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Unitary extensions of pairs of commuting
isometric operators and their generalized

resolvents

Sergey M. Zagorodnyuk

Abstract. In this paper we study a pair V1, V2 of commuting isometric
operators in a Hilbert space H, which are not necessarily defined on the
whole space. An old question: is there a possibility for an extension of
V1, V2 to a pair of commuting unitary operators U1, U2 in a Hilbert space

H̃ ⊇ H? In the case of a unitary V2 we present a transparent criterion in
terms of the original space H. The general case is discussed, as well. We
introduce a notion of a generalized resolvent for V1, V2. Characteristic
properties of the generalized resolvent in terms of H are obtained. In
the case of a unitary V2 all generalized resolvents are parametrized.
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1. Introduction

Let V1, V2 be closed isometric operators in a Hilbert space H. We empha-
size that V1, V2 are not necessarily defined on the whole space H. Suppose
that

(1) V1V2h = V2V1h, h ∈ D(V1V2) ∩D(V2V1).

In other words, V1 and V2 commute whenever possible.
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Question. Do there exist a Hilbert space H̃ ⊇ H and commuting unitary

operators U1, U2 in H̃, such that U1 ⊇ V1, U2 ⊇ V2? This question was
studied in a series of papers [5], [6], [2], [8], [9], see also references therein.
Some applications were considered in the above papers, as well.

The extension theory of single isometric (symmetric) operators to uni-
tary (respectively self-adjoint) operators is classical. For pairs of commut-
ing isometric (symmetric) operators the corresponding extension theory is
complicated and it is still developing. For the case of commuting symmetric
operators see, for example, historical notes in a recent paper [12].

When dealing with isometric operators on subspaces, it is often useful
to introduce the corresponding partial isometries. For the above Question
this would lead to confusions. In fact, the corresponding partial isometries
can be noncommutative (see Example 4.3 below). Thus, we can not restrict
ourselves only investigating extensions or dilations of partial isometries.

We shall investigate this problem by introducing and using the corre-
sponding generalized resolvents. Observe that generalized resolvents are
themselves very valuable and useful objects for interpolation problems and
differential equations, see a survey in [13].

If the answer on the above question is affirmative, then we may define the
following operator-valued function of two complex variables:

Rz1,z2(2)

= Rz1,z2(V1, V2)

= P H̃H (E
H̃

+ z1U1)(EH̃ − z1U1)
−1(E

H̃
+ z2U2)(EH̃ − z2U2)

−1
∣∣∣
H
,

z1, z2 ∈ Te.
The function Rz1,z2(V1, V2) is called a generalized resolvent of a pair of

isometric operators V1, V2 (corresponding to extensions U1, U2).

Let Ẽk,t, t ∈ [0, 2π], be the (right-continuous) spectral family of Uk, Ẽk,0 =
0, k = 1, 2 (we shall use the terminology from [10]). The following operator-
valued function of two real variables:

(3) Et1,t2 = P H̃H Ẽ1,t1Ẽ2,t2

∣∣∣
H
, t1, t2 ∈ [0, 2π],

is said to be a (strongly right-continuous) spectral function of a pair of iso-
metric operators V1, V2 (corresponding to extensions U1, U2).

As it follows from their definitions, a generalized resolvent and a spectral
function, which correspond to the same extensions U1, U2, are related by the
following equality:

(4) (Rz1,z2h, h)H =

∫
R2

(
1 + z1e

it1

1− z1eit1

)(
1 + z2e

it2

1− z2eit2

)
d(Et1,t2h, h)H ,

h ∈ H, z1, z2 ∈ Te. Here the “distribution” function (Et1,t2h, h)H defines a
(nonnegative) finite measure σ on B(R2). Moreover, we have

σ((0, 2π]× (0, 2π]) = σ(R2) = ‖h‖2H .
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(One may define σ on a semi-ring of rectangles of the form

δ = {a < t1 ≤ b, c < t2 ≤ d}
and then extend by the standard procedure).

For the convenience of the reader we shall recall some basic definitions
and properties of a generalized resolvent of an isometric operator. Let V be
a closed isometric operator in a Hilbert space H. It is well known that there

always exists a unitary extension U ⊇ V in a Hilbert space H̃ ⊇ H. The
following operator-valued function:

(5) Rζ = Rζ(V ) = P H̃H
(
E
H̃
− ζU

)−1∣∣∣
H
, ζ ∈ Te,

is said to be a generalized resolvent of an isometric operator V (correspond-
ing to the extension U). An arbitrary generalized resolvent Rζ has the
following form ([3]):

(6) Rζ = [EH − ζ(V ⊕ Fζ)]−1 , ζ ∈ D,
where Fζ is a function from S(D;N0(V ), N∞(V )) (see Notations). Con-
versely, an arbitrary function Fζ ∈ S(D;N0(V ), N∞(V )) defines by rela-
tion (6) a generalized resolvent Rζ of the operator V . Moreover, to different
functions from S(D;N0(V ), N∞(V )) there correspond different generalized
resolvents of the operator V . Formula (6) is known as Chumakin’s formula
for the generalized resolvents of an isometric operator. Observe that the first
such type formula was obtained by Shtraus for a densely defined symmetric
operator (the history of this subject and an exposition of the corresponding
results was given in [13]).

Chumakin established the following characteristic properties of a gener-
alized resolvent of a closed isometric operator ([3]):

Theorem 1.1. In order that a family of linear operators Rζ , acting in a
Hilbert space H (DRζ = H) and depending on complex parameter ζ (|ζ| 6= 1),
be a generalized resolvent of a closed isometric operator, it is necessary and
sufficient that the following conditions hold:

(1) There exists a number ζ0 ∈ D\{0} and a subspace L ⊆ H such that

(ζRζ − ζ0Rζ0)f = (ζ − ζ0)RζRζ0f,
for arbitrary ζ ∈ Te and f ∈ L.

(2) The operator R0 is bounded and R0h = h, for all h ∈ H 	Rζ0L.
(3) For an arbitrary h ∈ H the following inequality holds:

Re(Rζh, h)H ≥
1

2
‖h‖2H , ζ ∈ D.

(4) For an arbitrary h ∈ H Rζh is an analytic vector-valued function of
a parameter ζ in D.

(5) For an arbitrary ζ ∈ D\{0} we have:

R∗ζ = EH −R 1
ζ

.
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Theorem 1.2. In order that a family of linear operators Rζ (DRζ = H,
|ζ| 6= 1) in a Hilbert space H be a generalized resolvent of a given closed
isometric operator V in H, it is necessary and sufficient that the following
conditions hold:

(1) For all ζ ∈ Te and for all g ∈ D(V ) the following equality holds:

Rζ(EH − ζV )g = g.

(2) The operator R0 is bounded and R0h = h, for all h ∈ H 	D(V ).
(3) For an arbitrary h ∈ H the following inequality holds:

Re(Rζh, h)H ≥
1

2
‖h‖2H , ζ ∈ D.

(4) For an arbitrary h ∈ H Rζh is an analytic vector-valued function of
a parameter ζ in D.

(5) For an arbitrary ζ ∈ D\{0} the following equality is true:

R∗ζ = EH −R 1
ζ

.

Theorems 1.1, 1.2 played a central role in Chumakin’s proof of formula (6).
One of our purposes is to obtain some analogs of Theorems 1.1, 1.2 for
a generalized resolvent of a pair of commuting isometric operators. An
important role will be played by the following class H2 of analytic functions
of two complex variables, which was introduced by Korányi in [5] (We use
the original notation of Korányi for this class. Since the Hardy space will
not appear in this paper, it will cause no confusion).

Definition 1.3. The class H2 is the class of functions f of two complex
variables z1, z2 defined and holomorphic for all |z1|, |z2| 6= 1 (including ∞)
and satisfying the conditions:

(a) f(z1
−1, z2

−1) = f(z1, z2) for all |z1|, |z2| 6= 1.
(b) f(z1, z2)−f(z1

−1, z2)−f(z1, z2
−1)+f(z1

−1, z2
−1) ≥ 0, for |z1|, |z2| <

1.
(c) f(z1, 0) + f(z1,∞) = 0, f(0, z2) + f(∞, z2) = 0 for all |z1| 6= 1 and
|z2| 6= 1.

