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On numerical invariants for homogeneous
submodules in H2(D2)

Fatemeh Azari Key, Yufeng Lu and Rongwei Yang

Abstract. The Hardy space H2(D2) can be viewed as a module over
the polynomial ring C[z, w] with module action defined by multiplica-
tion of functions. The core operator is a bounded self-adjoint integral
operator defined on submodules of H2(D2), and it gives rise to some in-
teresting numerical invariants for the submodules. These invariants are
difficult to compute or estimate in general. This paper computes these
invariants for homogeneous submodules through Toeplitz determinants.
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0. Introduction

Let D = {z ∈ C : |z|< 1} be the open unit disk with boundary

T = {z ∈ C : |z|= 1}.
The Hardy space H2(D2) over the bidisk is the closure of all polynomials
in L2(T2, dm), where dm is the normalized Lebesgue measure on T2. The
Hardy space H2(D2) can be viewed as a module over the polynomial ring
C[z, w] with module action defined by multiplication of functions. Thus a

closed subspace M of H2(D2) is a submodule if and only if it is invariant
under multiplication by both coordinate functions z and w.

In the classical Hardy space H2(D) (which is a module over C[z]), Beurl-
ing’s theorem ([1]) asserts that every submodule is of the form M = θH2(D)
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for some inner function θ(z). This theorem has no direct generalizations to
H2(D2). As a matter of fact, in [8] Rudin constructed two somewhat “patho-
logical” submodules: one is infinitely generated and the other contains no
bounded functions other than 0. This fact seems to suggest that function-
theoretic approach to characterizing submodules in H2(D2) is nearly impos-
sible. An alternative operator-theoretic approach has proven to be successful
in the past two decades. A key ingredient of this approach is the so-called
core operator CM defined for submodules M in [6]. CM is an invariant
for M in the sense that if M ′ is a submodule that is unitarily equivalent
to M then CM

′
is unitarily equivalent to CM . Thus numerical invariants

of CM , such as rank, eigenvalues, trace, or Hilbert–Schmidt norm, are in-
deed invariants for the submodule M . Although the Hilbert–Schmidtness
of CM is proved in [6] for a very large class of submodules, explicitly com-
puting or estimating these invariants remains a challenging task. Among
submodules, those generated by a single homogenous polynomial p has a
relatively simple structure. This type of submodules will be called homoge-
neous submodules and denoted by [p]. In recent years, much progress has
been made in understanding the essential normality of the quotient module
H2(D2)	 [p] (cf. [4, 5]). This paper computes the numerical invariants for
this type of submodules. Toeplitz determinant plays an important role in
the computations.

1. Preparation

Let Tz and Tw be multiplication operators by z and w on H2(D2) respec-
tively. We denote by Rz and Rw the restrictions of Tz and Tw to submodule
M . Clearly, (Rz, Rw) is a pair of commuting isometries acting on M . The
pair (Sz, Sw) is the compression of Toeplitz operators (Tz, Tw) to the quo-

tient space H2(D2)	 M . To be precise:

Szf = (I − PM )zf,

Swf = (I − PM )wf, f ∈ H2(D2)	M,

where PM is the orthogonal projection from H2(D2) onto M . We denote

the reproducing kernel for H2(D2) by K(λ, z), i.e., for λ, z ∈ D2,

K(λ, z) =
1

(1− λ1z1)(1− λ2z2)
.

By KM (λ, z) we mean the reproducing kernel for the submodule M . The

core operator on H2(D2) is given by

CM (f)(z) :=

∫
T2

GM (λ, z)f(λ)dm(λ), z ∈ D2
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where GM (λ, z) is the core function defined as

GM (λ, z) =
KM (λ, z)

K(λ, z)
= (1− λ1z1)(1− λ2z2)KM (λ, z) , λ, z ∈ D2.

A submodule M is said to be Hilbert–Schmidt if its core operator CM is
Hilbert–Schmidt, or equivalently its core function GM (λ, z) is in L2(T2×T2).

The following relation of core operator CM with operators Rz and Rw is
shown in [6]

CM = I −Rz R∗z − RwR
∗
w + RzRwR

∗
zR
∗
w on M.(1.1)

From (1.1) it is easy to see that CM (or C for short) is a bounded self-adjoint
operator on M . We denote by [R∗z, Rz] and [R∗w, Rw] the self commutators
for operators Rz and Rw respectively, and for simplicity let

Pz := [R∗z, Rz] and Pw := [R∗w, Rw].

It is easy to see that Pz and Pw are orthogonal projections from M onto the
defect spaces M 	 zM and M 	 wM , respectively. We have the following
theorem from [14].

Theorem 1.1. If M is a submodule of H2(D2) generated by a finite number
of polynomials then:

(a) [S∗z , Sw] is Hilbert–Schmidt on H2(D2)	M ,
(b) [R∗z, Rw] is Hilbert–Schmidt on M ,
(c) [R∗z, Rz][R

∗
w, Rw] is Hilbert–Schmidt on M .

For convenience we let

T := [R∗z, Rz][R
∗
w, Rw][R∗z, Rz], S := [R∗z, Rw][R∗w, Rz].

By the above theorem, for M generated by a finite number of polynomials
T and S are trace class. We set Σ0 = tr(T ) and Σ1 = tr(S). If {Φn : n =
0, 1, . . . ,∞} is an orthonormal basis for M	zM and {Ψn : n = 0, 1, . . . ,∞}
is an orthonormal basis for M 	 wM , then by [13] we have

Σ0 =

∞∑
n=0

|〈Φn,Ψn〉|2, and Σ1 =

∞∑
n=0

|〈wΦn, zΨn〉|2.

Furthermore, it is shown in [12] that for Hilbert–Schmidt submodules

Σ0 − Σ1 = 1.

