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A long exact sequence for homology of
FI-modules

Wee Liang Gan

Abstract. We construct a long exact sequence involving the homology
of an FI-module. Using the long exact sequence, we give two methods
to bound the Castelnuovo–Mumford regularity of an FI-module which
is generated and related in finite degree. We also prove that for an FI-
module which is generated and related in finite degree, if it has a nonzero
higher homology, then its homological degrees are strictly increasing
(starting from the first homological degree).
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1. Introduction

This article studies homological aspects of the theory of FI-modules. We
begin by recalling a few definitions from [1], [2], and [3].
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Let Z+ be the set of non-negative integers. Let k be a commutative ring.
Let FI be the category whose objects are the finite sets and whose morphisms
are the injective maps. An FI-module is a functor from FI to the category
of k-modules. For any FI-module V and finite set X, we shall write VX for
V (X).

Suppose V is an FI-module. For any finite set X, let (JV )X be the k-
submodule of VX spanned by the images of the maps f∗ : VY → VX for all
injections f : Y → X with |Y | < |X|. Then JV is an FI-submodule of V .
Let

F (V ) := V/JV.

Then F is a right exact functor from the category of FI-modules to itself.
Following [1] and [2], for any a ∈ Z+, the FI-homology functor Ha is defined
to be the a-th left derived functor of F .

Fix a one-element set {?} and define a functor σ : FI→ FI by

X 7→ Xt{?}.

If f : X → Y is a morphism in FI, then σ(f) : Xt{?} → Y t{?} is the map
f t id{?}. Following [3, Definition 2.8], the shift functor S from the category
of FI-modules to itself is defined by SV = V ◦ σ for every FI-module V .

Suppose V is an FI-module. For any finite set X, one has

(SV )X = VXt{?}.

There is a natural FI-module homomorphism

ι : V → SV

where the maps ιX : VX → (SV )X are defined by the inclusion maps

X ↪→ Xt{?}.

We denote by DV the cokernel of ι : V → SV . Following [1], we call the
functor D : V 7→ DV the derivative functor on the category of FI-modules.

Our main result is the following.

Theorem 1. Let V be an FI-module. Then there is a long exact sequence:

· · · · · · // SHa+1(V )

ss
Ha(V )

ι∗ // Ha(SV ) // SHa(V )

ss

Ha−1(V )
ι∗ // · · · · · · // SH0(V ) // 0.

The proof of Theorem 1 will be given in Section 2.
As applications of Theorem 1, we give in Section 3 two methods to bound

from above the Castelnuovo–Mumford regularity of an FI-module which is
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generated and related in finite degree. The first method, using the deriva-
tive functor D, gives a new proof of the bound first found by Church and
Ellenberg [1, Theorem A]. The second method, using the shift functor S,
gives a bound which is always less than or equal to one found recently by
Li and Ramos [7, Theorem 5.20]. Along the way, we use Theorem 1 to re-
prove a few results of Li and Yu [8], and Ramos [10]. We also prove that
for an FI-module which is generated and related in finite degree, if it has a
nonzero higher homology, then its homological degrees are strictly increasing
(starting from the first homological degree).

Although some of the results in Section 3 are known, our proofs based
on Theorem 1 seem to be more direct than previous proofs. We also expect
that our proofs can be easily generalized to FIG-modules.

2. The long exact sequence

2.1. A Koszul complex. Let V be an FI-module. The FI-homology of V

can be computed from a Koszul complex S̃−•V first defined in [3, (11)]. We
recall the construction of this complex following [4, Section 2].

For any finite set I, let kI be the free k-module with basis I, and det(I) the

free k-module
∧|I| kI of rank one; by convention, if I = ∅, then det(I) = k.

If I = {i1, . . . , ia}, then i1 ∧ · · · ∧ ia is a basis for det(I).
Suppose X is a finite set and Y is a subset of X. If i ∈ X \Y and v ∈ VY ,

we shall write i(v) for the element f∗(v) ∈ VY ∪{i} where f : Y ↪→ Y ∪ {i} is
the inclusion map. For any a ∈ Z+, let

(S̃−aV )X :=
⊕
I⊂X
|I|=a

VX\I ⊗k det(I).

