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Asymptotically optimal configurations for
Chebyshev constants with an integrable

kernel

Brian Simanek

Abstract. We show that if a lower-semicontinuous kernel K satisfies
some mild additional hypotheses, then configurations that are asym-
potitically optimal for the extremal problems defining the Chebyshev
constants are precisely those whose counting measures converge to the
equilibrium measure for the corresponding minimum energy problem.

Contents

1. Background and Results 667

2. Examples 672

2.1. Example: Riesz potentials on the solid ball. 673

2.2. Example: Random and greedy point configurations. 673

2.3. Example: Logarithmic potentials on curves in the plane. 674

References 674

1. Background and Results

Suppose A is a compact set in some Euclidean space Rt. Let

K(x, y) : A×A → [0,∞]

be a symmetric and lower semi-continuous kernel. We will letM(A) denote
the set of positive probability measures with support in A. For any µ ∈
M(A), the kernel generates a potential Uµ by

Uµ(x) =

∫
A
K(x, y)dµ(y), x ∈ A,
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668 BRIAN SIMANEK

which is also nonnegative and lower semi-continuous (see [9, Lemma 2.2.1]).
For any configuration ωN = (a1, . . . , aN ) of N (possibly not distinct) points
in A, we define the quantity Q(ωN ) by

Q(ωN ) := min
x∈A

1

N

∑
y∈ωN

K(x, y)

(for motivation, see [7, Definition 2.9]). Equivalently, Q(ωN ) is the minimum
of the potential generated by the probability measure νN that assigns weight
N−1 to each point in ωN (counting multiplicities). If we associate such N -
point configurations with the space AN , then we are interested in finding
the N th Chebyshev constant:

Q(A, N) := sup
ωN∈AN

Q(ωN ),(1)

which is a version of the quantities considered in [7, Equation 2.5], but
restricted to a particular N ∈ N (see also [14]). Indeed, if MN (A) denotes
the set of all probability measures ν of the form

ν =
1

N

N∑
j=1

δaj , aj ∈ A, j = 1, . . . , N,

then Q(A, N) can be defined as

Q(A, N) = sup
ν∈MN (A)

min
x∈A

Uν(x).

Any configuration ωN ∈ AN for which the supremum on the right-hand side
of (1) is attained will be called a Chebyshev N -point system. We will be
interested in configurations ωN that attain or nearly attain the supremum
on the right-hand side of (1). To do so, we will need the notion of asymptotic
optimality, which we define as in [2]. A sequence of configurations {ωN}∞N=1

(where each ωN ∈ AN ) is said to be asymptotically optimal if

lim
N→∞

Q(ωN )

Q(A, N)
= 1.

Chebyshev constants and their generalizations have a lengthy history,
with many substantial results appearing in [1, 4, 5, 6, 7, 8, 9, 10, 14]. Much
of the previous work on the subject is devoted to understanding the asymp-
totics of the Chebyshev constants as N becomes large. One of the most
fundamental results is [14, Theorem 2], which asserts that

lim
N→∞

Q(A, N) = sup
µ∈M(A)

min
x∈A

Uµ(x).(2)

By comparison, relatively few results discuss Chebyshev N -point systems.
In [2], Borodachov and Bosuwan showed that if K(x, y) = |x−y|−d and A is
a d-dimensional manifold, then any sequence of Chebyshev N -point systems
is asymptotically equidistributed on A as N → ∞ (see also [3]). Another
notable result is the recent work appearing in [10], which shows that if A =
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S1 and K(x, y) = f(|x−y|) and f satisfies certain convexity, continuity, and
monotonicity properties, then all Chebyshev N -point systems are equally
spaced points on the unit circle. Our results here are motivated by a desire
to prove an analogous fact for higher dimensional spheres. This leads us to
our first theorem.

