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Solutions of diophantine equations as
periodic points of p-adic algebraic

functions. I

Patrick Morton

Abstract. Solutions of the quartic Fermat equation in ring class fields
of odd conductor over quadratic fields K = Q(

√
−d) with −d ≡ 1 (mod

8) are shown to be periodic points of a fixed algebraic function T (z)
defined on the punctured disk 0 < |z|2 ≤ 1

2
of the maximal unramified,

algebraic extension K2 of the 2-adic field Q2. All ring class fields of
odd conductor over imaginary quadratic fields in which the prime p =
2 splits are shown to be generated by complex periodic points of the
algebraic function T , and conversely, all but two of the periodic points of
T generate ring class fields over suitable imaginary quadratic fields. This
gives a dynamical proof of a class number relation originally proved by
Deuring. It is conjectured that a similar situation holds for an arbitrary
prime p in place of p = 2, where the case p = 3 has been previously
proved by the author, and the case p = 5 will be handled in Part II.
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1. Introduction

In this paper and its sequel it will be shown that the periodic points of an
algebraic function, suitably defined (see below), have, in several particularly
interesting cases, number theoretic significance. I shall primarily consider
algebraic functions defined on subsets of p-adic fields.
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An important problem in algebraic number theory is to classify the finite
extensions L of an algebraic number field K for which Gal(L/K) is abelian.
These are the abelian extensions of K, and for certain fields K we have a
good understanding of how to find explicit generators for these extensions.
For example, a famous theorem known as the Kronecker–Weber Theorem
says that all abelian extensions of the rational field K = Q are subfields of
cyclotomic fields Q(ζf ), where ζf is a primitive f -th root of unity with f ≥ 3.

In the case that K = Q(
√
−d) is an imaginary quadratic extension of Q, the

abelian extensions of K are known to be subfields of ray class fields, which
arise as follows. An elliptic curve is said to have complex multiplication by
the subring R ⊆ RK , where RK is the ring of algebraic integers contained in
K, if EndQ(E) ∼= R and Z ( R. If f is an integral ideal in RK and E is an
elliptic curve with complex multiplication by the maximal order RK , the ray
class field (mod f) is generated over K by the j-invariant j(E) and a certain
function (known as a Weber function) of the coordinates of f-torsion points
on E (see [7], [10], and [19]). Sugawara [20], [21] showed that in most cases,
the Weber function of an f-torsion point generates the ray class field all by
itself. There is an important subclass of abelian extensions of K = Q(

√
−d)

known as ring class fields, which are generated over K by the j-invariants
j(E) of elliptic curves E with complex multiplication by subrings (orders) in
RK . The properties of ring class fields are developed in the classical theory
of complex multiplication, which is the main focus of the book by Cox [3].

In class field theory (see [1], [7], or [10]), the ring class fields over K are
characterized as follows. If f is a positive integer, the ring class field (mod
f) of K = Q(

√
−d), denoted by Ωf , is the unique abelian extension of K

having the property that the prime ideals p (not dividing f) of the ring of
integers RK of K, which split completely into prime ideals of degree 1 in the
ring of integers RΩf of Ωf , are exactly those p for which p = (ξ) is principal
in RK with ξ ≡ r (mod f) and r ∈ Z. It follows from class field theory that
Gal(Ωf/K) ∼= Af/Pf , where Af is the group of fractional ideals of K which
are relatively prime to f and Pf is the subgroup of Af consisting of principal
ideals of the form (ξ) for numbers ξ ≡ r (mod f) and r ∈ Z. The set of all
such integers ξ of RK is a ring R−d, which gives rise to the name ring class
field. If dK is the discriminant of K, the integer −d = dKf

2 is called the
discriminant of the ring (order) R−d. In [3] (pp. 190-192) it is shown that the
subfields of the fields Ωf are exactly the abelian extensions L of K for which
Gal(L/Q) is a generalized dihedral group. Theorem 22 in Hasse’s Zahlbericht
[9] says further that all abelian extensions of an imaginary quadratic field
are contained in suitable extensions of the fields Σ = Ωf (ζn) (ζn a root of
unity), which are obtained by adjoining to Σ only square-roots of elements
of Σ. (Also see Hasse [11].)

Let Kp be the maximal unramified, algebraic extension of the p-adic field
Qp. Call an imaginary quadratic field K p-admissible, for a given prime
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p ∈ Z, if

(
dK
p

)
= +1, where dK is the discriminant of K, so that p splits

into two prime ideals in the ring of integers RK . If K is p-admissible, then
its discriminant is a square in Qp, and K can therefore be embedded in Qp.
Moreover, if p - f , then Ωf/K is unramified at p and can also be embedded
in Kp. My goal in this paper is to prove a special case of the following
conjecture, which was stated in [17].

Conjecture 1. Let p be a fixed prime number. There is an algebraic func-
tion Tp(z), defined and single-valued on a certain subset Dp ⊆ Kp of the
maximal unramified, algebraic extension of Qp, such that Tp(Dp) ⊆ Dp, with
the following properties:

(a) Any ring class field Ωf ⊂ Kp of a p-admissible field K ⊂ Qp, whose
conductor f is relatively prime to p, is generated over K by a periodic
point ξ of Tp(z) contained in Dp;

(b) All but finitely many periodic points ξ of Tp(z) contained in Qp gen-
erate ring class fields Ωf = K(ξ) over some p-admissible quadratic
field K.

In part (a) of this conjecture, a periodic point of Tp(z) is an element ξ
of Dp for which the n-fold composition of Tp with itself satisfies Tnp (ξ) = ξ,
for some n ≥ 1. In part (b), the algebraic function Tp(z) is to be considered

as a multi-valued function on Qp, and a periodic point is defined as follows.
Let f(z) be any algebraic function defined over a given field F , so that f(z)

lies in the algebraic closure F (z) of F (z), and let g(z, w) ∈ F [z, w] be the
minimal polynomial of w = f(z) over F (z).

Definition. A periodic point a in F of the algebraic function f(z) is any
number a ∈ F for which there exist a1, a2, · · · , an−1 ∈ F satisfying

g(a, a1) = g(a1, a2) = · · · = g(an−2, an−1) = g(an−1, a) = 0.

By cyclically permuting the equations in the definition it is clear that all
the numbers ai are also periodic points of f(z) of period n. Thus, when
writing f(ai−1) = ai, each individual element ai = fi(ai−1) will be defined
using one particular branch fi(z) of f(z), for 1 ≤ i ≤ n (taking a0 = an = a),
and different branches fi, fj may or may not coincide. It is not hard to show
that periodic points in the sense of part (a), where Tp(x) is single-valued on
Dp, are also periodic points in the second sense. For this see the argument
in Section 3 immediately following Equation (12).

The situation referred to in Conjecture 1 is analogous to the fact that the
fields Q(ζf ), where ζf is a primitive f -th root of unity and (f, p) = 1, are
generated over Q by periodic points of the map F (z) = zp. In fact, ζf is
a periodic point of F (z) with period n, where n is the order of the prime
p modulo f . Furthermore, the fields Q(ζpkf ) are generated over Q by pre-

periodic points of F (z), since ζpkf is a root of F k+n(z)− F k(z) = 0, for the
same value of n. Over an imaginary quadratic field K, the f-torsion points
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of an elliptic curve E with complex multiplication are periodic points of a
rational function, the doubling map on E, as long as (f, 2) = (1); and they
are pre-periodic points of the doubling map, if (f, 2) 6= (1). Thus, by the
results of Sugawara mentioned above (see [21]), most ray class fields over K
are generated either by a periodic point or a pre-periodic point of a rational
function.

