{\mathcal{A}}(X)$ which has a w^* -dense range. In the special case where $X = \mathcal{A}$, we usually omit the subscript and simply use the notation $F(\mathcal{A})$ and the map $\eta_{\mathcal{A}} : \mathcal{A} \to F(\mathcal{A})$ is an algebra homomorphism.

It is well-known that for a given Banach algebra \mathcal{A} , the projective tensor product $\mathcal{A} \hat{\otimes} \mathcal{A}$ is a Banach \mathcal{A} -bimodule through

$$a \cdot (b \otimes c) := ab \otimes c, \quad (b \otimes c) \cdot a := b \otimes ca, \quad (a, b, c \in \mathcal{A})$$

and the map $\Delta : \mathcal{A} \hat{\otimes} \mathcal{A} \to \mathcal{A}$ defined on elementary tensors by $\Delta(a \otimes b) = ab$ and extended by linearity and continuity, is an \mathcal{A} -bimodule map with respect to the module structure of $\mathcal{A} \hat{\otimes} \mathcal{A}$. Let $\Delta_{\text{WAP}} : F_{\mathcal{A}}(\mathcal{A} \hat{\otimes} \mathcal{A}) \to F(\mathcal{A})$ be the w^*-w^* -continuous \mathcal{A} -bimodule map induced by $\Delta : \mathcal{A} \hat{\otimes} \mathcal{A} \to \mathcal{A}$ (see [CSS15, Corollary 5.2] for more details).

Definition 1.2. [CSS15, Definition 6.4] An element $M \in F_{\mathcal{A}}(\mathcal{A} \otimes \mathcal{A})$ is called a WAP-virtual diagonal for \mathcal{A} if

$$a \cdot M = M \cdot a \quad \text{and} \quad \Delta_{\text{WAP}}(M) \cdot a = \eta_{\mathcal{A}}(a) \qquad (a \in \mathcal{A}).$$

Recall that an \mathcal{A} -bimodule X is called neo-unital if every $x \in X$ can be written as $a \cdot y \cdot b$ for some $a, b \in \mathcal{A}$ and $y \in X$.

Remark 1.3. Let \mathcal{A} be a Banach algebra with a bounded approximate identity and let X be a Banach \mathcal{A} -bimodule. Then by [Joh72, Proposition 1.8], the subspace $X_{\text{ess}} := \lim \{a \cdot x \cdot b : a, b \in \mathcal{A}, x \in X\}$ is a neo-unital closed sub- \mathcal{A} -bimodule of X. Moreover, X_{ess}^{\perp} is complemented in X^* .

2. Approximate Connes-amenability of $F(\mathcal{A})$

In this section we find some conditions under which $F(\mathcal{A})$ is approximately Connes-amenable. For an arbitrary dual Banach algebra \mathcal{A} , approximate Connes-amenability of \mathcal{A} is equivalent to approximate Connes-amenability of \mathcal{A}^{\sharp} [ESM12, Proposition 2.3], so without loss of generality throughout of this section we may suppose that $F(\mathcal{A})$ has an identity element e. **Remark 2.1.** Let \mathcal{A} be a Banach algebra with an identity element e. Let X be a normal dual \mathcal{A} -bimodule and let $D : \mathcal{A} \to X$ be a bounded derivation. By [GL04, Lemma 2.3], there exists a bounded derivation $D_1 : \mathcal{A} \to e \cdot X \cdot e$ such that $D = D_1 + \operatorname{ad}_x$ for some $x \in X$. Furthermore, D is inner derivation if and only if D_1 is inner.

Lemma 2.2. Let \mathcal{A} be a Banach algebra. Then $F(\mathcal{A})$ is approximately Connes-amenable if and only if every bounded derivation from \mathcal{A} into a unit-linked, normal dual $F(\mathcal{A})$ -bimodule is approximately inner.