Suppose X and X ′ are finite sets and f : X → X ′ is an injective map. For
any I ⊂ X, the map f restricts to an injective map f |X\I : X\I → X ′\f(I).
We define

f∗ : (S̃−aV )X → (S̃−aV )X′

by the formula

f∗(v ⊗ i1 ∧ · · · ∧ ia) := (f |X\I)∗(v)⊗ f(i1) ∧ · · · ∧ f(ia),

where v ∈ VX\I , (f |X\I)∗(v) ∈ VX′\f(I), and I = {i1, . . . , ia}. This defines,

for each a ∈ Z+, an FI-module S̃−aV .

The differential d : (S̃−aV )X → (S̃−a+1V )X is defined on each direct
summand by the formula

d(v ⊗ i1 ∧ · · · ∧ ia) :=
a∑
p=1

(−1)p ip(v)⊗ i1 ∧ · · · îp · · · ∧ ia,
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where v ∈ VX\I , I = {i1, . . . , ia}, and îp means that ip is omitted in the

wedge product. We obtain a complex S̃−•V of FI-modules:

· · · −→ S̃−2V −→ S̃−1V −→ S̃0V −→ 0.

The following theorem was independently proved in [1] and [4].

Theorem 2. Let V be an FI-module. Then there is an FI-module isomor-
phism

Ha(V ) ∼= Ha(S̃−•V ) for each a ∈ Z+.

Proof. See [1, Proposition 5.10 and proof of Theorem B], or [4, Theorem 1
and Remark 4]. �

Applying the shift functor S to the complex S̃−•V , we obtain a complex

SS̃−•V . Since S is an exact functor, it is immediate from Theorem 2 that
one has an isomorphism

SHa(V ) ∼= Ha(SS̃−•V ) for each a ∈ Z+.

2.2. Proof of Theorem 1. Let V be an FI-module. The homomorphism
ι : V → SV defines, in the obvious way, a morphism of complexes ι̃ :

S̃−•V → S̃−•SV . By a standard result in homological algebra [12, Section
1.5], Theorem 1 is immediate from Theorem 2 and the following lemma.

Lemma 3. Let V be an FI-module. Then the complex SS̃−•V is isomorphic

to the mapping cone of ι̃ : S̃−•V → S̃−•SV .

Proof. We shall follow standard notations (found, for example, in [12, Sec-
tion 1.5]) and write the mapping cone of ι̃ as

cone(ι̃) = (S̃−•V )[−1]⊕ S̃−•SV.

To define a homomorphism

φ : cone(ι̃) −→ SS̃−•V,

we need to define, for each finite set X, a homomorphism of complexes

φX : cone(ι̃)X −→ (SS̃−•V )X .

Suppose a > 0. The degree a component of (S̃−•V )X [−1] is (S̃−(a−1)V )X .
For any I = {i1, . . . , ia−1} ⊂ X and v ∈ VX\I , we have the element

v ⊗ i1 ∧ · · · ∧ ia−1 ∈ (S̃−(a−1)V )X ;

let

φX(v ⊗ i1 ∧ · · · ∧ ia−1) := v ⊗ ((?) ∧ i1 ∧ · · · ∧ ia−1) ∈ (S̃−aV )Xt{?}.

Here, we used X \ I = (Xt{?}) \ (It{?}) to see that the element v on the
right hand side is an element of V(Xt{?})\(It{?}).
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Suppose a > 0. For any I = {i1, . . . , ia} ⊂ X and v ∈ (SV )X\I , we have

the element v ⊗ i1 ∧ · · · ∧ ia ∈ (S̃−aSV )X ; let

φX(v ⊗ i1 ∧ · · · ∧ ia) := v ⊗ i1 ∧ · · · ∧ ia ∈ (S̃−aV )Xt{?}.

Here, we used (SV )X\I = V(Xt{?})\I to see that the element v on the right
hand side is an element of V(Xt{?})\I .

By a routine verification, the above defines a homomorphism φ of com-
plexes of FI-modules; the key calculation here is the following: for any
I = {i1, . . . , ia−1} ⊂ X and

v ⊗ i1 ∧ · · · ∧ ia−1 ∈ (S̃−(a−1)V )X ,

one has:

φX
(
dcone(ι̃)(v ⊗ i1 ∧ · · · ∧ ia−1)

)
= φX

−ιX\I(v)⊗ i1 ∧ · · · ∧ ia−1 −
a−1∑
p=1

(−1)p ip(v)⊗ i1 ∧ · · · îp · · · ∧ ia−1


= −ιX\I(v)⊗ i1 ∧ · · · ∧ ia−1 −

a−1∑
p=1

(−1)p ip(v)⊗ ((?) ∧ i1 ∧ · · · îp · · · ∧ ia−1)

= d (v ⊗ ((?) ∧ i1 ∧ · · · ∧ ia−1))
= d(φX(v ⊗ i1 ∧ · · · ∧ ia−1)).