Theorem 1.1. Let A = Sd ⊂ Rd+1 and suppose K(x, y) = |x − y|−s for
some s ∈ (0, d). For each N ≥ 1, choose some ωN ∈ AN and let νN be the
probability measure that assigns mass N−1 to each point in ωN (counting
multiplicities). The following are equivalent:

(a) The measures {νN}N∈N converge in the weak-∗ topology to normal-
ized surface-area measure σ on Sd as N →∞.

(b) It holds that

lim
N→∞

Q(ωN ) =

∫
A

∫
A
|x− y|−s dσ(x) dσ(y) = 2d−s−1

Γ
(
d+1
2

)
Γ
(
d−s
2

)
√
π Γ
(
d− s

2

)
(c) It holds that

lim
N→∞

(
1

N

∑
y∈ωN

|x− y|−s −Q(ωN )

)
= 0,

in L1(σ).

Remark. The formula for the integral in part (b) is from [5, Equation 3.2].

We will prove Theorem 1.1 by proving a more general result, which we
will formulate as Theorem 1.2. Any measure µ that achieves the supremum
on the right-hand side of (2) will be referred to as an extremal measure.
One consequence of Theorem 1.2 is a demonstration of the uniqueness of
the extremal measure for a large class of kernels K and compact sets A and
a proof that these extremal measures are also extremal for the minimum
energy problem, which we now describe.

For any measure µ ∈M(A) we define its K-energy by

I[µ] :=

∫
A

∫
A
K(x, y)dµ(x)dµ(y).

Following the notation of [16], the set of K-equilibrium measures (also called
capacitary distributions of unit mass in [9]) is given by{

µ ∈M(A) : I[µ] = inf
ν∈M(A)

I[ν]

}
and is of most interest when there exists a ν ∈ M(A) satisfying I[ν] < ∞.
In Corollary 1.3 below, we will connect extremal measures to K-equilibrium
measures under the appropriate assumptions.

To prove Theorem 1.2, we will need the following conditions on K and A:

(A1) There is a µ ∈M(A) so that I[µ] <∞.
(A2) There is a unique K-equilibrium measure, which we denote by µeq.
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(A3) The support of µeq is all of A.
(A4) The potential function

U eq(x) :=

∫
A
K(x, y)dµeq(y)

is equal to a positive constant, which we denote by R, on all of A.

The condition (A1) is often referred to as the nonpolarity of A. Condition
(A2) is satisfied when the kernel K is strictly definite in the sense of [9,
Section 2.4] (see also the discussion of strictly positive definite kernels in
[11]). The condition (A4) is a statement about continuity of the equilibrium
potential and is often called K-invariance of the equilibrium measure (see
[8]). By [9, Theorem 2.4c], the condition (A3) implies the condition (A4) for
continuous kernels K. It is clear that R = I[µeq]. In general, the conditions
(A1)–(A4) are not trivial to verify, though we will highlight some situations
in which these conditions can be verified and also discuss a case when they
are not satisfied (see Example 2.1).

Now we are ready to state our main result.

Theorem 1.2. Let the compact set A and symmetric, nonnegative, and
lower semi-continuous kernel K satisfy conditions (A1)–(A4) . For each
N ≥ 1, choose some ωN ∈ AN and let νN be the probability measure that as-
signs mass N−1 to each point in ωN (counting multiplicities). The following
are equivalent:

(a) The measures {νN}N∈N converge in the weak-∗ topology to µeq as
N →∞.

(b) It holds that
lim
N→∞

Q(ωN ) = R.

(c) It holds that

lim
N→∞

(
1

N

∑
y∈ωN

K(x, y)−Q(ωN )

)
= 0,

in L1(µeq).

To prove this result, we will need to utilize the well-known Principle of
Descent [16, Theorem I.6.8], which we will shortly state. Although stated
in [16] for logarithmic potentials, a similar proof works in compact metric
spaces for more general kernels by appealing to [17, Theorem 2.3.15] (see
also [16, Theorem 0.1.4]).