The following lemma is taken from [11].

Lemma 1.2. For every submodule M , C2 is unitarily equivalent to the
diagonal block matrix

(1.2)

(
T 0
0 S

)
.

So in particular, we have tr(C2) = Σ0 + Σ1.
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2. Orthonormal bases for defect spaces

The subspaces M 	 zM and M 	wM are sometimes called defect spaces
for submodule M . They capture much information about M . Except for a
few submodules, the orthonormal basis for the defect spaces are impossible
to compute. However, homogeneous submodule [p] has a nice orthogonal
decomposition, and that enables us to determine the orthonormal basis.

Let Hn = span{ziwj |i + j = n, i, j ≥ 0} be the space of degree n homo-
geneous polynomials. Clearly, zHn is a subspace in Hn+1 with codimension
1. Let

p =
k∑
j=0

cjz
jwk−j

be a homogeneous polynomial of degree k. Then it is easy to see that

M = [p] =
∞
⊕
n=0

pHn, and hence zM =
∞
⊕
n=0

pzHn. Therefore,

M 	 zM = Cp⊕
∞
⊕
n=1

(pHn 	 pzHn−1) .

Likewise,

M 	 wM = Cp⊕
∞
⊕
n=1

(pHn 	 pwHn−1) .

We first set Φ0 = Ψ0 = p
‖p‖ .

So to find an orthonormal basis {Φn : n = 0, 1, . . . ,∞} for M 	 zM is to

find a hn =
n∑
j=0

cn
jzjwn−j ∈ Hn such that

(a) phn ∈ pHn 	 pzHn−1 , n ≥ 1,
(b) ‖phn‖= 1.

Since phn ⊥ pzHn−1, we have

0 = 〈phn, pzk+1wn−1−k〉

=

n∑
j=0

cn
j〈pzjwn−j , pzk+1wn−k−1〉

=

n∑
j=0

〈pwk+1−j , pzk+1−j〉cjn, 0 ≤ k ≤ n− 1.

Replacing k + 1 by i we have

(2.1)
n∑
j=0

〈pwi−j , pzi−j〉cjn = 0, 1 ≤ i ≤ n.
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(2.1) is a system of n equations with n+ 1 unknowns c0n, c
1
n, ...., c

n
n. Write

−→
C =




c0n
c1n
...
cnn

and let An be the Gramian matrix (〈pzjwn−j , pziwn−i〉)(n+1)×(n+1). Then

by a simple calculation using the fact z−1 = z̄ and w−1 = w̄, we have

An =




||p||2 〈pw, pz〉 . . . 〈pwn, pzn〉
〈pw, pz〉 ||p||2 . . . 〈pwn−1, pzn−1〉
〈pw2, pz2〉 〈pw, pz〉 . . . 〈pwn−2, pzn−2〉

...
...

...
〈pwn, pzn〉 〈pwn−1, pzn−1〉 . . . ||p||2

.

Note that An is an (n + 1) × (n + 1) Toeplitz matrix! Further, since An

is Gramian, it is positive definite. Now remove the first row in An and
denote the resulting matrix by An∗ . Then the system (2.1) can be written as

An∗
−→
C = 0, or more explicitly


〈pw, pz〉 ||p||2 . . . 〈pwn−2, pzn−2〉 〈pwn−1, pzn−1〉
〈pw2, pz2〉 〈pw, pz〉 . . . 〈pwn−1, pzn−1〉 〈pwn−2, pzn−2〉

...
...

...
...

〈pwn, pzn〉 〈pwn−1, pzn−1〉 . . . 〈pw, pz〉 ||p||2



c0n
c1n
...
c0n


(2.2)

= 0.

Since An is invertible, An∗ has rank n, and hence (2.2) has a nontrivial
solution and its solution space is 1-dimensional.

Writing An = (ai,j)
n
i,j=0, where ai,j = 〈pwi−j , pzi−j〉, i, j = 0, 1, . . . , n,

and denoting its cofactor matrix by
(
Ani,j

)n
i,j=0

, then by cofactor theorem

we have

(2.3) ai,0A
n
0,0 + ai,1A

n
0,1 + · · ·+ ai,nA

n
0,n = 0, i = 1, 2, . . . , n.

Comparing (2.3) with (2.1), and using the fact the solution space of (2.1) is
one-dimensional, we have 

c0n
c1n
...
c0n

 = k


An0,0
An0,1

...
An0,n

 ,
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for some scalar k. Therefore we have

Φn = phn = p
n∑
j=0

cjnz
jwn−j

= k
n∑
j=0

pAn0,jz
jwn−j

where the constant k ∈ C is to normalize Φn such that ‖Φn‖= 1. Without
loss of generality, we assume k > 0. To determine k, we consider

1 = 〈Φn,Φn〉(2.4)

= k2

〈
n∑
i=0

pAn
0,iz

iwn−i,

n∑
j=0

pAn0,jz
jwn−j

〉

= k2
n∑

i,j=0

An0,i〈pwj−i, pzj−i〉An0,j

= k2

〈
An


An0,0
An0,1

...
An0,n

 ,


An0,0
An0,1

...
An0,n


〉
.

By cofactor theorem

An


An0,0
An0,1

...
An0,n

 =


detAn

0
...
0

 .

This along with (2.4) gives k2An0,0 detAn = 1. For simplicity, for the rest of

the paper we shall denote detAn−1 by Dn, n ≥ 1. Since An0,0 = detAn−1,

by (2.4) we have

k =
1√

Dn+1Dn
.

Therefore, we conclude that

Φn(z, w) =

n∑
j=0

pAn0,jz
jwn−j

√
Dn+1Dn

.(2.5)

Now we turn to the orthonormal basis {Ψn : n = 0, 1, . . . ,∞} forM	wM .
The calculation is similar but with a slight difference at (2.7).