An algebraic function T3(z) satisfying Conjecture 1 for the prime p = 3
was given in [17], namely

T3(z) =
z2

3
(z3 − 27)1/3 +

z

3
(z3 − 27)2/3 +

z3

3
− 6, for z ∈ K3, |z|3 ≥ 1,

where T3(z) is defined using the binomial series. The periodic points of the
function T3(z) in its 3-adic domain D3 = {z ∈ K3 : |z|3 ≥ 1} were shown
to be solutions of the cubic Fermat equation in ring class fields Ωf over 3-

admissible quadratic fields K = Q(
√
−d), whose conductors f are prime to

3. Furthermore, every such Ωf is generated over Q by one of these periodic
points.

In this paper I will show that a certain 2-adic branch of the function

T (z) =
4
√

1− z4 + 1
4
√

1− z4 − 1
= 1− 2

z4

(
1 + (1− z4)1/4 + (1− z4)1/2 + (1− z4)3/4

)
satisfies the statement of the above conjecture for the prime p = 2. I will
show that all of the periodic points of T (z) in its 2-adic domain

D2 =

{
z : 0 < |z|2 ≤

1

2

}
⊂ K2

are solutions of the quartic Fermat equation in ring class fields of 2-admissible
quadratic fields. These solutions have been given in [14] as follows. Though
the precise formulas are not necessary for the proofs in this paper, it is
worth noting that these solutions can be represented in terms of modular
functions.

Let η(τ) be the Dedekind η-function (see [3], p. 256). The Schläfli func-
tions f(τ), f1(τ), f2(τ) (see [18], p. 148, or [3], p. 256) are defined to be:

f(τ) = e−
πi
24
η
(
τ+1

2

)
η(τ)

, f1(τ) =
η
(
τ
2

)
η(τ)

, f2(τ) =
√

2
η(2τ)

η(τ)
.

These functions have the infinite product representations

f(τ) = q−
1
48

∞∏
n=1

(1 + qn−
1
2 ),

f1(τ) = q−
1
48

∞∏
n=1

(1− qn−
1
2 ),

f2(τ) =
√

2 q
1
24

∞∏
n=1

(1 + qn), q = e2πiτ ,
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convergent on the upper half-plane H. Let K = Q(
√
−d) be a 2-admissible

quadratic field, where −d ≡ 1 (mod 8) is the discriminant of the order R−d
in K, with conductor f , satisfying −d = dKf

2. Further, let w ∈ K be
defined by

w =
v +
√
−d

2
, v2 ≡ −d (mod 16), v = 1 or 3,

and set

a ≡

{
−3d+5

16 (mod 4), if v = 3 and d ≡ 7 (mod 16),
−d+31

16 (mod 4), if v = 1 and d ≡ 15 (mod 16).

Then the numbers

(1) πd = ia
f2(w/2)2

f(w/2)2
, ξd =

β

2
= i−v

f1(w/2)2

f(w/2)2

lie in the ring class field Ωf of conductor f over K, and satisfy

π4
d + ξ4

d = 1.

(See [14], Sec. 10.) The numbers πd and ξd are conjugate algebraic integers
over Q and Ωf is generated over Q by either of them. Furthermore, if
℘2 = (2, w) is one of the prime ideal divisors of 2 in K, then with (2) =
2RK = ℘2℘

′
2, we have

(πd) = πdRΩf = ℘2RΩf , (ξd) = ξdRΩf = ℘′2RΩf , in Ωf ,

where RL denotes the ring of algebraic integers in the field L. In other
words, πd and ξd are principal ideal generators in RΩf of the prime ideal
divisors of 2 in RK , when those ideals are extended to the larger ring RΩf .

Denote by bd(x) the minimal polynomial over Q of the numbers πd and
ξd. Then bd(x) is a normal polynomial over Q (meaning that one of its roots
generates a normal extension of Q) and

deg(bd(x)) = 2h(−d),

where h(−d) = |Af/Pf | is the class number of the order R−d, i.e., the number
of elements of the ideal class group of R−d. See [3], pp. 132-148; and see
Section 6 for some examples of these polynomials.

To explicitly define the branch of T (z) that we will be considering, let

T1(z) =
2z4 − 4− 4

√
1− z4

z4
, T2(z) =

z

2
− z

2

√
1− 4

z2
,

where the square-roots are defined 2-adically by the binomial series. We
have:

Theorem 1.

(a) The function T (z) = T2 ◦ T1(z) maps the set

D2 =

{
z : 0 < |z|2 ≤

1

2

}
⊂ K2
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to itself.
(b) The periodic points of T (z) in D2 are the roots ξd of the polynomials

bd(x), as −d varies over quadratic discriminants ≡ 1 (mod 8), along
with the conjugates of ξd over K = Q(

√
−d), under the natural em-

bedding of Ωf in its completion (Ωf )p ⊂ K2, for a prime ideal p of
RΩf which divides ℘′2.

(c) The number of periodic points of T (z) in the domain D2 with minimal
period n is given by∑

−d∈Dn

h(−d) = nN4(n) =
∑
k|n

µ(n/k)22k, n > 1.

Here Dn is the set of discriminants −d ≡ 1 (mod 8) for which the

square of the corresponding Frobenius auotmorphism τ =
(

Ωf/K
℘2

)
has order n in Gal(Ωf/K), and µ is the Möbius µ-function. For
n = 1, the number of fixed points of T (z) in D2 is∑

−d∈D1

h(−d) = h(−7) + h(−15) = 3 = 22 − 1.

Thus, our analysis gives a dynamical interpretation of the class number
formula occurring in part (c), which is equivalent to a special case of a class
number formula of Deuring [5], [6]. Together with the fact that Q(ξd) = Ωf

is the ring class field of odd conductor f over the field K = Q(
√
−d), Theo-

rem 1 shows the truth of Conjecture 1(a) for p = 2. The notion of periodic
point is straightforward in the context of Theorem 1, since the function T (z)
is single-valued on D2. However, as in [17], and in agreement with Conjec-
ture 1(b), the proof implies a similar statement about the periodic points
of the multi-valued function T (z) on either of the fields Q2 or C. With the
above definition of a periodic point of an algebraic function, we have the
following.

Theorem 2. The set of periodic points of the multi-valued function T (z)
on any of the fields K = K2, Q2 or C coincides with the set

S(K) = {0,−1} ∪ {ξ ∈ K : (∃n ≥ 1)(∃ (−d) ∈ Dn) s.t. bd(ξ) = 0}.
Thus, all the periodic points of T (z) distinct from 0 and −1 in any of these
fields generate ring class fields over 2-admissible quadratic extensions of Q,
and give solutions of the quartic Fermat equation. In particular, all of the
periodic points of T (z) in Q2 lie in K2.

In part II of this paper, I shall verify the above conjecture for the prime
p = 5, by considering solutions of the diophantine equation

ε5X5 + ε5Y 5 = 1−X5Y 5, ε =
1 +
√

5

2
,

in certain class fields of 5-admissible quadratic fields.
The following conjecture is also stated in [17].
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Conjecture 2. Any ring class field of a p-admissible quadratic field

K = Q(
√
−d) ⊂ Qp,

whose conductor is divisible by p, is generated over K by some pre-periodic
point of the multi-valued function Tp(z) contained in the algebraic closure

Qp.

