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A census of hyperbolic Platonic manifolds
and augmented knotted trivalent graphs

Matthias Goerner

Abstract. We call a 3-manifold Platonic if it can be decomposed into
isometric Platonic solids. Generalizing an earlier publication by the
author and others where this was done in case of the hyperbolic ideal
tetrahedron, we give a census of hyperbolic Platonic manifolds and all
of their Platonic tessellations. For the octahedral case, we also identify
which manifolds are complements of an augmented knotted trivalent
graph and give the corresponding link. A (small version of) the Platonic
census and the related improved algorithms have been incorporated into
SnapPy. The census also comes in Regina format.
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1. Introduction

1.1. Platonic manifolds. We call a spherical, Euclidean, or hyperbolic
3-manifold Platonic if it can be decomposed into isometric finite or ideal
Platonic solids. We call such a decomposition a Platonic tessellation. There
exist Platonic manifolds that admit more than one Platonic decomposition,
thus we use the two terms Platonic manifold and Platonic tessellation to
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distinguish whether we regard objects as isomorphic when they are isometric
as manifolds or combinatorially isomorphic as tessellations. The goal of this
paper is to create a census of such manifolds and tessellations.

It is motivated by the fact that many manifolds that have played a key
role in the development of low-dimensional topology are Platonic. Examples
include the Seifert–Weber space (which has a “homology sister” obtained by
gluing the same hyperbolic dodecahedron, see Section 5.1) as well as exactly
three knot complements (the figure-eight knot and the two dodecahedral
knots in [AR92], see [Rei91, Hof14]) and many link complements such as
the complement of the Whitehead link and the Borromean rings. Further-
more, Baker showed that each link is a sublink with octahedral and, thus,
Platonic complement [Bak02]. This also follows from van der Veen’s work
[vdV09] showing that the complement of an augmented knotted trivalent
graph (AugKTG) is octahedral and in Section 6 we enumerate AugKTGs
up to complements with 8 octahedra.

Two examples of Platonic manifolds that exhibit many symmetries are
the complements of the minimally twisted 5-component chain link and the
Thurston congruence link [Thu98, Ago]. Both are principal congruence man-
ifolds as well as regular tessellations in the sense of Definition 1.2. Baker and
Reid enumerated all known principal congruence links [BR14] and the au-
thor showed that there are at most 21 link complements admitting a regular
tessellation [Goe15].

The census of Platonic manifolds and tessellations illustrates a number
of interesting phenomena such as commensurability (in particular, of tetra-
hedral and cubical manifolds) and the difference between arithmetic and
nonarithmetic manifolds with implications on hidden symmetries and the
existence of Platonic manifolds admitting more than one Platonic tessella-
tion, which we will discuss in Section 5.

The author and others previously provided such a census in the case of the
tetrahedron [FGG+16]. Everitt did similar work but considered manifolds
consisting of only a single Platonic solid [Eve04].

1.2. Results. A tetrahedral, octahedral, icosahedral, cubical, or dodecahe-
dral tessellation or manifold is a hyperbolic Platonic tessellation or manifold
made from the respective Platonic solid. We call it closed or cusped depend-
ing on whether the vertices of the solid are finite or ideal. Unless prefixed
by right-angled, the term closed dodecahedral tessellation or manifold ex-
clusively refers to the case where 5 (not necessarily distinct) dodecahedra
are adjacent to an edge and geometrically have a dihedral angle of 2π/5,
i.e., {5, 3, 5} in the notation introduced in Section 1.4. We will not cover
right-angled closed dodecahedral tessellations {5, 3, 4} since they are dual to
closed cubical tessellations {4, 3, 5}, see Table 8.

Theorem 1.1. The numbers of hyperbolic Platonic tessellations and mani-
folds up to a certain number of Platonic solids are listed in Table 1, 2, 3, 4,
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5, 6, and 7. Table 2 also lists the number of octahedral manifolds that are
complements of AugKTGs.

Since the total number of manifolds exceeds one million, we could not
include all of them in SnapPy [CuDW]. We thus distinguish between the
small and the large census of hyperbolic Platonic tessellations, respectively,
manifolds with only the latter one including those tessellations and manifolds
marked with a star in Table 2 and 3. The small census is part of a SnapPy
installation, beginning with version 2.4. The small and large census are
also both available at [Goe16]. Section 4 gives details about the naming
conventions and examples of how to access each census. Section 6 shows
how to access the link diagrams for AugKTGs. Section 5.5 illustrates a tool
to query a Platonic manifold about various properties.

1.3. Methods. We enumerate the Platonic tessellations and then group
them by isometry type to enumerate the Platonic manifolds.

For the enumeration of Platonic tessellations, we generalize the algorithm
introduced in [FGG+16] in Section 2. The new algorithm uses the barycen-
tric subdivision of a Platonic tessellation and a variant of the isomorphism
signature [Bur11a, Bur11b] specialized to triangulations arising from such
subdivisions to save memory since it is often the limiting factor when run-
ning the algorithm. The new algorithm is also multithreaded.

To group the Platonic tessellations by isometry type, we use different in-
variants for the cusped and the closed case, see Section 3. For the cusped
case, we can simply group the tessellations by their isometry signature (see
[FGG+16, Definition 3.4]) since it is a complete invariant of a cusped hyper-
bolic manifold. Since the publication of [FGG+16], the author has general-
ized the algorithm and incorporated various features into SnapPy that now
make it easy to compute verified isometry signatures for any cusped hyper-
bolic manifold when running SnapPy inside Sage, see Section 3.1. This work
included porting Burton’s isomorphism signature to SnapPy, exposing the
canonical retriangulation to Python, implementing verified computation of
shape intervals inspired by HIKMOT [HIK+16], improving SnapPy’s recog-
nition of number fields, and generalizing the code from [DHL15] to compute
cusp cross sections and tilts given shapes as intervals or exact expressions.

Unfortunately, we do not have an equivalent of the isometry signature
for closed hyperbolic manifolds. Fortunately, the number of closed Platonic
tessellations is fairly small and we can try various invariants to group the
tessellations. We can then verify that the chosen invariant was strong enough
to separate all the nonisometric Platonic manifolds by finding isometries
between all manifolds in a group. As invariant, we picked the list of first
homologies of covering spaces of a given manifold up to a certain degree, see
Section 3.2.

For the enumeration of AugKTGs in Section 6, we recursively perform
the moves generating AugKTGs. Many sequences of moves result in the
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Table 1. Cusped Tetrahedral Census {3, 3, 6}. Included
from [FGG+16] for completeness.

{3, 3, 6} cusped tetrahedral cusped tetrahedral homology
tessellations manifolds links

Tetrahedra orientable non-or. orientable non-or.