Proof. Suppose that $F(\mathcal{A})$ is approximately Connes-amenable. Let N be a unit-linked, normal dual $F(\mathcal{A})$ -bimodule and let $D : \mathcal{A} \to N$ be a bounded derivation. We show that D is approximately inner. By [ESM12, Theorem 4.4], there is a w^*-w^* -continuous derivation $\tilde{D}: F(\mathcal{A}) \to F_{\mathcal{A}}(N)$ such that $\tilde{D}\eta_{\mathcal{A}} = \eta_N D$, that is, the following diagram commutes

Since $F_{\mathcal{A}}(N)$ is a normal dual $F(\mathcal{A})$ -bimodule and $F(\mathcal{A})$ is approximately Connes-amenable, the derivation \tilde{D} is approximately inner. Since $\eta_{\mathcal{A}}$ is an algebra homomorphism, the derivation $\tilde{D}\eta_{\mathcal{A}}$ is also approximately inner. Hence the derivation $\eta_N D$ is approximately inner, that is, there is a net $(\xi_i) \subseteq F_{\mathcal{A}}(N)$ such that

$$\eta_N D(a) = \lim_i a \cdot \xi_i - \xi_i \cdot a \quad (a \in \mathcal{A}).$$

By [ESM12, Corollary 5.3] there is a $w^* - w^*$ -continuous \mathcal{A} -bimodule map $\epsilon_N : F_{\mathcal{A}}(N) \to N$ such that $\epsilon_N \eta_N = \mathrm{id}_N$. Now by setting $x_i = \epsilon_N(\xi_i) \in N$ for each *i* we have

$$D(a) = \epsilon_N \eta_N D(a) = \epsilon_N (\lim_i a \cdot \xi_i - \xi_i \cdot a) = \lim_i a \cdot x_i - x_i \cdot a,$$

so $D: \mathcal{A} \to N$ is approximately inner.

Conversely, suppose that every bounded derivation from \mathcal{A} into a unitlinked, normal dual $F(\mathcal{A})$ -bimodule is approximately inner. Let N be a normal dual $F(\mathcal{A})$ -bimodule and let $D: F(\mathcal{A}) \to N$ be a w^*-w^* -continuous derivation. By Remark 2.1 without loss of generality we may assume that N is a unit-linked, normal dual $F(\mathcal{A})$ -bimodule. We shall show that Dis approximately inner. Since $\eta_{\mathcal{A}}$ is an algebra homomorphism, the map $D' := D\eta_{\mathcal{A}} : \mathcal{A} \to N$ is a bounded derivation, so by assumption D' is approximately inner. Since N is normal, D' extends to a w^*-w^* -continuous approximately inner derivation $D'' : F(\mathcal{A}) \to N$. The derivations D and D''are w^*-w^* -continuous and they agree on the w^* -dense subset $\eta_{\mathcal{A}}(\mathcal{A}) \subseteq F(\mathcal{A})$, so they agree on $F(\mathcal{A})$. Hence D is approximately inner, that is, $F(\mathcal{A})$ is approximately Connes-amenable.

Remark 2.3. Since $F(\mathcal{A})$ has an identity element e, by [CSS15, Theorem 6.8] there exists an element $s \in F_{\mathcal{A}}(\mathcal{A} \otimes \mathcal{A})$ such that $\Delta_{\text{WAP}}(s) = e$. We use this fact in the following lemma several times.

Lemma 2.4. Let \mathcal{A} be a Banach algebra. Then the following are equivalent:

- (i) $F(\mathcal{A})$ is approximately Connes-amenable.
- (ii) There exists a net $(M_{\alpha})_{\alpha} \subseteq F_{\mathcal{A}}(\mathcal{A} \hat{\otimes} \mathcal{A})$ such that for every $a \in \mathcal{A}$, $a \cdot M_{\alpha} - M_{\alpha} \cdot a \to 0$ and $\Delta_{\text{WAP}}(M_{\alpha}) = e$ for all α .