This statement was proved for p = 3 and the above function T3(z) in [17]
and will be proved for p = 2 and the 2-adic function T (z) elsewhere. (Also
see [2].) The overall principle of the arguments in this paper is the same as
in [17], but the details are very different. In [17] we found a lifting of the
Frobenius automorphism to K3 which could be expressed as a single Laurent
series. Here it is more convenient to represent the lifting of the square
of the Frobenius automorphism to K2 as the composition of two Laurent
series. Secondly, in [17] we were able to take either of two embeddings (not
conjugate over Q3) of the ring class field Ωf into K3, each corresponding to
a prime divisor ℘3 of (3) or its conjugate ℘′3 in K. Here it is necessary to
take the embedding Ωf → (Ωf )p ⊂ K2 into the completion with respect to
a prime divisor p (in Ωf ) of the conjugate ℘′2 of ℘2 in K, in order to have
convergence of the series representing the lifting. (See Section 2.) We also
have to introduce several sequences of iterated resultants for different curves,
while in [17] we could get by with a single sequence of iterated resultants.
(See Section 3.) Finally, in [17] we used the Deuring normal form with a
point of order 3, while here we use the Tate normal form with a point of
order 4, along with several isogenous elliptic curves. (See Section 4.) The
same principles will be useful in the sequel of this paper, for p = 5, but
again, the details will work out quite differently. In particular, it will be
necessary to consider solutions of the above quintic diophantine equation in
the class fields Σ℘5Ωf and Σ℘′5

Ωf , where (5) = ℘5℘
′
5 in K and Σp is the

ray class field with conductor p over K, while here and in [17] we work with
solutions in Ωf itself.

2. The quartic Fermat equation

The numbers πd and ξd defined in (1) were shown in [14] to be algebraic
conjugates of each other over Q. This fact was deduced from the relationship

πτ
2

d =
ξd + 1

ξd − 1
,

where τ is a certain automorphism in the Galois group of Ωf/K, uniquely
defined by the condition that

ατ ≡ α2 (mod ℘2),

for all elements α of the ring of integers of Ωf , RΩf . Actually, this congruence
holds for all α ∈ Ωf whose denominators are relatively prime to ℘2 — these
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are the elements of Ωf which are integral for ℘2. This automorphism is
denoted by

τ =

(
Ωf/K

℘2

)
,

and is called the Frobenius automorphism for the prime ideal ℘2 of RK . An
automorphism of Gal(Ωf/K) can be assigned to any prime ideal p in RK
which is relatively prime to f (and therefore unramified in Ωf ), satisfying

ασ ≡ αNorm(p) (mod p), α ∈ RΩf , σ =

(
Ωf/K

p

)
,

where Norm(p) = |RK/p| is the absolute norm of p. (See [1], [3], or [12].)
Recall that f is the positive integer for which K = Q(

√
−d) and −d = dKf

2,
where dK is the discriminant of K/Q. Although the square-roots of the
numbers −dKf2 all generate the same quadratic field K, the degrees of the
numbers πd and ξd and the field they generate over Q depend strongly on
the parameter f . We always assume −d ≡ 1 (mod 8), so that dK and f are
odd integers.

Replacing x by (x+ 1)/(x− 1) in the Fermat equation x4 + y4 = 1 leads
to the curve f(x, y) = 0 defined by the equation

(2) f(x, y) = y4(x− 1)4 + 8x(x2 + 1).

Writing π = πd, ξ = ξd, the relation (πτ
2
)4 + (ξτ

2
)4 = 1 yields

(3) f(ξ, ξτ
2
) = 0, ξ =

β

2
.

It follows that ξτ
2

can be considered as one of the values of the algebraic
function

y = S(x) = 4

√
−8x(x2 + 1)

(x− 1)4
=

4

√
1−

(
x+ 1

x− 1

)4

at x = ξ. It is natural to try to expand S(x) as follows:

S(x) = 1 +
∞∑
k=1

(−1)k
(1

4

k

)(
1 + x

1− x

)4k

.

Unfortunately, this cannot be expressed as a convergent 2-adic series in
powers of x, since

S(0) = 1 +
∞∑
k=1

(−1)k
(1

4

k

)
does not even converge (2-adically). Instead, we apply τ−2 to f(ξ, ξτ

2
) = 0,

obtaining f(ξτ
−2
, ξ) = 0, and we consider ξτ

−2
as one of the values of the

inverse algebraic function

(4) x = T (y) =
4
√

1− y4 + 1
4
√

1− y4 − 1
, f(x, y) = 0,
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evaluated at y = ξ.
We first find an expression for a particular 2-adic branch of the function

T (y). Expanding and dividing f(x, y) by y4 gives

f(x, y)

y4
= x4 +

8− 4y4

y4
x3 + 6x2 +

8− 4y4

y4
x+ 1

= x4 + tx3 + 6x2 + tx+ 1, t =
8− 4y4

y4
.

Hence,

f(x, y)

x2y4
=

(
x2 +

1

x2

)
+ t

(
x+

1

x

)
+ 6

= z2 + tz + 4, z = x+
1

x
.

Thus we have

z =
−t±

√
t2 − 16

2
=

2y4 − 4± 4
√

1− y4

y4
.

We define

(5) T1(y) =
2y4 − 4− 4

√
1− y4

y4
.

This function can be expanded into a 2-adic Laurent series in y:

T1(y) = 2− 4

y4
− 4

y4

∞∑
n=0

(1
2

n

)
(−1)ny4n

= 2− 4

y4
− 4

y4
(1− 1

2
y4 − 1

8
y8 − · · · )

=
−8

y4
+ 4 + 4

∞∑
n=2

(1
2

n

)
(−1)n+1y4n−4.

It is not hard to verify that the series for T1(y) converges 2-adically for
0 < |y|2 ≤ 1

2 . To see this, set y = 2y1. With this substitution, the series
becomes

T1(2y1) +
1

2y4
1

− 4 =

∞∑
n=2

24n−2

(1
2

n

)
(−1)n+1y4n−4

1(6)

=

∞∑
n=2

22n−1Cn−1y
4n−4
1 ,

where Cn−1 = (−1)n+122n−1
( 1

2
n

)
∈ Z is the Catalan number. Hence, the

coefficient of y1 in the series (6) is divisible by 22n−1, and the series is
therefore convergent for |y1| ≤ 1. This proves the above claim. Moreover,
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the infinite series in (6) represents a 2-adic integer for |y|2 ≤ 1
2 , so it is clear

that

(7) |T1(y)|2 ≥ 2, if 0 < |y|2 ≤
1

2
,

because of the leading term −8
y4 . The second solution of z2 + tz + 4 = 0 is

then

−t− T1(y) = −4

∞∑
n=2

(1
2

n

)
(−1)n+1y4n−4 =

4

T1(y)
,

which is a 2-adic integer.
Solving the equation x2 − zx+ 1 = 0 for x gives

x =
z ±
√
z2 − 4

2
.

