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On the almost sure global well-posedness
of energy sub-critical nonlinear wave

equations on R3

Jonas Lührmann and Dana Mendelson

Abstract. We consider energy sub-critical defocusing nonlinear wave
equations on R3 and establish the existence of unique global solutions al-
most surely with respect to a unit-scale randomization of the initial data
on Euclidean space. In particular, we provide examples of initial data
at super-critical regularities which lead to unique global solutions. The
proof is based on probabilistic growth estimates for a new modified en-
ergy functional. This work improves upon the authors’ previous results
(Comm. Partial Differential Equations, 2014) by significantly lowering
the regularity threshold and strengthening the notion of uniqueness.
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1. Introduction

In this note we consider the Cauchy problem for the defocusing nonlinear
wave equation

(1.1)

{
−∂2

t u+ ∆u = |u|p−1u on R× R3,

(u, ∂tu)|t=0 = (f1, f2) ∈ Hs
x(R3)×Hs−1

x (R3),

where 3 < p < 5 and Hs
x(R3) is the usual inhomogeneous Sobolev space.

The main result of this paper establishes the almost sure existence of global
unique solutions to (1.1) with respect to a unit-scale randomization of initial

data in Hs
x(R3) ×Hs−1

x (R3) for 3 < p < 5 and p−1
p+1 < s < 1. In particular,

for the entire range of exponents p we obtain large sets of super-critical
initial data that lead to unique global solutions. This improves over the
authors’ previous result in [25] both regarding the threshold for allowable
regularities and the notion of uniqueness of the solutions. Our proof relies on
probabilistic growth estimates for a new modified energy functional which
we introduce in (1.11). These estimates are inspired by the recent work of
Oh and Pocovnicu [27] on the almost sure global existence of solutions to
the quintic nonlinear wave equation on R3.

The equation (1.1) is invariant under the scaling transformation

u(t, x) 7→ uλ(t, x) = λ
2
p−1u(λt, λx) for λ > 0,

which gives rise to the scaling invariant critical regularity sc = 3
2 −

2
p−1 .

In [24], Lindblad and Sogge construct local strong solutions to (1.1) for
sub-critical and critical regularities s ≥ sc using Strichartz estimates for
the wave equation. When s < sc, this is the super-critical regime and the
well-posedness arguments based on Strichartz estimates break down. Global
solutions to (1.1) were constructed by Kenig, Ponce and Vega [21, Theorem
1.2] using a high-low argument for 2 ≤ p < 5 and initial data in a range
of sub-critical spaces below the energy space (see also [1], [17] and [32] for
p = 3).

Although it is known that the nonlinear wave equation (1.1) is ill-posed
below the critical scaling regularity (see [22], [13] and [19]), using proba-
bilistic tools it is sometimes possible to construct large sets of initial data of
super-critical regularity that lead to unique local and even global solutions.
This approach was initiated by Bourgain [5, 6] for the periodic nonlinear
Schrödinger equation in one and two space dimensions, building upon work
by Lebowitz, Rose and Speer [23]. Subsequently, Burq and Tzvetkov [10, 11]
studied the cubic nonlinear wave equation on a three-dimensional compact
manifold by randomizing with respect to an orthonormal eigenbasis of the
Laplacian and using invariant measure considerations. Extensive work has
been done on such problems in recent years, both in compact and noncom-
pact settings but we restrict the following overview to results in Euclidean
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space. Many previous results on Euclidean space involve considering a re-
lated equation in a setting where an orthonormal basis of eigenfunctions of
the Laplacian exists, see for instance [8], [16], [31], [30] for results of this
type for the defocusing nonlinear Schrödinger equation on Rd for d ≥ 2, and
[33], [34] for results of this type for the nonlinear wave equation.

It is also possible to randomize initial data directly on Euclidean space
using a unit-scale decomposition of frequency space. In several works this
has yielded almost sure well-posedness results for super-critical initial data,
see for instance [36], [25], [3], [2], [29] and [27]. In [25], the authors studied
the random data problem for (1.1) and proved almost sure global existence
for energy sub-critical nonlinearities. In particular, for

1

4
(7 +

√
73) ' 3.89 < p < 5,

the authors obtain almost sure global well-posedness for super-critical ini-
tial data. The proof combines a probabilistic local existence argument with
Bourgain’s high-low frequency decomposition [7], an approach introduced
by Colliander and Oh [15, Theorem 2] in the context of the one-dimensional
periodic defocusing cubic nonlinear Schrödinger equation. We note that
probabilistic high-low arguments only yield uniqueness in a mild sense, see
[25, Remark 4.3], and thus do not provide a definitive answer to the question
of uniqueness for super-critical initial data. The high-low method does not
extend to energy critical situations, thus there is a natural obstruction to
extending the authors’ previous results to an energy critical setting. Pocov-
nicu [29] later proved almost sure global well-posedness for the energy critical
defocusing nonlinear wave equation on Rd for d = 4, 5. More recently, Oh
and Pocovnicu [27] have treated the energy critical nonlinear wave equation
on R3. These proofs use probabilistic perturbation theory together with a
probabilistic a priori energy bound. See also [2] for a conditional result for
the nonlinear Schrödinger equation using similar methods.

1.1. Randomization procedure. Before stating our main result, we in-
troduce the randomization procedure for the initial data. Let ψ ∈ C∞c (R3)
be an even, nonnegative function with supp(ψ) ⊂ B(0, 1) and such that∑

k∈Z3

ψ(ξ − k) = 1 for all ξ ∈ R3.