1 0 1 0 1 0
2 2 2 2 1 1
3 0 1 0 1 0
4 4 4 4 2 2
5 2 12 2 8 0
6 7 14 7 10 0
7 1 1 1 1 0
8 14 10 13 6 5
9 1 6 1 6 0

10 57 286 47 197 12
11 0 17 0 17 0
12 50 117 47 80 7
13 3 8 3 8 0
14 58 134 58 113 25
15 91 975 81 822 0
16 102 175 96 142 32
17 8 52 8 52 0
18 213 1118 199 810 66
19 25 326 25 326 0
20 1886 26320 1684 22340 209
21 31 251 31 251 0
22 390 - 381 - 148
23 58 - 58 - 0
24 1544 - 1465 - 378
25 7563 - 7367 - 0

same planar projection of the same AugKTG making enumeration prohib-
itively expensive unless we have a method to detect whether a similar pla-
nar projection has already been enumerated and stop recursing. For this
we develop an isomorphism signature of fat graphs and planar projections
based on ideas similar to Burton’s isomorphism signature for triangulations
[Bur11a, Bur11b].

1.4. Relation to regular tessellation. For completeness, this section re-
views some well-known concepts. We mostly follow existing literature, but
give the term “regular tessellation” a more general meaning (dropping the
assumption that the underlying space is simply connected), define “local
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Table 2. Cusped Octahedral Census {3, 4, 4}.

{3, 4, 4} cusped octahedral cusped octahedral homology Aug
tessellations manifolds links KTG

Octahedra orientable non-or. orientable non-or.

1 2 11 2 6 2
2 27 117 21 62 9 4
3 29 324 24 208 11
4 446 4585 351 3076 83 24
5 353 19372 294 16278 119
6 8339 ∗250692 7524 ∗218397 849 210
7 3549 3056 1029
8 ∗452445 ∗440773 12186 2821

Table 3. Cusped Cubical Census {4, 3, 6}.

{4, 3, 6} cusped cubical cusped cubical homology
tessellations manifolds links

Cubes orientable non-or. orientable non-or.

1 3 8 3 7 0
2 45 163 45 145 5
3 64 559 61 519 0
4 704 9274 685 8795 29
5 778 31630 747 30948 0
6 9517 ∗529485 9267 ∗519385 239
7 23298 22887 0

Table 4. Cusped Dodecahedral Census {5, 3, 6}.

{5, 3, 6} cusped dodecahedral homology
tessellations/manifolds links

Dodecahedra orientable non-or.

1 10 67 0
2 915 4079 156

regular tessellation”, and distinguish between a tessellation “hiding symme-
tries” (see Definition 1.9) and an orbifold “admitting hidden symmetries”.

Recall the regular tessellations of Sn,En, and Hn by finite-volume regular
polytopes with the defining property that their isometry group acts tran-
sitively on flags, see Table 8. We call these model regular tessellations and
generalize the notion of regular tessellation as follows:
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Table 5. Closed Icosahedral Census {3, 5, 3} (dual tessella-
tions counted only once).

{3, 5, 3} closed icosahedral closed icosahedral
tessellations manifolds

Icosahedra orientable non-orientable orientable non-orientable

1 6 0 6 0
2 5 1 5 1
3 3 0 3 0
4 15 15

Table 6. Closed Cubical Census {4, 3, 5}.

{4, 3, 5} closed cubical closed cubical
tessellations manifolds

Cubes orientable non-orientable orientable non-orientable

5 10 4 10 2
10 68 150 59 91

Table 7. Closed Dodecahedral Census {5, 3, 5} (dual tessel-
lations counted only once).

{5, 3, 5} closed dodecahedral closed dodecahedral
tessellations manifolds

Dodecahedra orientable non-orientable orientable non-orientable

1 9 0 8 0
2 17 10 17 10
3 52 51

Table 8. 3-dimensional model regular tessellations.

Spherical Euclidean Hyperbolic Hyperbolic
Solid closed cusped

Tetrahedron {3, 3, 3}, {3, 3, 4}, {3, 3, 5} {3, 3, 6}
Octahedron {3, 4, 3} {3, 4, 4}

Cube {4, 3, 3} {4, 3, 4} {4, 3, 5} {4, 3, 6}
Icosahedron {3, 5, 3}

Dodecahedron {5, 3, 3} {5, 3, 4}, {5, 3, 5} {5, 3, 6}
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Definition 1.2. A regular tessellation is a tessellation of manifold M into
finite or ideal polytopes such that any (right-handed if M orientable) flag
can be taken to any other such flag through a combinatorial isomorphism.

Example 1.3. 2-dimensional regular tessellations are also called “regu-
lar maps” in the literature and were classified by Conder up to genus 101
[ConD01, Con09]. 3-dimensional regular tessellations include the Poincare
homology sphere, the Seifert–Weber space as well as the regular tessellation
link complements in [Goe15].

Recall that each regular tessellation of dimension n has an invariant called
the Schläfli symbol defined inductively. For n = 1, let {p1} denote the reg-
ular p1-gon. The polytopes of a regular tessellation of dimension n are all
the same and are all regular in the sense that the faces of a polytope form
a regular tessellation of dimension n − 1, thus we obtain a Schläflisymbol
{p1, . . . , pn−1} for them. Similarly, every (n − 2)-cell of a regular tessella-
tion of dimension n has the same order pn, which is the number of (not
necessarily distinct) polytopes adjacent to it. By adding this number to the
Schläflisymbol for the polytopes, we obtain the Schläflisymbol {p1, . . . , pn}
for a regular tessellation of dimension n.

The Schläflisymbol for the vertex link of such a regular tessellation is
{p2, . . . , pn} and the dual regular tessellation has the Schläflisymbol

{p1, . . . , pn}∗ = {pn, . . . , p1}.

Example 1.4. The cube has Schläfli symbol {4, 3} and the self-dual tessel-
lation of E3 by cubes has {4, 3, 4}.

Definition 1.5. A locally regular tessellation is a tessellation of a manifold
M such that its universal cover is a regular tessellation.

Note that every regular tessellation is a locally regular tessellation. Also
note that we can assign a locally regular tessellation the Schläfli symbol
of its universal cover. In fact, at least in dimension 3, the locally regular
tessellations are exactly those tessellations with a well-defined Schläfli sym-
bol in the following sense: a tessellation is locally regular if and only if all
polytopes are the same and are regular and each edge has the same order.

Example 1.6. The tessellation of the figure-eight knot complement by two
regular ideal tetrahedra is locally regular and has Schläfli symbol {3, 3, 6}
and is thus finite-volume as defined as follows.