Proof. (i) \Rightarrow (ii) Fix $s \in F_{\mathcal{A}}(\mathcal{A} \otimes \mathcal{A})$ as mentioned in Remark 2.3. Note that ker Δ_{WAP} is a normal dual $F(\mathcal{A})$ -bimodule. Define a $w^* - w^*$ -continuous derivation $D: F(\mathcal{A}) \rightarrow \ker \Delta_{\text{WAP}}$ by $D(\mathbf{a}) = s \cdot \mathbf{a} - \mathbf{a} \cdot s \quad (\mathbf{a} \in F(\mathcal{A}))$. Since $F(\mathcal{A})$ is approximately Connes-amenable, the derivation D is approximately inner. Thus there is a net $(N_{\alpha}) \subseteq \ker \Delta_{\text{WAP}}$ such that for every $a \in \mathcal{A}$

(2.1)
$$s \cdot a - a \cdot s = \lim_{\alpha} (a \cdot N_{\alpha} - N_{\alpha} \cdot a).$$

If we set $M_{\alpha} = N_{\alpha} + s$ for every α , then we have $\Delta_{\text{WAP}}(M_{\alpha}) = \Delta_{\text{WAP}}(s) = e$ and for every $a \in \mathcal{A}$ using (2.1) we have

$$a \cdot M_{\alpha} - M_{\alpha} \cdot a \to 0,$$

as required.

(ii) \Rightarrow (i) The hypothesis in (ii) ensures that each $M_{\alpha} - s$ is in ker Δ_{WAP} and for every $a \in \mathcal{A}$

(2.2)
$$a \cdot (M_{\alpha} - s) - (M_{\alpha} - s) \cdot a \to s \cdot a - a \cdot s.$$

Let N be a unit-linked normal dual $F(\mathcal{A})$ -bimodule and let $D : \mathcal{A} \to N$ be a bounded derivation. We show that D is approximately inner, so by Lemma 2.2, $F(\mathcal{A})$ is approximately Connes-amenable. Using the terminology of [CSS15, Theorem 6.8], if we define $d(a) = s \cdot a - a \cdot s$ for all $a \in \mathcal{A}$, then $d : \mathcal{A} \to \ker \Delta_{\text{WAP}}$ is weakly universal for derivation D with coefficient in N, that is, there exists a $w^* - w^*$ -continuous (and so norm continuous) \mathcal{A} -bimodule map $f : \ker \Delta_{\text{WAP}} \to N$ such that fd = D. Set $y_{\alpha} = f(M_{\alpha} - s)$ for every α . Using (2.2) for every $a \in \mathcal{A}$ we have

$$D(a) = fd(a) = f(s \cdot a - a \cdot s)$$

= $f(\lim_{\alpha} a \cdot (M_{\alpha} - s) - (M_{\alpha} - s) \cdot a)$
= $\lim_{\alpha} f(a \cdot (M_{\alpha} - s) - (M_{\alpha} - s) \cdot a)$
= $\lim_{\alpha} a \cdot y_{\alpha} - y_{\alpha} \cdot a.$

Hence D is approximately inner and this completes the proof.

Now we introduce a notion of an approximate WAP-virtual diagonal for \mathcal{A} .

Definition 2.5. Let \mathcal{A} be a Banach algebra and let $F(\mathcal{A})$ has an identity element *e*. An *approximate* WAP-*virtual diagonal* for \mathcal{A} is a net $(M_{\alpha})_{\alpha} \subseteq F_{\mathcal{A}}(\mathcal{A} \otimes \mathcal{A})$ such that

(2.3)
$$a \cdot M_{\alpha} - M_{\alpha} \cdot a \to 0 \quad (a \in \mathcal{A}) \quad \text{and} \quad \Delta_{\text{WAP}}(M_{\alpha}) \to e$$

in the norm topology.

Theorem 2.6. Let \mathcal{A} be a Banach algebra. Then the following are equivalent:

- (i) $F(\mathcal{A})$ is approximately Connes-amenable;
- (ii) A has an approximate WAP-virtual diagonal.

Proof. (i) \Rightarrow (ii) It is immediate by Lemma 2.4.

(ii) \Rightarrow (i) Suppose that \mathcal{A} has an approximate WAP-virtual diagonal. Then there exists a net $(M_{\alpha})_{\alpha} \subseteq F_{\mathcal{A}}(\mathcal{A} \hat{\otimes} \mathcal{A})$ such that for every $a \in \mathcal{A}$,

(2.4)
$$a \cdot M_{\alpha} - M_{\alpha} \cdot a \to 0 \text{ and } \Delta_{WAP}(M_{\alpha}) \to e.$$

Let N be a unit-linked normal dual $F(\mathcal{A})$ -bimodule and let $D : \mathcal{A} \to N$ be a bounded derivation. We show that D is approximately inner and then by Lemma 2.2, $F(\mathcal{A})$ is approximately Connes-amenable.