It is plain that φ is bijective and hence an isomorphism. �

A special case of Lemma 3 appeared in [4, proof of Proposition 6].

3. Applications

3.1. Definitions and notations. We recall some definitions from [1] and
[5].

Let V be any FI-module. For any n ∈ Z+, we set n := {1, . . . , n} (in
particular, 0 = ∅). We shall use the convention that the supremum and
infimum of an empty set are −∞ and ∞, respectively.

The degree deg(V ) of V is

deg(V ) := sup{n ∈ Z+ | Vn 6= 0}.
The lowest degree low(V ) of V is

low(V ) := inf{n ∈ Z+ | Vn 6= 0}.
For any a ∈ Z+, the a-th homological degree hda(V ) of V is

hda(V ) := degHa(V ).

The Castelnuovo–Mumford regularity reg(V ) of V is the infimum of the
set of all c ∈ Z such that

hda(V ) 6 c+ a for every integer a > 1.
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The torsion degree td(V ) of V is the supremum of the set of all n ∈ Z+

such that there exists a nonzero v ∈ Vn satisfying f∗(v) = 0 for every
injection f : n→ n + 1.

For any k ∈ Z+, we say that V is generated in degree 6 k if hd0(V ) 6 k.
For any k, d ∈ Z+, we say that V is generated in degree 6 k and related

in degree 6 d if there exists a short exact sequence

0 −→W −→ P −→ V −→ 0

where P is a projective FI-module generated in degree 6 k and W is an
FI-module generated in degree 6 d.

Let KV be the kernel of ι : V → SV .
Let HD

1 be the first left-derived functor of the right exact functor D.

3.2. Some basic facts. We collect in the following lemma some basic facts
which we shall use later.

Lemma 4. Let V be an FI-module. Then one has the following:

(i) There is an isomorphism KV ∼= H0(KV ), and td(V ) = deg(KV ).
(ii) There is an isomorphism KV ∼= HD

1 (V ).
(iii) If P is a projective FI-module, then DP is a projective FI-module.
(iv) If V is generated in degree 6 k where k ∈ Z+, then DV is generated

in degree 6 k − 1.
(v) If V is generated in degree 6 k and related in degree 6 d where

k, d ∈ Z+, then DV is generated in degree 6 k − 1 and related in
degree 6 d− 1.

(vi) If V is generated in degree 6 k and related in degree 6 d where
k, d ∈ Z+, then hd1(V ) 6 d.

(vii) There is an isomorphism S(DV ) ∼= D(SV ).
(viii) If P is a projective FI-module, then SP is a projective FI-module.
(ix) If V is generated in degree 6 k, then SV is generated in degree 6 k.
(x) If V is generated in degree 6 k and related in degree 6 d where

k, d ∈ Z+, then SV is generated in degree 6 k and related in degree
6 d.

Proof. (i) Trivial.
(ii) See [1, Lemma 4.7(i)].
(iii) See [1, Lemma 4.7(iv)].
(iv) See [1, proof of Proposition 4.6].
(v) Follows from (iii) and (iv).
(vi) Trivial.
(vii) See [10, Lemma 3.5].
(viii) Follows from [3, Proposition 2.12].
(ix) See [3, Corollary 2.13].
(x) Follows from (viii) and (ix). �

The following simple observation is sometimes useful.
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Lemma 5. Let V be an FI-module and let a ∈ Z+. If n < low(V ) + a, then
Ha(V )n = 0.

Proof. If n < low(V ) + a, then (S̃−aV )n = 0; hence, by Theorem 2, one
has Ha(V )n = 0. �

Corollary 6. Let V be an FI-module and let a ∈ Z+. If Ha(V ) 6= 0, then

hda(V ) > low(V ) + a.