Definition 1.7. We call a locally regular tessellation finite-volume if its
universal cover is combinatorially isomorphic to a model regular tessellation
by finite-volume polytopes, or equivalently, has the same Schläfli symbol as
one of the model regular tessellations by finite-volume polytopes. We call
a 3-dimensional finite-volume locally regular tessellation a Platonic tessel-
lation.
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Example 1.8. Tessellations with Schläfli symbol {3, 3, 7} or {6, 3, 3} are
not finite-volume.

A finite-volume locally regular tessellation determines a geometric struc-
ture on the underlying manifold M that is unique (up to scaling in the
Euclidean case) when requiring that all polytopes are regular and isometric.
For a finite-volume locally regular tessellation, each combinatorial isomor-
phism induces an isometry of the induced geometric structure. The converse
is in general false and thus we introduce the following notion.

Definition 1.9. We say that a finite-volume locally regular tessellation
hides symmetries if there is an isometry of the induced geometric structure
not coming from a combinatorial isomorphism.

Remark 1.10. Note that some literature (e.g., [Wal11]) uses the term “ad-
mitting hidden symmetry” to refer to a different notion that is applied to an
orbifold O = H3/Γ instead of a tessellation and that is defined in terms of
the normalizer and commensurator of Γ. We shall see that these two notions
are closely related in Section 5.2.

Let Γ{p1,...,pn}, respectively, Γ+
{p1,...,pn} denote the symmetry, respectively,

orientation-preserving symmetry group of the model regular tessellation
{p1, . . . , pn}. By definition, every hyperbolic finite-volume locally regular
tessellation is the quotient of a model regular tessellation by a torsion-free
subgroup Γ ⊂ Γ{p1,...,pn}. This is why we chose to call them model regular
tessellations in analogy to model geometries. A tessellation is regular if and
only if Γ / Γ{p1,...,pn} or Γ / Γ+

{p1,...,pn}. A tessellation hides a symmetry if

N(Γ) \ Γ{p1,...,pn} is nonempty.

2. The enumeration of Platonic tessellations

The algorithm to enumerate Platonic tessellations is based on the earlier
algorithm to enumerate hyperbolic tetrahedral manifolds [FGG+16].

2.1. Barycentric subdivision and specialized isomorphism signa-
ture. To generalize the algorithm to Platonic tessellations, we work with
their barycentric subdivision so that we have triangulations again. We label
the vertices of each simplex in this triangulation such that 0 corresponds to
a vertex (which might be ideal), 1 to an edge center, 2 to a face center, and
3 to a center of a Platonic solid (also see Figure 3 of [Goe15]). Note that
a face-pairing in the triangulation always pairs face i with face i such that
vertex j goes to vertex j. Thus, to specify the triangulation t, it is enough
to give for each simplex with index s and each face i one index to another
simplex. We denote this index by (t)s,i and let (t)s,i = −1 when face i of
simplex s is unglued. Since the additional gluing permutation that a SnapPy
or Regina triangulation stores are not needed, we implement our own much
simpler class to store triangulations. Our triangulation class is just an array
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of simplices where each simplex s is a quadruple ((t)s,0, (t)s,1, (t)s,2, (t)s,3).
If we are interested in orientable manifolds only, we always put the simplices
in the array in such a way that all simplices of the same handedness have
indices of the same parity, i.e., any two neighboring simplices s and (t)s,i
have indices of opposite parity (if (t)s,i 6= −1).

Remark 2.1. For the case of tetrahedral manifolds, using the barycentric
subdivision instead of SnapPy or Regina triangulations, which encode the
gluing permutations, is much slower. Hence, the algorithm described in
[FGG+16] is still relevant.

A key ingredient in the algorithm described in [FGG+16] was the usage
of the isomorphism signature introduced by Burton in [Bur11a, Bur11b] to
prune the search tree. Recall that the isomorphism signature was a complete
invariant of the combinatorial isomorphism type of a triangulation, which
can have unglued faces. Since the triangulations used here are fairly special,
we can redefine the isomorphism signature to save computation time and,
more importantly, memory.

For this, notice that our triangulations are completely determined by their
edge-labeled dual 1-skeleton. It is a graph where an edge is labeled by i when
it corresponds to pairing face i of one simplex with face i of another simplex.
In particular, the edges adjacent to a node have an induced ordering given
by i. There are well-known deterministic algorithms such as depth-first and
breadth-first search [CorLRS01], which traverse the nodes of such a graph in
an order n0, n1, . . . nk−1 that only depends on the choice of the start node n0.
However, for reasons that become apparent later, we use a different ordering
of the nodes here that also only depends on the choice of the start node n0
and is inductively defined as follows: Consider all edges that connect one
node among the already ordered ones n0, n1, . . . , nj−1 with a node different
from n0, n1 . . . nj−1. Among those edges, select only those with lowest label.
Among those edges, pick the edge e adjacent to nl such that l is as low as
possible. The next node in the ordering, nj , will be the other node adjacent
to e.

Given a triangulation t and a choice of start simplex, this gives us a
canonical way of (re-)indexing the simplices. If the triangulation t has k
simplices, we have k choices of a start simplex and thus obtain a set St of
k triangulations that are combinatorially isomorphic to t. St is invariant
under combinatorial isomorphisms of t. Furthermore, St can be ordered
because a triangulation t′ ∈ St can be encoded by a k-tuple of quadru-
ples ((t′0,0, t

′
0,1, t

′
0,2, t

′
0,3), . . . , (t

′
k−1,0, t

′
k−1,1, t

′
k−1,2, t

′
k−1,3)) and tuples can be

ordered lexicographically. Let t0 = min(St) be the triangulation that comes
lexicographically first in St. Then t0 is canonical in the sense that it is
invariant under combinatorial isomorphisms of t.

Furthermore, the triangulation t0 has the property that the

(t0)s,0, (t0)s,1, (t0)s,2
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are completely determined by the fixed Platonic solid we use. This is due to
our choice of an ordering that exhausts all the simplices of one Platonic solid
first before moving on to the next and that always traverses the barycentric
subdivision of a Platonic solid in the same way (up to symmetry). Thus,
((t0)0,3, (t0)1,3, . . . , (t0)k−1,3) is a complete invariant of the combinatorial
isomorphism type of the triangulation t, which we call the specialized iso-
morphism signature. Since we only use it internally, we do not include a
way of serializing this tuple of integers to an ASCII string as Burton does
for the ordinary isomorphism signature.

We describe the algorithm to compute the specialized isomorphism sig-
nature together with some other basic helpers for triangulations in Pseu-
docode 1.

2.2. Algorithm. The algorithm (see Pseudocode 3) starts with a single
Platonic solid and works recursively, at each level picking one open face
of a Platonic solid and trying to glue it to any other open face in any
configuration or to a new Platonic solid if the given maximal number of solids
has not been reached yet. During this search, the same (up to combinatorial
isomorphism) complex of Platonic solids will be encountered many times
and to avoid duplicate work, we use the specialized isomorphism signature
described above.