For every $x \in N_*$ consider the functional $f_x \in F_{\mathcal{A}}(\mathcal{A} \otimes \mathcal{A})^*$ defined by $f_x(a \otimes b) = (a \cdot D(b))(x)$ $(a, b \in \mathcal{A})$. Note that for every $m \in \mathcal{A} \otimes \mathcal{A}$ we have

$$f_{x \cdot a - a \cdot x}(m) = (f_x \cdot a - a \cdot f_x)(m) + (\Delta(m) \cdot D(a))(x).$$

Consider the \mathcal{A} -bimodule map $\Delta : \mathcal{A} \otimes \mathcal{A} \to \mathcal{A}$. Then by [CSS15, Corollary 5.2] there exists a unique $w^* - w^*$ -continuous linear map

$$\Delta_{\mathrm{WAP}}: F_{\mathcal{A}}(\mathcal{A}\hat{\otimes}\mathcal{A}) \to F(\mathcal{A})$$

making the following diagram

commute. Since $\eta_{\mathcal{A}\hat{\otimes}\mathcal{A}}(\mathcal{A}\hat{\otimes}\mathcal{A})$ is w^* -dense in $F_{\mathcal{A}}(\mathcal{A}\hat{\otimes}\mathcal{A})$, there is a net $(m^{\alpha}_{\beta})_{\beta} \subseteq \mathcal{A}\hat{\otimes}\mathcal{A}$ such that $\eta_{\mathcal{A}\hat{\otimes}\mathcal{A}}(m^{\alpha}_{\beta}) \xrightarrow{w^*} M_{\alpha}$ for every α .

Set $\lambda_{\alpha}(x) = \langle M_{\alpha}, f_x \rangle$ for each α , we have

$$\begin{split} \langle a \cdot \lambda_{\alpha} - \lambda_{\alpha} \cdot a, x \rangle \\ &= \langle \lambda_{\alpha}, x \cdot a - a \cdot x \rangle \\ &= \langle M_{\alpha}, f_{x \cdot a - a \cdot x} \rangle \\ &= \lim_{\beta} \langle \eta_{\mathcal{A}\hat{\otimes}\mathcal{A}}(m_{\beta}^{\alpha}), f_{x \cdot a - a \cdot x} \rangle \\ &= \lim_{\beta} \langle f_{x} \cdot a - a \cdot f_{x}, m_{\beta}^{\alpha} \rangle + \lim_{\beta} \langle \Delta(m_{\beta}^{\alpha}) \cdot D(a), x \rangle \\ &= \lim_{\beta} \langle f_{x} \cdot a - a \cdot f_{x}, m_{\beta}^{\alpha} \rangle + \lim_{\beta} \langle x, \eta_{\mathcal{A}} \Delta(m_{\beta}^{\alpha}) \cdot D(a) \rangle \\ &= \lim_{\beta} \langle \eta_{\mathcal{A}\hat{\otimes}\mathcal{A}}(m_{\beta}^{\alpha}), f_{x} \cdot a - a \cdot f_{x} \rangle + \lim_{\beta} \langle x, \Delta_{\text{WAP}} \eta_{\mathcal{A}\hat{\otimes}\mathcal{A}}(m_{\beta}^{\alpha}) \cdot D(a) \rangle \\ &= \langle a \cdot M_{\alpha} - M_{\alpha} \cdot a, f_{x} \rangle + \langle x, \Delta_{\text{WAP}}(M_{\alpha}) \cdot D(a) \rangle. \end{split}$$

Because $||f_x|| \le ||D|| ||x||$,

$$\begin{aligned} \|(a \cdot \lambda_{\alpha} - \lambda_{\alpha} \cdot a)(x) - D(a)(x)\| &\leq \|a \cdot M_{\alpha} - M_{\alpha} \cdot a\| \|D\| \|x\| \\ &+ \|x\| \|\Delta_{\mathrm{WAP}}(M_{\alpha}) - e\| \|D(a)\|. \end{aligned}$$

This together with equation (2.4) imply that $D(a) = \lim_{\alpha} \operatorname{ad}_{\lambda_{\alpha}}(a)$ for every $a \in \mathcal{A}$, so D is approximately inner.