Let s ∈ R and f ∈ Hs
x(R3). For every k ∈ Z3, we define the function

Pkf : R3 → C by

(Pkf)(x) = F−1
(
ψ(ξ − k)f̂(ξ)

)
(x) for x ∈ R3.

By requiring ψ to be even, we ensure that

(1.2) Pkf = P−kf

for real-valued f . As in [25], we crucially exploit that these projection
operators satisfy a unit-scale Bernstein inequality, namely for all 2 ≤ r1 ≤
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r2 ≤ ∞ ,

‖Pkf‖Lr2x (R3) ≤ C(r1, r2)‖Pkf‖Lr1x (R3)(1.3)

uniformly for all f ∈ L2
x(R3) and k ∈ Z3.

Let now {(hk, lk)}k∈Z3 be a sequence of zero-mean, complex-valued ran-
dom variables on a probability space (Ω,A,P) such that h−k = hk for all
k ∈ Z3, and similarly for the lk. We assume that {h0,Re(hk), Im(hk)}k∈I
are independent, zero-mean, real-valued random variables, where I is such
that we have a disjoint union Z3 = I ∪ (−I)∪ {0}, and similarly for the lk.
Let us denote by µk and νk the joint distributions of the real and imaginary
parts of the hk and lk, respectively. We assume that there exists c > 0 such
that

(1.4)

∣∣∣∣∫ +∞

−∞
eγx dµk(x)

∣∣∣∣ ≤ ecγ2 for all γ ∈ R and for all k ∈ Z3,

and similarly for νk. The assumption (1.4) is satisfied, for example, by
standard Gaussian random variables, standard Bernoulli random variables,
or any random variables with compactly supported distributions.

For a given f = (f1, f2) ∈ Hs
x(R3)×Hs−1

x (R3) for some s ∈ R, we define
its randomization by

(1.5) fω = (fω1 , f
ω
2 ) :=

(∑
k∈Z3

hk(ω)Pkf1,
∑
k∈Z3

lk(ω)Pkf2

)
,

where this quantity is understood as a Cauchy limit in

L2(Ω;Hs
x(R3)×Hs−1

x (R3)).

The symmetry assumption on the random variables, as well as (1.2) ensure
that the randomization of real-valued initial data is real-valued. Crucially,
such a randomization does not regularize at the level of Sobolev spaces.
Similar randomizations have previously been used in [36], [25], [3], [2], [29],
[27]. We point out that under the symmetry condition imposed in the ran-
domization,

(1.6)

fω1 =
∑
k∈Z3

hk(ω)Pkf1 = h0(ω)P0f1

+ 2
∑
k∈I

(
Rehk(ω)RePkf1 − Imhk(ω)ImPkf1

)
,

and similarly for fω2 . In the following we will denote the free wave evolution
of the initial data fω by

uωf = cos(t|∇|)fω1 +
sin(t|∇|)
|∇|

fω2 .(1.7)
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1.2. Statement of the main result. We are now prepared to state our
main result.

Theorem 1.1. Let 3 < p < 5 and p−1
p+1 < s < 1. For real-valued

f = (f1, f2) ∈ Hs
x(R3)×Hs−1

x (R3),

let fω = (fω1 , f
ω
2 ) be the randomized initial data defined in (1.5) and let uωf

be the free wave evolution (1.7) of fω. Then for almost every ω ∈ Ω, there
exists a unique global solution

(1.8) (u, ∂tu) ∈ (uωf , ∂tu
ω
f ) + C

(
R;H1

x(R3)× L2
x(R3)

)
to the nonlinear wave equation

(1.9)

{
−∂2

t u+ ∆u = |u|p−1u on R× R3,

(u, ∂tu)|t=0 = (fω1 , f
ω
2 ).

Here, uniqueness holds in the sense that upon writing

(u, ∂tu) = (uωf , ∂tu
ω
f ) + (v, ∂tv),

there exists a unique global solution

(v, ∂tv) ∈ C
(
R;H1

x(R3)
)
∩ L

2p
p−3

t,locL
2p
x

(
R× R3

)
× C

(
R;L2

x(R3)
)

to the forced nonlinear wave equation

(1.10)

{
−∂2

t v + ∆v = |uωf + v|p−1(uωf + v) on R× R3,

(v, ∂tv)|t=0 = (0, 0).

Remark 1.2. In contrast to the mild uniqueness of the authors’ previous
work [25, Theorem 1.1], Theorem 1.1 yields the more standard notion of
uniqueness for solutions to semilinear wave equations, compare with [25,
Remark 4.3]. Moreover, the threshold for the allowable regularity in Theo-
rem 1.1 has been significantly lowered as compared to that in [25, Theorem
1.1]. In particular, we prove the existence of global solutions for initial data
at super-critical regularities for all 3 < p < 5, see Figure 1.1.