The algorithm calls into the helper function shown in Pseudocode 2 to
stop recursing if the triangulation does not have the combinatorics suitable
to be the barycentric subdivision of a Platonic tessellation of the desired
type {p, q, r}. Note that this function also closes up open edges between
vertex 0 and 1 which have the right order (number of adjacent simplices).
The recursive search would have closed up that edge by gluing the two open
adjacent faces eventually, but doing it in the helper function speeds up the
search significantly.

Remark 2.2. Together, the three methods AddPlatonicSolid, GlueFaces,
and FixEdges ensure that every edge of every simplex has the right order for
tessellations of type {p, q, r}. AddPlatonicSolid, GlueFaces, and FixEdges

also ensure that the link of vertex 3, vertex 2, respectively, vertex 1 is a
sphere.

Note that the algorithm does not check the vertex link of vertex 0. This is
only a problem for the non-orientable closed case where a finite vertex with
a projective plane as link would result in nonmanifold topology. We can use
Regina [BurBP] to find the ones with nonmanifold topology and sort them
out later. It turns out that the algorithm produced nonmanifold topology
only in the closed cubical case.

2.3. Multithreading. This recursive algorithm lacks inherent parallelism,
i.e., offers no natural decomposition into elements that can be run concur-
rently. Abstractly, the algorithm can be thought of as a search algorithm on
the following directed acyclic graph. A node corresponds to an equivalence
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Pseudocode 1: Helpers for barycentric subdivisions of Platonic solids.

Function AddPlatonicSolid(Triangulation t, integer p, integer q)
Result: Add the barycentric subdivision of the Platonic solid

{p, q} to t . Face 3 of each added simplex will be unglued.
Return index of first added simplex.

Add 8pq
2p+2q−pq new simplices to t .

/* Do next step in such a way that any two new simplices

that are neighboring have indices of opposite parity.

*/

Pair faces 0, 1, 2 of new simplices to form barycentric subdivision
of Platonic solid.
return index of first added simplex

Function GlueFaces(Triangulation t, integer simp0, integer simp1,
integer p)

Result: Pair face 3 of the simplices of t forming one face of a
Platonic solid (with p-gons) with those forming another
face of another (or possibly the same) Platonic solid such
that the simplex simp0 of t is glued to simp1 . If the
simplices simp0 and simp1 belong to the same face of the
same Platonic solid of t , return false.

n ← 0
while (t)simp0,3 = −1 and (t)simp1,3 = −1 do

if simp0 = simp1 then
/* Clearly, the two given simplices belong to the

same face of the same Platonic solid. */

return false

/* Pair face 3 of simplex simp0 and simp1. */

(t)simp0,3 ← simp1, (t)simp1,3 ← simp0
/* For each of the two faces of the Platonic solids,

switch to the next simplex of that face by going

about the 23-edge. */

simp0 ← (t)simp0,0 (if n even) or (t)simp0,1 (otherwise)
simp1 ← (t)simp1,0 (if n even) or (t)simp1,1 (otherwise)
n ← n +1

/* If the two given simplices belonged to the same face

of the same Platonic solid, the loop stops early. */

return n = 2 p

Function SpecializedIsomorphismSignature(Triangulation t)
Result: The specialized isomorphism signature of t .
For each simplex s, obtain a triangulation from t by swapping s
with the first simplex and canonically reindexing all other simplices.
t0 ← the triangulation that comes lexicographically first among the
above.
/* Drop the gluing information for face 0, 1, 2 */

return ((t0)0,3, (t0)1,3, . . . , (t0)k−1,3)
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Pseudocode 2: Method to check a triangulation.

Function FixEdges(Triangulation t, integer p, integer r)
Result: t is modified in place. Returns “valid” or “invalid”.
while a simplex has an open 01-edge e of order 2 r do

Let simp0 and simp1 be the two simplices adjacent to e with
unglued face 3.
if GlueFaces(t, simp0, simp1, p) then

return “invalid”

return “valid” if for each simplex

• the vertex link of vertex 1 is not a projective plane
• the order of the 01-edge is < 2r (if open) or = 2r (if closed)

class [t] of combinatorially isomorphic triangulations. For each node, chose
one particular triangulation t from the corresponding equivalence class and
add an edge from [t] to [t1] for each t1 that was constructed in the else block
of the RecursiveFind procedure and successfully processed by FixEdges in
Pseudocode 3. Starting with the node corresponding to the barycentric
subdivision of a single Platonic solid, the algorithm will search all triangu-
lations up to a certain number of simplices and return those ones that have
no unglued faces.

Our first parallelization attempts suffered because all threads but one
died quickly leaving almost all the work to the one remaining thread. This
is because the above directed acyclic graph is densely connected so threads
race for the same nodes.

We eventually decided on a thread pool pattern with a task queue where a
task consisted of calling RecursiveFind for some triangulation t and where
a task itself could add tasks to the queue. To implement this for Pseu-
docode 3, replace the lines “RecursiveFind(t1)” with code that adds t1
to the task queue instead. This is not performing well yet, and we added
another optimization: we replaced the lines “RecursiveFind(t1)” instead
with code that adds t1 to the task queue if there are idle threads and oth-
erwise continues to call RecursiveFind(t1).

result and already seen will be shared among the threads and must be
guarded by mutexes. In particular, the test isoSig 6∈already seen and the
following instruction of adding isoSig to already seen need to be one atomic
operation.

2.4. Implementation. We implemented Pseudocode 3 in C++. We used
the boost library [DAS+] to implement multithreading. The multithreaded
implementation was successful and resulted in about a 10 times speed-up
compared to the single-threaded implementation on a 12 core Xeon E5-2630.
We also used the Regina library, though only to convert our triangulation
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Pseudocode 3: The main function to enumerate Platonic tessellations.
Function FindAllPlatonicTessellations(bool orientable, integer p,
integer q, integer r, integer max)

Result: Barycentric subdivisions of all (non-)orientable Platonic
tessellations {p, q, r} up to combinatorial isomorphism
with at most max solids.

result ← {} ; /* resulting triangulations */

already seen ← {} ; /* isosigs encountered earlier */

Procedure RecursiveFind(Triangulation t)
Result: Searches all triangulations obtained from t by gluing

faces or adding Platonic solids.
/* Close 01-edges of order 2r, reject unsuitable

triangulations */

if FixEdges(t, r) = “valid” then
/* Skip triangulations already seen earlier */

isoSig ← SpecializedIsomorphismSignature(t);
if isoSig 6∈ already seen then

already seen ← already seen ∪ {isoSig};
if t has no open faces then

result ← result ∪ {t};
else

/* This choice results in faster enumeration

*/

Among all simplices of t with unglued face 3, pick
one with odd index simp0 whose edge 01 has order
as high as possible.
if t has less than max · 8pq

2p+2q−pq simplices then
t1 ← copy of t ;
simp1 ← AddPlatonicSolid(t1, p, q);
GlueFaces(t1, simp0, simp1, p);
RecurvsiveFind(t1);

for each simplex with index simp1 of t do
if simp1 is even or orientable = false then

t1 ← copy of t ;
if GlueFaces(t1, simp0, simp1, p) then

RecursiveFind(t1);

t ← empty triangulation;
AddPlatonicSolid(t, p, q);
RecursiveFind(t);
if orientable = false then

return non-orientable triangulations in result

else
return result
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objects into isomorphism signatures that can be understood by Regina or
SnapPy.