3. Approximate-type virtual diagonals

Suppose that \mathcal{A} is a Banach algebra. Consider the \mathcal{A} -bimodule map $\Delta^* : \mathcal{A}^* \to (\mathcal{A} \hat{\otimes} \mathcal{A})^*$. Let $V \subseteq (\mathcal{A} \hat{\otimes} \mathcal{A})^*$ be a closed subspace and let

$$E \subseteq (\Delta^*)^{-1}(V) \subseteq \mathcal{A}^*$$

Then we obtain a map $\Delta^*|_E : E \to V$. We denote the adjoint of $\Delta^*|_E$ by $\Delta_E : V^* \to E^*$.

Definition 3.1. Let $V \subseteq (\mathcal{A} \hat{\otimes} \mathcal{A})^*$ be a nonzero closed subspace and let $E \subseteq (\Delta^*)^{-1}(V) \subseteq \mathcal{A}^*$. An *approximate V-virtual diagonal* for \mathcal{A} is a net $(M_{\alpha}) \subseteq V^*$ that satisfies

$$\begin{aligned} a \cdot M_{\alpha} - M_{\alpha} \cdot a &\to 0, \\ \langle \Delta_E(M_{\alpha}) \cdot a, \varphi \rangle &\to \langle \varphi, a \rangle, \end{aligned}$$

for $(a \in \mathcal{A}, \varphi \in E)$.

We consider the following cases

(1) Let $V = (\mathcal{A} \hat{\otimes} \mathcal{A})^*$. Then we obtain a new concept of a diagonal for \mathcal{A} , called an *approximate virtual diagonal*, that is, a—not necessarily bounded—net $(M_{\alpha}) \subseteq (\mathcal{A} \hat{\otimes} \mathcal{A})^{**}$ such that

$$\begin{aligned} a \cdot M_{\alpha} - M_{\alpha} \cdot a \to 0, \\ \langle \Delta^{**}(M_{\alpha}) \cdot a, \varphi \rangle \to \langle \varphi, a \rangle, \end{aligned}$$

for $(a \in \mathcal{A}, \varphi \in \mathcal{A}^*)$.

(2) Let $V = (\mathcal{A} \hat{\otimes} \mathcal{A})^*_{\text{ess}} \subseteq (\mathcal{A} \hat{\otimes} \mathcal{A})^*$. Then we obtain an *approximate* $(\mathcal{A} \hat{\otimes} \mathcal{A})^*_{\text{ess}}$ -virtual diagonal for A.

In the following proposition we show that how these two diagonals are related.

Proposition 3.2. Let \mathcal{A} be a Banach algebra with a bounded approximate identity. If \mathcal{A} has an approximate $(\mathcal{A} \hat{\otimes} \mathcal{A})^*_{ess}$ -virtual diagonal, then it has an approximate virtual diagonal.

Proof. Let $V = (\mathcal{A} \hat{\otimes} \mathcal{A})^*_{\text{ess}}$. By Remark 1.3, V is a closed subspace of $(\mathcal{A} \hat{\otimes} \mathcal{A})^*$ and we have an isomorphism $\tau : V^* \to (\mathcal{A} \hat{\otimes} \mathcal{A})^{**}/V^{\perp}$ defined by $\tau(T) = x + V^{\perp}$ for some $x \in (\mathcal{A} \hat{\otimes} \mathcal{A})^{**}$. Since V^{\perp} is complemented in $(\mathcal{A} \hat{\otimes} \mathcal{A})^{**}$, there exists an \mathcal{A} -bimodule projection $P : (\mathcal{A} \hat{\otimes} \mathcal{A})^{**} \to V^{\perp}$ and so there is an \mathcal{A} -bimodule isomorphism $\iota : (I - P)(\mathcal{A} \hat{\otimes} \mathcal{A})^{**} \to V^*$. For every $v \in V$ and $T \in V^*$ by definition of τ we have $\tau(T) = x + V^{\perp}$ for some $x \in (\mathcal{A} \hat{\otimes} \mathcal{A})^{**}$, thus

$$\langle \iota^{-1}(T), v \rangle = \langle (I - P)x, v \rangle = \langle x, v \rangle - \langle Px, v \rangle = \langle x, v \rangle = \langle x + V^{\perp}, v \rangle$$
$$= \langle \tau(T), v \rangle.$$