While the randomization (1.5) does not regularize at the level of Sobolev
spaces, the free evolution of the randomized initial data (1.7) almost surely
satisfies better space-time integrability properties. For this reason one can
show that the nonlinear component of the solution lies in a better space, in
this case H1

x(R3)×L2
x(R3), by constructing local solutions via a fixed point

argument centered at the free evolution uωf . We will see that to conclude

global existence, it suffices to control the growth of the H1
x(R3) × L2

x(R3)
norm of the nonlinear component of the solution. The main novelty of this
paper is the derivation of probabilistic growth estimates for the modified
energy functional

E(v) =

∫
R3

1

2
|∇xv|2 +

1

2
|∂tv|2 +

1

2
|v|2 +

1

p+ 1
|uωf + v|p+1 dx(1.11)
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Figure 1.1. The dashed line is the critical regularity sc =
3
2 −

2
p−1 . The solid line is the threshold for the exponent s

in Theorem 1.1. The dotted line is the threshold from the
authors’ previous result in [25, Theorem 1.1].

for 3 < p < 5, where v is the nonlinear component of the solution to (1.1).
Consequently, we will be able to conclude that almost surely, we have the
necessary control to extend the local solutions that we construct to global
ones.

We consider this modified energy functional for two reasons. The first is
that the appearance of the free evolution of the randomized initial data in
the potential term creates an important cancellation when computing the
time derivative of the energy functional. Second, we need the appearance of
the L2

x term in the energy in order to be able to estimate for 0 < σ < 1,∥∥|∇|σv∥∥2

L2
x(R3)

. ‖v‖2L2
x(R3) + ‖∇xv‖2L2

x(R3) . E(v).

Previously, energy methods for random data problems were used by Nah-
mod, Pavlović and Staffilani [26] in the context of the periodic Navier–Stokes
equation in two and three dimensions and by Burq and Tzvetkov for the
three-dimensional periodic defocusing cubic nonlinear wave equation [12].
Pocovnicu [29] and Oh and Pocovnicu [27] used probabilistic energy bounds
in conjunction with a probabilistic perturbation theory for the energy critical
nonlinear wave equation.

Remark 1.3. Our proof of the probabilistic energy estimates is inspired by
the quintic case in [27], with some important differences. In [27], Oh and
Pocovnicu only consider frequency truncated random initial data and show
that almost surely the corresponding solutions satisfy energy bounds uni-
formly in the truncation parameter, which allows one to construct solutions
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using probabilistic perturbation theory. Instead, we study the Cauchy prob-
lem with super-critical random initial data directly. To do so we make use
of the observation that although the term ∂tu

ω
f ∈ Hs−1

x (R3) appears when
taking the time derivative of our energy functional, this expression is always
paired with a term at regularity H1−s

x (R3). We therefore have no prob-
lem achieving the necessary bounds to close our Gronwall argument, see the
proof of Proposition 3.2 below for more details. Additionally, the presence of
nonalgebraic nonlinearities introduces some complications in our estimates.
To overcome this difficulty, a more careful analysis using the fractional chain
rule and interpolation in Sobolev spaces is necessary.

Remark 1.4. Our proof does not yield any improvement at p = 3. However,
this case can be treated exactly as in the periodic case in [12] using the energy
functional

E(v) =

∫
R3

1

2
|∇xv|2 +

1

2
|∂tv|2 +

1

4
|v|4 dx.

One obtains almost sure global existence for any 0 < s < 1 and uniqueness
holds in the same strong sense as in Theorem 1.1. See Remark 1.5 in [25].

Remark 1.5. To prove scattering of the solutions (1.8) to the random data

problem (1.9), one needs global control of the LptL
2p
x (R × R3) norm of the

nonlinear component of the solutions. This will likely require new ideas,
which we do not pursue here. A probabilistic version of scattering as in [2,
Theorem 1.4] might be possible, however this only yields scattering on sets
of large probability.

1.3. Notation. We denote by C > 0 an absolute constant that depends
only on fixed parameters and whose value may change from line to line. We
write X . Y if X ≤ CY for some C > 0, and analogously for X & Y . In
the sequel, Hs

x(R3), respectively Ḣs
x(R3), denote the usual inhomogeneous,

respectively homogeneous, Sobolev spaces. For s ∈ R we define the space

Hs(R3) := Hs
x(R3)×Hs−1

x (R3),

endowed with the obvious norm. We also introduce the shorthand notation
L∞T L

r
x ≡ L∞t Lrx([0, T ]×R3). Finally, for a ∈ R we write a+ to denote a+ ε

for some arbitrarily small, fixed parameter ε > 0.

Organization of the paper. In Section 2 we collect several deterministic
and probabilistic results. In Section 3 we first record a deterministic local
well-posedness result for the forced nonlinear wave equation that is associ-
ated with the random data problem (1.9). Next, we derive key probabilistic
energy bounds for the nonlinear components of the solutions to (1.9). The
proof of Theorem 1.1 is then an immediate consequence.

Acknowledgments. The authors would like to sincerely thank Michael
Eichmair and Gigliola Staffilani for all of their encouragement and support.
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2. Preliminaries

2.1. Deterministic preliminaries. We begin by recalling the Strichartz
estimates for the wave equation, for which we need the following definition.

Definition 2.1. An exponent pair (q, r) is wave-admissible if 2 ≤ q ≤ ∞,
2 ≤ r <∞ and

1

q
+

1

r
≤ 1

2
.

Proposition 2.2 (Strichartz estimates in three space dimensions; [35], [28],
[18], [20]). Suppose (q, r) and (q̃, r̃) are wave-admissible pairs. Let u be a
(weak) solution to the wave equation{

−∂2
t u+ ∆u = h on [0, T ]× R3,

(u, ∂tu)|t=0 = (f, g)

for some data f, g, h and time 0 < T <∞. Then

(2.1) ‖u‖LqtLrx([0,T ]×R3) + ‖u‖L∞t Ḣγ
x ([0,T ]×R3) + ‖∂tu‖L∞t Ḣγ−1

x ([0,T ]×R3)

. ‖f‖Ḣγ
x (R3) + ‖g‖

Ḣγ−1
x (R3)

+ ‖h‖
Lq̃
′
t L

r̃′
x ([0,T ]×R3)

under the assumption that the following scaling conditions hold

(2.2)
1

q
+

3

r
=

3

2
− γ and

1

q̃′
+

3

r̃′
− 2 =

3

2
− γ.