Every function g ∈ H2 admits the following representation (see [5, formula
(26)] and considerations on page 532 in [5]):

g(z1, z2)(7)

=
1

4

(
(E + z1Û)(E − z1Û)−1(E + z2V̂ )(E − z2V̂ )−1ε0,0, ε0,0

)
B̂
,

z1, z2 ∈ Te, where Û , V̂ are some commutative unitary operators in a Hilbert

space B̂; ε0,0 ∈ B̂. Let Ê1,t, t ∈ [0, 2π], be the (right-continuous) spectral

family of Û , Ê1,0 = 0. Let Ê2,t, t ∈ [0, 2π], be the (right-continuous) spectral
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family of V̂ , Ê2,0 = 0. As in relation (4) we may write:

g(z1, z2) =

∫
R2

(
1 + z1e

it1

1− z1eit1

)(
1 + z2e

it2

1− z2eit2

)
d

(
Ê1,t1Ê2,t2

1

2
ε0,0,

1

2
ε0,0

)
B̂

(8)

=

∫
R2

(
1 + z1e

it1

1− z1eit1

)(
1 + z2e

it2

1− z2eit2

)
dµ,

z1, z2 ∈ Te, where µ is a (nonnegative) finite measure on B(R2) generated

by the distribution function
(
Ê1,t1Ê2,t2

1
2ε0,0,

1
2ε0,0

)
B̂

. Moreover, we have

µ((0, 2π]× (0, 2π]) = µ(R2).
Our main results in the present paper are the following:

(i) Characteristic properties of a generalized resolvent of a given pair
of isometric operators in terms of the original Hilbert space (Theo-
rem 3.3).

(ii) A criterion for the existence of a commuting unitary extension for
a given pair of isometric operators in terms of the original Hilbert
space (Corollary 3.4).

(iii) An analytic parameterization of all generalized resolvents for a given
pair: isometric+unitary (Theorem 4.1).

(iv) A simple criterion for the existence of a commuting unitary extension
for a given pair: isometric+unitary (Corollary 4.2).

The method we use goes back to Shtraus’s ideas of 1954 presented in his
remarkable paper [11]. Shtraus characterized generalized resolvents of sym-
metric operators in terms of the original Hilbert space, see Theorems 3–6
in [11]. In particular, he used Naimark’s dilation ideas. The characteriza-
tion was then used to obtain an analytic parameterization of all generalized
resolvents of a closed, densely-defined symmetric operator, see Theorem 7
in [11].

Chumakin applied a similar approach for generalized resolvents of a closed
isometric operator. He obtained the above Theorems 1.1 and 1.2. These the-
orems were used to derive an analytic parameterization (6) of all generalized
resolvents of a given closed isometric operator.

We modify the above method for the two-dimensional case. Some of con-
ditions (namely conditions (1), (3) of Theorem 1.1 and condition (3) of The-
orem 1.2) we could not transmit to the two-dimensional case. They were
replaced by other conditions. An important role, as before, is played by
Naimark’s dilation idea. Its detailed exposition is given in Theorem 3.1.
Notice that Theorem 3.1, probably, can be also derived from Koranyi’s
Corollary in [5, p. 548]. We present a more direct proof, without using
of some interpolation problems (as Theorem 5 in [5]). (Koranyi used a gen-
eral Naimark’s dilation theorem, as well. However, some details were hidden
in his proof.)
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Besides the application of the (general) Naimark’s dilation theorem, there
exists another problem: provide some conditions which ensure that the con-
structed unitary operators will extend the prescribed isometric operators V1,
V2. This problem will be solved by comparing and analyzing the construc-
tion of spectral families and operators in the proofs of Chumakin and in the
proof of Theorem 3.1.

In Section 4 we apply our characterization for the case Isometric+unitary.
In this case it can be verified directly that a generalized resolvent should have
form (74). It was natural to assume that an arbitrary generalized resolvent
could be produced by this formula. In order to prove this, we check the
conditions of Theorem 3.3.

As corollaries, we obtain conditions for the existence of a commuting uni-
tary extension for a given pair of isometric operators in terms of the original
Hilbert space. Observe that Corollary 3.4 has no additional assumptions on
isometric operators.

Finally, in Section 5 we present an application of our results to some
moment problems.

We now compare our results with existing investigations on the subject.
Despite there is a huge amount of papers on generalized resolvents for single
operators, we do not know papers on generalized resolvents for commuting
pairs of operators.

On the other hand, there exists a parameterization by Moran in [8] of
minimal unitary extensions of a pair of commuting isometries under some
additional assumptions. It was assumed that for a couple of isometries U, V ,
defined on closed subspaces, the following conditions hold:

(9) UnD(V ) ⊂ D(U), UnR(V ) ⊂ D(U), n = 0, 1, ...;

and

(10) (UnV f, V f ′) = (Unf, f ′), ∀f, f ′ ∈ D(V ), n = 1, 2, ....

Observe that condition (9) includes the case of a unitary U . The additional
condition (10) ensures the existence of unitary extensions. Notice that we
did not assume the existence of unitary extensions in Theorem 4.1. This
allowed to obtain a new criterion for the existence of unitary extensions
(Corollary 4.2). As for Moran’s parameterization, we think it can be used
to obtain a parameterization of the corresponding generalized resolvents.
However, we prefer to use our previous results. Notice that the methods of
Moran are quite different.

Let us mention briefly known criteria for the existence of a commuting
unitary extension for a given pair of isometric operators. As far as we know,
all the existing criteria use some additional assumptions. Thus, Corollary 3.4
provides a new tool for this problem.

In Koranyi’s paper [5] the related results are contained in Lemma 2
(p. 253), Corollary, Remark and Lemma 3 (p. 525). The Remark can
be compared with our Corollary 4.2: for the case of a unitary operator
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U and an isometric operator V it characterize the existence by an alge-
braic condition involving all powers of U (‖UnV x + V Uny‖ = ‖x + y‖,
x ∈ D(V ), y ∈ U−nD(V )).

In Markelov’s paper [6] different conditions for the existence of unitary ex-
tensions are given with various assumptions, see Theorems 1-4, Corollary on
page 208 and Lemmas 1-3. All of them are different from our Corollary 4.2.

Arocena presented a criterion for the existence of unitary extensions of
given isometries satisfying (9). His criterion contains condition (10), see [2,
Theorem A] (see also Theorem on page 329 of this paper).

Notations 1.4. As usual, we denote by R,C,N,Z,Z+, the sets of real
numbers, complex numbers, positive integers, integers and nonnegative in-
tegers, respectively; D = {z ∈ C : |z| < 1}; De = {z ∈ C : |z| > 1};
T = {z ∈ C : |z| = 1}; Te = {z ∈ C : |z| 6= 1}. By k ∈ m,n (or k = m,n)
we mean that k ∈ Z+ : m ≤ k ≤ n; for m,n ∈ Z+. By R2 we denote
the two-dimensional real Euclidean space. By B(R2) we mean the set of all
Borel subsets of R2.

In this paper Hilbert spaces are not necessarily separable, operators in
them are supposed to be linear.

If H is a Hilbert space then (·, ·)H and ‖ · ‖H mean the scalar product and
the norm in H, respectively. Indices may be omitted in obvious cases. For a
linear operator A in H, we denote by D(A) its domain, by R(A) its range,
and A∗ means the adjoint operator if it exists. If A is invertible then A−1

means its inverse. A means the closure of the operator, if the operator is
closable. If A is bounded then ‖A‖ denotes its norm. For a set M ⊆ H we
denote by M the closure of M in the norm of H. By LinM we mean the set
of all linear combinations of elements from M , and spanM := LinM . By
EH we denote the identity operator in H, i.e., EHx = x, x ∈ H. In obvious
cases we may omit the index H. If H1 is a subspace of H, then PH1 = PHH1

is an operator of the orthogonal projection on H1 in H. By [H] we denote
a set of all bounded operators on H. For a closed isometric operator V in
H we denote: Mζ(V ) = (EH − ζV )D(V ), Nζ(V ) = H 	Mζ(V ), ζ ∈ C;
M∞(V ) = R(V ), N∞(V ) = H 	 R(V ). For a unitary operator U in H we
denote: Rz(U) := (EH − zU)−1, z ∈ Te.

By S(D;N,N ′) we denote a class of all analytic in a domain D ⊆ C
operator-valued functions F (z), which values are linear nonexpanding op-
erators mapping the whole N into N ′, where N and N ′ are some Hilbert
spaces.

For a unitary operator U in a Hilbert space H we shall use the following
notation:

U(z) := (EH + zU)(EH − zU)−1 = −EH + 2Rz(U), z ∈ Te.
It is straightforward to check that ([5, p. 531])

(11) (U(z))∗ = −U
(

1

z

)
, z ∈ Te\{0};
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(12) U(z)− U
(

1

z

)
= 2(1− |z|2)R∗z(U)Rz(U) ≥ 0, z ∈ D\{0}.

If we set U(∞) := −EH , then relation (11) will be valid for all z ∈ Te∪{∞}.

2. Preliminary results

We shall need the following elementary lemma.