3. The enumeration of Platonic manifolds

3.1. Isometry signature for cusped manifolds. The census of Platonic
manifolds is obtained from the census of Platonic tessellations by grouping
the tessellations by isometry type. We do this by grouping them by their
isometry signature.

Recall that the isometry signature introduced in [FGG+16] is a complete
invariant of a cusped hyperbolic 3-manifold based on the canonical cell de-
composition introduced by Epstein and Penner [EP88] (also see [FGG+16,
Definition 3.1]). If the canonical cell decomposition contains nontetrahedral
cells, there is a canonical way of turning it into a triangulation called the
canonical retriangulation (see [FGG+16, Definition 3.3]). Thus, we always
obtain a triangulation that is canonical and we can compute its isomorphism
signature, which was defined by Burton [Bur11a, Bur11b]. We call the re-
sult the isometry signature. The canonical retriangulation and isometry
signature can be computed in SnapPy, version 2.3.2 or later, as follows:

>>> M=Manifold("m137")

>>> M.isometry_signature()

’sLLvwzvQPAQPQccghmiljkpmqnoorqrrqfafaoaqoofaoooqqaf’

>>> T = M.canonical_triangulation()

For the above computations, the SnapPea kernel of SnapPy uses numerical
methods, which are not verified and could potentially wrong results. If
SnapPy is used inside Sage, we can give verified=True as extra argument
to use methods that instead are proven to give either the correct result or
no result:

>>> M=Manifold("m137")

>>> M.isometry_signature(verified = True)

’sLLvwzvQPAQPQccghmiljkpmqnoorqrrqfafaoaqoofaoooqqaf’

>>> T = M.canonical_triangulation(verified = True)

>>> len(T.isomorphisms_to(T)) # The verified size of the symmetry group of M

2

Verifying the canonical cell decomposition when all cells are tetrahedral
was already described in Dunfield, Hoffman, Licata [DHL15] using HIK-
MOT [HIK+16]. In [FGG+16], we described how to verify a canonical cell
decomposition that might have nontetrahedral cells for cusped arithmetic
manifolds with known trace field. This, however, does not cover the cusped
dodecahedral manifolds, which are nonarithmetic.

The author has generalized the algorithm for verified canonical cell to any
cusped hyperbolic manifold and contributed it to SnapPy. The implementa-
tion first tries to use interval arithmetic methods to verify the canonical cell
decomposition. Interval arithmetic methods can prove inequalities but can-
not prove equalities, thus they can only verify canonical cell decompositions
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with tetrahedral cells. Therefore, if the verification with interval arithmetic
failed, the algorithm tries exact methods next.

We refer the reader to the “Verified computations” section of the SnapPy
documentation [CuDW] for more examples and plan a future publication to
explain the underlying math in depth.

3.2. Invariant for closed Platonic manifolds. We regard two covering
spaces M̃ →M and M̃ ′ →M equivalent if there is an isomorphism M̃ → M̃ ′

commuting with the covering maps. Given a manifold M and a natural num-
ber n > 0, let Cn(M) be the multiset of pairs (type(M̃ →M), H1(M̃)) where

M̃ →M is a connected covering space of degree n and where type(M̃ →M)
takes the values “cyclic”, “regular”, and “irregular” based on the covering
type. Cn(M) can be computed with SnapPy and is an invariant of M .

For example, SnapPy’s census database uses a manifold hash for faster
lookups that is computed from CSnapPy(M) = (H1(M), C2(M), C3(M)). We
used CSnapPy(M) to start separating the Platonic tessellations. However, we
were left with cases where this invariant could not tell apart several manifolds
for which SnapPy could not find an isomorphism between them either. For

these cases, we used Cn(M) or Ccyclic
n (where we consider only cyclic covers

of degree n) with higher n to resolve the situation.

It is prohibitively expensive to compute these higher Cn(M) or Ccyclic
n (M)

for all closed Platonic tessellations in the census. Yet, for simplicity, we want
to define a single invariant strong enough to separate all closed Platonic man-
ifolds in the census. We thus came up with the following expression, which
is rather engineered for this purpose than canonical, but still an invariant:

Cproprietary(M) =
(CSnapPy(M), Ccyclic

5 (M)) if CSnapPy(M) = ({(cyclic, (Z/5)3)}, {}, {})
(CSnapPy(M), C6(M)) if CSnapPy(M) = ({(cyclic,Z/29)}, {}, {})

... five more special cases

CSnapPy(M) otherwise

4. The census

We ran the multithreaded algorithm in Section 2 to create the census
of hyperbolic Platonic tessellations and manifolds on a 12 core Xeon E5-
2630 with 128 Gb memory. For each case, we picked the highest number
of Platonic solids so that the algorithm would still finish within a couple of
days and without running out of memory. We then grouped the tessellations
by isometry type using the invariants described in Section 3 and converted
the result to a SnapPy census or Regina [BurBP] file. Since we obtained
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over a million tessellations, computing the verified isometry signatures in
the last step also took several days of computation time1.

The results are shown in Theorem 1.1 and Table 1, 2, 3, 4, 5, 6, and 7.

4.1. Naming. We give hyperbolic Platonic manifolds names as follows2:

o︸︷︷︸
orientability:

“o”
“n”

dode︸ ︷︷ ︸
solid:
“tet”
“cube”
“oct”
“dode”
“ico”

cld︸︷︷︸
closed:
“cld”
cusped:

“”

03︸︷︷︸
number

of
solids

00027︸ ︷︷ ︸
Index

.

The different Platonic tessellations corresponding to the same manifold are
named with an additional index, e.g.,

ododecld03 00027#0, ododecld03 00027#1.

The indices are chosen deterministically using the lexicographic order on
the isomorphism signature of a tetrahedral Platonic tessellation, respec-
tively, the barycentric subdivision of a nontetrahedral Platonic tessellation,
similarly to [FGG+16, Section 4.1].