We say that a wave-admissible pair (q, r) is Strichartz-admissible at reg-
ularity γ if it satisfies the first identity in (2.2) for some 0 < γ < 3

2 .
We will need the following two results in order to handle the fractional

derivatives which appear in the energy bounds argument in Proposition 3.2.

Proposition 2.3 (Fractional chain rule; [14]). Let G ∈ C1(C), σ ∈ (0, 1]
and suppose that 1 < r, r1, r2 <∞ satisfy 1

r = 1
r1

+ 1
r2

. Then

(2.3) ‖|∇|σG(u)‖Lrx(R3) . ‖G′(u)‖Lr1x (R3)‖|∇|
σu‖Lr2x (R3).

Proposition 2.4 (Interpolation estimate; [4, Section 6.4]). Let 0 < θ < 1,
0 ≤ σ0 < σ1 and 1 < r0 < r1 <∞. Define σθ and rθ by

σθ = (1− θ)σ0 + θσ1 and
1

rθ
=

1− θ
r0

+
θ

r1
.

Suppose that u ∈ Ẇ σ0,r0
x (R3) ∩ Ẇ σ1,r1

x (R3). Then u ∈ Ẇ σθ,rθ
x (R3) and

(2.4) ‖u‖Ẇσθ,rθ
x (R3) . ‖u‖

1−θ
Ẇ
σ0,r0
x (R3)

‖u‖θ
Ẇ
σ1,r1
x (R3)

.

In the proof of the key energy bounds in Proposition 3.2, we shall also
need the following Littlewood–Paley projections. Let ϕ ∈ C∞c (R3) be a
radial smooth bump function satisfying ϕ(ξ) = 1 for |ξ| ≤ 1 and ϕ(ξ) = 0
for |ξ| > 2. We define

P̂1f(ξ) := ϕ(ξ)f̂(ξ)
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and for every dyadic N ≥ 2,

P̂Nf(ξ) :=
(
ϕ(ξ/N)− ϕ(2ξ/N)

)
f̂(ξ).

Moreover, we denote by P̃N a fattened Littlewood–Paley projection such

that P̃NPN = PN for all dyadic N ≥ 1.

2.2. Probabilistic preliminaries. In this section we prove several large
deviation estimates for the free evolution of the randomized initial data. In
the proof of the key energy bounds in Proposition 3.2 below, we also need
large deviation estimates for the modified free evolution

(2.5) ũωf := − |∇|
〈∇〉

sin(t|∇|)fω1 +
cos(t|∇|)
〈∇〉

fω2 .

We note that ũωf satisfies ∂tu
ω
f = 〈∇〉ũωf .

The following large deviation estimate is stated for real-valued random
variables for simplicity. However, in light of the expression (1.6) and the
independence assumptions on the real and imaginary parts of the random
variables used in the randomization, this estimate readily yields the desired
results in our setting.

Lemma 2.5 ([10, Lemma 3.1]). Let {hn}∞n=1 be a sequence of real-valued
independent random variables with associated distributions {µn}∞n=1 on a
probability space (Ω,A,P). Assume that the distributions satisfy the property
that there exists c > 0 such that∣∣∣∣∫ +∞

−∞
eγxdµn(x)

∣∣∣∣ ≤ ecγ2 for all γ ∈ R and for all n ∈ N.

Then there exists α > 0 such that for every λ > 0 and every sequence
{cn}∞n=1 ∈ `2(N;C) of complex numbers,

P

({
ω :

∣∣∣∣∣
∞∑
n=1

cnhn(ω)

∣∣∣∣∣ > λ

})
≤ 2 exp

(
−α λ2∑

n |cn|2

)
.

As a consequence there exists C > 0 such that for every p ≥ 2 and every
{cn}∞n=1 ∈ `2(N;C),∥∥∥∥∥

∞∑
n=1

cnhn(ω)

∥∥∥∥∥
Lpω(Ω)

≤ C√p
( ∞∑
n=1

|cn|2
)1/2

.

We record the following large deviation estimates for the free evolution of
the randomized initial data, following the presentation of the results from
[12] for the periodic setting. It follows immediately from the estimates below
that the free evolution of the randomized initial data satisfies Lqt,locL

r
x bounds

almost surely.
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Lemma 2.6. Let σ ≥ 0 and f = (f1, f2) ∈ Hσ(R3). For every 2 ≤ q <∞,
2 ≤ r < ∞, and δ > 1 + 1

q , there exist constants C ≡ C(q, r, δ) > 0 and

c ≡ c(q, r, δ) > 0 such that for every λ > 0,

P
({
ω ∈ Ω :

∥∥〈t〉−δuωf ∥∥LqtLrx(R×R3)
> λ

})
≤ C exp

(
−c λ2

‖f‖2H0(R3)

)
and

P
({
ω ∈ Ω :

∥∥〈t〉−δũωf ∥∥LqtLrx(R×R3)
> λ

})
≤ C exp

(
−c λ2

‖f‖2H0(R3)

)
.