Lemma 2.1. Let µ be a (nonnegative) finite measure on B(R2). Let ϕj(z; t)
be an analytic of z in a domain D ⊆ C complex-valued function depending on

a parameter t ∈ R with all derivatives (ϕj(z; t))
(k)
z , k ∈ Z+ being continuous

and bounded as a function of t (with an arbitrary fixed z ∈ D); j = 1, 2.
Suppose that for each z0 ∈ D there exists a closed ball

U(z0) = {z ∈ C : |z − z0| ≤ Rz0} ⊆ D

(Rz0 > 0), such that

(13)
∣∣∣(ϕj(z; t))(k)z ∣∣∣ ≤Mk,j(z0), z ∈ U(z0), t ∈ R, k ∈ Z+,

where Mk,j(z0) does not depend on t. Here j = 1, 2 is a fixed number. Then

(14)
(

(g(z1, z2))
(k)
z1

)(l)
z2

=

∫
R2

(ϕ1(z1; t1))
(k)
z1

(ϕ2(z2; t2))
(l)
z2
dµ(t1, t2),

k, l ∈ Z+, where

(15) g(z1, z2) =

∫
R2

ϕ1(z1; t1)ϕ2(z2; t2)dµ(t1, t2), z1, z2 ∈ D,

and all derivatives in (14) exist.

Proof. Firstly, we shall check relation (14) with l = 0 by the induction (for
k ∈ Z+). We may use the definition of the derivative, Lagrange’s theorem
on a finite increment of a function (the mean value theorem), inequality (13)
and the Lebesgue dominated convergence theorem to verify the induction
step. Secondly, fix an arbitrary k ∈ Z+ and check relation (14) by the
induction (for l ∈ Z+) in a similar manner. �

By the induction argument we may write:(
1 + zeit

1− zeit

)(k)

z

= 2k!
eikt

(1− zeit)k+1
− δk,0, z ∈ Te, t ∈ R, k ∈ Z+;(16) (

u+ eit

u− eit

)(l)

u

= (−1)l2l!
eit

(u− eit)l+1
+ δl,0, u ∈ Te, t ∈ R, l ∈ Z+.(17)

Let g(z1, z2) be an arbitrary function which admits representation (8)
where µ is a (nonnegative) finite measure on B(R2) with

µ((0, 2π]× (0, 2π]) = µ(R2).
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By Lemma 2.1 and relations (16), (17) we obtain that

(
(g(z1, z2))

(k)
z1

)(l)
z2

∣∣∣∣
(z1,z2)=(0,0)

=


s0,0, if k = l = 0

2l!s0,l, if k = 0, l ∈ N
2k!sk,0, if k ∈ N, l = 0

4k!l!sk,l, if k, l ∈ N,

(18)

((
g(u−11 , z2)

)(k)
u1

)(l)
z2

∣∣∣∣
(u1,z2)=(0,0)

=

{
−2k!s−k,0, if k ∈ N, l = 0

−4k!l!s−k,l, if k, l ∈ N,
(19)

where g(u−11 , z2)|u1=0 := limu1→0 g(u−11 , z2), z2 ∈ D; and therefore g(u−11 , z2)
is defined on D× D;

(20)
((
g(z1, u

−1
2 )
)(k)
z1

)(l)
u2

∣∣∣∣
(z1,u2)=(0,0)

=

{
−2l!s0,−l, if k = 0, l ∈ N
−4k!l!sk,−l, if k, l ∈ N,

where g(z1, u
−1
2 )|u2=0 := limu2→0 g(z1, u

−1
2 ), z1 ∈ D; and therefore g(z1, u

−1
2 )

is defined on D× D;

(21)
((
g(u−11 , u−12 )

)(k)
u1

)(l)
u2

∣∣∣∣
(u1,u2)=(0,0)

= 4k!l!s−k,−l, k, l ∈ N,

where

g(u−11 , u−12 )|u1=0 = lim
u1→0

g(u−11 , u−12 ), u2 ∈ D\{0};

g(u−11 , u−12 )|u2=0 = lim
u2→0

g(u−11 , u−12 ), u1 ∈ D\{0};

g(u−11 , u−12 )|u1=u2=0 = lim
u2→0

g(u−11 , u−12 )|u1=0;

and therefore g(u−11 , u−12 ) is defined on D× D. Here

(22) sk,l :=

∫
R2

eikt1eilt2dµ, k, l ∈ Z,

are the trigonometric moments of µ. Thus, all trigonometric moments of µ
are uniquely determined by the function g(z1, z2).

Consider the following function:

(23) fm,k(t) =

{((
1
k

)m − (2π)m
)
kt+ (2π)m, 0 ≤ t ≤ 1

k

tm, 1
k < t ≤ 2π,

where m ∈ Z+, k ∈ N. Extend fm,k(t) to a continuous function on the
real line with the period 2π. By Weierstrass’s approximation theorem there
exists a trigonometric polynomial Tm,k(t) such that

(24) |fm,k(t)− Tm,k(t)| <
1

k
, t ∈ R.

Observe that

(25) |fm,k(t)| ≤ (2π)m, t ∈ R.



564 SERGEY M. ZAGORODNYUK

By (24) it follows that

(26) |Tm,k(t)| ≤ (2π)m + 1, t ∈ R.
For arbitrary m,n ∈ Z+ we may write∣∣∣∣∫

R2

tm1 t
n
2dµ−

∫
R2

Tm,k(t1)Tn,k(t2)dµ

∣∣∣∣(27)

≤
∣∣∣∣∫

R2

(tm1 − Tm,k(t1)) tn2dµ
∣∣∣∣+

∣∣∣∣∫
R2

Tm,k(t1) (tn2 − Tn,k(t2)) dµ
∣∣∣∣

≤
∣∣∣∣∫

R2

(tm1 − fm,k(t1)) tn2dµ
∣∣∣∣+

∣∣∣∣∫
R2

(fm,k(t1)− Tm,k(t1)) tn2dµ
∣∣∣∣

+

∣∣∣∣∫
R2

Tm,k(t1) (tn2 − fn,k(t2)) dµ
∣∣∣∣

+

∣∣∣∣∫
R2

Tm,k(t1) (fn,k(t2)− Tn,k(t2)) dµ
∣∣∣∣→ 0,

as k →∞. Therefore all power moments:

(28) rm,n :=

∫
R2

tm1 t
n
2dµ, m, n ∈ Z+,

are uniquely determined by the function g(z1, z2). Since the two-dimensional
power moment problem which has a solution with a compact support is de-
terminate (e.g., [7, Theorem B, p. 323]), then we conclude that the measure
µ in representation (8) is uniquely determined by the function g.

Proposition 2.2. Let σj (j = 1, 4) be (nonnegative) finite measures on
B(R2) with σj((0, 2π]2) = σj(R2). If

(29) sk,l(σ1)− sk,l(σ2) + isk,l(σ3)− isk,l(σ4) = 0, k, l ∈ Z,
then

(30) σ1 − σ2 + iσ3 − iσ4 = 0.

Proof. Observe that the measures σj (j = 1, 4) satisfy the assumptions on
the measure µ introduced after (17). Therefore we may apply the above
constructions to these measures. Notice that the function fm,k(t) in (23)
depends on m, k, t but do not depend on the measure µ. By (27) for arbitrary
m,n ∈ Z+ we may write∣∣∣∣∣rm,n(σ1)− rm,n(σ2) + irm,n(σ3)− irm,n(σ4)(31)

−

(∫
R2

Tm,k(t1)Tn,k(t2)dσ1 −
∫
R2

Tm,k(t1)Tn,k(t2)dσ2

+ i

∫
R2

Tm,k(t1)Tn,k(t2)dσ3 − i
∫
R2

Tm,k(t1)Tn,k(t2)dσ4

)∣∣∣∣∣→ 0,
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as k → ∞. By (29) we conclude that the expression in the round brackets
in (31) is equal to zero. Therefore

(32) rm,n(σ1)− rm,n(σ2) + irm,n(σ3)− irm,n(σ4) = 0, m, n ∈ Z+.

Extracting the real and the imaginary parts we get

rm,n(σ1) = rm,n(σ2), m, n ∈ Z+;(33)

rm,n(σ3) = rm,n(σ4), m, n ∈ Z+.(34)

Since the corresponding two-dimensional power moment problem is deter-
minate, we conclude that σ1 = σ2 and σ3 = σ4. �

Proposition 2.3. Let σj (j = 1, 4) be (nonnegative) finite measures on
B(R2) with σj((0, 2π]2) = σj(R2). Let gj(z1, z2) be a function which admits
representation (8) with σj instead of µ; j = 1, 4. If

(35) g1(z1, z2)− g2(z1, z2) + ig3(z1, z2)− ig4(z1, z2) = 0, z1, z2 ∈ Te,

then

(36) σ1 − σ2 + iσ3 − iσ4 = 0.

Proof. The measures σj (j = 1, 4) satisfy the assumptions on the mea-
sure µ introduced after (17). Moreover, the functions gj(z1, z2) for σj are
introduced in the same way as g(z1, z2) for µ. Calculating derivatives of
g1(z1, z2) − g2(z1, z2) + ig3(z1, z2) − ig4(z1, z2) at various points and using
relations (18)–(21) we obtain that

sk,l(σ1)− sk,l(σ2) + isk,l(σ3)− isk,l(σ4) = 0, k, l ∈ Z.

By Proposition 2.2 we conclude that relation (36) holds. �

3. Properties of generalized resolvents

The following theorem is an analog of Theorem 1.1.