Principle of Descent. Let {µn}n∈N be a sequence of probability measures
all having support in A and converging as n→∞ to some measure µ in the
weak-* topology. Suppose also that {zn}n∈N is a sequence in A so that zn
converges to z∞ as n→∞. Then

Uµ(z∞) ≤ lim inf
n→∞

Uµn(zn).
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Proof of Theorem 1.2. For every N ≥ 1, define

UN (x) :=

∫
K(x, y)dνN (y) =

1

N

∑
y∈ωN

K(x, y).

It is clear (by Fubini’s Theorem) that

Q(ωN ) = min
x∈A

UN (x) ≤
∫
A
UN (x)dµeq(x) = R.(3)

Assume that (a) is true. Let xN be a point in A where UN attains its
minimum. By passing to a subsequence if necessary, we may assume that xN
converges to some x∞ (also in A) and UN (xN ) converges to lim inf UN (xN )
as N →∞. The Principle of Descent shows

lim inf
N→∞

UN (xN ) ≥ R,

where we used assumption (A4). This proves part (b).
Now let us assume (b) is true. We know from (3) that∫

A
UN (x)dµeq(x) = R.(4)

However, our assumption (b) implies minA UN (x) → R as N → ∞. We
then calculate∫

A

∣∣∣∣UN (x)−min
z∈A

UN (z)

∣∣∣∣ dµeq(x) =

∫
A

(
UN (x)−min

z∈A
UN (z)

)
dµeq(x),

which tends to zero as N →∞ by (4), which proves (c).
Now, let us assume that (c) is true. By appealing to (4), we can write

R−Q(ωN ) =

∫
A

(
UN (x)−min

z∈A
UN (z)

)
dµeq(x)→ 0,

as N →∞, which proves (b).
Finally, assume (b) is true and let N ⊆ N be a subsequence through which

νN converges in the weak-∗ topology to a limit ν∞ as N → ∞ through N .
We have already seen that (b) implies (c), so UN − R converges to 0 in
probability (with respect to µeq) as N →∞ through N . We may therefore
take a further subsequence N1 ⊆ N so that UN converges to R µeq-almost
everywhere as N → ∞ through N1 (see [18, page 169]). Again using the
Principle of Descent, we calculate for µeq-almost every x:

R = lim
N→∞
N∈N1

UN (x) ≥ Uν∞(x)(5)

µeq-almost everywhere, in particular at all isolated points of A (by (A3)).
Finally, we note that the potential on the far right-hand side of (5) is lower-
semicontinuous as a function of x. Therefore (5) holds for all x ∈ A . From
this, it follows that ν∞ has the same K-energy as µeq, and the uniqueness
of the K-equilibrium measure implies that ν∞ must be µeq. We have thus
shown that µeq is the unique weak-* limit point of the sequence {νN}N∈N
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and hence the whole sequence must converge to µeq in the weak-* topology,
which proves (a). �

Remark. Notice that the equivalence (b)⇔(c) in Theorem 1.2 does not
make use of assumption (A3).

Remark. Theorem 1.1 is an immediate consequence of Theorem 1.2 be-
cause all four conditions (A1)–(A4) are satisfied when A = Sd ⊂ Rd+1 and
K(x, y) = |x − y|−s for any s ∈ (0, d). In this case, the K-equilibrium
measure is normalized surface-area measure on Sd.

Theorem 1.2 has the following important consequence.

Corollary 1.3. Assume the hypotheses of Theorem 1.2 on A and K.

(i) For any asymptotically optimal sequence {ωN}N∈N of configurations
having corresponding counting measures {νN}N∈N, it holds that νN
converges in the weak-∗ topology to µeq as N →∞.

(ii) µeq is the unique extremal measure.

Proof. (i) Suppose {γN}N∈N is a sequence of configurations, where each
γN ∈ AN and the corresponding counting measures {ρN}N∈N converge in
the weak-* topology to µeq as N → ∞. Then combining Theorem 1.2 and
(3) shows

R ≥ lim
N→∞

Q(A, N) ≥ lim
N→∞

Q(γN ) = R.(6)

Therefore, the desired conclusion follows from the equivalence of (a) and (b)
in Theorem 1.2.