Proof. We adapt the proofs of Proposition A.1, Corollary A.2, and Corol-
lary A.4 in [12] to our setting. In view of Lemma 2.5 in [25], it suffices to
prove for any p ≥ q, r that∥∥〈t〉−δuωf ∥∥Lpω(Ω;LqtL

r
x(R×R3))

.
√
p‖f‖H0(R3)

and similarly for ũωf . To this end we can consider the components of uωf
separately. We will only show∥∥∥∥〈t〉−δ sin(t|∇|)

|∇|
fω2

∥∥∥∥
Lpω(Ω;LqtL

r
x(R×R3))

.
√
p‖f2‖H−1

x (R3),

since the estimates for the other components are slightly easier. Using
Lemma 2.5 and the unit-scale Bernstein estimate (1.3), we have for any
p ≥ q, r that∥∥∥∥〈t〉−δ sin(t|∇|)

|∇|
fω2

∥∥∥∥
Lpω(Ω;LqtL

r
x(R×R3))

=

∥∥∥∥〈t〉−δ ∑
k∈Z3

lk(ω)
sin(t|∇|)
|∇|

Pkf2

∥∥∥∥
Lpω(Ω;LqtL

r
x(R×R3))

.
√
p

∥∥∥∥〈t〉−δ(∑
k∈Z3

∣∣∣sin(t|∇|)
|∇|

Pkf2(x)
∣∣∣2)1/2

∥∥∥∥
LqtL

r
x(R×R3)

.
√
p

∥∥∥∥〈t〉−δ(∑
k∈Z3

∥∥∥sin(t|∇|)
|∇|

Pkf2

∥∥∥2

Lrx(R3)

)1/2
∥∥∥∥
Lqt (R)

.
√
p

∥∥∥∥〈t〉−δ(∑
k∈Z3

∥∥∥sin(t|∇|)
|∇|

Pkf2

∥∥∥2

L2
x(R3)

)1/2
∥∥∥∥
Lqt (R)

.
√
p

∥∥∥∥〈t〉−(δ−1)
(∑
k∈Z3

∥∥〈∇〉−1Pkf2

∥∥2

L2
x(R3)

)1/2
∥∥∥∥
Lqt (R)

.
√
p
∥∥〈t〉−(δ−1)

∥∥
Lqt (R)

(∑
k∈Z3

∥∥〈∇〉−1Pkf2

∥∥2

L2
x(R3)

)1/2

.
√
p‖f2‖H−1

x (R3). �
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The following corollary is the formulation of the large deviation estimates
that we will use in the proof of our main result.

Corollary 2.7. Let σ > 0 and f = (f1, f2) ∈ Hσ(R3). For 2 ≤ q <∞, 2 ≤
r ≤ ∞, δ > 1 + 1

q , and 0 < ε ≤ σ, there exist constants C ≡ C(q, r, δ, ε) > 0

and c ≡ c(q, r, δ, ε) > 0 such that for every λ > 0,

P
({
ω ∈ Ω :

∥∥〈t〉−δuωf ∥∥LqtLrx(R×R3)
> λ

})
≤ C exp

(
−c λ2

‖f‖2Hε(R3)

)
and

P
({
ω ∈ Ω :

∥∥〈t〉−δũωf ∥∥LqtLrx(R×R3)
> λ

})
≤ C exp

(
−c λ2

‖f‖2Hε(R3)

)
.

Proof. As in [12, Corollary A.5], the assertion follows immediately from
Lemma 2.6 and the Sobolev embedding W s,r

x (R3) ↪→ L∞x (R3) for any r > 1
and s > 3

r . �

Finally, we need the following large deviation estimate in order to conclude
that the energy functional used in the proof of Proposition 3.2 is well-defined
for all times.

Lemma 2.8. Let σ > 0 and f = (f1, f2) ∈ Hσ(R3). For 2 ≤ r <∞, δ > 1,
and 0 < ε ≤ σ, there exist constants C ≡ C(r, δ, ε) > 0 and c ≡ c(r, δ, ε) > 0
such that for every λ > 0,

P
({
ω ∈ Ω :

∥∥〈t〉−δuωf ∥∥L∞t Lrx(R×R3)
> λ

})
≤ C exp

(
−c λ2

‖f‖2Hε(R3)

)
.

Proof. We adapt the proof of Lemma 2.2 in [9] to our setting. Applying
one-dimensional Sobolev embedding in time with q ≥ 2 sufficiently large
such that ε > 1

q and δ > 1 + 1
q , we obtain∥∥〈t〉−δuωf ∥∥L∞t Lrx(R×R3)

.
∥∥〈∂t〉ε〈t〉−δuωf ∥∥LqtLrx(R×R3)

.
∥∥〈t〉−δ〈∂t〉εuωf ∥∥LqtLrx(R×R3)

.
∥∥〈t〉−δ〈∇x〉εuωf ∥∥LqtLrx(R×R3)

and the claim now follows from Lemma 2.6. �

3. Proof of Theorem 1.1

In this section we first record a deterministic local well-posedness result
for the forced nonlinear wave equation that is associated with the random
data problem (1.9). Next we derive the main probabilistic energy bounds for
the nonlinear components of the solutions to (1.9). The proof of Theorem 1.1
is then an immediate consequence of these two results.
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Lemma 3.1. Let 3 < p < 5, T ′ > 0, and let (v1, v2) ∈ H1(R3) and F ∈

L
2p
p−3

t L2p
x ([0, T ′]× R3) be such that

‖(v1, v2)‖H1 +
∥∥F∥∥

L
2p
p−3
t L2p

x ([0,T ′]×R3)
≤ λ

for some λ > 0. Then there exists 0 < T ≤ T ′ with T ∼ λ
− 2(p−1)

5−p and a
unique solution

(v, ∂tv) ∈ C
(
[0, T ];H1

x(R3)
)
∩ L

2p
p−3

t L2p
x

(
[0, T ]× R3

)
× C

(
[0, T ];L2

x(R3)
)

to the forced nonlinear wave equation{
−∂2

t v + ∆v = |F + v|p−1(F + v) on [0, T ]× R3,

(v, ∂tv)|t=0 = (v1, v2).