Theorem 3.1. Let an operator-valued function Rz1,z2 be given, which de-
pends on complex parameters z1, z2 ∈ Te and which values are linear bounded
operators defined on a (whole) Hilbert space H. This function is a gener-
alized resolvent of a pair of closed isometric operators in H (satisfying the
commutativity relation ( 1)) if an only if the following conditions are satis-
fied:

(1) R0,0 = EH ;
(2) R∗z1,z2 = R 1

z1
, 1
z2

, z1, z2 ∈ Te\{0};
(3) For all h ∈ H, for the function f(z1, z2) := (Rz1,z2h, h)H , z1, z2 ∈ Te,

there exist limits:

f(∞, z2) := lim
z1→∞

f(z1, z2), f(z1,∞) := lim
z2→∞

f(z1, z2), z1, z2 ∈ Te;

f(∞,∞) = lim
z2→∞

lim
z1→∞

f(z1, z2),
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and the extended by these relations function f(z1, z2), z1, z2 ∈ Te ∪
{∞} belongs to H2.

Proof. Necessity. Let V1, V2 be closed isometric operators in a Hilbert space
H satisfying relation (1). Suppose that there exist commuting unitary ex-

tensions Uk ⊇ Vk, k = 1, 2, in a Hilbert space H̃ ⊇ H, and Rz1,z2 = Rz1,z2

be the corresponding generalized resolvent. By the definition of the gener-
alized resolvent we see that condition (1) is satisfied. By (11) for arbitrary
z1, z2 ∈ Te\{0} and h, g ∈ H we may write

(Rz1,z2h, g)H =
(
P H̃H U1(z1)U2(z2)|Hh, g

)
H

= (U1(z1)U2(z2)h, g)
H̃

=
(
h, U1(z1

−1)U2(z2
−1)g

)
H̃

= (h,R 1
z1
, 1
z2

g)H .

Therefore condition (2) holds.
Choose an arbitrary h ∈ H and set

(37) f(z1, z2) = (U1(z1)U2(z2)h, h)
H̃
, z1, z2 ∈ Te ∪ {∞}.

Here U1(∞) = U2(∞) := −E
H̃

. It is easy to check that this definition is
consistent with the definition of f(z1, z2) from the statement of the theorem.
Observe that the set Te×Te is a union of four polycircular domains D×D,
D×De, De×D and De×De. In each of these domains the function f(z1, z2)
is holomorphic with respect to each variable. By Hartogs’s theorem we
conclude that f(z1, z2) is holomorphic at each point of Te × Te. For the
infinite points we may use the change of variable u = 1

z and proceed in
the same manner. Conditions (a)–(c) in the definition of the class H2 can
be checked by relations (11), (12), as it was done in [5, p. 531]. Thus,
f(z1, z2) ∈ H2 and condition (3) holds.

Sufficiency. Suppose that an operator-valued function Rz1,z2 satisfies the
assumptions of the theorem and conditions (1), (2), (3). By condition (3)
and relation (8) we may write:

(38) (Rz1,z2h, h)H =

∫
R2

(
1 + z1e

it1

1− z1eit1

)(
1 + z2e

it2

1− z2eit2

)
dµ(δ;h, h),

z1, z2 ∈ Te, h ∈ H, where µ(δ;h, h) is a (nonnegative) finite measure on
B(R2) such that µ((0, 2π]× (0, 2π]) = µ(R2). Set

µ(δ;h, g)(39)

=
1

4
(µ(δ;h+ g, h+ g)− µ(δ;h− g, h− g) + iµ(δ;h+ ig, h+ ig)

− iµ(δ;h− ig, h− ig)),

δ ∈ B(R2), h, g ∈ H. Then

(40) (Rz1,z2h, g)H =

∫
R2

(
1 + z1e

it1

1− z1eit1

)(
1 + z2e

it2

1− z2eit2

)
dµ(δ;h, g),
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z1, z2 ∈ Te, h, g ∈ H. The integral of the form
∫
R2 u(t1, t2)dµ(δ) (where

u(t1, t2) is a complex-valued function on R2 and µ(δ) is a complex-valued
function on B(R2)) may be understood as a limit of Riemann–Stieltjes type
integral sums, if it exists. This means that we consider partitions of R2 by
rectangles of the following form:

δn,k := {t1,n−1 < t1 ≤ t1,n, t2,k−1 < t2 ≤ t2,k}, n, k ∈ Z,

and choose arbitrary points (t1;n,k, t2;n,k) ∈ δn,k. The integral sum is defined
by
∑

n,k u(t1;n,k, t2;n,k)µ(δn,k). The integral is a limit of integral sums as

partitions become arbitrarily fine (i.e., the diameter of partitions tends to
zero), if the limit exists, cf. [10, p. 307].

Fix arbitrary h, g ∈ H. From the definition of µ(δ;h, g) it follows that

µ(δ; g, h) − µ(δ;h, g) =
∑8

j=1 αjµj(δ), δ ∈ B(R2), where αj ∈ C and µj(δ)

are (nonnegative) finite measures on B(R2) such that

µj((0, 2π]× (0, 2π]) = µj(R2),

j ∈ 1, 8. Namely, {αj}8j=1 = {14 ,−
1
4 ,

i
4 ,−

i
4 ,−

1
4 ,

1
4 ,

i
4 ,−

i
4},

{µj}8j=1 = {µ(δ; g + h, g + h), µ(δ; g − h, g − h), µ(δ; g + ih, g + ih),

µ(δ; g − ih, g − ih), µ(δ;h+ g, h+ g), µ(δ;h− g, h− g),

µ(δ;h+ ig, h+ ig), µ(δ;h− ig, h− ig)}.

Observe that

µ1 = µ5, α1 = −α5; µ2 = µ6, α2 = −α6; µ3 = µ8, α3 = −α8;

µ4 = µ7, α4 = −α7.

This follows from the representation (38) for each measure and the estab-
lished in the previous section fact that the measure is uniquely determined
from the representation of type (8). For example,

(Rz1,z2(g − ih), g − ih) = (Rz1,z2(h+ ig), h+ ig), z1, z2 ∈ Te,

and therefore µ4 = µ7. Consequently, we obtain the following relation:

(41) µ(δ; g, h) = µ(δ;h, g), δ ∈ B(R2), h, g ∈ H.

Choose arbitrary α, β ∈ C and h1, h2, g ∈ H. By (40) we may write∫
R2

(
1 + z1e

it1

1− z1eit1

)(
1 + z2e

it2

1− z2eit2

)
dµ(δ;αh1 + βh2, g)

= (Rz1,z2(αh1 + βh2), g)H = α(Rz1,z2h1, g)H + β(Rz1,z2h2, g)H

= α

∫
R2

(
1 + z1e

it1

1− z1eit1

)(
1 + z2e

it2

1− z2eit2

)
dµ(δ;h1, g)

+ β

∫
R2

(
1 + z1e

it1

1− z1eit1

)(
1 + z2e

it2

1− z2eit2

)
dµ(δ;h2, g),
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z1, z2 ∈ Te. Therefore∫
R2

(
1 + z1e

it1

1− z1eit1

)(
1 + z2e

it2

1− z2eit2

)
d(αµ(δ;h1, g) + βµ(δ;h2, g)

− µ(δ;αh1 + βh2, g)) = 0,

z1, z2 ∈ Te. By Proposition 2.3 we obtain that

(42) µ(δ;αh1 + βh2, g) = αµ(δ;h1, g) + βµ(δ;h2, g),

δ ∈ B(R2), α, β ∈ C, h1, h2, g ∈ H. Observe that

|µ(δ;h, h)| ≤ µ(R2;h, h) =

∫
R2

dµ(δ;h, h) = (R0,0h, h)H = ‖h‖2H ,

for all δ ∈ B(R2), h ∈ H. Consequently, µ(δ;h, g) is a sesquilinear (bilinear)
functional with the norm less or equal to 1. In fact, we may apply Theorem
from [1, p. 64] (the proof of this theorem is valid for finite-dimensional
Hilbert spaces which are not ranked as Hilbert spaces in [1]). Therefore
µ(δ;h, g) admits the following representation:

(43) µ(δ;h, g) = (E(δ)h, g)H , δ ∈ B(R2), h, g ∈ H,

where E(δ) is a linear bounded operator on H: ‖E(δ)‖ ≤ 1. Observe that

(E(δ)h, h)H = µ(δ;h, h) ≥ 0, h ∈ H, δ ∈ B(R2).

Therefore E(δ) ≥ 0, for all δ ∈ B(R2). Thus, we have

(44) 0 ≤ E(δ) ≤ EH , δ ∈ B(R2).

Notice that

(E(∅)h, g)H = µ(∅;h, g) = 0,

(E((0, 2π]2)h, g)H = µ((0, 2π]2;h, g) = µ(R2;h, g)

= (R0,0h, g)H = (h, g)H ,

h, g ∈ H. Therefore

(45) E(∅) = 0, E((0, 2π]2) = EH .