Now we set

T2(z) =
z

2
− z

2

√
1− 4

z2
=
z

2
− z

2

∞∑
n=0

(−1)n
(1

2

n

)
22n

z2n

=
∞∑
n=1

(−1)n+1

(1
2

n

)
22n−1

z2n−1
=
∞∑
n=1

Cn−1

z2n−1

=
1

z
+

1

z3
+

2

z5
+

5

z7
+

14

z9
+

42

z11
+ · · · ,

which is convergent for |z|2 ≥ 2, as above. It is clear from this series expan-
sion that

(8) 0 < |T2(z)|2 ≤
1

2
for |z|2 ≥ 2,

since 4
z2 6= 0. The second solution of x2−zx+1 = 0 is then z−T2(z) = 1

T2(z) ,

which is not a 2-adic integer.
By the above arguments, setting z = T1(y) gives the solution

(9) x = T2(z) = T2(T1(y)), for 0 < |y|2 ≤
1

2
,

of f(x, y) = 0. By (7) and (8), the function

T = T2 ◦ T1

maps the region 0 < |y|2 ≤ 1
2 of K2 into itself. It is clear that this is also true

of the region |y|2 = 1
2 . This is the branch of T which we will use throughout

our discussion. To summarize, we have:

Proposition 3. The algebraic function T (y) = T2(T1(y)), where

T1(y) =
−8

y4
+ 4 + 4

∞∑
n=2

(1
2

n

)
(−1)n+1y4n−4,

T2(z) =

∞∑
n=1

(−1)n+1

(1
2

n

)
22n−1

z2n−1
,
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is defined on the punctured disk

D2 =

{
y ∈ K2 : 0 < |y|2 ≤

1

2

}
in the field K2, and maps D2 to itself. For any y ∈ D2, we have

f(T (y), y) = 0.

We now prove the following theorem.

Theorem 4. Let (π, ξ) be any solution of X4 +Y 4 = 1 in the ring class field
Ωf of odd conductor f over K = Q(

√
−d) which is conjugate over K to the

solution (1). Then under the embedding of Ωf in the maximal unramified
extension K2 of the 2-adic field Q2 given by Ωf → (Ωf )p, where p is a prime

divisor of ℘′2 in RΩf , we have

ξτ
−2

= T (ξ), with τ−1 =

(
Ωf/K

℘′2

)
,

where T (y) is the 2-adic algebraic function from Proposition 3. Thus, ξ →
T (ξ) is a lift of the square of the Frobenius automorphism corresponding to
℘′2 on Ωf/K.

Proof. The Galois group Gal(Ωf/K) is a generalized dihedral group (see [3],

pp. 190-191), so the automorphism τ =

(
Ωf/K

℘2

)
(applied exponentially)

satisfies

τ−1 = φ−1τφ =

(
Ωf/K

℘′2

)
,

(see [3], p. 107) where φ is an automorphism of Ωf which restricts to the
nontrivial automorphism of K, sending ℘2 to its conjugate ideal ℘′2. Hence,
we know that (

ξ

2

)τ−2

≡
(
ξ

2

)4

(mod ℘′2) in Ωf .

Embedding Ωf into K2 by completing at a prime p of Ωf lying over ℘′2, we

obtain that the images of ξ, ξτ
−2

, which we denote by the same symbols,
satisfy (

ξ

2

)τ−2

≡
(
ξ

2

)4

(mod 2) in (Ωf )p ⊂ K2,

and, since both sides of this congruence are units for ℘′2, that

23ξτ
−2

ξ4
≡ 1 (mod 2) in (Ωf )p ⊂ K2.

Now we have from (7) and the series for T2(z) that

T2(T1(y)) ≡ 1

T1(y)
(mod 23),
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so

23T (ξ)

ξ4
=

23T2(T1(ξ))

ξ4
(10)

≡ 23

ξ4T1(ξ)
≡ −1 ≡ 1 (mod 2), 0 < |ξ|2 ≤

1

2
.

It follows that
ξτ
−2

T (ξ)
= η−1 ≡ 1 (mod 2),

and therefore T (ξ) = ηξτ
−2

, where η is a 2-adic unit. But T (ξ) and ξτ
−2

are
both roots of f(x, ξ) = 0 in K2. From the above argument we know there is
a second root of f(x, ξ) = 0 in K2 given by T1(ξ)−T2(T1(ξ)) = T1(ξ)−T (ξ),
which is not a 2-adic integer, by (7), since T (ξ) ∈ D2 by Proposition 3.
(Recall that (ξ) = ℘′2 in RΩf , so that |ξ|2 = 1

2 in K2.) Thus, T (ξ) is distinct
from this root.

Now I claim that the polynomial

g(x) =
f(x, ξ)

ξ4
= x4 + tx3 + 6x2 + tx+ 1, t =

8− 4ξ4

ξ4
,

has at most two roots in K2. To see this, note that the Ferrari cubic resolvent
of g(x) ([4], pp. 358-359), whose roots are rational expressions over Q2(ξ)
in the roots of g(x), is

r(y) = y3 − 6y2 + (t2 − 4)y − 2t2 + 24 = (y − 2)(y2 − 4y + t2 − 12),

where the discriminant of the quadratic factor is given by

δ = −4(t2 − 16) =
256(ξ4 − 1)

ξ8
.

We have 1−ξ4 ≡ 1 (mod 16) since |ξ|2 = 1
2 , so Hensel’s Lemma implies that

δ = −µ2 for some µ ∈ K2. Therefore,
√
δ /∈ K2, since Q2(

√
−1) is a ramified

extension, and the resolvent r(y) has exactly one root in K2. This shows

that the polynomial g(x) has exactly two roots in K2 and that T (ξ) = ξτ
−2

.
It is clear that the above discussion also holds for any conjugate of ξ = ξd

over K = Q(
√
−d), since the ideal ℘′2 is fixed by the elements of Gal(Ωf/K),

and since this Galois group is abelian. �

We use Theorem 4 to prove:

Theorem 5. With notation as in Theorem 4, ξ is a periodic point of the
algebraic function T (y) on the domain D2 := {y : |y|2 ≤ 1

2} ⊂ K2, whose

period n is equal to the order of the automorphism τ−2 in Gal(Ωf/K).

Proof. This follows from the fact that τ−2, as an automorphism on the
completion (Ωf )p fixing the prime ideal ℘′2Z2 = 2Z2 of (RK)℘′2 = Z2, satisfies

T (z)τ
−2

= T (zτ
−2

), for z ∈ (Ωf )p ∩ D2,
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since the coefficients of T1(2y1) + 1
2y4

1
(see (6)) and T2(z) lie in Z. Therefore,

T 2(ξ) = T (T (ξ)) = T (ξτ
−2

) = T (ξ)τ
−2

= ξτ
−4
,

and more generally, T k(ξ) = ξτ
−2k

, k ≥ 1. Since ξ generates Ωf over K, we

have ξτ
−2k 6= ξ for k < n. Hence, Tn(ξ) = ξτ

−2n
= ξ, which shows that ξ is

a periodic point of T with minimal period n. �

This proves part (a) of Conjecture 1 of the Introduction, since every ring
class field Ωf of odd conductor over the 2-admissible field K is generated by
the coordinates of a solution of the quartic Fermat equation.

We would now like to prove the converse; namely, that any periodic point
of T on the domain D2 comes from one of the solutions (π, ξ) in some ring
class field Ωf over K = Q(

√
−d), with −d ≡ 1 (mod 8).