Proof. Immediate from Lemma 5. �

3.3. FI-modules of finite degree. The following result was indepen-
dently proved by Li [5, Theorem 4.8] and Ramos [10, Corollary 3.11]. Let
us give a proof using Theorem 2.

Lemma 7. Let V be an FI-module with deg(V ) <∞. Then

reg(V ) 6 deg(V ).

Proof. Let a ∈ Z+. If n > deg(V ) + a, then (S̃−aV )n = 0; hence, by
Theorem 2, one has Ha(V )n = 0. �

If V is a finitely generated FI-module with deg(V ) < ∞, then Gan and
Li [4, Theorem 2] have shown that reg(V ) = deg(V ).

3.4. Bounding regularity using the derivative functor. In bounding
the Castelnuovo–Mumford regularity reg(V ) of an FI-module V , our first
strategy is to find a bound of reg(V ) in terms of reg(DV ), and then use
recurrence to obtain a bound for reg(V ).

Proposition 8. Let V be an FI-module. Then one has:

reg(V ) 6 max{hd1(V )− 1, td(V ), reg(DV ) + 1}.

Proof. Set c = max{hd1(V )− 1, td(V ), reg(DV ) + 1}. There is nothing to
prove if c =∞, so assume c <∞. We need to prove that

(1) hda(V ) 6 c+ a for each a > 1.

When a = 1, the inequality (1) holds because hd1(V )− 1 6 c.
Suppose, for induction on a, that one has hda−1(V ) 6 c+ a− 1 for some

a > 2. Then
Ha−1(V )n = 0 for each n > c+ a.

We have two short exact sequences:

0 −→ KV −→ V
ι1−→ V/KV −→ 0,

0 −→ V/KV
ι2−→ SV −→ DV −→ 0.

They give two long exact sequences:

· · · −→ Ha(V )n
ι1∗−→ Ha(V/KV )n −→ Ha−1(KV )n −→ · · · ,

· · · −→ Ha(V/KV )n
ι2∗−→ Ha(SV )n −→ Ha(DV )n −→ · · · .
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Recall that deg(KV ) = td(V ) (see Lemma 4(i)). By Lemma 7 and the
inequality c > td(V ), one has

Ha−1(KV )n = 0 for each n > c+ a.

By the inequality c > reg(DV ) + 1, one has

Ha(DV )n = 0 for each n > c+ a.

Since ι : V → SV is the composition of ι1 : V → V/K and ι2 : V/K → SV ,
the map ι∗ : Ha(V )n → Ha(SV )n is surjective for each n > c+ a.

From Theorem 1, we have an exact sequence:

· · · −→ Ha(V )n
ι∗−→ Ha(SV )n −→ Ha(V )n+1 −→ Ha−1(V )n −→ · · · .

It follows that Ha(V )n+1 = 0 for n > c+ a, and hence hda(V ) 6 c+ a. �

Finiteness of the Castelnuovo–Mumford regularity for finitely generated
FI-modules over a field of characteristic zero was first proved by Sam and
Snowden in [11, Corollary 6.3.5]. In the following theorem, the inequalities
(2) and (5) were first proved by Church and Ellenberg in [1, Theorem 4.8
and Theorem A] via an intricate combinatorial result [1, Theorem E]. An
alternative proof of (2) and (5) was subsequently given by Li in [6, Theorem
2.4] using results from [5] and [8]. (Although the papers [5], [6], and [8]
worked with finitely generated FI-modules over a noetherian ring, most of
the arguments in there can be adapted to our more general setting.) The
proof of (2) we give below follows along the same lines as the argument in
[6], and we use the crucial idea in [6] of proving the inequalities (2) and (5)
simultaneously by induction on k. However, our proof of (5) via (3) and (4)
is quite different from the proofs in [1] and [6].

Theorem 9. Let V be an FI-module which is generated in degree 6 k and
related in degree 6 d where k, d ∈ Z+. Let

hdD1 (V ) := max{hd1(D
iV ) + i | i = 0, 1, . . . , k},

tdD(V ) := max{td(DiV ) + i | i = 0, 1, . . . , k}.
Then one has the following:

td(V ) 6 min{k, d}+ d− 1,(2)

reg(V ) 6 max{hdD1 (V )− 1, tdD(V )},(3)

max{hdD1 (V )− 1, tdD(V )} 6 min{k, d}+ d− 1.(4)

In particular, one has:

(5) reg(V ) 6 min{k, d}+ d− 1.