4.2. SnapPy census. The small census of hyperbolic Platonic manifolds
is already available in a SnapPy installation, beginning with version 2.4. It
can be used just like any other census in SnapPy, for example:

>>> M = Manifold("odode01_00001") # only works for small census

>>> M = DodecahedralOrientableCuspedCensus["odode01_00001"]

>>> len(OctahedralOrientableCuspedCensus(solids=3)) # Number mfds with 3 octs

24

>>> M = Manifold("x101")

>>> CubicalNonorientableCuspedCensus.identify(M)

ncube01_00004(0,0)

The large census of hyperbolic Platonic manifolds needs to be obtained
from [Goe16] first and imported into SnapPy (using “from platonicCensus

import *” in the snappy directory which contains platonicCensus.py, also
see README.txt) before it can be used just as the examples above except for
the first line.

Remark 4.1. Similar to the SnapPy OrientableClosedCensus, closed
manifolds in the Platonic census are given as Dehn-fillings on a 1-cusped
manifold. SnapPy can automatically convert a triangulation with finite ver-
tices into this form. However, we sometimes had to modify the triangulation
to ensure that SnapPy can find a geometric solution to the gluing equations.

1Even more time was needed to compute CSnapPy(M) which SnapPy hashes for faster
look-up.

2This differs slightly from the names introduced in [FGG+16] in that we add one more
leading zero for consistency across all manifolds of the small census.
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Table 9. Orientable closed Platonic tessellations with one
dodecahedron. Every tessellation in the list is chiral.

Tessellation self-dual regular H1

ododecld01 00000 Yes No Z/35
ododecld01 00001 No No Z/48
ododecld01 00002 Yes No Z/29
ododecld01 00003 Yes No (Z/15)2

ododecld01 00004 No No (Z/5)3

ododecld01 00005 No No (Z/3)2

ododecld01 00006 Yes No Z/5⊕ Z/15
ododecld01 00007#0 Yes Yes (Z/5)3

ododecld01 00007#1 Yes No (Z/5)3

4.3. Regina files. We provide the census of hyperbolic Platonic tessella-
tions as Regina files at [Goe16]. Each Regina file contains the cusped or
closed tessellations for one Platonic solid and is structured into a three-level
hierarchy as follows:

• Container nodes, each for a different number of solids.
• Container nodes, each for one hyperbolic Platonic manifold, i.e., it

groups all tessellations that are isometric as manifolds and is named
after the manifold.
• Triangulation nodes, each containing:

– a Platonic tessellation (in tetrahedral case) or its barycentric
subdivision,3 or

– the canonical retriangulation of the corresponding manifold (in
cusped case).

5. Properties of Platonic tessellations and manifolds

In this section, we discuss and give some properties of the tessellations
and manifolds in the Platonic census.

5.1. Closed tessellations and the Seifert–Weber space. The model
regular tessellations {3, 5, 3} and {5, 3, 5} are self-dual. This means that the
dual T ∗ of a Platonic tessellation T of type {3, 5, 3} or {5, 3, 5} is of the
same type but might or might not be combinatorially isomorphic to T . If
T ∗ and T are combinatorially isomorphic, we say that T is self-dual.

3The triangulation in the regina file is combinatorially isomorphic to the barycen-
tric subdivision, but the vertices might not be indexed as in Section 2.1. This is
because the isomorphism signature was used in the intermediate steps. The method
conform vertex order in tools/conform.py can be used to reorder the vertices to follow
the convention again.
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Table 9 lists all closed tessellations with one dodecahedron. Note that
ododecld01 00004 and ododecld01 00007 form the only pair of manifolds
in the table which cannot be distinguished by their first homology groups
(they can be distinguished by the homology groups of their 5 fold covers).

ododecld01 00007 is actually the Seifert–Weber space [WS33]. Recall
that the Seifert–Weber space is the hyperbolic manifold obtained by taking
a regular hyperbolic dodecahedron P with dihedral angle 2π/5 and gluing
opposite face by a 3π/5 rotation. Consider the Dirichlet domains obtained
by picking as base point the center of P itself or a face center, edge center,
or vertex of P . Each of these Dirichlet domains turns out to be a regu-
lar dodecahedron again with the same dihedral angle. Thus each of these
choices gives a Platonic tessellation of the Seifert–Weber space. Picking
the center of P as base point gives the tessellation T of the Seifert–Weber
space by P itself. The dual of T ∗ is obtained when picking any vertex of
P as base point. T and T ∗ are combinatorially isomorphic (and denoted
by ododecld01 00007#0). In fact, there are orientation-reversing isometries
of the Seifert–Weber space that take T to T ∗ (namely, any isometry corre-
sponding to the reflection about the bisecting plane of the center of P and
a vertex of P ). Note that while the Seifert–Weber space is amphichiral,
T and T ∗ are actual chiral as tessellations (i.e., they have no orientation-
reversing combinatorial automorphism). T and T ∗ are actually hiding the
orientation-reversing symmetries of the Seifert–Weber space. The symme-
tries of T or T ∗ (which are both regular tessellations) together with any
orientation-reversing symmetry generate the full symmetry group of the
Seifert–Weber space, which is S5. In other words, all symmetries of the
Seifert–Weber space occur as symmetries of the triangulation obtained from
T or T ∗ by barycentric subdivision.

All Platonic tessellations obtained from Dirichlet domains with base point
being a face or edge center are combinatorially isomorphic (and denoted by
ododecld01 00007#1).

For the remaining type {4, 3, 5} of closed Platonic tessellations, we have
the following lemma.

Lemma 5.1. The number of cubes of a closed cubical tessellation {4, 3, 5}
is a multiple of 5.

Proof. Such a tessellation corresponds to a torsion-free subgroup Γ of
Γ{4,3,5}, which has torsion elements of order 5. Thus, the index of Γ in
Γ{4,3,5} must be a multiple of 5. However, the number of fundamental do-
mains of Γ{4,3,5} in a cube is 48 and thus coprime to 5. �

5.2. Hidden symmetries and isometric tessellations. The only non-
arithmetic symmetry group among the hyperbolic tessellations in Table 8 is
Γ{5,3,6} (see [MacR03, Section 13.1, 13.2]). As explained in [NR92a], Mar-
gulis Theorem (see, e.g., [MacR03, Theorem 10.3.5]) thus implies that the
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commensurability class of Γ{5,3,6} has a maximal element, namely the com-
mensurator of Γ{5,3,6} given by (also see [Wal11])

Comm(Γ)

=
{
g ∈ Isom(H3)

∣∣ [Γ : Γ ∩ gΓg−1
]
<∞,

[
gΓg−1 : Γ ∩ gΓg−1

]
<∞

}
,

i.e., the subgroup of those elements g ∈ Isom(H3) such that Γ and gΓg−1

are commensurable.
This maximal element is actually Γ{5,3,6} itself, which is also equal to

its own normalizer. In other words, Γ{5,3,6} admits neither symmetries nor
hidden symmetries. This fact implies that the related tessellations cannot
hide symmetries:

Lemma 5.2. Every manifold commensurable with the orbifold H3/Γ{5,3,6}
is a covering space of the orbifold and thus a cusped dodecahedral manifold.
Every cusped dodecahedral manifold M has a unique Platonic tessellation.
Furthermore, no cusped dodecahedral tessellation hides symmetries (in the
sense of Definition 1.9).