Define Ψn = ph′n, where h′n =
n∑
j=0

c′jn z
jwn−j satisfies

(a) ph′n ∈ pHn 	 wpHn−1, n ≥ 1,
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(b) ||ph′n||= 1.

Going through similar steps as that for Φn, we get c′jn = k′Ann,j , j =

0, 1, 2, . . . , n, where k′ > 0, and the equation

k′2
〈
An


Ann,0
Ann,1

...
Ann,n

 ,


Ann,0
Ann,1

...
Ann,n


〉

= 1.(2.6)

Applying cofactor theorem in (2.6) we get

k′2
〈

0
0
...

Dn+1

 ,


Ann,0
Ann,1

...
Ann,n


〉

= k′
2
Dn+1A

n
n,n = 1.(2.7)

Since Ann,n = Dn, we have

k′ =
1√

DnDn+1
,

and therefore

Ψn =

n∑
j=0

pAnn,jz
jwn−j

√
DnDn+1

.(2.8)

We summarize (2.5) and (2.8) as:

Proposition 2.1. Let [p] be a homogeneous submodule. Then {Φn : n ≥ 0}
is an orthonormal basis for M 	 zM and {Ψn : n ≥ 0} is an orthonormal
basis for M 	 wM , where

Φ0 = Ψ0 =
p

‖p‖
, Φn =

n∑
j=0

pAn0,jz
jwn−j

√
Dn+1Dn

, Ψn =

n∑
j=0

pAnn,jz
jwn−j

√
Dn+1Dn

, n ≥ 1.

Proposition 2.1 makes it possible to compute the numerical invariants Σ0,
Σ1, as well as the eigenvalues of the core operator C.

Corollary 2.2. For homogeneous submodule [p] we have:

(a) 〈wΦn, zΨn〉 = −An+1
0,n+1

Dn+1
,

(b) 〈Φn,Ψn〉 =
An

0,n

Dn
.

Proof. First notice that An0,0 = Ann,n = Dn. By Proposition 2.1, we then
have

〈wΦn, zΨn〉 =

〈
wk

n∑
i=0

pAn0,iz
iwn−i, zk′

n∑
j=0

pAnn,jz
jwn−j

〉
(2.9)
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=
1

DnDn+1

〈
n∑
i=0

pAn0,iz
iwn+1−i,

n∑
j=0

pAnn,jz
j+1wn−j

〉

=
1

DnDn+1

n∑
i,j=0

An0,i〈pwj+1−i, pzj+1−i〉Ann,j .

For clarity we write the last summation as

〈
〈pw, pz〉 ||p||2 . . . 〈pwn−1, pzn−1〉
〈pw2, pz2〉 〈pw, pz〉 . . . 〈pwn−2, pzn−2〉

...
...

...
〈pwn+1, pzn+1〉 〈pwn, pzn〉 . . . 〈pw, pz〉



An0,0
An0,1

...
An0,n

 ,


Ann,0
Ann,1

...
Ann,n


〉(2.10)

:=

〈
E0

E1
...
En

 ,


Ann,0
Ann,1

...
Ann,n


〉
.

By cofactor theorem, we have

Ei =

n∑
j=0

ai+1,jA
n
0,j = 0, i = 0, 1, 2, . . . , n− 1.

To compute En, we observe the matrix

An+1

=




||p||2 〈pw, pz〉 . . . 〈pwn, pzn〉 〈pwn+1, pzn+1〉
〈pw, pz〉 ||p||2 . . . 〈pwn−1, pzn−1〉 〈pwn, pzn〉

...
...

...
...

〈pwn, pzn〉 〈pwn−1, pzn−1〉 . . . ||p||2 〈pw, pz〉
〈pwn+1, pzn+1〉 〈pwn, pzn〉 . . . 〈pw, pz〉 ||p||2

and let M be the submatrix by removing the 0-th row and (n+2)-th column
in An+1, i.e.,

M =




〈pw, pz〉 ||p||2 . . . 〈pwn−1, pzn−1〉
...

...
...

〈pwn, pzn〉 〈pwn−1, pzn−1〉 . . . ||p||2
〈pwn+1, pzn+1〉 〈pwn, pzn〉 . . . 〈pw, pz〉

.

Then expanding detM along its bottom row, we have

detM = (−1)n+2〈pwn+1, pzn+1〉 detMn,0 + (−1)n+3〈pwn, pzn〉 detMn,1

+ · · ·+ (−1)2n+2〈pw, pz〉 detMn,n,
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where Mn,j is the submatrix of M with n-th row and j-th column of M
removed for j = 0, 1, . . . , n. Observe that Mn,j coincides with the submatrix
of An formed by removing 0-th row and j-th column of An. Hence we have
An0,j = (−1)j+2 detMn,j for each j. Therefore

En = 〈pwn+1, pzn+1〉An0,0 + 〈pwn, pzn〉An0,1 + · · ·+ 〈pw, pz〉An0,n(2.11)

= (−1)2〈pwn+1, pzn+1〉 detMn,0 + (−1)3〈pwn, pzn〉 detMn,1

+ · · ·+ (−1)2+n〈pw, pz〉detMn,n = (−1)n detM.

Since An+1
0,n+1 = (−1)n+3 detM , we have

(2.12) En = (−1)n detM = (−1)2n+3An+1
0,n+1 = −An+1

0,n+1.

Now it follows from (2.9) and (2.10) that

〈wΦn, zΨn〉 =
1

DnDn+1

〈
0
0
...
En

 ,


Ann,0
Ann,1

...
Ann,n


〉

=
−1

DnDn+1
An+1

0,n+1A
n
n,n.