Proof. If V = 0, then td(V ), reg(V ), hdD1 (V ), and tdD(V ) are all equal to
−∞, so there is nothing to prove.

Suppose V 6= 0. We use induction on k. We have a short exact sequence

0 −→W −→ P −→ V −→ 0
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where P is a projective FI-module generated in degree 6 k and W is an
FI-module generated in degree 6 d. Since HD

1 (P ) = 0 and HD
1 (V ) = KV

(see Lemma 4(ii)), we obtain an exact sequence

0 −→ KV −→ DW −→ DP −→ DV −→ 0,

which we break up as two short exact sequences:

0 −→ KV −→ DW −→ DW/KV −→ 0,

0 −→ DW/KV −→ DP −→ DV −→ 0.

They give two long exact sequences:

· · · −→ H1(DW/KV ) −→ H0(KV ) −→ H0(DW ) −→ · · · ,(6)

· · · −→ H2(DV ) −→ H1(DW/KV ) −→ 0 −→ · · · ,(7)

where we used Lemma 4(iii) to see that H1(DP ) = 0.
By Lemma 4(v), the FI-module DV is generated in degree 6 k − 1 and

related in degree 6 d− 1. Hence, we have:

td(V )

= hd0(KV ) (Lemma 4(i))

6 max{hd0(DW ), hd1(DW/KV )} (6)

6 max{d− 1, hd2(DV )} (Lemma 4(iv) and (7))

6 max{d− 1, reg(DV ) + 2}
6 max{d− 1, min{k − 1, d− 1}+ (d− 1)− 1 + 2} (induction hypothesis)

6 min{k, d}+ d− 1.

We also have:

reg(V ) 6 max{hd1(V )− 1, td(V ), reg(DV ) + 1} (Proposition 8)

6 max{hdD1 (V )− 1, tdD(V )} (induction hypothesis).

By Lemma 4(v) and Lemma 4(vi), for i = 0, . . . , k, we have:

hd1(D
iV ) + i− 1 6 (d− i) + i− 1 6 min{k, d}+ d− 1,

td(DiV ) + i 6 min{k − i, d− i}+ (d− i)− 1 + i 6 min{k, d}+ d− 1,

where we used (2) for V , DV , . . . , and DkV . Hence,

max{hdD1 (V )− 1, tdD(V )} 6 min{k, d}+ d− 1. �

3.5. Iterated shifts and vanishing of homology. Recall that the FI-
homology functor Ha is, by definition, the a-th left derived functor of F . An
FI-module V is F -acyclic if Ha(V ) = 0 for every a > 1.

Lemma 10. Let V be an FI-module.

(i) If a ∈ Z+ and Ha(V ) = 0, then Ha(SV ) = 0.
(ii) If V is F -acyclic, then SV is F -acyclic.
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Proof. Immediate from Theorem 1. �

We say that an FI-module V is torsion-free if td(V ) = −∞. By Lem-
ma 4(i), an FI-module V is torsion-free if and only if KV = 0.

The following lemma can be deduced from [8, Theorem 3.5 and Lem-
ma 3.12] under some finiteness assumptions. We give a proof using Theo-
rem 1.

Lemma 11. Let V be a torsion-free FI-module. If DV is F -acyclic, then
V is F -acyclic.

Proof. Since KV = 0, there is a short exact sequence

0→ V
ι→ SV → DV → 0.

From the long exact sequence in homology and the F -acyclicity of DV , we
deduce that:

(i) ι∗ : H0(V ) −→ H0(SV ) is a monomorphism.
(ii) ι∗ : Ha(V ) −→ Ha(SV ) is an isomorphism for each a > 1.

Suppose that a > 1. From (i), (ii), and the long exact sequence in The-
orem 1, we must have SHa(V ) = 0, so Ha(V )n = 0 for each n > 1. By
Lemma 5, we have Ha(V )0 = 0. Therefore, Ha(V ) = 0. �

The following result is proved in [6, Corollary 3.3] and [10, Corollary 4.11];
see also [9, Theorem A]. We adapt the argument in [8, Theorem 3.13] using
(2) and Lemma 11.

Theorem 12. Let V be an FI-module which is generated in degree 6 k and
related in degree 6 d where k, d ∈ Z+. Then SiV is F -acyclic for each
i > min{k, d}+ d.