3. Iterated resultants

Define the following iterated resultants, as in [17]. Set

R(1)(x, x1) = f(x, x1),

R(2)(x, x2) = Resx1(f(x, x1), f(x1, x2)),

and recursively define

(11) R(k)(x, xk) = Resxk−1
(R(k−1)(x, xk−1), f(xk−1, xk)), k ≥ 3.

Then we set xn = x in R(n)(x, xn) to obtain Rn(x):

Rn(x) = R(n)(x, x), n ≥ 1.

From this definition it is easy to see that the roots of Rn(x) are exactly the
a’s for which there exist common solutions of the equations

(12) f(a, a1) = 0, f(a1, a2) = 0, . . . f(an−1, a) = 0.

In particular, (12) holds for a = ξ = Tn(ξ), since we can take

an−1 = T (ξ), an−2 = T (an−1) = T 2(ξ), . . . , a1 = T (a2) = Tn−1(ξ),

by Proposition 3 and Theorem 5, so that T k(ξ) is a root of Rn(x) for any k
with 0 ≤ k ≤ n. It is straightforward to show by induction that

R(n)(x, xn) ≡ x4n

n (x+ 1)4n (mod 2),

and therefore
Rn(x) ≡ x4n(x+ 1)4n (mod 2).

In the following lemma, we show that Rn(x) is monic and has degree 2 ·4n.

Lemma.

(a) For n ≥ 2,

R(n)(x, xn) = An(x)x4n

n + Sn(x, xn),

where An(x) ∈ Z[x] is a monic polynomial satisfying

deg(An(x)) = 4n,
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degxn(Sn(x, xn)) ≤ 4n − 4,

degx(Sn(x, xn)) ≤ 4n − 1.

(b) deg(Rn(x)) = 2 · 4n, and the leading coefficient of Rn(x) is 1.

Proof. (a) The assertion is obvious for n = 1 by (2). Assume it holds for
n−1, where n ≥ 2. Then x4

n is the leading coefficient of xn−1 in f(xn−1, xn),
so by (11) and the definition of the resultant, we have that

R(n)(x, xn) = x4n

n

4∏
i=1

R(n−1)(x, βi) =
4∏
i=1

x4n−1

n R(n−1)(x, βi),

where xn−1 = βi, 1 ≤ i ≤ 4, are the roots of the equation f(xn−1, xn) = 0.
Dividing this equation by x4

n and expanding with xn−1 = βi shows that

β4
i −

(
4− 8

x4
n

)
β3
i + 6β2

i −
(

4− 8

x4
n

)
βi + 1 = 0.

It follows that the elementary symmetric functions in the βi have degree 0
in xn, and in the product

R(n)(x, xn) =
4∏
i=1

(x4n−1

n An−1(x)β4n−1

i + x4n−1

n Sn−1(x, βi)),

the leading term is x4n
n An−1(x)4(β1β2β3β4)4n−1

= x4n
n An−1(x)4, since the

product of the βi is 1. By the inductive hypothesis, the degree in x of
Sn−1(x, xn−1) is at most 4n−1−1, so in multiplying out the remaining terms
have degree at most 3 · 4n−1 + 4n−1 − 1 = 4n − 1 in x. In collecting the
remaining terms that involve x4n

n , and adding them to An−1(x)4, the highest
degree term in x occurs only in the leading term and An(x) is therefore monic
of degree 4n. It is also clear that in the product, the degrees of the terms
involving xn will all be multiples of 4. This proves part (a) of the lemma.
Part (b) follows immediately from (a) on setting xn = x. �

We will now show that the polynomials Rn(x) have distinct roots.
We define similar quantities for the curve

f1(x, y) =
f(2x, 2y)

16
= (16x4 − 32x3 + 24x2 − 8x+ 1)y4 + 4x3 + x.

We have

f1(x, y) ≡ y4 + x (mod 2).

Define the iterated resultants for f1(x, y) by R̃(1)(x, x1) = f1(x, x1),

R̃(2)(x, x2) = Resx1(f1(x, x1), f1(x1, x2)),

R̃(k)(x, xk) = Resxk−1
(R̃(k−1)(x, xk−1), f1(xk−1, xk)), k ≥ 3.

It follows easily by induction that

R̃(n)(x, xn) ≡ x4n

n + x (mod 2), n ≥ 1,
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and therefore

(13) R̃n(x) = R̃(n)(x, x) ≡ x4n + x (mod 2), n ≥ 1.

This congruence and Hensel’s Lemma ([13], p. 169) imply that R̃n(x) has
at least 4n distinct roots in K2, of which 4n − 1 are units, corresponding to
the 4n − 1 nonzero roots of the congruence (13). Furthermore, the relation

(14) Rn(2x) = 24nR̃n(x)

implies that Rn(x) also has at least 4n distinct roots, as well, and N2(k)
monic irreducible factors of degree k in Z2[x], for each divisor k of 2n, where
N2(k) is the number of monic irreducible polynomials of degree k in F2[x].
The roots a of these irreducible factors (except for a = 0, note f(0, 0) = 0)
are prime elements in the ring of integers R2 of K2, i.e., a ∼= 2 (∼= is Hasse’s
notation [13], denoting equality up to a unit factor).

Now we make use of the identity

(15) (x− 1)4(y − 1)4f

(
x+ 1

x− 1
,
y + 1

y − 1

)
= 16f(y, x).

Putting

b =
a+ 1

a− 1
, bk =

ak + 1

ak − 1
, 1 ≤ k ≤ n− 1,

where a and the ak satisfy (12), the identity (15) gives that

f(b, bn−1) = 0, f(bn−1, bn−2) = 0, . . . f(b1, b) = 0.

It follows that b = a+1
a−1 is a root of Rn(x) = 0 whenever a is. If a is a prime

element, then b is clearly a unit in R2. This proves that Rn(x) has 2 · 4n
distinct roots in K2, for any n ≥ 1 (including the roots x = 0,−1), exactly
half of which are units.

It follows as in [17] that there are polynomials Pn(x) and P̃n(x) in Z[x]
for which

Rn(x) =
∏
k|n

Pk(x), Pn(x) =
∏
k|n

Rk(x)µ(n/k),(16)

R̃n(x) =
∏
k|n

P̃k(x), P̃n(x) =
∏
k|n

R̃k(x)µ(n/k),(17)

and

(18) deg Pn(x) = deg P̃n(x) = 2
∑
k|n

µ(n/k)4k.

We note also that

R1(x) = P1(x) = x(x+ 1)(x2 − x+ 2)(x4 − 4x3 + 5x2 − 2x+ 4),(19)

R̃1(x) = P̃1(x) = x(2x+ 1)(2x2 − x+ 1)(4x4 − 8x3 + 5x2 − x+ 1).

Setting

T̃ (z) =
1

2
T (2z), |z|2 ≤ 1,
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we see from (10) that

(20) T̃ (x) ≡ x4 (mod 2), |x|2 = 1.

From (13) and (17) and the above arguments it is clear that all the irre-

ducible factors of P̃n(x) (i.e., its reduction modulo 2) over F4 have degree n.

It is clear that T̃ (a) is a root of P̃n(x) whenever the unit a is, since a and

therefore T̃ (a) are both periodic points of T̃ with minimal period n. This

is because T̃ k(a) = a for k < n would imply that a4k ≡ a (mod 2), and a
would therefore be a root of a polynomial of degree less than n over F4.