That is, $\iota^{-1}(T)|_V = T$ for every $T \in V^*$. Now suppose that $(F_\alpha) \subseteq V^*$ is an approximate $(\mathcal{A} \otimes \mathcal{A})^*_{\text{ess}}$ -virtual diagonal for \mathcal{A} and set

$$M_{\alpha} = \iota^{-1}(F_{\alpha}) \in (\mathcal{A} \hat{\otimes} \mathcal{A})^*$$

for every α . Then

(3.1)
$$a \cdot M_{\alpha} - M_{\alpha} \cdot a = \iota^{-1} (a \cdot F_{\alpha} - F_{\alpha} \cdot a) \to 0.$$

Moreover, for $a \in \mathcal{A}$ by Cohen's factorization theorem, there exist $x, b, y \in \mathcal{A}$ such that a = ybx. Since for every $\psi \in \mathcal{A}^*$ we have $bx \cdot \psi \cdot y \in \mathcal{A}^*_{ess}$ and since $\mathcal{A}^*_{ess} = (\Delta^*)^{-1}(V)$ [CSS15, Lemma 7.7], $\Delta^*(bx \cdot \psi \cdot y) \in V$. But $M_{\alpha}|_{V} = \iota^{-1}(F_{\alpha})|_{V} = F_{\alpha}$ for each α . Using (3.1)

$$(3.2) \qquad \langle \Delta^{**}(M_{\alpha}) \cdot a, \psi \rangle - \langle \Delta^{**}(F_{\alpha}) \cdot b, x \cdot \psi \cdot y \rangle \\ = \langle \Delta^{**}(M_{\alpha}) \cdot a, \psi \rangle - \langle F_{\alpha}, \Delta^{*}(bx \cdot \psi \cdot y) \rangle \\ = \langle \Delta^{**}(M_{\alpha}) \cdot a, \psi \rangle - \langle M_{\alpha}, \Delta^{*}(bx \cdot \psi \cdot y) \rangle \\ = \langle \Delta^{**}(M_{\alpha}) \cdot a, \psi \rangle - \langle \Delta^{**}(M_{\alpha}), bx \cdot \psi \cdot y \rangle \\ = \langle \Delta^{**}(M_{\alpha}) \cdot a, \psi \rangle - \langle y \cdot \Delta^{**}(M_{\alpha}) \cdot bx, \psi \rangle \to 0.$$

Also since (F_{α}) is an approximate $(\mathcal{A} \otimes \mathcal{A})^*_{ess}$ -virtual diagonal and since

$$\Delta^*(x \cdot \psi \cdot y) \in V,$$

we have

(3.3)
$$\langle \Delta^{**}(F_{\alpha}) \cdot b, x \cdot \psi \cdot y \rangle \to \langle x \cdot \psi \cdot y, b \rangle.$$

706

Hence (3.2) and (3.3) imply that

(3.4)
$$\begin{aligned} |\langle \Delta^{**}(M_{\alpha}) \cdot a, \psi \rangle - \langle \psi, a \rangle| \\ &\leq |\langle \Delta^{**}(M_{\alpha}) \cdot a, \psi \rangle - \langle \Delta^{**}(F_{\alpha}) \cdot b, x \cdot \psi \cdot y \rangle| \\ &+ |\langle \Delta^{**}(F_{\alpha}) \cdot b, x \cdot \psi \cdot y \rangle - \langle x \cdot \psi \cdot y, b \rangle| \to 0. \end{aligned}$$

We conclude from (3.1) and (3.4) that

$$a \cdot M_{\alpha} - M_{\alpha} \cdot a \to 0, \qquad \langle \Delta^{**}(M_{\alpha}) \cdot a, \psi \rangle \to \langle \psi, a \rangle,$$

which means that (M_{α}) is an approximate virtual diagonal for \mathcal{A} .