Proof. The statement is trivial if V = 0.
Suppose V 6= 0. We prove the theorem by induction on k. Suppose

i > min{k, d}+ d. By Theorem 9, the FI-module SiV is torsion-free. Using
Lemma 4(v), one has:

Si(DV ) is F -acyclic (induction hypothesis)

=⇒ D(SiV ) is F -acyclic (Lemma 4(vii))

=⇒ SiV is F -acyclic (Lemma 11). �

Notation 13. If V is an FI-module which is generated in degree 6 k and
related in degree 6 d where k, d ∈ Z+, we denote by N(V ) the minimum
i ∈ Z+ such that SiV is F -acyclic.

By Theorem 12, one has:

N(V ) 6 min{k, d}+ d.

The following result is proved in [8, Theorem 1.3] and [10, Theorem B].
We give another proof using Theorem 1.
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Proposition 14. Let V be an FI-module which is generated in degree 6 k
and related in degree 6 d where k, d ∈ Z+. Then V is F -acyclic if and only
if there exists s > 1 such that Hs(V ) = 0.

Proof. We only have to prove that if s is an integer > 1 such that Hs(V ) =
0, then V is F -acyclic. We use induction on N(V ) (see Notation 13).

First, if N(V ) = 0, then V is F -acyclic. Next, suppose N(V ) > 1 and
Hs(V ) = 0 for some s > 1. By Lemma 10(i), we have Hs(SV ) = 0. Since
N(SV ) = N(V )−1, by induction hypothesis, the FI-module SV is F -acyclic.

Suppose 1 6 a 6 s. By Theorem 1, there are isomorphisms:

Ha(V ) ∼= SHa+1(V ) ∼= S2Ha+2(V ) ∼= · · · ∼= Ss−aHs(V ) = 0.

Now suppose a > s. By Theorem 1, there are isomorphisms:

0 = Hs(V ) ∼= SHs+1(V ) ∼= S2Hs+2(V ) ∼= · · · ∼= Sa−sHa(V ),

so Ha(V )n = 0 for n > a − s. But by Lemma 5, we also have Ha(V )n = 0
for n < a. Hence, Ha(V ) = 0.

It follows that V is F -acyclic. �

A characterization of F -acyclicity in terms of existence of a suitable fil-
tration (called ]-filtration in [9, Definition 1.10]) is proved in [8, Theorem
1.3] and [10, Theorem B]; we do not need to use this filtration in our present
article.

3.6. Bounding regularity using the shift functor. Our second strat-
egy for bounding the Castelnuovo–Mumford regularity reg(V ) of an FI-
module V is to find a bound of reg(V ) in terms of reg(SV ), and then use
recurrence to obtain a bound for reg(V ). This is similar to the approach
used by Li in [5, Section 4].

Proposition 15. Let V be an FI-module. Then

reg(V ) 6 max{hd1(V )− 1, reg(SV ) + 1}.

Proof. Set c = max{hd1(V ) − 1, reg(SV ) + 1}. There is nothing to prove
if c =∞, so assume c <∞.

We shall show, by induction on a, that one has:

hda(V ) 6 c+ a for each a > 1.

When a = 1, the inequality is immediate from the definition of c.
Assume that one has hda−1(V ) 6 c + a − 1 for some a > 2. Then

Ha−1(V )n = 0 for n > c+ a. By Theorem 1, we have an exact sequence:

· · · −→ Ha(SV )n −→ Ha(V )n+1 −→ Ha−1(V )n −→ · · · .
Since c > reg(SV ) + 1, we have Ha(SV )n = 0 for n > c + a. Therefore
Ha(V )n+1 = 0 for n > c+ a, and hence hda(V ) 6 c+ a. �

The following result uses Theorem 12 to ensure the existence of N(V ) (see
Notation 13).
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Theorem 16. Let V be an FI-module which is generated in degree 6 k and
related in degree 6 d where k, d ∈ Z+. Let

hdS1 (V ) := max{hd1(S
iV ) + i | i = 0, 1, . . . ,N(V )}.

Then

reg(V ) 6 hdS1 (V )− 1.

Proof. We use induction on N(V ). If N(V ) = 0, then reg(V ) = −∞, so
there is nothing to prove.