Proof. We introduce the notation

q(p) =
2p

p− 3
, α(p) =

5− p
2

.

Let 0 < T ≤ T ′ to be fixed later. Then we define for v ∈ Lq(p)t L2p
x ([0, T ]×R3)

and t ∈ [0, T ],

Φ(v)(t) = cos(t|∇|)v1 +
sin(t|∇|)
|∇|

v2

−
∫ t

0

sin((t− s)|∇|)
|∇|

|F + v|p−1(F + v)(s) ds.

We note that the exponent pair (q(p), 2p) is Strichartz-admissible at regu-
larity γ = 1. Thus, by the Strichartz estimates (2.1) we obtain that

(3.1)

‖Φ(v)‖
L
q(p)
T L2p

x

≤ C
(
‖(v1, v2)‖Ḣ1

x×L2
x

+
∥∥|F + v|p−1(F + v)

∥∥
L1
TL

2
x

)
≤ C‖(v1, v2)‖Ḣ1

x×L2
x

+ CTα(p)
(∥∥F∥∥p

L
q(p)
T L2p

x
+ ‖v‖p

L
q(p)
T L2p

x

)
.

Similarly, we find for v, ṽ ∈ Lq(p)t L2p
x ([0, T ]× R3) that

(3.2) ‖Φ(v)− Φ(ṽ)‖
L
q(p)
T L2p

x
≤ CTα(p)‖v − ṽ‖

L
q(p)
T L2p

x

×
(∥∥F∥∥p−1

L
q(p)
T L2p

x
+ ‖v‖p−1

L
q(p)
T L2p

x

+ ‖ṽ‖p−1

L
q(p)
T L2p

x

)
.

From (3.1) and (3.2) we conclude that by choosing

T ∼ λ−
(p−1)
α(p) ,

the ball

B :=
{
v ∈ Lq(p)t L2p

x ([0, T ]× R3) : ‖v‖
L
q(p)
t L2p

x ([0,T ]×R3)
≤ 2Cλ

}
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is mapped into itself by Φ and Φ is a contraction on B with respect to the

L
q(p)
T L2p

x norm. Hence, Φ has a unique fixed point v in B and we easily
verify that it satisfies

(v, ∂tv) ∈ C([0, T ];H1
x(R3)× L2

x(R3)),

which finishes the proof. �

We now present the proof of the key probabilistic energy bounds.

Proposition 3.2. Let 3 < p < 5, p−1
p+1 < s < 1 and 0 < δ < p+1

p−1s − 1. For

real-valued f = (f1, f2) ∈ Hs(R3), let fω be the associated randomization as
defined in (1.5) and let uωf , ũωf be the free evolutions (1.7), respectively (2.5).

Then there exists Σ ⊂ Ω with P(Σ) = 1 such that for all ω ∈ Σ,

(3.3)
uωf ∈ L∞t,locLp+1

x (R× R3), 〈∇〉
p−1
2

(1−s+δ+)uωf ∈ L4
t,locL

2
x(R× R3),

ũωf ∈ L
p+1
t,locL

p+1
x (R× R3), 〈∇〉s−δũωf ∈ L2

t,locL
∞
x (R× R3).

For fixed ω ∈ Σ, let T > 0 be arbitrary and let

(vω, ∂tv
ω) ∈ C

(
[0, T ];H1

x(R3)
)
∩ L

2p
p−3

t L2p
x

(
[0, T ]× R3

)
× C

(
[0, T ];L2

x(R3)
)

be a solution to

(3.4)

{
−∂2

t v
ω + ∆vω = |uωf + vω|p−1(uωf + vω) on [0, T ]× R3,

(vω, ∂tv
ω)|t=0 = (v1, v2)

for some (v1, v2) ∈ H1(R3). Then there exists an absolute constant C > 0
such that

sup
t∈[0,T ]

∥∥(vω(t), ∂tv
ω(t))

∥∥2

H1

≤ C
(
‖(v1, v2)‖2H1 + ‖v1‖p+1

Lp+1
x

+ ‖fω1 ‖
p+1

Lp+1
x

+Bω(T )
)
eC(T+Aω(T )),

where

Aω(T ) =
∥∥〈∇〉s−δũωf ∥∥L1

tL
∞
x ([0,T ]×R3)

,

Bω(T ) =
∥∥ũωf ∥∥p+1

Lp+1
t Lp+1

x ([0,T ]×R3)
+
∥∥〈∇〉s−δũωf ∥∥2

L2
tL
∞
x ([0,T ]×R3)

+
∥∥〈∇〉 p−1

2
(1−s+δ+)uωf

∥∥4

L4
tL

2
x([0,T ]×R3)

.