For such a unit a, T̃ (a) reduces (mod 2) to a root of the right side of
(13). Since (13) does not have multiple roots, and by (14), half of the roots

of P̃n(x) are nonunits, (20) shows that a and T̃ (a) are roots of the same
irreducible factor over F4, and therefore they must be roots of the same
irreducible factor over Q2. It follows that

Pn(x) =
∏
i

gi(x)g̃i(x),

where the irreducible factor gi(x) ∈ Z2[x] has degree n or 2n;

g̃i(x) = (x− 1)deg(gi)gi

(
x+ 1

x− 1

)
;

and T maps the set of roots of gi(x) into itself, for each i. Since Pn(x) ∈ Z[x],
Theorem 5 implies that the minimal polynomial bd(x) of ξd over Q divides
Pn(x), for any d for which the automorphism τ−2

d = τ−2 has order n in
Gal(Ωf/K). In Section 5 we will prove that these are the only irreducible
factors of Pn(x), for n > 1.

4. A cyclic isogeny of degree 4

We will now use several results from [15] (pp. 253-254) and [14]. First,
the quantity

j1(α) =
(α8 − 16α4 + 16)3

α8 − 16α4
,

is the j-invariant of the elliptic curve

(21) E1(α) : Y 2 +XY +
1

α4
Y = X3 +

1

α4
X2,

which is the Tate normal form for a curve with a point of order n = 4;
meaning that the point (0, 0) has order 4 on this curve. Further,

(22) j2(α) =
(α8 − 16α4 + 256)3

α8(α4 − 16)2

is the j-invariant of the elliptic curve

E2(α) : Y 2 +XY +
2

α4
Y = X3 +

4

α4
X2 − 1

α8
,
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and E1(α) is 2-isogenous to E2(α) by the map

ψα = (ψα,1, ψα,2) : E1(α)→ E2(α)

with

ψα,1(X) =
X2

X + b
, ψα,2(X,Y ) =

−b2

X + b
+
X(X + 2b)Y

(X + b)2
, b =

1

α4
.

From [14], eq. (4.8) we know that E1(α)[2] — the group of 2-torsion points
on E1(α) — consists of the base point O, together with the points

(23)

(
−1

α4
, 0

)
,

(
−β

2 − 4

8β2
,
(β2 − 4)2

32β4

)
,

(
−β

2 + 4

8β2
,
(β2 + 4)2

32β4

)
,

where 16α4 + 16β4 = α4β4. Reversing the roles of α and β in (23) gives the
points of order 2 on the curve E1(β).

Furthermore, still with b = 1/α4, the isogeny ρα = (ρα,1(X), ρα,2(X,Y )),
with

ρα,1(X) =
X2 − b
X + 4b

,(24)

ρα,2(X,Y ) =
bX2 + (b− 8b2)X + 3b2 − 32b3

(X + 4b)2
+
X2 + 8bX + b

(X + 4b)2
Y,(25)

maps E2(α) to the curve

(26) E3(α) : Y 2 +XY +
4

α4
Y = X3 +

16

α4
X2 +

6

α4
X +

α4 − 4

α8
,

and the j-invariant of this curve is

(27) j3(α) =
(α8 − 256α4 + 4096)3

α16(16− α4)
.

We first use these facts to prove the following result. Although we do not
make explicit use of this result, we will use several of the facts mentioned in
the proof in Section 5. Moreover, the result itself is of independent interest,
since it gives an interesting application for solutions of the Fermat quartic,
and corresponds to the analogous result for the Fermat cubic given in [16],
Prop. 3.5.

Theorem 6. If (α, β) is a point on the curve

Fer4 : 16X4 + 16Y 4 = X4Y 4,

then there is a cyclic isogeny φα,β : E1(α)→ E1(β) of degree 4, whose kernel
is ker(φα,β) = 〈(0, 0)〉.

Proof. The relation

α4 =
16β4

β4 − 16
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implies easily using (22) that j2(α) = j2(β) and therefore E2(α) ∼= E2(β).

On the other hand, there is the dual isogeny ψ̂β : E2(β)→ E1(β). Therefore,
if ι : E2(α)→ E2(β) is an isomorphism, the map

φ = ψ̂β ◦ ι ◦ ψα : E1(α)→ E1(β)

is an isogeny of degree 4. To determine ker(φ), we find an explicit isomor-
phism ι. Note that with Y1 = Y + X

2 + 1
α4 the equation for E2(α) becomes

Y 2
1 = X

(
X +

1

4

)(
X +

4

α4

)
.

Using the relation

4

α4
=

1

4
− 4

β4

and putting X = −X2 − 1
4 , Y1 = −

√
−1Y2 gives the curve

(28) Y 2
2 = X2

(
X2 +

1

4

)(
X2 +

4

β4

)
.

Therefore, the map ι(X,Y ) = (ι1(X), ι2(X,Y )) can be taken to be the map
(29)

(ι1(X), ι2(X,Y )) =

(
−X − 1

4
,
√
−1Y +

1 +
√
−1

2
X +

1 +
√
−1

α4
+

1

16

)
.

On the other hand, theX-coordinate of the dual isogeny ψ̂β : E2(β)→ E1(β)
is given by

ψ̂β,1(X) =
X2 − 1

β4

4X + 1
.

Thus, we have

φ((0, 0)) = ψ̂β ◦ ι((0,−
1

α4
)) = ψ̂β((−1

4
,

1

α4
+

1

16
)) = O1,

where O1 is the base point on E1(β). Since φ has degree 4 and the point
(0, 0) has order 4, this shows that ker(φ) = 〈(0, 0)〉 is cyclic. �

We note that the X-coordinate of the map φ = φα,β is given by the
rational function

φ1(X)

= ψ̂β,1 ◦ ι1 ◦ ψα,1(X) = ψ̂β,1

(
− X2

X + 1
α4

− 1

4

)

= −(4α4β2X2+ α4(β2− 4)X + β2− 4)(4α4β2X2+ α4(β2+ 4)X + β2 + 4)

64α4β4X2(α4X + 1)
.
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5. Periodic points of T (z)

In this section we will prove the following theorem.

Theorem 7. For n > 1, the polynomial Pn(x) is the product of the poly-
nomials bd(x), where −d runs through all quadratic discriminants −d ≡ 1
(mod 8) for which τ2 has order n in the Galois group of the correspond-

ing ring class field Ωf . Here τ =
(

Ωf/K
℘2

)
is the Artin symbol (Frobenius

automorphism) for the prime divisor ℘2 of 2 in K = Q(
√
−d).

Proof. Let ξ be an arbitrary periodic point of T (z) of minimal period n ≥ 1
in the domain D2 = {z : 0 < |z|2 ≤ 1

2} ⊂ K2, and set

(30) β = 2ξ, α4 =
16β4

β4 − 16
= 16

ξ4

ξ4 − 1
, β ∈ K2, α ∈ K2(ζ8),

where ζ8 = 4
√
−1 is an eighth root of unity. Then (α, β) is a point on Fer4

(see Theorem 6) defined over K2(ζ8). Since Q2(ξ) is an unramified extension
of Q2, and Q2(ζ8) is totally ramified over Q2, there is an automorphism

(31) τ̄ ∈ Gal(Q2(ξ, ζ8)/Q2), with τ̄ := (ξ → T (ξ), ζ8 → ζ8).

(Recall that ξ and T (ξ) are roots of the same irreducible polynomial over
Q2, by the last assertion of Section 3.)