For arbitrary δ1, δ2 ∈ B(R2), δ1 ∩ δ2 = ∅, and h, g ∈ H, we may write:

(E(δ1 ∪ δ2)h, g)H = µ(δ1 ∪ δ2;h, g) = µ(δ1;h, g) + µ(δ2;h, g)

= (E(δ1)h, g)H + (E(δ2)h, g)H

= ((E(δ1) + E(δ2))h, g)H ,

and therefore

(46) E(δ1 ∪ δ2) = E(δ1) + E(δ2), δ1, δ2 ∈ B(R2) : δ1 ∩ δ2 = ∅.

Denote

K = {δ ∈ B(R2) : δ ⊆ (0, 2π]2}.
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By Neumark’s theorem [10, p. 499] we conclude that there exists a family

{F (δ)}δ∈K of operators of the orthogonal projection in a Hilbert space H̃ ⊇
H such that

F (∅) = 0, F ((0, 2π]2) = E
H̃

;(47)

F (δ1 ∩ δ2) = F (δ1)F (δ2), δ1, δ2 ∈ K;(48)

F (δ ∪ δ̂) = F (δ) + F (δ̂), δ, δ̂ ∈ K : δ ∩ δ̂ = ∅;(49)

E(δ) = P H̃H F (δ)|H , δ ∈ K.(50)

Moreover, elements of the form F (δ)h, h ∈ H, δ ∈ K determine H̃.
Since µ is σ-additive, then by the latter property of F we conclude that F

is weakly σ-additive. In fact, let δ = ∪∞k=1δk, where δ, δk ∈ K and δi∩δj = ∅,
i, j ∈ N : i 6= j. For arbitrary h, u ∈ H and δ̃, δ̂ ∈ K we may write:(

N∑
k=1

F (δk)F (δ̂)h, F (δ̃)u

)
H̃

=

(
N∑
k=1

F (δk ∩ δ̃ ∩ δ̂)h, u

)
H̃

=

N∑
k=1

(
E(δk ∩ δ̃ ∩ δ̂)h, u

)
H

=
N∑
k=1

µ
(
δk ∩ δ̃ ∩ δ̂;h, u

)
→N→+∞ µ

(
δ̃ ∩ δ̂ ∩ (∪∞k=1δk) ;h, u

)
=
(
E
(
δ̃ ∩ δ̂ ∩ (∪∞k=1δk)

)
h, u

)
H

=
(
F
(
δ̃ ∩ δ̂ ∩ (∪∞k=1δk)

)
h, u

)
H̃

=
(
F (∪∞k=1δk)F (δ̂)h, F (δ̃)u

)
H̃
.

By the linearity we conclude that

(SNx, y)
H̃
→N→∞ (Sx, y)

H̃
, x, y ∈ L,

where

SN :=
N∑
k=1

F (δk) = F
(
∪Nk=1δk

)
,

S := F (∪∞k=1δk) = F (δ),

L := Lin{F (δ)h : h ∈ H, δ ∈ K}.

Choose arbitrary elements h, g ∈ H̃. Since L is dense in H̃, there exist
elements hk, gk ∈ L such that ‖h − hk‖ < 1

k , ‖g − gk‖ < 1
k , for all k ∈ N.
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Observe that∣∣((SN − S)h, g)
H̃
− ((SN − S)hk, gk)H̃

∣∣∣∣((SN − S)h, g − gk)H̃ + ((SN − S)(h− hk), gk)H̃
∣∣

≤ 2‖h‖‖g − gk‖+ 2‖h− hk‖(‖gk − g‖+ ‖g‖)→k→∞ 0,

(N ∈ N). For arbitrary ε > 0 we may choose k ∈ N such that∣∣((SN − S)h, g)
H̃
− ((SN − S)hk, gk)H̃

∣∣ < ε

2
.

There exists N̂ ∈ N such that N > N̂ implies∣∣((SN − S)hk, gk)H̃
∣∣ < ε

2
.

Then
∣∣((SN − S)h, g)

H̃

∣∣ < ε. Therefore

(51) (SNh, g)
H̃
→N→∞ (Sh, g)

H̃
, h, g ∈ H̃.

Define the following operator-valued functions:

(52) F1,t = F ((0, t]× (0, 2π]), F2,t = F ((0, 2π]× (0, t]), t ∈ [0, 2π].

For t < 0 we set F1,t = F2,t = 0, while for t > 2π we set F1,t = F2,t = E
H̃

.
Let us check that {Fj,t} is a spectral family on [0, 2π] such that Fj,0 = 0;
j = 1, 2. By (47) we see that Fj,0 = 0, Fj,2π = E

H̃
, j = 1, 2. If λ ≤ µ,

by (48) we may write

F1,λF1,µ = F ((0, λ]× (0, 2π])F ((0, µ]× (0, 2π])

= F ((0, λ]× (0, 2π]) = F1,λ,

F2,λF2,µ = F ((0, 2π]× (0, λ])F ((0, 2π]× (0, µ])

= F ((0, 2π]× (0, λ]) = F2,λ.

It remains to check that Fj,t is right-continuous (j = 1, 2). For points
t ∈ (−∞, 0) ∪ [2π,+∞) it is obvious. For arbitrary t ∈ [0, 2π); tk ∈ [0, 2π) :
tk > t, k ∈ N; {tk}∞1 is decreasing and tk → t as k → ∞; and arbitrary

h, g ∈ H̃ we may write:

((F1,tk − F1,t)h, g)
H̃

= (F ((t, tk]× (0, 2π])h, g)
H̃

(53)

= (F (∪∞n=1((tn+1, tn]× (0, 2π]))h, g)
H̃

−
(
F
(
∪k−1n=1((tn+1, tn]× (0, 2π])

)
h, g
)
H̃

→k→∞ 0.

Here we used the weak σ-additivity of F . The monotone sequence of pro-
jections {F1,tn}∞n=1 converges in the strong operator topology to a bounded
operator. By (53) we conclude that this operator is F1,t. If we would have
limu→t+0 F1,uh 6= F1,th for an element h ∈ H, then we could easily construct
a sequence {tk}∞k=1 with above properties and satisfying ‖F1,tkh−F1,th‖ > ε
with some ε > 0. This contradiction shows that F1,t is right-continuous. For
F2,t we may use similar arguments.
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By (48) we may write

F1,uF2,v = F ((0, u]× (0, 2π])F ((0, 2π]× (0, v]) = F ((0, u]× (0, v])(54)

= F ((0, 2π]× (0, v])F ((0, u]× (0, 2π]) = F2,vF1,u,

u, v ∈ [0, 2π]. Thus, F1,u and F2,v commute for all u, v ∈ R. Set

(55) Uk =

∫ 2π

0
eitdFk,t, k = 1, 2.

Observe that U1, U2 are commuting unitary operators in H̃. By (43), (50),
(54) we may write

µ((a, b]× (c, d];h, h) = (E((a, b]× (c, d])h, h)H(56)

= (F ((a, b]× (c, d])h, h)
H̃

= ((F1,b − F1,a)(F2,d − F2,c)h, h)
H̃
,

a, b, c, d ∈ [0, 2π] : a < b, c < d, h ∈ H. By (38) and (56) we conclude that(
P H̃H (E

H̃
+ z1U1)(EH̃ − z1U1)

−1(E
H̃

+ z2U2)(EH̃ − z2U2)
−1
∣∣∣
H
h, h

)
H

(57)

=

∫
R2

(
1 + z1e

it1

1− z1eit1

)(
1 + z2e

it2

1− z2eit2

)
d(F1,t1F2,t2h, h)

H̃

=

∫
R2

(
1 + z1e

it1

1− z1eit1

)(
1 + z2e

it2

1− z2eit2

)
dµ(δ;h, h) = (Rz1,z2h, h)H ,

z1, z2 ∈ Te, h ∈ H. Consequently, Rz1,z2 is a generalized resolvent of a pair
of isometric operators V1 = V2 = oH . Here D(oH) = {0}, oH0 = 0. The
proof of Theorem 3.1 is complete. �

Proposition 3.2. Let an operator-valued function Rz1,z2 be given, which de-
pends on complex parameters z1, z2 ∈ Te and which values are linear bounded
operators defined on a (whole) Hilbert space H. Let V1, V2 be closed isometric
operators in H which satisfy relation (1). Suppose that conditions (1)–(3) of
Theorem 3.1 are satisfied. Suppose that conditions (1)–(5) of Theorem 1.2
are satisfied with the choices V = V1, Rζ = 1

2 (EH +Rζ,0), and V = V2,

Rζ = 1
2 (EH +R0,ζ). Then Rz1,z2 is a generalized resolvent of a pair of

isometric operators V1, V2.