As a corollary of Lemma 2.2, if a Banach algebra \mathcal{A} is approximately amenable, then $F(\mathcal{A})$ is approximately Connes-amenable. For the rest of the paper we consider the converse of this result in the special case, whenever $\mathcal{A} = \ell^1(G)$. Indeed, we show that for a discrete group G, if $\ell^1(G)$ has an approximate WAP-virtual diagonal, then it has an approximate virtual diagonal, although the existence of an approximate virtual diagonal is weaker than approximate amenability of $\ell^1(G)$.

We identify $L^1(G) \otimes L^1(G)$ with $L^1(G \times G)$ as $L^1(G)$ -bimodules (see [BD73, Example VI. 14] for instance).

Let I be the closed ideal in $L^{\infty}(G \times G)_{\text{ess}}$ generated by $\Delta^*(C_0(G))$ as in [CSS15, Definition 8.1], that is,

$$I = \overline{\lim\{\Delta^*(f)g : f \in C_0(G), g \in L^\infty(G \times G)_{ess}\}}.$$

Remark 3.3. The space of uniformly continuous bounded functions on G is denoted by UCB(G). Since $\Delta^*(\text{UCB}(G)) = \Delta^*(L^{\infty}(G)_{\text{ess}}) \hookrightarrow L^{\infty}(G \times G)_{\text{ess}}$, we obtain a map $\Delta_{\text{UCB}} : L^{\infty}(G \times G)_{\text{ess}}^* \to \text{UCB}(G)^*$ as the adjoint of the inclusion map. By [CSS15, Lemma 8.2],

$$\Delta^*(C_0(G)) \subseteq I \subseteq \mathrm{WAP}(L^\infty(G \times G)),$$

so we obtain a map $\Delta_{C_0} = (\Delta^*|_{C_0(G)})^* : I^* \to C_0(G)^* = M(G)$. By [CSS15, Proposition 8.5] there is a G_d -bimodule map $S : I^* \to L^{\infty}(G \times G)^*_{\text{ess}}$ such that for every $h \in \text{UCB}(G)$ and $\psi \in I^*$

$$\langle \Delta_{\mathrm{UCB}}(S(\psi)), h \rangle = \langle \iota(\Delta_{C_0}(\psi)), h \rangle,$$

where $\iota : M(G) \to UCB(G)^*$ is the natural inclusion map defined by $\langle \iota(\mu), h \rangle = \int_G h \, d\mu$ for every $\mu \in M(G)$ and $h \in UCB(G)$.

Theorem 3.4. Let G be a discrete group. Consider the following statements:

- (i) $\ell^1(G)$ has an approximate WAP-virtual diagonal.
- (ii) $\ell^1(G)$ has an approximate $\ell^{\infty}(G \times G)_{\text{ess}}$ -virtual diagonal.
- (iii) $\ell^1(G)$ has an approximate virtual diagonal.

Then the implications $(i) \Rightarrow (ii) \Rightarrow (iii)$ hold.

Proof. (i) \Rightarrow (ii) Let $(M_{\alpha}) \subseteq F(\ell^1(G \times G))$ be an approximate WAP-virtual diagonal for $\ell^1(G)$. Then for every $a \in \ell^1(G)$

$$a \cdot M_{\alpha} - M_{\alpha} \cdot a \to 0 \quad (a \in \ell^1(G)) \quad \text{and} \quad \Delta_{\text{WAP}}(M_{\alpha}) \to e,$$

where e denotes the identity element of $F(\ell^1(G))$. Since

$$\Delta^*(c_0(G)) \subseteq I \subseteq \mathrm{WAP}(\ell^\infty(G \times G)),$$

each M_{α} can be restricted to a functional on I. Let $S: I^* \to \ell^{\infty}(G \times G)_{\text{ess}}^*$ be as mentioned in Remark 3.3. Set $N_{\alpha} = S(M_{\alpha}|_I)$. We show that $(N_{\alpha})_{\alpha}$ is an approximate $\ell^{\infty}(G \times G)_{\text{ess}}$ -virtual diagonal. Since G is discrete and Sis a continuous G-bimodule map, it is a continuous $\ell^1(G)$ -bimodule map, so

$$a \cdot N_{\alpha} - N_{\alpha} \cdot a = S(a \cdot M_{\alpha} - M_{\alpha} \cdot a) \to 0 \quad (a \in \ell^{1}(G)).$$