(ii) First note that (6) implies µeq is an extremal measure. Let µp be
an extremal measure and Uµp(x) the corresponding potential. Then by
definition and (2) we have,

min
x∈A

Uµp(x) = lim
N→∞

Q(A, N) = R.

However,
∫
Uµp(x)dµeq(x) = R, so Uµp(x) = R µeq-almost everywhere.

Since (A3) implies supp(µeq) = A and Uµp(x) is lower-semicontinuous, this
implies Uµp(x) ≤ R on all of A. Therefore, I[µp] = R and hence µp = µeq
by (A2). �

As a consequence of Corollary 1.3, we see that ChebyshevN -point systems
on the unit sphere Sd ⊂ Rd+1 for the kernelK(x, y) = |x−y|−s with s ∈ (0, d)
are asymptotically equidistributed over Sd as N →∞ and that normalized
surface-area measure on Sd is the unique extremal measure.

2. Examples

In this section we will explore some examples that highlight the utility
and some subtleties of the results of Section 1. Our first example concerns
the conditions (A1)–(A4) and shows that without conditions of at least
comparable strength, Theorem 1.2 would fail.
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2.1. Example: Riesz potentials on the solid ball. Assume d ≥ 3. Set
A = {x ∈ Rd : |x| ≤ 1} and consider the Riesz kernel K(x, y) = |x − y|−s
for some 0 < s ≤ d − 2. It was shown in [5, Section 3] that the N -point
configuration consisting of N points at the origin is in fact a Chebyshev N -
point system with this choice of kernel. It is obvious that a point mass has
infinite K-energy, so the counting measures for these configurations do not,
in this case, converge in the weak-∗ topology to the equilibrium measure.
Thus we see that it is not clear how asymptotically optimal sequences of
configurations behave when the conditions (A1)–(A4) are not satisfied. This
example shows that the equivalences stated in Theorem 1.2 need not hold
in general.

2.2. Example: Random and greedy point configurations. Suppose
that A and K are such that conditions (A1)–(A4) are satisfied. Let

{x1, x2, x3, . . .}
be a sequence of points in A chosen independently and at random with
distribution µeq. For each N ≥ 1 set ωN = (x1, . . . , xN ) and let νN be the
probability measure assigning weight N−1 to each point in ωN . The Strong
Law of Large Numbers implies that as N → ∞, the measures {νN}N∈N
almost surely converge in the weak-∗ topology to µeq. Theorem 1.2 implies
that Q(ωN ) → R as N → ∞. Therefore, randomly chosen points from
the appropriate distribution almost surely create an asymptotically optimal
sequence.

In [13], López-Garćıa and Saff studied greedy energy points, which are se-
quences of N -point configurations {ωN}N∈N that are optimal for the energy
problem subject to the constraint that ωN−1 ⊆ ωN (these are sometimes
called Leja points after [12]). More precisely, we define a sequence {an}∞n=1

by choosing a1 ∈ A arbitrarily, and then for each n > 1 we choose an ∈ A
so that

1

n− 1

n−1∑
i=1

K(an, ai) = Q((ai)
n−1
i=1 ).

The set ωN is then taken to be (ai)
N
i=1. Part (iii) of [13, Theorem 2.1] says

that under the assumptions (A1)–(A4) , it holds that

lim
n→∞

1

n− 1

n−1∑
i=1

K(an, ai) = R.

In other words, the sequence of configurations {ωN}N∈N is asymptotically
optimal. By Theorem 1.2, we conclude that the measures

1

N

N∑
i=1

δai

converge in the weak-∗ topology to µeq, wihch is the same conclusion as [13,
Theorem 2.1(ii)].
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2.3. Example: Logarithmic potentials on curves in the plane. Con-
sider the case when A is a union of M ≥ 1 disjoint and mutually exterior
Jordan curves in R2 and K(x, y) = − log(c|x−y|), where c > 0 is a constant
chosen to ensure that K(x, y) > 0 when x, y ∈ A. In this case, it is easily
seen that condition (A1) is satisfied and [16, Theorem I.1.3] assures us that
(A2) is satisfied. By [16, Theorem IV.1.3] and an application of Mergelyan’s
Theorem (see [15, Theorem 20.5]), one can check that supp(µeq) = A, so
condition (A3) is satisfied as well.