Proof. Since all conditions of Theorem 3.1 are satisfied, we can use the
constructions from its proof. Thus, there exist commuting unitary operators

U1, U2 in a Hilbert space H̃ ⊇ H such that

Rz1,z2(58)

= P H̃H (E
H̃

+ z1U1)(EH̃ − z1U1)
−1(E

H̃
+ z2U2)(EH̃ − z2U2)

−1
∣∣∣
H
,
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for z1, z2 ∈ Te. Then

1

2
(EH +Rζ,0) = P H̃H (E

H̃
− ζU1)

−1
∣∣∣
H
, ζ ∈ Te;(59)

1

2
(EH +R0,ζ) = P H̃H (E

H̃
− ζU2)

−1
∣∣∣
H
, ζ ∈ Te;(60) (

1

2
(EH +Rζ,0)h, g

)
H

=

∫
R

1

1− ζeit
d(F1,th, g)

H̃
, ζ ∈ Te, h, g ∈ H;(61) (

1

2
(EH +R0,ζ)h, g

)
H

=

∫
R

1

1− ζeit
d(F2,th, g)

H̃
, ζ ∈ Te, h, g ∈ H.(62)

Let us check that U1 ⊇ V1. Since conditions (1)–(5) of Theorem 1.2 are
satisfied with the choice V = V1, Rζ = 1

2 (EH +Rζ,0), then choosing an
arbitrary ζ0 ∈ D\{0} and L := (EH−ζ0V )D(V ), we conclude that conditions
(1)–(5) of Theorem 1.1 are satisfied, see the proof of Theorem 2 in [3]. Thus,
Rζ is a generalized resolvent of a closed isometric operator in a Hilbert space

H and therefore R−1ζ0 exists and is a bounded operator on H. Moreover, we

have D(V ) = Rζ0L (see the last formula on page 887 in [3]). By condition (1)

of Theorem 1.2 we have V g = 1
ζ0

(
EH −R−1ζ0

)
g, g ∈ D(V ).

Thus, we can apply constructions from the proof of Theorem 1 in [3,
p. 880]. Notice that the above operator V (= V1) coincides with the operator
U defined by (30) in [3]. By formula (26) in [3] we may write:

(63)

(
1

2
(EH +Rζ,0)h, g

)
H

=

∫ 2π

0

1

1− ζeit
d(Eth, g)H ,

ζ ∈ Te, h, g ∈ H. Comparing relations (61) and (63) we conclude that

(64)

∫ 2π

0

1

1− ζeit
d
(
(Eth, g)H − (F1,th, g)

H̃

)
= 0, ζ ∈ Te, h, g ∈ H.

Therefore (see considerations on page 882 in [3, p. 883])

(65)

∫ 2π

0
eitd(Eth, g)H =

∫ 2π

0
eitd(F1,th, g)

H̃
, h, g ∈ H.

Then (cf. [3, p. 886])

(V h, g)H =

∫ 2π

0
eitd(Eth, g)H =

∫ 2π

0
eitd(F1,th, g)

H̃
= (U1h, g)

H̃
,

(66) h ∈ D(V ), g ∈ H.

Therefore V h = P H̃H U1h, h ∈ D(V ). By ‖V h‖ = ‖U1h‖ we get U1 ⊇ V .
Relation U2 ⊇ V2 can be checked in the same manner. By (58) we see that
Rz1,z2 is a generalized resolvent of a pair V1, V2. �

Theorem 3.3. Let an operator-valued function Rz1,z2 be given, which de-
pends on complex parameters z1, z2 ∈ Te and which values are linear bounded
operators defined on a (whole) Hilbert space H. Let V1, V2 be closed isometric
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operators in H which satisfy relation (1). Rz1,z2 is a generalized resolvent
of a pair of isometric operators V1, V2 if an only if the following conditions
are satisfied:

(1) R0,0 = EH .
(2) R∗z1,z2 = R 1

z1
, 1
z2

, z1, z2 ∈ Te\{0}.
(3) For all h ∈ H, for the function f(z1, z2) := (Rz1,z2h, h)H , z1, z2 ∈ Te,

there exist limits:

f(∞, z2) := lim
z1→∞

f(z1, z2), f(z1,∞) := lim
z2→∞

f(z1, z2), z1, z2 ∈ Te;

f(∞,∞) = lim
z2→∞

lim
z1→∞

f(z1, z2),

and the extended by these relations function f(z1, z2), z1, z2 ∈ Te ∪
{∞} belongs to H2.

(4) 1
2 (EH +Rζ,0) (EH − ζV1)g = g, for all ζ ∈ Te, g ∈ D(V1).

(5) 1
2 (EH +R0,ζ) (EH − ζV2)g = g, for all ζ ∈ Te, g ∈ D(V2).

Proof. Necessity. The necessity of conditions (1)–(3) follows from The-
orem 3.1. Repeating the arguments from the beginning of the proof of
Proposition 3.2 we conclude that relations (59), (60) hold. By condition (1)
of Theorem 1.2 with V = V1, Rζ = 1

2 (EH +Rζ,0), and V = V2, Rζ =
1
2 (EH +R0,ζ) it follows the validity of conditions (4), (5) of the present
theorem, respectively.

Sufficiency. In order to apply Proposition 3.2 it is sufficient to check
that conditions (1)–(5) of Theorem 1.2 for the choices V = V1, Rζ =
1
2 (EH +Rζ,0), and V = V2, Rζ = 1

2 (EH +R0,ζ) are satisfied. Condition (1)
of Theorem 1.2 for these choices coincides with conditions (4), (5) of the
present theorem. By Theorem 3.1 and considerations in its proof Rz1,z2 is
a generalized resolvent of V1 = V2 = oH . Then relations (58), (59), (60)
hold. By Theorem 1.2 for V = oH and the above-mentioned choices of Rζ
we obtain that conditions (3), (4), (5) of Theorem 1.2 are satisfied and they
do not depend on V . The required condition (2) of Theorem 1.2 for V = V1,
Rζ = 1

2 (EH +Rζ,0), and V = V2, Rζ = 1
2 (EH +R0,ζ) follows directly from

condition (1) of the present theorem. �

Observe that Theorem 3.3 characterizes a generalized resolvent in terms
of the original space H. Of course, the existence of the generalized resolvent
is equivalent to the affirmative answer on the Question in the Introduction.
Thus, Theorem 3.3 gives some conditions for the affirmative answer. We
formulate the corresponding result in the following corollary.

Corollary 3.4. Let V1, V2 be closed isometric operators in H which satisfy

relation (1). There exist a Hilbert space H̃ ⊇ H and commuting unitary

operators U1, U2 in H̃, such that U1 ⊇ V1, U2 ⊇ V2, if and only if there exists
an operator-valued function Rz1,z2, which depends on complex parameters
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z1, z2 ∈ Te, which values are linear bounded operators defined on a (whole)
Hilbert space H, and which satisfies conditions (1)–(5) of Theorem 3.3.

More direct conditions will be obtained in the next section in a particular
case of a unitary V2.

4. The case of commuting isometric and unitary operators

In this section we shall show how Theorem 3.3 allows to parametrize gen-
eralized resolvents in the case of commuting isometric and unitary operators.

Let V1 = V be a closed isometric operator in a Hilbert space H, and
V2 = U be a unitary operator in H. Suppose that relation (1) holds. In our
case it takes the following form:

(67) V Uh = UV h, h ∈ (U−1D(V )) ∩D(V ).

Suppose that there exist a Hilbert space H̃ ⊇ H and commuting unitary op-

erators U1, U2 in H̃, such that U1 ⊇ V , U2 ⊇ U . Consider the corresponding
generalized resolvent of a pair V,U :

Rz1,z2 = P H̃H U1(z1)U2(z2)
∣∣∣
H

= P H̃H U1(z1)U(z2)(68)

= P H̃H U1(z1)|HU(z2) = (−EH + 2Rz1(V ))U(z2),

z1, z2 ∈ Te, where Rz1(V ) is a generalized resolvent of the closed isometric
operator V , which corresponds to the unitary extension U1. On the other
hand, we may write:

Rz1,z2 = P H̃H U2(z2)U1(z1)
∣∣∣
H

= P H̃H U2(z2)|HP H̃H U1(z1)
∣∣∣
H

(69)

= U(z2)(−EH + 2Rz1(V )),

z1, z2 ∈ Te. Comparing relations (68), (69) and simplifying we obtain that

(70) Rz1(V )(EH − z2U)−1 = (EH − z2U)−1Rz1(V ), z1, z2 ∈ Te.
Therefore

(71) URz1(V ) = Rz1(V )U, z1 ∈ Te.
By Chumakin’s formula (6) we may write:

(72) Rz1(V ) = [EH − z1(V ⊕ Φz1)]−1 , z1 ∈ D,
where Φz1 ∈ S(D;N0(V ), N∞(V )). By (71) and (72) we obtain that

(73) (V ⊕ Φz1)U = U(V ⊕ Φz1), z1 ∈ D.
Here the equality for the case z1 = 0 follows by the analyticity of Φz1 .

Theorem 4.1. Let V be a closed isometric operator in a Hilbert space H,
and U be a unitary operator in H. Suppose that relation (67) holds. Let
SV,U (D;N0(V ), N∞(V )) be the set of all functions Φz1 from

S(D;N0(V ), N∞(V ))
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which satisfy relation (73). Then the following statements hold:

(i) The set of all generalized resolvents of a pair V,U is nonempty if
and only if SV,U (D;N0(V ), N∞(V )) 6= ∅.