Since An0,0 = Ann,n = Dn > 0, we have that

(2.13) 〈wΦn, zΨn〉 =
−An+1

0,n+1

Dn+1
.

Next we compute 〈Φn,Ψn〉 and the steps are similar. Check that

〈Φn,Ψn〉 =

〈
k

n∑
i=0

pAn0,i z
iwn−i, k′

n∑
j=0

pAnn,j z
jwn−j

〉
(2.14)

=
1

DnDn+1

n∑
i,j=0

An0,i〈pwj−i, pzj−i〉Ann,j

=
1

DnDn+1

〈
An


An0,0
An0,1

...
An0,n

 ,


Ann,0
Ann,1

...
Ann,n


〉
.

Again, using cofactor theorem, we have

〈Φn,Ψn〉 =
1

DnDn+1

〈
detAn

0
...
0

 ,


Ann,0
Ann,1

...
Ann,n


〉

(2.15)
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=
1

DnDn+1
detAnAnn,0 =

An0,n
Dn

.

Therefore, for n ≥ 0 we have:

(a) 〈wΦn, zΨn〉 = −An+1
0,n+1

Dn+1
,

(b) 〈Φn,Ψn〉 =
An

0,n

Dn
,

which completes the proof. �

Clearly, it follows from Corollary 2.2 that

(2.16) |〈wΦn, zΨn〉|= |〈Φn+1,Ψn+1〉|=
|An+1

0,n+1|
Dn+1

.

Corollary 2.3. For homogeneous submodule [p], we have

Σ0 =

∞∑
n=0

∣∣∣∣An0,nDn

∣∣∣∣2 .
It is interesting to observe that it follows directly from (2.16) that

Σ0 − Σ1 = 1.

This in fact holds for all Hilbert–Schmidt submodules ([12]).

3. Eigenvalues of C

In general, eigenvalue problem for core operators associated with arbi-
trary submodules of H2(D2) is difficult to study. In this section, using the
orthonormal basis in Proposition 2.1, we will compute the eigenvalues of
the core operator for homogeneous submodules [p]. The eigenvalue formula
shall depend solely on the coefficients of p. By (1.2) and results in [9], if λ
is an eigenvalue of C then λ2 is an eigenvalue of T . Moreover, if λ ∈ (−1, 1)
is an eigenvalue of C then so is −λ. So we shall focus our attention to the
eigenvalues of T .

Some preparation is needed. For an eigenvalue λ of an operator A , let
Eλ(A) denote the corresponding eigenspace. It is shown in [6] that:

(3.1) E1(C) = M 	 (zM + wM) and E−1(C) = (zM ∩ wM)	 zwM.

The following proposition is from [15].

Proposition 3.1. If M is a submodule such that [R∗z, Rw] is compact on
M , then (Rz, Rw) is Fredholm and dim(Ker(Sz) ∩Ker(Sw)) <∞ and

ind(Rz, Rw) = dim(Ker(Sz) ∩Ker(Sw))− dim(Ker(R∗z) ∩Ker(R∗w)).

Since

Ker(Sz) ∩Ker(Sw) = (zM ∩ wM)	 zwM,

Ker(R∗z) ∩Ker(R∗w) = M 	 (zM + wM),
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(3.1) and Proposition 3.1 give:

ind(Rz, Rw) = dim(E−1(C))− dim(E1(C)).

Definition 3.2. For a submodule M of H2(D2) the fringe operator F on
M 	 zM is defined as Ff = Pzwf where Pz := [R∗z, Rz] is as in Section 1.

For further studies and insights on fringe operators see [13]. Here we quote
a result to be used later.

Lemma 3.3. Let M be a submodule. Then on M 	 zM we have:

(a) I − F ∗F = [R∗w, Rz] [R∗z, Rw],
(b) I − FF ∗ = [R∗z, Rz] [R∗w, Rw].

The following two facts are from [12].

Lemma 3.4. If M is a submodule, then rank(M) ≥ dim(M	(zM+wM)).
In particular, if M is singly generated then dim(M 	 (zM + wM)) = 1.

Lemma 3.5. If M is a Hilbert–Schmidt submodule then ind(R1, R2) = −1.

The next lemma is from [9].

Lemma 3.6. Let M be any submodule. If λ ∈ (−1, 1) is an eigenvalue of
core operator C then −λ is also an eigenvalue of C.

Proposition 2.1 enables us to compute all the eigenvalues of C. First of
all 0 is clearly an eigenvalue of C. By Lemma 1.2 the eigenvalues of operator
T := [R∗z, Rz][R

∗
w, Rw][R∗z, Rz] are also eigenvalues of C2. We now check that

if λ is an eignevalue of C such that 0 < |λ|< 1 then λ2 is an eigenvalue of
T . In fact, Lemma 1.2 implies that λ2 is an eigenvalue of either T or S.
So it is sufficent to check that if λ2 is an eigenvalue of S then it is also an
eigenvalue of T . Let x be a corresponding eigenvector, then we have

[R∗z, Rw][R∗w, Rz]x = Sx = λ2x,

which implies

[R∗w, Rz][R
∗
z, Rw][R∗w, Rz]x = λ2[R∗w, Rz]x.

Since λ 6= 0, this, combined with Lemma 3.3(a), shows that y := [R∗w, Rz]x
is an eigenvector of I − F ∗F . By an argument similar to the ones leading
to (4.4) we see that Fy is an eigenvector of I − FF ∗ with corresponding
eigenvalue λ2. Since Fy ∈M 	 zM , we conclude that

T (Fy) = [R∗z, Rz][R
∗
w, Rw][R∗z, Rz]Fy

= [R∗z, Rz][R
∗
w, Rw]Fy = (I − FF ∗)Fy = λ2Fy.