Proof. The large deviation estimates from Lemma 2.6, Corollary 2.7, and
Lemma 2.8 imply that there exists Σ ⊂ Ω with P(Σ) = 1 such that (3.3)
holds for all ω ∈ Σ.

Now for fixed ω ∈ Σ, let T > 0 be arbitrary and let

(vω, ∂tv
ω) ∈ C

(
[0, T ];H1

x(R3)
)
∩ L

2p
p−3

t L2p
x

(
[0, T ]× R3

)
× C

(
[0, T ];L2

x(R3)
)
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be a solution to (3.4). For ease of notation we drop the superscript ω from
vω for the remainder of the proof and consider the energy functional

E(v(t)) =

∫
R3

1

2
|∇xv|2 +

1

2
|∂tv|2 +

1

2
|v|2 +

1

p+ 1
|uωf + v|p+1 dx.

For ω ∈ Σ, this functional is well-defined and finite for all 0 ≤ t ≤ T by
Sobolev embedding and the properties from (3.3). Using that v is a solution
to the nonlinear wave equation (3.4) and that ∂tu

ω
f = 〈∇〉ũωf , we compute

(3.5) ∂tE(v(t)) =

∫
R3

v∂tv dx+

∫
R3

〈∇〉ũωf |uωf + v|p−1(uωf + v) dx,

where the second term on the right-hand side is to be understood as an
Hs−1
x ×H1−s

x pairing. The first term can be easily bounded by∣∣∣ ∫
R3

v∂tv dx
∣∣∣ . ‖v‖L2

x
‖∂tv‖L2

x
. E(v).

In order to estimate the second term on the right-hand side of (3.5), we use
an inhomogeneous dyadic decomposition to expand∫

R3

〈∇〉ũωf |uωf + v|p−1(uωf + v) dx

=
∑
N≥1

∫
R3

P̃N
(
〈∇〉ũωf

)
PN
(
|uωf + v|p−1(uωf + v)

)
dx.

Case 1: N . 1. By Bernstein’s and Young’s inequality∣∣∣∣ ∑
N.1

∫
R3

P̃N
(
〈∇〉ũωf

)
PN
(
|uωf + v|p−1(uωf + v)

)
dx

∣∣∣∣
.
∥∥ũωf ∥∥Lp+1

x

∥∥|uωf + v|p−1(uωf + v)
∥∥
L
p+1
p

x

.
∥∥ũωf ∥∥p+1

Lp+1
x

+
∥∥uωf + v

∥∥p+1

Lp+1
x

.
∥∥ũωf ∥∥p+1

Lp+1
x

+ E(v).

Case 2: N � 1. We further decompose dyadically∑
N�1

∫
R3

P̃N
(
〈∇〉ũωf

)
PN
(
|uωf + v|p−1(uωf + v)

)
dx

=
∑
N�1

∑
N1,N2≥1

∫
R3

P̃N
(
〈∇〉ũωf

)
PN

(
PN1

(
|uωf + v|p−1

)
PN2

(
uωf + v

))
dx.
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Case 2a: N1 ∼ N and N2 . N1. Summing over dyadic N,N2 at a slight
loss of a power in N1, we obtain∣∣∣∣ ∑

N�1

∑
N1∼N

∑
N2.N1

∫
R3

P̃N
(
〈∇〉ũωf

)
PN

(
PN1

(
|uωf + v|p−1

)
PN2

(
uωf + v

))
dx

∣∣∣∣
.
∥∥〈∇〉s−δũωf ∥∥L∞x sup

N1�1
N1−s+δ+

1

∥∥PN1 |uωf + v|p−1
∥∥
L
p+1
p

x

∥∥uωf + v
∥∥
Lp+1
x

.
∥∥〈∇〉s−δũωf ∥∥L∞x ∥∥|∇|1−s+δ+(|uωf + v|p−1

)∥∥
L
p+1
p

x

∥∥uωf + v
∥∥
Lp+1
x
.

Using the fractional chain rule (2.3) with p
p+1 = 2

p+1 + p−2
p+1 , this is bounded

by

(3.6)
∥∥〈∇〉s−δũωf ∥∥L∞x ∥∥|∇|1−s+δ+(uωf + v)

∥∥
L
p+1
2

x

∥∥uωf + v
∥∥p−1

Lp+1
x
.

We invoke the interpolation inequality (2.4) in the form∥∥|∇|σf∥∥
L
p+1
2

x

.
∥∥|∇| p−1

2
σf
∥∥ 2
p−1

L2
x

∥∥f∥∥ p−3
p−1

Lp+1
x

for 0 < σ < 1 to bound (3.6) by∥∥〈∇〉s−δũωf ∥∥L∞x ∥∥|∇| p−1
2

(1−s+δ+)(uωf + v)
∥∥ 2
p−1

L2
x

∥∥uωf + v
∥∥ (p−2)(p+1)

p−1

Lp+1
x

,

which we can estimate using Young’s inequality∥∥〈∇〉s−δũωf ∥∥L∞x (∥∥|∇| p−1
2

(1−s+δ+)(uωf + v)
∥∥2

L2
x

+
∥∥uωf + v

∥∥p+1

Lp+1
x

)
.
∥∥〈∇〉s−δũωf ∥∥L∞x (∥∥|∇| p−1

2
(1−s+δ+)uωf

∥∥2

L2
x

+
∥∥|∇| p−1

2
(1−s+δ+)v

∥∥2

L2
x

+
∥∥uωf + v

∥∥p+1

Lp+1
x

)
.