(ii) Suppose that SV,U (D;N0(V ), N∞(V )) 6= ∅. An arbitrary generalized
resolvent of a pair V,U has the following form:

(74) Rz1,z2 = (−EH + 2 [EH − z1(V ⊕ Φz1)]−1)U(z2),

z1 ∈ D, z2 ∈ Te, where Φz1 ∈ SV,U (D;N0(V ), N∞(V )), and

(75) Rz1,z2 = R∗1
z1
, 1
z2

, z1 ∈ De, z2 ∈ Te\{0}.

On the other hand, an arbitrary Φz1 ∈ SV,U (D;N0(V ), N∞(V ))
defines by relations (74), (75) a generalized resolvent of a pair V ,
U . Here, for z1 ∈ De, z2 = 0 we define Rz1,z2 by the weak continuity:
Rz1,0 = w.− lim

z2→0
Rz1,z2.

Moreover, different functions from SV,U (D;N0(V ), N∞(V )) give
different generalized resolvents of a pair V , U .

Proof. (i) If the set of all generalized resolvents of a pair V,U is nonempty,
then by our considerations before the present theorem we see that

SV,U (D;N0(V ), N∞(V )) 6= ∅.

On the other hand, suppose that SV,U (D;N0(V ), N∞(V )) 6= ∅. Choose an
arbitrary function Φz1 ∈ SV,U (D;N0(V ), N∞(V )). Define a function Rz1,z2

for (z1, z2) ∈ (D×Te)∪(De×(Te\{0})) by relations (74), (75). Let Rz1(V ) be
the generalized resolvent of V corresponding to Φζ1 by Chumakin’s formula.
By (73) we obtain that relation (71) holds for z1 ∈ D. Therefore (71) holds
for all z1 ∈ Te, since the generalized resolvent Rζ(V ) has the following
property ([3]):

(76) R∗ζ(V ) = EH −R 1
ζ

(V ), ζ ∈ Te\{0}.

Consequently, relation (70) holds and we may write:

(77) (−EH + 2Rz1(V ))U(z2) = U(z2)(−EH + 2Rz1(V )), z1, z2 ∈ Te.

By (77) and our definition of Rz1,z2 , for arbitrary z1 ∈ De, z2 ∈ Te\{0} we
may write:

Rz1,z2 = R∗1
z1
, 1
z2

=

(
U

(
1

z2

))∗(
−EH + 2R 1

z1

(V )

)∗
(78)

= U(z2) (−EH + 2Rz1(V )) = (−EH + 2Rz1(V ))U(z2).

Thus, for all (z1, z2) ∈ (D × Te) ∪ (De × (Te\{0})) we have the following
representation:

(79) Rz1,z2 = (−EH + 2Rz1(V ))U(z2).
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For a fixed z1 ∈ De by analyticity of U(z2) the following limit exists:

(80) w.− lim
z2→0

Rz1,z2 = (−EH + 2Rz1(V ))U(0) =: Rz1,0.

By (79), (80), (77) we see that

(81) Rz1,z2 = (−EH + 2Rz1(V ))U(z2) = U(z2) (−EH + 2Rz1(V )) ,

z1, z2 ∈ Te. Let us check that Rz1,z2 is a generalized resolvent of a pair V,U
by Theorem 3.3. The assumptions of Theorem 3.3 with V1 = V , V2 = U ,
Rz1,z2 = Rz1,z2 and H are satisfied. Condition (1) of Theorem 3.3 is satisfied,
as well. By (81) for arbitrary z1, z2 ∈ Te\{0} we may write:

R∗z1,z2 = (−EH + 2Rz1(V ))∗ (U(z2))
∗ =

(
−EH + 2R 1

z1

(V )

)
U

(
1

z2

)
= R 1

z1
, 1
z2

.

Thus, condition (2) of Theorem 3.3 is satisfied. By (81) we see that

1

2
(EH + Rζ,0) = Rζ(V ),

1

2
(EH + R0,ζ) = (EH − ζU)−1, ζ ∈ Te.

Therefore condition (5) of Theorem 3.3 is trivial and condition (4) of The-
orem 3.3 follows from the property (1) of Theorem 1.2.

It remains to check condition (3) of Theorem 3.3. Since Rζ(V ) is a gen-
eralized resolvent of V , then there exists a unitary operator Q ⊇ V in a
Hilbert space H ⊇ H such that

Rζ(V ) = PH
H (EH − ζQ)−1

∣∣
H
, ζ ∈ Te.

Then

−EH + 2Rz1(V ) = PH
H Q(z1)

∣∣
H
, z1 ∈ Te.

Representation (81) takes the following form:

(82) Rz1,z2 =
(
PH
H Q(z1)

∣∣
H

)
U(z2) = U(z2)

(
PH
H Q(z1)

∣∣
H

)
, z1, z2 ∈ Te.

Choose an arbitrary element h ∈ H. Set

f(z1, z2) := (Rz1,z2h, h)H ,

z1, z2 ∈ Te. Then

(83) f(z1, z2) = (Q(z1)(U(z2)h), h)H =
(
U(z2)

(
PH
H (Q(z1)h)

)
, h
)
H
,

where z1, z2 ∈ Te. Since operator-valued functions Q(z) and U(z) are an-
alytic at ∞, we conclude that the limits in condition (3) of Theorem 3.3
exist. Moreover, the limit values f(∞, z2), f(z1,∞), f(∞,∞) may be cal-
culated by the formal substitution of ∞ in representations in (83) using
U(∞) := −EH , Q(∞) := −EH. Thus, we may use representation (83) for
all values z1, z2 ∈ Te ∪ {∞}.

Let us check that f(z1, z2) (z1, z2 ∈ Te ∪ {∞}) belongs to the class H2.
Holomorphy of f(z1, z2) at (z1, z2), z1, z2 ∈ Te ∪{∞} follows from holomor-
phy of Q(z) and U(z) at all points z ∈ Te ∪ {∞} and Hartogs’s theorem.
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By (11), (83) it follows that condition (a) in the definition of H2 holds.
Condition (c) in the definition of H2 follows by relation (83).

Let us check condition (b) in the definition of H2. Denote

W (z1) = PH
H Q(z1)

∣∣
H
, z1 ∈ Te ∪ {∞}.

By (82) we see that

(84) W (z1)U(z2) = U(z2)W (z1), z1, z2 ∈ Te ∪ {∞},

where the equality for infinite values of z1 or z2 holds trivially. By (83)
we obtain that f(z1, z2) = (U(z2)W (z1)h, h)H , z1, z2 ∈ Te ∪ {∞}. Choose
arbitrary z1, z2 ∈ D and write (cf. [5, p. 531])

(85) f(z1, z2)− f(z1
−1, z2)− f(z1, z2

−1) + f(z1
−1, z2

−1)

= ((U(z2)− U(z2
−1))(W (z1)−W (z1

−1))h, h)H .

By (12) it follows that operators W (z1)−W (z1
−1), U(z2)−U(z2

−1) are non-
negative bounded operators on H (for z1, z2 = 0 it is trivial). By (84) we
see that operators W (z1)−W (z1

−1) and U(z2)− U(z2
−1) commute. Since

the product of commuting bounded nonnegative operators is nonnegative,
by (85) we conclude that condition (b) in the definition of H2 holds. Con-
sequently, f(z1, z2) ∈ H2 and all conditions of Theorem 3.3 are satisfied.
By Theorem 3.3 we obtain that Rz1,z2 is a generalized resolvent of the pair
V,U .

(ii) If SV,U (D;N0(V ), N∞(V )) 6= ∅, then by property (i) we see that the set
of all generalized resolvents of a pair V,U is nonempty. Choose an arbitrary
generalized resolvent Rz1,z2 of a pair V,U . By our considerations before the
present theorem we obtain that for Rz1,z2 relation (74) holds. Relation (75)
follows by property (2) in Theorem 3.3.

Choose an arbitrary function Φz1 ∈ SV,U (D;N0(V ), N∞(V )). Repeating
considerations in the proof of condition (i) we conclude that a function
Rz1,z2 , defined by relations (74), (75), is a generalized resolvent of a pair
V,U .

For different operator-valued functions Φz1 , Φ̃z1 from

SV,U (D;N0(V ), N∞(V ))

there correspond different generalized resolvents of a closed isometric opera-

tor V . Suppose that Φz1 , Φ̃z1 generate the same generalized resolvent Rz1,z2

of a pair V,U . Writing relation (74) with Φz1 or Φ̃z1 and z2 = 0 we obtain
a contradiction. �

Corollary 4.2. Let V be a closed isometric operator in a Hilbert space H,
and U be a unitary operator in H. Suppose that relation (67) holds. There

exist a Hilbert space H̃ ⊇ H and commuting unitary operators U1, U2 in H̃,
such that U1 ⊇ V , U2 ⊇ U if and only if a set of all functions Φz1 from
S(D;N0(V ), N∞(V )) which satisfy relation (73) is nonempty.
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Proof. It follows directly from the preceding theorem and the definition of
the generalized resolvent. �

In conditions of Theorem 4.1 we additionally suppose that

(86) UD(V ) = D(V ).