So now it is sufficient to compute the eigenvalues of T . Consider homoge-
neous submodule M = [p] and use the orthonormal basis {Φn} for M 	zM .
Assume deg(p) = k. Then by Proposition 2.1, Φn is homogeneous of degree
k + n, n = 0, 1, . . . . Therefore,

FΦn = PM	zMwΦn(3.2)
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= 〈wΦn,Φn+1〉Φn+1, n ≥ 0.

Hence F is a weighted shift. Further,

F ∗Φ0 = PM	zM w̄Φ0 = PM	zM w̄
p

‖p‖
= 0,

and

F ∗Φn = PM	zM w̄Φn(3.3)

= 〈w̄Φn,Φn−1〉Φn−1 = 〈Φn, wΦn−1〉Φn−1, n ≥ 1.

From (3.2) and (3.3), we compute that TΦ0 = Φ0, and

TΦn = (I − FF ∗)Φn

= (1− |〈wΦn−1,Φn〉|2)Φn, n ≥ 1.

Thus T is a diagonal operator with eigenvalues 1, 1 − |〈wΦn−1,Φn〉|2, n =
1, 2, . . . . From (3.1), Lemma 3.4 and Lemma 3.5. We know −1 is not an
eigenvalues of C in this case. Thus by Lemma 1.2 and Lemma 3.6, the core
operator C has eigenvalues

0, 1, ±
√

1− |〈wΦn−1,Φn〉|2, n ≥ 1.

We set D0 = 1. By Proposition 2.1, we see that for n ≥ 1,

〈wΦn−1,Φn〉 =
〈
∑n−1

j=0 pA
n−1
0,j z

jwn−j ,
∑n

i=0 pA
n
0,iz

iwn−i〉
Dn
√
Dn−1Dn+1

(3.4)

=

∑n
i=0

∑n−1
j=0 A

n−1
0,j 〈pwi−j , pzi−j〉An0,i

Dn
√
Dn−1Dn+1

.

One verifies that the numerator in (3.4) can be written as

〈
||p||2 〈pw, pz〉 . . . 〈pwn−1, pzn−1〉
〈pw, pz〉 ‖p‖2 . . . 〈pwn−2, pzn−2〉

...
...

...
...

〈pwn−1, pzn−1〉
...

... ‖p‖2
〈pwn, pzn〉 〈pwn−1, pzn−1〉 . . . 〈pw, pz〉



An−10,0

An−10,1
...

An−10,n−1

 ,


An0,0
An0,1

...
An0,n


〉

(3.5)

:=

〈
E0

E1
...
En

 ,


An0,0
An0,1

...
An0,n


〉
.

Observe that the the matrix in (3.5) is (n + 1) × n, and the first n rows
of which is precisely An−1. Denoting An−1 by (ai,j) and using the cofactor
theorem, we have E0 = Dn and

Ei =

n−1∑
j=0

ai,jA
n−1
0,j = 0, i = 1, 2, . . . , n− 1.
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Moreover, in this case

En = 〈pwn, pzn〉An−10,0 + 〈pwn−1, pzn−1〉An−10,1 + · · ·+ 〈pw, pz〉An−10,n−1.

Comparing this summation with (2.11) and (2.12), we get En = −An0,n.

Thus by (3.5) we conclude that

〈wΦn−1,Φn〉 =
|Dn|2−|An0,n|2

Dn
√
Dn−1Dn+1

.

We therefore have the following theorem.

Theorem 3.7. For homogeneous submodule [p], the core operator has eigen-
values

0, 1, ±

(
1−

(|Dn|2−|An0,n|2)2

Dn−1D2
nDn+1

)1/2

, n ≥ 1.

The eigenvalue formula in Theorem 3.7 is rather complicated. For some
simple submodules, the inner product 〈wΦn−1,Φn〉 can be evaluated more
explicitly.

Example 3.8. We consider p = z−λw, where 0 < λ ≤ 1. Since Σ0−Σ1 = 1,
the Hilbert–Schmidt norm

||C||2HS= Σ0 + Σ1 = 2Σ0 − 1.

We now compute the eigenvalues of C and Σ0. It is easy to check that

||p||2= 1 + λ2 and 〈pw, pz〉 = −λ,
and

An =



1 + λ2 −λ 0 . . . 0 0
−λ 1 + λ2 −λ . . . . . . 0

0 −λ 1 + λ2
. . . 0

...

0 0
. . .

. . .
. . .

...
...

...
...

. . .
. . . −λ

0 0 . . . 0 −λ 1 + λ2


(n+1)×(n+1)

An0,n = (−1)2n+2λn = λn.

Recall that D0 = 1 and Dn = detAn−1, n ≥ 1. In this case, D1 = 1 + λ2.
By cofactor expansion of Dn+1 along the first column, we have the recursion
relation

Dn+1 = (1 + λ2)Dn − λ2Dn−1, n ≥ 1.(3.6)

Then we have

Dn −Dn−1 = λ2(Dn−1 −Dn−2) = (λ2)2(Dn−2 −Dn−3)

...



518 FATEMEH AZARI KEY, YUFENG LU AND RONGWEI YANG

= (λ2)n−1(D1 −D0)

= (λ2)n−1λ2 = λ2n, n ≥ 1,

and therefore

Dn = Dn −Dn−1 +Dn−1 + · · ·+D1 −D0 +D0

= (λ2)n + (λ2)n−1 + · · ·+ λ2 + 1.

Hence

|An0,n|
|Ann,n|

=
λn

(λ2)n + (λ2)n−1 + · · ·+ λ2 + 1
=
λn

Dn
,

and therefore by Corollary 2.3 we have

Σ0 =

∞∑
n=0

|〈Φn,Ψn〉|2 =

∞∑
n=0

|An0,n|2

|Ann,n|2

=
∞∑
n=0

(
λn

Dn

)2

.