The only condition that remains to verify before we can apply our results
is (A4). There are several criteria that imply continuity of the logarithmic
equilibrium potential. The criterion that we will use is [16, Theorem I.4.8ii],
which applies to every point ofA because every point ofA is on the boundary
of two components of R2 \ A, one of which is bounded and one of which is
unbounded. Applying this result shows condition (A4) is satisfied, and hence
Theorem 1.2 applies in this setting.
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[13] López Garćıa, Abey; Saff, Edward B. Asymptotics of greedy energy points.
Math. Comp. 79 (2010), 2287–2316. MR2684365 (2011k:65040), Zbl 1202.31008,
arXiv:0901.3840, doi: 10.1090/S0025-5718-10-02358-6.

[14] Ohtsuka, Makoto. On various definitions of capacity and related notions. Nagoya
Math. J. 30 (1967) 121–127. MR0217325 (36 #416), Zbl 0153.43101, http://

projecteuclid.org/euclid.nmj/1118796805.
[15] Rudin, Walter. Real and complex analysis. Third Edition. McGraw-Hill, New York,

1987. MR0924157 (88k:00002), Zbl 0925.00005.
[16] Saff, Edward B.; Totik, Vilmos. Logarithmic potentials with external fields. Ap-

pendix B by Thomas Bloom. Grundlehren der Mathematischen Wissenschaften, 316
Springer-Verlag, Berlin, 1997. xvi+505 pp. MR1485778 (99h:31001), Zbl 0881.31001,
doi: 10.1007/978-3-662-03329-6.

[17] Simon, Barry. Real analysis. With a 68 page companion booklet. A comprehensive
course in analysis, Part 1. American Mathematical Society, Providence, RI, 2015.
xx+789 pp. MR3408971, Zbl 1332.00003.

[18] Taylor, J. An Introduction to Measure and Probability, Springer-Verlag, New York,
1997. xviii+299 pp MR1420194 (98e:28002) Zbl 0863.60001.

(Brian Simanek) Baylor Math Department, One Bear Place #97328, Waco, TX
76798
Brian Simanek@Baylor.edu

This paper is available via http://nyjm.albany.edu/j/2016/22-30.html.

http://www.ams.org/mathscinet-getitem?mr=0100726
http://zbmath.org/?q=an:0089.08303
http://www.ams.org/mathscinet-getitem?mr=2684365
http://zbmath.org/?q=an:1202.31008
http://arXiv.org/abs/0901.3840
http://dx.doi.org/10.1090/S0025-5718-10-02358-6
http://www.ams.org/mathscinet-getitem?mr=0217325
http://zbmath.org/?q=an:0153.43101
http://projecteuclid.org/euclid.nmj/1118796805
http://projecteuclid.org/euclid.nmj/1118796805
http://www.ams.org/mathscinet-getitem?mr=0924157
http://zbmath.org/?q=an:0925.00005
http://www.ams.org/mathscinet-getitem?mr=1485778
http://zbmath.org/?q=an:0881.31001
http://dx.doi.org/10.1007/978-3-662-03329-6
http://www.ams.org/mathscinet-getitem?mr=3408971
http://zbmath.org/?q=an:1332.00003
http://www.ams.org/mathscinet-getitem?mr=1420194
http://zbmath.org/?q=an:0863.60001
mailto:Brian_Simanek@Baylor.edu
http://nyjm.albany.edu/j/2016/22-30.html

	1. Background and Results
	2. Examples
	2.1. Example: Riesz potentials on the solid ball.
	2.2. Example: Random and greedy point configurations.
	2.3. Example: Logarithmic potentials on curves in the plane.

	References