(3.7)

By our assumptions on s and δ, we have that

p− 1

2
(1− s+ δ+) < s < 1,

thus, we may bound the right-hand side of (3.7) by∥∥〈∇〉s−δũωf ∥∥L∞x
×
(∥∥〈∇〉 p−1

2
(1−s+δ+)uωf

∥∥2

L2
x

+
∥∥v∥∥2

L2
x

+
∥∥∇xv∥∥2

L2
x

+
∥∥uωf + v

∥∥p+1

Lp+1
x

)
.

Case 2b: N2 ∼ N and N1 . N2. Summing over dyadic N , N1, we bound∣∣∣∣ ∑
N�1

∑
N2∼N

∑
N1.N2

∫
R3

P̃N
(
〈∇〉ũωf

)
PN

(
PN1

(
|uωf + v|p−1

)
PN2

(
uωf + v

))
dx

∣∣∣∣
.
∥∥〈∇〉s−δũωf ∥∥L∞x sup

N2�1
N1−s+δ+

2

∥∥uωf + v
∥∥p−1

Lp+1
x

∥∥PN2(uωf + v)
∥∥
L
p+1
2

x

.
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Using the interpolation inequality

‖f‖
L
p+1
2

x

. ‖f‖
2
p−1

L2
x
‖f‖

p−3
p−1

Lp+1
x
,

this is bounded by∥∥〈∇〉s−δũωf ∥∥L∞x
× sup
N2�1

N1−s+δ+
2

∥∥uωf + v
∥∥p−1

Lp+1
x

∥∥PN2(uωf + v)
∥∥ 2
p−1

L2
x

∥∥PN2(uωf + v)
∥∥ p−3
p−1

Lp+1
x

.
∥∥〈∇〉s−δũωf ∥∥L∞x sup

N2�1

∥∥∥N p−1
2

(1−s+δ+)

2 PN2(uωf + v)
∥∥∥ 2
p−1

L2
x

∥∥uωf + v
∥∥ (p−2)(p+1)

p−1

Lp+1
x

.

By Bernstein’s and Young’s inequality we finally obtain the estimate∥∥〈∇〉s−δũωf ∥∥L∞x (∥∥|∇| p−1
2

(1−s+δ+)(uωf + v)
∥∥2

L2
x

+
∥∥uωf + v

∥∥p+1

Lp+1
x

)
.
∥∥〈∇〉s−δũωf ∥∥L∞x
×
(∥∥〈∇〉 p−1

2
(1−s+δ+)uωf

∥∥2

L2
x

+
∥∥v∥∥2

L2
x

+
∥∥∇xv∥∥2

L2
x

+
∥∥uωf + v

∥∥p+1

Lp+1
x

)
.
∥∥〈∇〉s−δũωf ∥∥2

L∞x
+
∥∥〈∇〉 p−1

2
(1−s+δ+)uωf

∥∥4

L2
x

+
∥∥〈∇〉s−δũωf ∥∥L∞x (∥∥v∥∥2

L2
x

+
∥∥∇xv∥∥2

L2
x

+
∥∥uωf + v

∥∥p+1

Lp+1
x

)
.

Case 2c: N1, N2 & N and N1 ∼ N2. We can proceed similarly to Case 2b.
Putting the above estimates together, we find that for 0 ≤ t ≤ T ,

∂tE(v(t))

≤ C
(∥∥ũωf (t)

∥∥p+1

Lp+1
x

+
∥∥〈∇〉s−δũωf (t)

∥∥2

L∞x
+
∥∥〈∇〉 p−1

2
(1−s+δ+)uωf (t)

∥∥4

L2
x

+
(
1 +

∥∥〈∇〉s−δũωf (t)
∥∥
L∞x

)
E(v(t))

)
.

Gronwall’s inequality then yields that

E(v(T )) ≤ exp

(
C

∫ T

0

(
1 +

∥∥〈∇〉s−δũωf (t)
∥∥
L∞x

)
dt

)
×
(
E(0) + C

∫ T

0

(∥∥ũωf (t)
∥∥p+1

Lp+1
x

+
∥∥〈∇〉s−δũωf (t)

∥∥2

L∞x

+
∥∥〈∇〉 p−1

2
(1−s+δ+)uωf (t)

∥∥4

L2
x

)
dt

)
≤ CeC(T+Aω(T ))

(
‖(v1, v2)‖2H1 + ‖v1‖p+1

Lp+1
x

+ ‖fω1 ‖
p+1

Lp+1
x

+Bω(T )
)
.�

Theorem 1.1 is now an easy consequence of the previous results.

Proof of Theorem 1.1. The large deviation estimates from Lemma 2.6,

Corollary 2.7, and Lemma 2.8 imply that there exists Ω̃ ⊂ Ω with P(Ω̃) = 1
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such that for all ω ∈ Ω̃, (3.3) holds and

uωf ∈ L
2p
p−3

t,locL
2p
x (R× R3).

Fix ω ∈ Ω̃. We invoke Lemma 3.1 to obtain a local solution (vω, ∂tv
ω) to

(1.10). We can iterate the local well-posedness of Lemma 3.1 to obtain a
global solution provided the H1(R3) norm of (vω(t), ∂tv

ω(t)) does not blow
up in finite time. This is guaranteed by the energy bounds of Proposition 3.2,
which proves the assertion. �
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