By Theorem 3.7, C has eigenvalues

1, ±
(

1− (D2
n − λ2n)2

Dn−1D2
nDn+1

)1/2

, n ≥ 1.

It is interesting to look at two particular cases.

1. When n = 1, we have(
1− (D2

1 − λ2)2

D0D2
1D2

)1/2

=

(
1− ((1 + λ2)2 − λ2)2

(1 + λ2)2(1 + λ2 + λ4)

)1/2

=

(
1− 1 + λ2 + λ4

(1 + λ2)2

)1/2

=
λ

1 + λ2
.

Hence ±λ (1 + λ2)−1 are eigenvalues of C.

2. When p = z − w, we have An0,n = 1, Ann,n = Dn = n+ 1. Therefore(
1− (D2

n − λ2n)2

Dn−1D2
nDn+1

)1/2

=

(
1− ((n+ 1)2 − 1)2

n(n+ 1)2(n+ 2)

)1/2

=
1

n+ 1
.

Hence C’s eigenvalues are 1, ± 1
n+1 , n ≥ 1. Furthermore,

Σ0 =

∞∑
n=0

|An0,n|2

|Ann,n|2
=

∞∑
n=0

1

(n+ 1)2
=
π2

6
.

These facts were shown in [13].
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4. The second largest eigenvalue of C

It is known that for every submodule, the core operator C is a contrac-
tion and 1 is always an eigenvalue of C. The second largest eigenvalue of
C (s.l.e(C)) is particulalry interesting to us, as it usually reveals subtler in-
formation about the submodule. This section takes a closer look at s.l.e(C)
for homogeneous submodule [p].

Proposition 4.1. If M is a singly generated Hilbert–Schmidt submodule,
then

s.l.e(C) = ‖[R∗w, Rz]‖.

Proof. For any function h ∈ H2(D2) the submodule generated by h is

denoted by [h] and it is the closure of hC[z, w] in H2(D2). If [h] is Hilbert–
Schmidt, then by Proposition 3.1 and Lemma 3.5 the pair (Rz, Rw) is Fred-
holm and

(4.1) ind(Rz, Rw) = dim(E−1(C))− dim(E1(C)).

Also since M = [h] is singly generated, Lemma 3.4 gives

(4.2) dimE1(C) = dim(M 	 (zM + wM)) = 1.

From (4.1) and (4.2) we get dimE−1(C) = 0. In other words −1 is not an
eigenvalue for C. Since 1 is always an eigenvalue for T , by Lemma 1.2, 1 is
not an eigenvalue for S. Since S is a positive compact contraction, ‖S‖< 1
and ‖S‖= ‖[R∗w, Rz]‖2 is an eigenvalue of S. By Lemma 1.2, ‖[R∗w, Rz]‖2
is an eigenvalue of C2. This implies that ‖[R∗w, Rz]‖ is an eigenvalue of C.
These observations conclude that

1 > s.l.e(C) ≥ ‖[R∗w, Rz]‖.
To prove the other direction, we make a use of Lemma 3.3. First, observe

that

I − FF ∗ = [R∗z, Rz] [R∗w, Rw] [R∗z, Rz] = T.(4.3)

But be aware that I − F ∗F = [R∗w, Rz][R
∗
z, Rw], which is not S!

By Lemma 1.2, s.l.e(C)2 is an eigenvalue for S or T . If s.l.e(C)2 is an
eigenvalue for S then clearly

s.l.e(C) = ‖[R∗w, Rz]‖,
and we complete the proof.

Now suppose λ = s.l.e(C) and λ2 is an eigenvalue for T with correspond-
ing eigenfunction x. Then

(I − FF ∗)x = λ2x⇔ F ∗(I − FF ∗)x = λ2F ∗x(4.4)

⇔ (F ∗ − F ∗FF ∗)x = λ2F ∗x

⇔ (I − F ∗F )F ∗x = λ2F ∗x.

If F ∗x = 0, then by (4.3) we see that x is an eigenfunction for T with
corresponding eigenvalue 1, which contradicts with the assumption that x
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is an eigenfunction of λ. Therefore, λ2 is an eigenvalue of I − F ∗F with
corresponding eigenfunction F ∗x. Thus we have

λ2 ≤ ‖I − F ∗F‖= ‖[R∗z, Rw]‖2,
and hence λ ≤ ‖[R∗zRw]‖= ‖[R∗wRz]‖. This completes the proof. �

Theorem 4.2. For a homogenous submodule [p],

s.l.e(C) = max
n≥1

|An0,n|
Dn

.

Proof. We first check that [R∗z, Rw] = PM z̄wf on M 	 zM , and its range
lies inside M 	 wM . To see this, since [R∗z, Rw]f = (R∗zRw − RwR∗z)f = 0
for every f ∈ zM it is enough to look at [R∗z, Rw] on M 	 zM . For f ∈M	
zM , we have R∗zf = 0, hence

[R∗z, Rw]f = (R∗zRw −RwR∗z)f = R∗zRwf.

For every g ∈ wM , one verifies that

〈g, PM z̄ wf〉 = 〈PMg, z̄ wf〉 = 〈zg, wf〉 = 0,

i.e., wM is perpendicular to PM z̄wf . This shows PM z̄w ∈M	wM . There-
fore,

‖[R∗z, Rw]‖
(4.5)

= sup{|〈[R∗z, Rw]f, g〉|: f ∈M 	 zM, g ∈M 	 wM, ||f ||= ||g||= 1}
= sup{|〈PM z̄wf, g〉|: f ∈M 	 zM, g ∈M 	 wM, ||f ||= ||g||= 1}
= sup{|〈wf, zg〉|: f ∈M 	 zM, g ∈M 	 wM, ||f ||= ||g||= 1}
≥ sup

n≥0
|〈wΦn, zΨn〉|.