Proof. Given a manifold M commensurable with H3/Γ{5,3,6}, we obtain
a dodecahedral tessellation on M (induced from the model regular tessel-
lation {5, 3, 6}) by choosing a Γ ⊂ Γ{5,3,6} such that M ∼= H3/Γ. Two

such choices of Γ differ by conjugation by g. Since both Γ and gΓg−1

are finite index subgroups of Γ{5,3,6}, they are commensurable and thus
g ∈ Comm(Γ{5,3,6}) = Γ{5,3,6}. Hence, two such choices yield the same
tessellation. Furthermore, a cusped dodecahedral manifold never admits a
nondodecahedral Platonic tessellation since Γ{5,3,6} is not commensurable
with any other symmetry group in in Table 8. Similarly, a symmetry of
M corresponds to an element g ∈ Isom(H3) such that Γ = gΓg−1 and thus
again g ∈ Comm(Γ) = Comm(Γ{5,3,6}) = Γ{5,3,6}, so the symmetry is not
hidden by the tessellation. �

This is in contrast to all other tessellation types {p, q, r} in Table 8 where
Margulis Theorem says that the commensurator of the symmetry group
Γ{p,q,r} is dense in Isom(H3) since they are arithmetic. Thus, we expect ex-
amples of Platonic manifolds with nonunique tessellations and symmetries
hidden by tessellations. An example is otet10 00027#0, see Section 5.5.
Note that these examples have at least two cusps since Lemma 5.15 in
[FGG+16] generalizes to cusped Platonic and to the closed Platonic tes-
sellations of non-self-dual type.

5.3. Cusped cubical and tetrahedral tessellations. Exactly two sym-
metry groups in Table 8 are commensurable, namely {3, 3, 6} and {4, 3, 6}
(also see [NR92b]). More explicitly, an ideal regular cube can be subdivided
into five regular ideal tetrahedra (see, e.g., [FGG+16, Figure 1]) introducing
a new diagonal on each face of the cube. Given an ideal cubical tessellation,
we can subdivide each cube into regular tetrahedra individually and obtain
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Table 10. Regular tessellations in the census of Platonic
tessellations. See [Goe15] for notation.

Platonic census name Other name

otet10 00027 U{3,3,6}2

ooct04 00042#1 U{4,3,6}2

ooct05 00059#1 U{4,3,6}2+i

ooct08 354962#2 Z ∈ C{3,4,4}2+2i

ocube02 00042 Z0 ∈ C{4,3,6}2

ocube06 09263 -

ocube06 03577#1 U{4,3,6}1+ζ

odode02 00912 Z0 ∈ C{5,3,6}2

ododecld01 00007#0 Seifert–Weber space

a tetrahedral tessellation if the choices of the newly introduced diagonals
are compatible with the face pairing of the cubes. There is either no way or
exactly two ways of subdividing a cusped cubical tessellation into a tetrahe-
dral tessellation. These correspond to two-colorings of the 1-skeleton of the
cubical tessellation regarded as a graph where vertices correspond to cusps
and edges to edges. Namely, fix a color and draw a diagonal on each cubical
face between vertices of the that color to obtain the subdivision. In par-
ticular, a 1-cusped cubical tessellation cannot be divided into a tetrahedral
one.

Example 5.3. ocube01 00001#0 is a cubical tessellation that cannot be
subdivided into a tetrahedral tessellation.

ocube02 00026#0 and ocube02 00027#0

can both be subdivided into tetrahedral tessellations. The two possible
choices of coloring yield two combinatorially nonisomorphic tetrahedral tes-
sellations for ocube02 00026#0 but only one tetrahedral tessellation up to
combinatorial isomorphism for ocube02 00027#0.

5.4. Regular tessellations. Table 10 lists all regular tessellations in the
census as defined in Definition 1.2 and compares them with the characteriza-
tion given in [Goe15] which classified regular tessellations with small cusped
modulus.

5.5. Tools for further investigations. We implemented various methods
to check whether a given Platonic tessellation has the properties described
earlier, see [Goe16, tools/]. We provide a script that can be used from the
shell and summarizes these properties. Here is an example of its usage:

$ python tools/showProperties.py otet10_00027
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Properties of otet10_00027 (isometric to ocube02_00025)

Number of tessellations: 2

otet10_00027#0: self_dual - regular - chiral - hidesSyms YES (48/240)

(coarsens to ocube02_00025#0)

otet10_00027#1: self_dual - regular YES chiral - hidesSyms - ( 240)

(coarsens to ocube02_00025#0)

It shows that the Platonic manifold otet10 00027 has two combinato-
rially nonisomorphic tetrahedral tessellations. Both are actually obtained
from the two different choices when subdividing the cubes of the tessel-
lation ocube02 00025#0 into tetrahedra. The first tetrahedral tessellation
hides symmetries (it has 48 combinatorial automorphisms but the underlying
tetrahedral manifold has 240 isometries). The second tetrahedral tessella-
tion has no hidden symmetries, in fact, it is a regular tessellation, namely the
complement of the minimally twisted 5-component chain link as described
in [DT03].

6. Augmented knotted trivalent graphs

Introduced in [vdV09], all augmented knotted trivalent graphs (AugKTG)
are obtained from the complete, planar graph of 4 vertices by applying A-,
U-, and X-moves. An A-move replaces a trivalent vertex by a triangle and
a U-, respectively, X-move unzips an edge between two distinct trivalent
vertices while adding an unknotted component about the edge and optionally
introducing a half-twist (X-move). Figure 1 shows an example. Without loss
of generality, we can assume that all A-moves are applied before any U- or
X-move. Here, we assume that n A-moves are always followed by n+ 2 U-
and X-moves so that the resulting AugKTG is a link, whose complement is
Platonic and can be tessellated by 2(n + 1) octahedra [vdV09, Lemma 3].
Recall that links are in general not determined by their complement and
we list only one AugKTG for each class of AugKTGs with homeomorphic
complement.

We have enumerated AugKTGs up to 6 (for the small census), respectively
8 (for the large census) octahedra, see Table 2. The diagrams can be found
in [Goe16, AugKTG/diagrams]. They are also shipped with the census
(comments from Section 4.2 apply) and can be accessed as follows:

>>> AugKTGs = OctahedralOrientableCuspedCensus(isAugKTG=True)

>>> for M in AugKTGs[:10]: # For first 10

... print M.DT_code() # Show DT code

... M.plink() # And link diagram

[(10, -20), (2, 26, -16), (-4, 24, -6, -22, 14), (8, 12, -18)]

...