Suppose N(V ) > 1. Since N(SV ) = N(V ) − 1, by induction hypothesis,
we have reg(SV ) 6 hdS1 (SV ) − 1, and hence by Proposition 15, we obtain
reg(V ) 6 hdS1 (V )− 1. �

In the above theorem, one has hd1(S
iV ) <∞ for each i by Lemma 4.

It was proved by Li and Ramos [7, Theorem 5.18] that, for a finitely
generated FI-module V over a noetherian ring, one has:

reg(V ) 6 max{deg(Hj
m(V )) + j | j = 0, 1, . . .},

where Hj
m(V ) for j = 0, 1, . . . are the local cohomology groups of V . It would

be too much of a digression for us to review the definition and properties of
local cohomology groups of FI-modules; we refer the reader to the paper [7]
of Li and Ramos (see [7, Definition 5.11 and Theorem E]). Let us show that
the bound in Theorem 16 is always less than or equal to their bound.

Proposition 17. Suppose that k is noetherian and V is a finitely generated
FI-module over k. Then one has:

hdS1 (V )− 1 6 max{deg(Hj
m(V )) + j | j = 0, 1, . . .}.

Proof. For any finitely generated FI-module W , set

$(W ) := max{deg(Hj
m(W )) + j | j = 0, 1, . . . .}.

One has Hj
m(SW ) ∼= SHj

m(W ) for each j > 0 (see [7, paragraph before
Corollary 5.21]); thus, one has $(SW ) 6 $(W )−1. Hence, for each i ∈ Z+,
one has:

hd1(S
iV ) + i− 1 6 reg(SiV ) + i 6 $(SiV ) + i 6 $(V ),

where the second inequality is obtained by applying [7, Theorem 5.18] to
SiV . �

It was conjectured by Li and Ramos [7, Conjecture 5.19] that if V is a
finitely generated FI-module over a noetherian ring, and if V is not ]-filtered,

then reg(V ) is equal to max{deg(Hj
m(V )) + j | j = 0, 1, . . .}.
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3.7. Aside on generating degree and relation degree. Let V be an
FI-module which is generated in degree 6 k and related in degree 6 d for
some k, d ∈ Z+, that is, there is a short exact sequence

0 −→W −→ P −→ V −→ 0

where P is a projective FI-module generated in degree 6 k and W is an
FI-module generated in degree 6 d. It is easy to see that when such a
presentation exists, we have hd0(V ) 6 k and hd1(V ) 6 d. Moreover, when
such a presentation exists, we can find one with k = hd0(V ). Whence,
suppose that k = hd0(V ); from the long exact sequence in homology, we
obtain [5, Lemma 4.4]:

(8) hd1(V ) 6 hd0(W ) 6 max{hd0(V ), hd1(V )}.

Lemma 18. Let V be an FI-module which is generated in degree 6 k and
related in degree 6 d for some k, d ∈ Z+. Suppose that 0→W → P → V →
0 is a short exact sequence where P is a projective FI-module generated
in degree 6 hd0(V ). If hd0(V ) 6 hd1(V ), then W is generated in degree
6 hd1(V ).

Proof. Immediate from (8). �

The following result of Li and Yu [8, Corollary 3.4] says that, where FI-
homology is concerned, one can frequently assume that hd0(V ) < hd1(V )
and hence apply Lemma 18; see [10, Remark 2.16]. Let us give a proof using
Proposition 14.

Lemma 19. Let V be an FI-module which is generated in degree 6 k and
related in degree 6 d for some k, d ∈ Z+. Suppose that V is not F -acyclic.
Let r = hd1(V ) and let U be the FI-submodule of V generated by

⊔
n<r Vn.

Let W = V/U . Then one has the following:

(i) W is F -acyclic.
(ii) Ha(U) ∼= Ha(V ) for each a > 1.
(iii) hd0(U) < hd1(U).

Proof. From the short exact sequence 0→ U → V →W → 0, we obtain a
long exact sequence in homology:

· · · −→ H2(W ) −→ H1(U) −→ H1(V ) −→ H1(W ) −→ H0(U) −→ · · · .
Since hd1(V ) = r and hd0(U) 6 r− 1, we have hd1(W ) 6 r. But low(W ) >
r, so by Lemma 5, we have H1(W )n = 0 for each n 6 r. Therefore, we must
have H1(W ) = 0.