Since (M_{α}) is an approximate WAP-virtual diagonal $\Delta_{c_0}(M_{\alpha}|_I) \cdot a \to a$ in $\ell^1(G)$ and since the map $\iota : \ell^1(G) \to \mathrm{UCB}(G)^*$ is $w^* - w^*$ -continuous, for every $h \in \mathrm{UCB}(G)$ we have

Hence $(N_{\alpha})_{\alpha}$ is an approximate $\ell^{\infty}(G \times G)_{\text{ess}}$ -virtual diagonal for $\ell^{1}(G)$. (ii) \Rightarrow (iii) holds by Proposition 3.2.

Note that, it is not clear for us that the map S in Remark 3.3 is always an $L^1(G)$ -bimodule map. If S is an $L^1(G)$ -bimodule map, then the previous theorem holds not only for discrete groups but also for each locally compact group G.

References

- [BD73] BONSALL, FRANK F.; DUNCAN, JOHN. Complete normed algebras. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 80. Springer-Verlag, New York-Heidelberg, 1973. x+301 pp. MR0423029, Zbl 0271.46039.
- [CSS15] CHOI, YEMON; SAMEI, EBRAHIM; STOKKE, ROSS. Extension of derivations, and Connes-amenability of the enveloping dual Banach algebra. *Math. Scand.***117** (2015), no. 2, 258–303. MR3437210, Zbl 1328.47041, arXiv:1307.6287, doi: 10.7146/math.scand.a-22870.
- [ESM12] ESSLAMZADEH, GHOLAM HOSSEIN; SHOJAEE, BEHROUZ; MAHMOODI, A. Approximate Connes-amenability of dual Banach algebras. Bull. Belg. Math. Soc. Simon Stevin 19 (2012), 193–213. MR2977226, Zbl 06050933, arXiv:0908.3566.
- [GL04] GHAHRAMANI, FEREIDOUN; LOY, RICHARD J. Generalized notions of amenability. J. Funct. Anal. 208 (2004), 229–260. MR2034298, Zbl 1045.46029, doi: 10.1016/S0022-1236(03)00214-3.
- [Joh72] JOHNSON, BARRY EDWARD. Cohomology in Banach algebras. Memoirs of the American Mathematical Society, 127. American Mathematical Society, Providence, R.I., 1972. iii+96 pp. MR374934, Zbl 0256.18014.

- [L197] LAU, ANTHONY TO-MING; LOY, RICHARD J. Weak amenability of Banach algebras on locally compact groups. J. Funct. Anal. 145 (1997), 175–204. MR1442165, Zbl 0890.46036, doi: 10.1006/jfan.1996.3002.
- [Run01] RUNDE, VOLKER. Amenability for dual Banach algebras. Studia Math. 148 (2001), 47–66. MR1881439, Zbl 1003.46028, arXiv:math/0203199, doi: 10.4064/sm148-1-5.
- [Run04] RUNDE, VOLKER. Dual Banach algebras: Connes-amenability, normal, virtual diagonals, and injectivity of the predual bimodule. Math. Scand. 95 (2004), 124–144. MR2091485, Zbl 1087.46035, arXiv:math/0305431, doi:10.7146/math.scand.a-14452.
- [Run02] RUNDE, VOLKER. Lectures on amenability. Lecture Notes in Mathematics, 1774. Springer-Verlag, Berlin, 2002. MR1874893, Zbl 0999.46022, doi: 10.1007/b82937.

(Ahmad Shirinkalam) FACULTY OF MATHEMATICS AND COMPUTER SCIENCE, AMIRKABIR UNIVERSITY OF TECHNOLOGY, 424 HAFEZ AVENUE, TEHRAN 15914, IRAN shirinkalam_a@aut.ac.ir

(Abdolrasoul Pourabbas) FACULTY OF MATHEMATICS AND COMPUTER SCIENCE, AMIRK-ABIR UNIVERSITY OF TECHNOLOGY, 424 HAFEZ AVENUE, TEHRAN 15914, IRAN arpabbas@aut.ac.ir

This paper is available via http://nyjm.albany.edu/j/2017/23-32.html.