We now describe the algorithm for enumerating AugKTGs, which we
implemented in C++ and boost.

6.1. Presentation of AugKTGs. We encode a planar projection of an
AugKTG as a fat graph with an extra flag for each half-edge to indicate
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A U

U

X

Figure 1. Construction of an augmented knotted trivalent graph.

under-crossings. A fat graph is a graph together with a cyclic ordering of
the half-edges adjacent to a vertex for each vertex. We use half-edges to
encode a fat graph where we store for each half-edge h:

(1) a pointer to hother, the other half edge that together with h forms
an edge,

(2) a pointer to hnext, the half-edge adjacent to the same vertex as h
and next in the cyclic ordering.

In case of an AugKTG, each vertex of the fat graph is either trivalent or
quadvalent to indicate a crossing where for two opposite half-edges the extra
flag is set to indicate that they are crossing under the other two half-edges.

6.2. Isomorphism signature for AugKTGs. We can apply the ideas
behind Burton’s isomorphism signature for 3-dimensional triangulations
[Bur11a, Bur11b] to fat graphs to obtain a complete invariant of a fat graph
up to fat graph isomorphism. Given a fat graph encoded as above, there is
a deterministic algorithm similar to the one in Section 2.1 to traverse the
half-edges in an order h0, h1, . . . , hk−1 that only depends on the choice of a
start half-edge h0. We chose an algorithm so that h2i+1 = (h2i)other. Once,
we have (re-)indexed the half-edges in the traversal order, we can encode
the fat graph as a tuple by taking for each half edge the index of the next
half edge. And, given a fat graph, we can similarly to Section 2.1 pick the
lexicographically smallest tuple among all the tuples obtained from different
choices of start half-edges. This gives as an isomorphism signature for fat
graphs.



HYPERBOLIC PLATONIC MANIFOLDS 549

If we add to the tuple each half edge’s extra flag to indicate under-
crossings, we have an isomorphism signature for planar projections of AugK-
TGs. For speed, we added extra code to process a planar projection of an
AugKTG before computing its isomorphism signature such that we obtain
the same result when:

(1) flipping all crossings of a planar projection of an AugKTG,
(2) swapping all crossings of a “belt” — an unknotted circle that splits

into two parts with one part only under-crossings and one part only
over-crossings.

6.3. Enumeration. The algorithm to enumerate all AugKTGs takes as
input the number of A-moves. It then recursively performs first all possible
A-moves and then all possible U- and X-moves. Many different sequences of
these moves can yield to the same AugKTG. To reduce the re-enumeration
of the same AugKTG, we keep a set of isomorphism signatures of AugK-
TGs and stop recursing if we encounter an isomorphism signature that was
already added earlier. In the recursion, we also simplify the projection of
the AugKTG by applying Reidemeister I moves when possible.

The program emits the resulting links as PD codes and we identify their
complements in the octahedral census.

7. Potential applications

We say that a hyperbolic 3-manifold M bounds geometrically if M is
the totally geodesic boundary of a complete, finite volume hyperbolic 4-
manifold. Recent work has shown interesting connections between Platonic
manifolds and 3-manifolds bounding geometrically. For example, Martelli
[Mar15] shows that octahedral orientable cusped and cubical orientable
closed (dual to right-angled closed dodecahedral) manifolds bound geomet-
rically. In case of tetrahedral cusped manifolds, this is not known in general
but Slavich [Sla17] gives a construction of a hyperbolic 4-manifold bounded
geometrically by the complement of the figure-eight knot.

Both the censuses and the techniques given in this paper might be useful
for further investigations. In particular, the techniques could be generalized
to 4-dimensional locally regular tessellations (perhaps using the upcoming
extension of Regina to 4-manifolds), which form the basis of the construc-
tions in [Mar15, Sla17].

Acknowledgements. The author gratefully thanks Stavros Garoufalidis
for many helpful conversations.



550 MATTHIAS GOERNER

Appendix A. Hyperbolic ideal cubulations can be
subdivided into ideal geometric triangulations

Abstract: Consider a cusped hyperbolic 3-manifold that can
be decomposed into (not necessarily regular) ideal convex
cubes. We prove that the cubes can be subdivided into non-
flat ideal tetrahedra in such a way that they form an ideal
geometric triangulation.

Theorem 1 (Main theorem). An ideal cubical tessellation, or more gen-
erally, a cell decomposition of a hyperbolic 3-manifold into ideal geodesic
convex cubes can be subdivided into an ideal geometric triangulation.

Lemma 2. Consider an ideal convex cube with a choice of one of the two
diagonals for each face. These diagonals come from a subdivision of the cube
into nonflat ideal tetrahedra if the cube has a vertex v adjacent to three of
the chosen diagonals.

Proof. Consider the 2-cell complex obtained by subdividing the cube’s sur-
face along the given diagonals and remove all cells that are adjacent to v.
Coning this 2-cell complex to v yields a subdivision of the cube. �

Remark 3. This construction was inspired by Lou, Schleimer, Tillmann
[LST08] and generalizes to any convex polyhedra P with a choice of non-
intersecting face diagonals subdividing each face into triangles: P can be
subdivided into nonflat ideal tetrahedra compatible with the given choice of
diagonals if P has a vertex v such that for each face f adjacent to v, each
diagonal on f is also adjacent to v.

Remark 4. A case by case analysis for the cube actually reveals that a
choice of diagonals comes from a subdivision of the cube if and only if the
cube has a vertex adjacent to either three or none of the chosen diagonals.

Proof of main theorem. We call a sequence f0, f1, f2, . . . , fk−1 of distinct
faces of the cubulation a face cycle if fi and fi+1 are opposite faces of the
same cube for each i = 0, . . . , k − 1 (indexing is cyclic so f0 = fk). Note
that the reverse fk−1, fk−2, . . . , f0 is also a face cycle. Thus, the faces of a
cubulation naturally partition into unoriented face cycles, but we can fix a
choice of orientation for each face cycle.

Recall that each face of the cubulation corresponds to two faces of two
(not necessarily distinct) cubes. Orienting the face cycles gives a canonical
way to pick one of those two faces for each face of the cubulation. For each
cube and each pair of opposite faces of that cube, one of the two faces will
be picked — even if the face cycle runs through the cube multiple (up to 3)
times.

The three faces picked from a cube will thus meet at a vertex. Pick the
diagonals of those three faces so that they meet at that vertex. By the above
lemma, this choice of diagonals allows the cubes to be subdivided. �
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