By Proposition 14, it follows that W is F -acyclic. Hence, from the long
exact sequence, we see that Ha(U) ∼= Ha(V ) for each a > 1. In particular,
hd1(U) = hd1(V ). Thus, hd0(U) < r = hd1(U). �

The proof of the above lemma in [8] is more elementary than the one
we give here. We thought, however, that it might be worthwhile to give a
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different explanation of why it is true. As observed in [6] and [10], one can
use Lemma 19 to deduce the following.

Corollary 20. Let V be an FI-module which is generated in degree 6 k and
related in degree 6 d for some k, d ∈ Z+. Then one has:

reg(V ) 6 min{hd0(V ), hd1(V )}+ hd1(V )− 1.

If, moreover, V is not F -acyclic, then one has:

N(V ) 6 min{hd0(V ), hd1(V )}+ hd1(V ).

Proof. We may assume that V is not F -acyclic. Let U be the FI-submodule
of V defined in Lemma 19 and let W = V/U .

By Lemma 18, the FI-module U is generated in degree 6 hd0(U) and
related in degree 6 hd1(U). We have:

reg(V ) = reg(U) 6 min{hd0(U), hd1(U)}+ hd1(U)− 1

6 min{hd0(V ), hd1(V )}+ hd1(V )− 1,

where the first inequality comes from applying Theorem 9 to U .
Since W is F -acyclic, it follows by Lemma 10 that SiW is F -acyclic for

each i > 0. From the long exact sequence in homology associated to the
short exact sequence 0→ SiU → SiV → SiW → 0, we deduce that:

N(V ) = N(U) 6 min{hd0(U), hd1(U)}+ hd1(U)

6 min{hd0(V ), hd1(V )}+ hd1(V ),

where the first inequality comes from applying Theorem 12 to U . �

3.8. Homological degrees are strictly increasing. Besides Theorem 1,
the proof of the following result also uses Theorem 12 to ensure the existence
of N(V ) (see Notation 13).

Theorem 21. Let V be an FI-module which is generated in degree 6 k and
related in degree 6 d for some k, d ∈ Z+. If V is not F -acyclic, then one
has:

hd1(V ) < hd2(V ) < hd3(V ) < · · · .

Proof. We use induction on N(V ). Since V is not F -acyclic, one has N(V ) >
0. Moreover, by Proposition 14, one has Ha(V ) 6= 0 for each a > 1. By
Theorem 9, one has hda(V ) <∞ for each a > 1.

Suppose first that N(V ) = 1. Then SV is F -acyclic. From Theorem 1,
one has

SHa+1(V ) ∼= Ha(V ) for each a > 1.

This implies hda+1(V ) = hda(V ) + 1 for each a > 1.
Next, suppose that N(V ) > 1. Let a > 1 and let n = hda(V ). We need

to show that hda+1(V ) > n+ 1.
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Suppose, on the contrary, that hda+1(V ) 6 n. Then Ha+1(V )n+1 = 0.
From Theorem 1, we have an exact sequence:

· · · −→ Ha+1(V )n+1 −→ Ha(V )n −→ Ha(SV )n −→ · · · .
Since Ha(V )n 6= 0, it follows that Ha(SV )n 6= 0, and so hda(SV ) > n. Since
N(SV ) = N(V ) − 1, by induction hypothesis, one has hda+1(SV ) > n + 1.
Thus, there exists r > n+1 such that Ha+1(SV )r 6= 0. But from Theorem 1,
we have an exact sequence:

· · · −→ Ha+1(V )r −→ Ha+1(SV )r −→ Ha+1(V )r+1 −→ · · · .
Since r > hda+1(V ), we have Ha+1(V )r = 0 and Ha+1(V )r+1 = 0, so
Ha+1(SV )r = 0, a contradiction. We conclude that hda+1(V ) > n+ 1. �

The following corollary uses Theorem 9 to see that reg(V ) <∞.

Corollary 22. Let V be an FI-module which is generated in degree 6 k and
related in degree 6 d for some k, d ∈ Z+. If V is not F -acyclic, then there
exists s > 1 such that

hda(V ) = reg(V ) + a for each a > s.

Proof. By Theorem 21, we have:

hd1(V )− 1 6 hd2(V )− 2 6 hd3(V )− 3 6 · · · .
But by Theorem 9, we have reg(V ) <∞. The claim is now immediate from
the definition of reg(V ). �
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