In this case condition (67) implies V U = UV . Condition (73) is equivalent
to

(87) Φz1Ug = UΦz1g, g ∈ H 	D(V ), z1 ∈ D.
Observe that the function Φz1 = 0 belongs to S(D;N0(V ), N∞(V )) and
satisfies (87). Thus, Φz1 ∈ SV,U (D;N0(V ), N∞(V )) and therefore the set of
generalized resolvents of V,U is nonempty.

Additionally suppose that H is separable and there exists a conjugation
J on H such that

(88) UJ = JU−1, JD(V ) = R(V ).

Then

(89) J(H 	D(V )) = H 	R(V ).

Denote
U0 := U |H	D(V ).

By the Godič–Lucenko theorem ([4]) for the unitary operator U0 there exists
the following representation:

(90) U0 = KL,

where K,L are two conjugations on a Hilbert space H 	D(V ). Set

Θ = JK : H 	D(V )→ H 	R(V ).

The operator Θ maps H 	D(V ) on the whole H 	 R(V ) and Θ−1 = KJ .
By (88), (90) we obtain that

(91) ΘUg = UΘg, g ∈ H 	D(V ).

Then

(92) UΘ−1f = Θ−1Uf, f ∈ H 	R(V ).

Let Ψz1 be an arbitrary function from S(D;H 	D(V ), H 	D(V )) such
that

(93) Ψz1U0 = U0Ψz1 , z1 ∈ D.
Set

(94) Φz1 = ΘΨz1 , z1 ∈ D.
Observe that Φz1 belongs to S(D;N0(V ), N∞(V )). By (91), (93) for arbi-
trary g ∈ H 	D(V ) and z1 ∈ D we may write:

UΦz1g = U(Θ(Ψz1g)) = Θ(U0(Ψz1g)) = Θ(Ψz1(U0g)) = Φz1Ug.

Thus, Φz1 satisfies relation (87). Therefore Φz1 ∈ SV,U (D;N0(V ), N∞(V )).
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On the other hand, choose an arbitrary Φz1 ∈ SV,U (D;N0(V ), N∞(V )).
Then Φz1 belongs to S(D;N0(V ), N∞(V )) and satisfies relation (87). Set

(95) Ψz1 = Θ−1Φz1 , z1 ∈ D.

Then relation (94) holds. Observe that Ψz1 ∈ S(D;H 	D(V ), H 	D(V )).
Fix an arbitrary z1 ∈ D. By (87), (92) for arbitrary g ∈ H 	D(V ) we may
write:

Ψz1U0g = Θ−1(Φz1(Ug)) = Θ−1(U(Φz1g));

U0Ψz1g = U(Θ−1(Φz1g)) = Θ−1(U(Φz1g)).

Therefore relation (93) holds.
Finally, we notice that by virtue of Cayley’s transformation the case of

commuting pairs of symmetric operators may be investigated. This will be
done elsewhere.

Example 4.3. Let H = C2 be the two-dimensional space of complex vectors
(of length 2), and the standard basis

~e1 =

(
1
0

)
, ~e2 =

(
0
1

)
.

Denote Hj = Lin{ej}, j = 1, 2. Let a unitary operator U be given by the

matrix

(
0 1
1 0

)
, and an isometric operator V with the domain D(V ) = H1

be defined by

V1α~e1 = α~e1, α ∈ C.
Observe that

D(UV ) ∩D(V U) = {0},
and therefore U and V commute. Define the corresponding partial isometry

V0 = V ⊕ 0.

Notice that

V0U~e2 = ~e1, UV0~e2 = 0.

Thus, V0U 6= UV0.
It is easy to see that V0 can be extended to EH . Thus, there exist a gen-

eralized resolvent. It is readily checked that the set SV,U (D;N0(V ), N∞(V ))
consists of a unique function Φz1 = E|H2 , z1 ∈ D.

5. An application to moment problems

One of the most powerful applications of the theory of generalized resol-
vents is its application to interpolation problems. In this section we shall
briefly describe an application of our results to a (rather typical) moment
problem.
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The (semi-)truncated two-dimensional trigonometric moment
problem consists of finding a (nonnegative) measure µ(δ), δ ∈ B(R2),
µ((0, 2π]2) = µ(R2) such that

(96)

∫
eimt1eint2dµ(t1, t2) = sm,n, −M ≤ m ≤M, n ∈ Z,

where {sm,n}−M≤m≤M ; n∈Z is a prescribed set of complex numbers (called
moments), and M is a fixed positive integer.

Suppose that the moment problem (96) has a solution µ. Set

p(t1, t2) =

M∑
m=0

N∑
n=−N

αm,ne
imt1eint2 , αm,n ∈ C; N ∈ N; t1, t2 ∈ R.

Then

0 ≤
∫
|p|2dµ =

M∑
m,m′=0

N∑
n,n′=−N

αm,nαm′,n′sm−m′,n−n′ .

Moreover, by (96) we see that

(97) s−m,n = sm,−n, 0 ≤ m ≤M, n ∈ Z.

On the other hand, suppose that condition (97) holds and

(98)

M∑
m,m′=0

N∑
n,n′=−N

αm,nαm′,n′sm−m′,n−n′ ≥ 0,

for all αm,n ∈ C and N ∈ N. By the well-known lemma [5, Lemma 1] there
exist a Hilbert space H and a sequence {xm,n}0≤m≤M ; n∈Z of elements of H,
which span H, such that

(99) (xm,n, xm′,n′)H = sm−m′,n−n′ , 0 ≤ m,m′ ≤M, n, n′ ∈ Z.

Consider the following operators:

(100) V1
∑

0≤m≤M−1; n∈Z
am,nxm,n =

∑
0≤m≤M−1; n∈Z

am,nxm+1,n, am,n ∈ C,

(101) V2
∑

0≤m≤M ; n∈Z
bm,nxm,n =

∑
0≤m≤M ; n∈Z

bm,nxm,n+1, bm,n ∈ C,

where all but finite number of am,n, bm,n are zeros (this will be assumed in
what follows in similar situations). It is not hard to verify that V1, V2 are
well defined. For example, let us check that V1 is well-defined. Suppose that∑

0≤m≤M−1; n∈Z
am,nxm,n =

∑
0≤m≤M−1; n∈Z

a′m,nxm,n, am,n, a
′
m,n ∈ C.
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By (99) we may write∥∥∥∥∥∥
∑

0≤m≤M−1; n∈Z
(am,n − a′m,n)xm+1,n

∥∥∥∥∥∥
2

=
∑

m,n,k,l

(am,n − a′m,n)(ak,l − a′k,l)(xm+1,n, xk+1,l)

=
∑

m,n,k,l

(am,n − a′m,n)(ak,l − a′k,l)(xm,n, xk,l)

=

∥∥∥∥∥∥
∑

0≤m≤M−1; n∈Z
(am,n − a′m,n)xm,n

∥∥∥∥∥∥
2

= 0.

It is directly checked that V1 and V2 are linear and isometric. Moreover,
they commute on D(V1). Set

V = V1, U = V2.

Observe that U is unitary and V is a closed linear isometric operator. It is
not hard to check that relation (67) holds. Moreover, relation (86) holds,
as well. As it was shown after formula (86), the latter means that the set
of all generalized resolvents of a pair V,U is nonempty. Thus, there exist a

Hilbert space H̃ ⊇ H and commuting unitary operators U1, U2 in H̃, such
that U1 ⊇ V , U2 ⊇ U . By the induction argument we get

xm,n = Um1 U
n
2 x0,0, 0 ≤ m ≤M, n ∈ Z.

Therefore

sm,n = (xm,n, x0,0)H̃ = (Um1 U
n
2 x0,0, x0,0)H̃

=

∫
eimt1eint2dµ̃(t1, t2),

0 ≤ m ≤ M, n ∈ Z. Here Et1,t2 is a (strongly right-continuous) spectral
function of a pair of isometric operators V,U (corresponding to extensions
U1, U2) and the ”distribution” function (Et1,t2h, h)H defines a (nonnegative)
finite measure µ̃ on B(R2): µ̃((0, 2π]2]) = µ̃(R2).

Taking into account relation (97) we conclude that µ̃ is a solution of the
moment problem (96). We have proved the following theorem.

Theorem 5.1. Let the truncated two-dimensional trigonometric moment
problem (96) be given. The moment problem has a solution if and only if
conditions (97), (98) hold.

As we have seen, spectral functions of V,U generate solutions of the mo-
ment problem (96). Thus, we may use the corresponding generalized resol-
vents (all of them are parameterized by Theorem 4.1). We intend to discuss
a description of all solutions in a separate paper.
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