Since [p] is Hilbert–Schmidt,∑
n≥0
|〈wΦn, zΨn〉|2= Σ1 <∞,

which implies that 〈wΦn, zΨn〉 → 0 as n→∞. So the sup in (4.5) is in fact
the max.

For the other direction, we assume f =
∑∞

i=0 αiΦi is an arbitrary element
in M	zM and g =

∑∞
i=0 βiΨi is an arbitrary element in M	wM such that

‖f‖= ‖g‖= 1. Then using Cauchy–Schwarz inequality and the orthogonality
of wΦi and zΨj for i 6= j (because they are homogeneous of different degree),
one checks that

|〈[R∗z, Rw]f, g〉| = |〈wf, zg〉|=

∣∣∣∣∣∣
∞∑

i,j=0

αiβ̄j〈wΦi, zΨj〉

∣∣∣∣∣∣
=

∣∣∣∣∣
∞∑
i=0

αiβ̄i〈wΦi, zΨi〉

∣∣∣∣∣
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≤ max
n≥0
{|〈wΦn, zΨn〉|}

∞∑
i=0

|αi||β̄i|

≤ max
n≥0
|〈wΦn, zΨn〉|‖f‖‖g‖≤ max

n≥0
|〈wΦn, zΨn〉|.

This implies

‖[R∗z, Rw]‖≤ max
n≥0
|〈wΦn, zΨn〉|.

The theorem then follows from Corollary 2.2, Proposition 4.1 and the simple
fact that [R∗z, Rw] = [R∗w, Rz]

∗. �

Now we assume

(4.6) p(z, w) =

k∑
j=0

cjz
jwk−j .

Since Φ0 = Ψ0 = p
‖p‖ , and

〈pw, pz〉 =

〈
w

(
k∑
i=0

ciz
iwk−i

)
, z

 k∑
j=0

cjz
jwk−j

〉

=

〈
k∑
i=0

ciz
iwk+1−i,

k∑
j=0

cjz
j+1wk−j

〉

=
k−1∑
j=0

〈cj+1z
j+1wk−j , cjz

j+1wk−j〉 =
k−1∑
j=0

c̄j cj+1.

Corollary 2.2 and Theorem 4.2 give rise to the following simple estimate.

Corollary 4.3. For a homogenous polynomial p =
k∑
j=0

cjz
jwk−j, then on

[p] we have

(4.7) s.l.e(C) >

∣∣∣∣∣k−1∑j=0
c̄j cj+1

∣∣∣∣∣
k∑
j=0
|cj |2

.

Example 4.4. We consider two simple cases.

(a) For p = z − λw, 0 ≤ |λ|≤ 1, we have c0 = −λ, c1 = 1 and

s.l.e(C) ≥ |λ|
1 + |λ|2

.

In particular, for p = z − w we observe that s.l.e(C) is in fact equal
to 1

2 . This indicates that the estimate in Corollary 4.3 is sharp.

(b) For p = z2 + 2wz + w2, c0 = 1, c1 = 2, c2 = 1 and s.l.e(C) ≥ 4
6 .
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The proof of Theorem 4.2 shows that s.l.e(C) = maxn≥0|〈wΦn, zΨn〉|. So
by (2.16) we have:

Corollary 4.5. For homogeneous submodule [p],

s.l.e(C) = max
n≥1
|〈Φn,Ψn〉|.

5. Matrix An and Toeplitz determinant

The quantities Dn and An0,n have shown up in Corollary 2.2, Theorem 3.7
and Theorem 4.2. As we have remarked before, both quantities are in fact
Toeplitz determinants. This section uses some known tools to make a study
on the two quantities.

Given a sequence of complex numbers tk, k ∈ Z, the associated n × n
Toeplitz matrix is of the form

Tn =


t0 t−1 t−2 . . . t−(n−1)
t1 t0 t−1 . . . t−(n−2)
t2 t1 t0 . . . t−(n−3)
...

...
...

. . .
...

tn−1 tn−2 tn−3 . . . t0

 ,

and the associated trignometric polynomial is

fn(λ) =
n−1∑

k=−(n−1)

tk e
ikλ, λ ∈ [0, 2π].(5.1)

The associated Fourier series is defined formally as

(5.2) f(λ) =
∞∑

k=−∞
tk e

ikλ, λ ∈ [0, 2π].

Computation of the determinant of Tn in general is rather complicated
(cf. [7]). The following first Szegö limit theorem tells about the asymptotic
behavior of detTn as n→∞. For details, we refer readers to [2].

Theorem 5.1. If f is in L1(T, dλ2π ) and is positive a.e., on T, then

An equivalent formulation is

lim
n→∞

detTn
detTn−1

= exp

 1

2π

2π∫
0

log(f(λ))dλ

 .(5.3)

We assume

p(z, w) = c0z
k + c1z

k−1w + · · ·+ ck−1zw
k−1 + ckw

k.

For Tn = An−1, by (5.1) we have

fn(λ) = 〈pwn−1, pzn−1〉e−i(n−1)λ + · · ·+ 〈pw, pz〉e−iλ

+ ||p||2+〈pw, pz〉eiλ + · · ·+ 〈pwn−1, pzn−1〉e−i(n−1)λ.
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For An0,n, the associated trigonometric polynomial is

gn(λ) = 〈pwn−2, pzn−2〉ei(n−1)λ + · · ·+ 〈pw, pz〉e−i2λ + ||p||2e−iλ

+ 〈pw, pz〉+ 〈pw2, pz2〉eiλ + · · ·+ 〈pwn, pzn〉ei(n−1)λ.

It is easy to see that

fn(λ) + 〈pwn, pzn〉einλ = eiλgn(λ) + 〈pwn−1, pzn−1〉e−i(n−1)λ.