I claim now that E3(β) ∼= E1(ατ̄ ), where E3 and E1 are the curves defined
in (26) and (21). To prove this, let σ(z) be the linear fractional map

σ(z) =
2(z + 2)

z − 2
.

From the fact that f(T (ξ), ξ) = 0 we have that

ξ4 = 1−
(
T (ξ) + 1

T (ξ)− 1

)4

and therefore (
T (ξ) + 1

T (ξ)− 1

)4

= 1− ξ4.

Since β τ̄ = 2ξτ̄ = 2T (ξ), this gives(
β τ̄ + 2

β τ̄ − 2

)4

= 1− β4

16
,

and hence

(32) σ(β τ̄ )4 = 16− β4.

Therefore, as in the proof of [14], Prop. 8.5, and using the relation between
α and β, we have

j(E1(ατ̄ )) =

(
(α8 − 16α4 + 16)3

α4(α4 − 16)

)τ̄
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=

(
(β8 + 224β4 + 256)3

β4(β4 − 16)4

)τ̄
=

(
(σ(β)8 + 224σ(β)4 + 256)3

σ(β)4(σ(β)4 − 16)4

)τ̄
,

since r(z) = (z8+224z4+256)3

z4(z4−16)4 is invariant under the substitution (z → σ(z)).

(See [15], Thm. 5.2, or [14], Section 8.) Thus, (32) gives that

j(E1(ατ̄ )) =
((16− β4)2 + 224(16− β4) + 256)3

(16− β4)β16

=
(β8 − 256β4 + 4096)3

β16(16− β4)

= j(E3(β)).

From the isomorphism just established and the beginning remarks in Sec-
tion 4, we have an isogeny

(33) ϕ1 = ῑ ◦ ψατ̄ ◦ ι3 ◦ ρβ
of degree 4 from E2(β) to E2(β τ̄ ), where ῑ and ι3 are isomorphisms

ῑ : E2(ατ̄ )→ E2(β τ̄ ), ι3 : E3(β)→ E1(ατ̄ ).

(Note that E2(ατ̄ ) ∼= E2(β τ̄ ) by the beginning of the proof of Theorem 6.)
Applying the isomorphism τ̄ i−1 to the coefficients gives an isogeny

ϕi : E2(β τ̄
(i−1)

)→ E2(β τ̄
i
),

and therefore an isogeny

(34) ς = ϕn ◦ ϕn−1 ◦ · · · ◦ ϕ1 : E2(β)→ E2(β),

since τ̄n = 1. This isogeny has degree deg(ς) = 4n, and I claim that

(35) Φ4n(j2(β), j2(β)) = 0,

where Φm(X,Y ) = 0 is the modular equation. (See [3] and [5].) It is well-
known that (35) is equivalent to the assertion that ker(ς) ⊂ E2(β) is cyclic.

From (28), the points of order 2 on E2(β) are

(36)

(
0,− 1

β4

)
,

(
−1

4
,
1

8
− 1

β4

)
,

(
− 4

β4
,

1

β4

)
.

The last of these points is in ker(ρβ), and ρβ maps the first two points to the

point P1 =
(
−1

4 ,
2
α4

)
on E3(β). The other two points of order 2 on E3(β)

are the points

P2, P3 =

(
−8

α2 ±
√
−1β2

α2β4
, 2
α2 ± 2

√
−1β2

α2β4

)
.

From (23), with α replaced by ατ̄ , the points of order 2 on E1(ατ̄ ) are

Q1 =

(
−1

(ατ̄ )4
, 0

)
,
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Q2 =

(
−(β τ̄ )2 − 4

8(β τ̄ )2
,
((β τ̄ )2 − 4)2

32(β τ̄ )4

)
,

Q3 =

(
−(β τ̄ )2 + 4

8(β τ̄ )2
,
((β τ̄ )2 + 4)2

32(β τ̄ )4

)
.

Now from (32) we have that

σ(β τ̄ )4 = −16β4

α4
,

which implies that

σ(β τ̄ ) =
2β

ζ8α
,

for some primitive eighth root of unity ζ8. Therefore, since σ is an involution,

(37) β τ̄ = σ

(
2β

ζ8α

)
= 2

β + ζ8α

β − ζ8α
.

With (37), the points of order 2 on E1(ατ̄ ) can be expressed in terms of α
and β:

Q1 =

(
−ζ8αβ(β2 + ζ2

8α
2)

2(β + ζ8α)4
, 0

)
,

Q2 =

(
− ζ8αβ

2(β + ζ8α)2
,

ζ2
8α

2β2

2(β + ζ8α)4

)
,

Q3 =

(
− β2 + ζ2

8α
2

4(β + ζ8α)2
,
(β2 + ζ2

8α
2)2

8(β + ζ8α)4

)
.

Converting the curves E3(β) and E1(ατ̄ ) to Weierstrass normal form and
using standard arguments, it can be shown that the X-coordinate of an
isomorphism ι3 : E3(β)→ E1(ατ̄ ) is given by

ι3,1(X) =
β4 + α4

(β + ζ8α)4
X − ζ8α(β2 + ζ2

8α
2)

2(β + ζ8α)3
.

Hence, we have that

ι3,1

(
−1

4

)
= − β2 + ζ2

8α
2

4(β + ζ8α)2
.

Using (24), and comparing X-coordinates of the different representations of
the points of order 2 on E1(ατ̄ ), we have

(38) ι3 ◦ ρβ
(

0,− 1

β4

)
= Q3 =

(
−(β τ̄ )2 + 4

8(β τ̄ )2
,
((β τ̄ )2 + 4)2

32(β τ̄ )4

)
.

Now a straightforward calculation shows that

(39) ῑ1 ◦ ψατ̄ ,1
(
−(β τ̄ )2 + 4

8(β τ̄ )2

)
= ῑ1

(
−1

4

)
= 0,
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by (29), with α replaced by ατ̄ . It follows from (33), (38), (39), and (36),
that

P =

(
0,− 1

β4

)
=⇒ ϕ1(P ) =

(
0,− 1

(β τ̄ )4

)
= P τ̄ .

Applying τ̄ i−1 gives that ϕi(P
τ̄ i−1

) = P τ̄
i
, and therefore (34) gives that

ς(P ) = P τ̄
n

= P.

Since P has order 2 on E2(β), this shows that P /∈ ker(ς). It follows that
ker(ς) is a cyclic group, and this implies (35).

Now by a classical result ([3], p.287) we have the factorization

Φ4n(x, x) = cn
∏
−d

H−d(x)r(d,4
n),

where the product is over discriminants of orders R−d of imaginary quadratic
fields and

r(d,m) = |{λ ∈ R−d : λ primitive, N(λ) = m}/R×−d|.

The exponent r(d, 4n) can only be nonzero when 4k · 4n = x2 + dy2 has a
primitive solution (k = 0 or 1). Since Q2(β) = Q2(ξ) is unramified and
normal over Q2, Equation (35) implies j2(β) = j(E2(β)) is a root of H−d(x)
for some odd integer d; hence, (2, xyd) = 1 and for n > 1 we have −d ≡ 1
(mod 8).

Consequently, Equation (22) shows that ξ4 = β4/16 is a root of the poly-
nomial

Ld(x) = (x2 − x)2h(−d)H−d

(
28(x2 − x+ 1)3

x2(x− 1)2

)
.