But we have 〈pwn, pzn〉 = 0 for all n > deg(p) = k. Therefore

fn(λ) = eiλgn(λ)

when n > k.
For convenience, we set cn = 0 for all n > k. Then by direct calculation,

we have

An =





k∑
j=0
|cj |2

k∑
j=0

c̄jcj+1

k∑
j=0

c̄jcj+2 . . .
k∑
j=0

c̄jcj+n

k∑
j=0

cj c̄j+1

k∑
j=0
|cj |2

k∑
j=0

c̄jcj+1 . . .
k∑
j=0

c̄jcj+(n−1)

k∑
j=0

cj c̄j+2

k∑
j=0

cj c̄j+1

k∑
j=0
|cj |2 . . .

k∑
j=0

c̄jcj+(n−2)

...
...

...
...

...
k∑
j=0

cj c̄j+n
k∑
j=0

cj c̄j+(n−1)
k∑
j=0

cj c̄j+(n−2) . . .
k∑
j=0
|cj |2

.

Note that by the assumption that cn = 0 for all n > deg(p) = k, many terms
in the summations in An are in fact 0! Now if we let

C(n)

=



c0 c1 c2 . . . ck 0 0 0 . . . 0 0
0 c0 c1 . . . ck−1 ck 0 0 . . . 0 0
0 0 c0 . . . ck−2 c̄k−1 c̄k 0 . . . 0 0

...
...

...
...

. . .
...

...
...

...
... c̄0 c̄1 . . . . . . c̄k−1 c̄k


(n+1)×(n+k+1)

,

and
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Co(n)

=



c1 c2 . . . ck 0 0 0 . . . 0 0 0
c0 c1 . . . ck−1 ck 0 0 . . . 0 0 0
0 c0 . . . ck−2 c̄k−1 c̄k 0 . . . 0 0 0

...
...

...
... 0

. . .
...

...
...

... 0
... c̄0 c̄1 . . . . . . c̄k−1 c̄k 0


(n+1)×(n+k+1)

.

Let CH(n) and CHo (n) denote the conjugate transpose of C(n) and Co(n)
respectively, then one verifies that

An = C(n)CH(n), M = C(n)CHo (n),

where M is the submatrix of An+1 with 0-th row and (n+2)-th column of
An+1removed as in Section 2. Replacing 〈pwj , pzj〉 by the corresponding
entries in An above, we check that for each n ≥ 0

fn+1(λ )(5.4)

= (c0e
niλ + c1e

(n−1)iλ + · · ·+ cn)(c0e
−niλ + c1e

−(n−1)iλ + · · ·+ cn),

where λ ∈ [0, 2π]. Since cn = 0 when n > k, we see that

fn+1(λ) = |p(eiλ, 1)|2, ∀n > k,(5.5)

For convenience, we let p∗(z) = p(z, 1).
For a complex polynomial q(z) = a0z

n + a1z
n−1 + · · · + an, we let Z(q)

be the set of its zeros. q’s Mahler measure is defined as

M(q) = |a0|
∏

z∈Z(q),|z|≥1

|z|.

It follows from Jensen’s formula that

M(q) = exp

(
1

2π

∫ 2π

0
log|q(eiθ)|dθ

)
.

For more information about Mahler measure we refer readers to [3]. By
(5.3) and (5.5), we have the following:

Proposition 5.2. For a homogeneous polynomial p,

lim
n→∞

Dn+1

Dn
=M2(p∗).

Now we turn to An+1
0,n+1, and we shall use Cauchy–Binet formula to give

an estimate of it by Dn. Fix two natural numbers n ≥ k. Let J be the set
of tuples J = (j1, j2, . . . , jk) of natural numbers such that 1 ≤ j1 < j2 <
· · · < jk ≤ n. Clearly |J |= n!

k!(n−k)! . For any n × k matrix A, A(J) will
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denote the k × k matrix formed using rows J (in that order), and AH(J)
means (A(J))H . For two n×k matrices A and B, by Cauchy–Binet formula

det(BHA) =
∑
J∈J

detBH(J) detA(J).

Then by Cauchy–Schwarz inequality we have

(5.6) |det(BHA)|≤
√

det(BHB)
√

det(AHA).

Since M = C(n)CHo (n) and An+1
0,n+1 = (−1)n+3 detM , we have

|An+1
0,n+1| = |detM |= |detC(n)CHo (n)|

≤
√

det(C(n)CH(n))
√

det(Co(n)CHo (n))

=
√
Dn+1

√
det(Co(n)CHo (n)).

Now we take a closer look at det(Co(n)CHo (n)). By Cauchy–Binet formula,
we have

det(Co(n)CHo (n)) =
∑
J∈J

det(Co(J)CHo (J))

(5.7)

=
∑

J∈J ,j1≥2
det(C(J)CH(J))

=
∑
J∈J

det(C(J)CH(J))−
∑

J∈J ,j1=1

det(Co(J)CHo (J))

= det(C(n)CH(n))−
∑

J∈J ,j1=1

det(Co(J)CHo (J))

= Dn+1 −
∑

J∈J ,j1=1

det(Co(J)CHo (J)).

For the second term in (5.7) we observe from the matrix C(n) that∑
J∈J ,j1=1

det(Co(J)CHo (J)) = |c0|2det(C(n− 1)CH(n− 1)).

Therefore we have the following inequality to conclude this paper.

Corollary 5.3. |An+1
0,n+1|≤

√
Dn+1

√
Dn+1 − |c0|2Dn.

References

[1] Beurling, Arne. On two problems concerning linear transformations in
Hilbert space. Acta Math. 81 (1948), 239–255. MR0027954, Zbl 0033.37701,
doi: 10.1007/BF02395019.
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