By the proof of [14], Prop. 8.4, this polynomial factors into a product of
three irreducible polynomials of degree 2h(−d), exactly one of which has
roots which are integral for the prime 2. If this factor is g(x), then from
[14], eq. (8.4) and deg(g(x)) = 2h(−d) it follows that

(40) g(x4) = bd(x)bd(−x)h(x),

where the irreducible polynomial h(x) = bd(ix)bd(−ix) belongs to an exten-
sion of Q which is ramified over p = 2. Thus, ξ is a root of one of the first
two factors in (40). Now the set of roots of bd(x) is stabilized by the map(
x→ x+1

x−1

)
, and that of bd(−x) is stabilized by

(
x→ 1−x

1+x

)
(see [14], Prop.

8.2). But by the factorization of Pn(x) in Section 3, the roots of Pn(x) are

stabilized by
(
x→ x+1

x−1

)
. If 1−ξ

1+ξ were a root of Pn(x), then

1−ξ
1+ξ + 1

1−ξ
1+ξ − 1

=
−1

ξ

would also be a root of Pn(x). But ξ ∈ D2, so −1/ξ is not an algebraic
integer, and therefore cannot be a root of Pn(x). This proves that ξ is
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a root of the polynomial bd(x) and hence that bd(x) divides Pn(x). From
Theorem 4 and (31) we have finally that τ̄ = τ−2, and since ξ generates the
ring class field Ωf over Q and τ−2n(ξ) = Tn(ξ) = ξ, the automorphism τ−2

has order n in Gal(Ωf/K), where K = Q(
√
−d). Recalling the final remark

of Section 3, this completes the proof of Theorem 7. �

For n = 1, we have the factorization P1(x) = x(x+1)b7(x)b15(x), by (19).
Hence, Theorem 7 and the formulas in (16) imply part (b) of Conjecture 1:
all but two of the periodic points of T in Qp generate ring class fields over Q.
In addition, this proves Theorem 2 of the introduction, since the formulas
in (16) hold over Q, and therefore also over C.

Denote the set of discrimimants −d referred in Theorem 7 by Dn. Using
(18) and the fact that deg(bd(x)) = 2h(−d), Theorem 7 implies the following
class number relation.

Theorem 8. If h(−d) is the class number of the order R−d of discriminant
−d ≡ 1 (mod 8) in K = Q(

√
−d), then∑

−d∈Dn

h(−d) = nN4(n) =
∑
k|n

µ(n/k)22k, n > 1,

where Dn is the set of discriminants −d ≡ 1 (mod 8) for which

τ2 =

(
Ωf/K

℘2

)2

has order n in the Galois group of the corresponding ring class field Ωf . This
equation gives the total number of periodic points of T (z) having minimal
period n in the domain D2 := {y : 0 < |y|2 ≤ 1

2} ⊂ K2. All of these periodic
points (for n > 1) are prime elements in the local field K2.

Finally, Theorem 1 summarizes the results in Proposition 3 and Theorems
4, 5, 7, and 8.

6. Examples

The iterated resultants considered in Section 3 are useful in computing the
polynomials bd(x) which are the minimal polynomials of the periodic points
of T (z). For example, factoring R2(x) on Maple yields the polynomial P1(x)
in (19) times

P2(x) = (x8 + 20x7 + 110x6 − 100x5 + 49x4 − 80x3 − 40x2 + 40x+ 16)

× (x8 + 6x7 + 78x6 − 84x5 + 53x4 − 66x3 − 12x2 + 24x+ 16)

× (x8 − 6x7 + 42x6 − 60x5 + 53x4 − 54x3 + 24x2 + 16)

= b63(x)b55(x)b39(x).

(See [14], Section 12, Table 3.) In addition, factoring R3(x) on Maple gives
P1(x) times the polynomial P3(x) = A6(x)A12(x)A24(x), where

A6(x) = (x6 + x5 + 9x4 − 13x3 + 18x2 − 16x+ 8)
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× (x6 + 7x5 + 11x4 − 15x3 + 16x2 − 20x+ 8)

= b23(x)b31(x);

A12(x) = (x12 − 262x11 + 20035x10 + 13096x9 − 13397x8 − 15878x7

− 24435x6− 14516x5+ 14372x4+ 15128x3+ 5440x2+ 416x+ 64)

× (x12 − 36x11 + 2271x10 + 1586x9 − 1689x8 − 1800x7 − 2527x6

− 2310x5 + 2664x4 + 832x3 + 1296x2 − 288x+ 64)

× (x12 − 166x11 + 8027x10 + 5200x9 − 5565x8 − 6446x7

− 9659x6 − 6172x5 + 6540x4 + 5600x3 + 2672x2 − 32x+ 64)

× (x12 + 16x11 + 395x10 + 398x9 − 357x8 − 316x7 − 155x6

− 1058x5 + 1332x4 − 704x3 + 800x2 − 352x+ 64)

× (x12 + 184x11 + 57491x10 + 39206x9 − 36669x8 − 44260x7

− 70067x6 − 41690x5 + 37644x4 + 43072x3 + 13616x2

+ 1472x+ 64)

= b207(x)b135(x)b175(x)b87(x)b247(x);

and A24(x) = b231(x)b255(x), with

b231(x) = (x24 − 160x23 + 39806x22 − 404188x21 + 1735295x20

− 4082916x19 + 6591016x18 − 7995792x17 + 7025423x16

− 3646952x15 − 2986282x14 + 8218276x13 − 7410127x12

+ 8124428x11 − 590812x10 − 4737592x9 + 2208800x8

− 5462688x7 + 644992x6 + 672768x5 + 631808x4

+ 875008x3 + 496640x2 + 53248x+ 4096),

b255(x) = (x24 + 484x23 + 67682x22 − 315500x21 + 1778351x20

− 3320880x19 + 7580476x18 − 12603888x17 + 15479855x16

− 14728444x15 + 4226978x14 + 12258548x13 − 20944063x12

+ 22569256x11 − 11161888x10 − 5859992x9 + 9241280x8

− 9494496x7 + 2773504x6 + 2227200x5 − 1364224x4

+ 780800x3 + 708608x2 + 100352x+ 4096).

That each of the above polynomials is given by the corresponding bd(x)
can be verified by factoring the polynomial modulo primes of the form q =
x2+dy2, checking that it splits completely into linear factors (mod q). Thus,
we have the factorization

P3(x) = b23(x)b31(x)b207(x)b135(x)b175(x)b87(x)b247(x)b231(x)b255(x)



SOLUTIONS OF DIOPHANTINE EQUATIONS 739

for the periodic points of minimal period 3.
I take this opportunity to point out a reference that was overlooked in [14].

The paper of Gee [8] (see Proposition 22) contains a proof of the conjecture
of Yui and Zagier [22], according to which their polynomial Wd(x) (see [22],
eq. (2?)) is the minimal polynomial over Q of what they called the Weber
singular modulus f(Q); here Q is a binary quadratic form with negative
discriminant d ≡ 1 (mod 8) and 3 - d. A somewhat different proof of this
conjecture was given in [14], Section 10 (see Theorem 10.3), though we also
made use of the Shimura Reciprocity Law. After [14] appeared, we became
aware of the reference [8]. In [14] a similar result was also proved for the
values f(Q)3 and f(Q1)f(Q2) when 3 | d, where Q1 and Q2 are specific
quadratic forms of discriminant d, using solutions of the quartic Fermat
equation.
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