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CAT(0) cubical complexes for graph
products of finitely generated abelian

groups

Kim Ruane and Stefan Witzel

Abstract. We construct for every graph product of finitely generated
abelian groups a CAT(0) cubical complex on which it acts properly and
cocompactly. The complex generalizes (up to subdivision) the Salvetti
complex of a right-angled Artin group and the Coxeter complex of a
right-angled Coxeter group.
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Let Γ be a (simplicial) graph in which every vertex is labeled by a finitely
generated abelian group. The graph product G(Γ) is the free product of all
these vertex groups modulo the relations that the elements of two of them
commute if they are connected by an edge. The purpose of this article is to
show:

Main Theorem. Let Γ be a finite graph with vertices labeled by finitely
generated abelian groups. There is a CAT(0) cubical complex X(Γ) on which
G(Γ) acts faithfully, properly, cocompactly and specially.

Every graph product of finitely generated abelian groups can be written as
a graph product of cyclic groups by inflating each vertex to a complete graph
whose vertices correspond to direct summands. Therefore we can restrict
ourselves to graph products of cyclic groups. That G(Γ) acts properly and
cocompactly on a CAT(0) cubical complex can then be deduced by putting
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together results from [JŚ01], [NR03] and [CM05] as we will in the proof of
Theorem 1.4. That G(Γ) is virtually special was shown previously by Kim
[Kim12, Theorem 3(2)].

For these reasons we think that the main use of the article lies not in the
result as such, but in the concrete construction which is explicit, easy and
natural and generalizes complexes that are widely used in the literature.
One extreme is the case where all the vertex groups are infinite cyclic and
so the graph product is a right-angled Artin group. In this case, the natural
complex for the group to act on is the Salvetti complex, and this is what our
construction produces. The other extreme is the case where all vertex groups
have order two so that the graph product is a right-angled Coxeter group.
Here, the natural complex to act on is the right angled Coxeter complex and
again it is recovered by our construction. In fact, the construction would
work in the same way for graph products of finite groups and infinite cyclic
groups at the expense of making the notation more cumbersome.

Davis and Januszkiewicz [DJ00] have shown that the Salvetti complex of
a right-angled Artin group is (up to subdivision) also the Coxeter complex
of a right-angled Coxeter group by embedding the right-angled Artin group
with finite index into a right-angled Coxeter group and then identifying an
appropriate sub-Coxeter group of the same index. We will show that these
inclusions also work with our construction and that the complex associated
to an arbitrary graph product of finitely generated abelian groups can also
be seen as the complex associated to a graph product of finite abelian groups.

The original motivation that led to the present article is the following:

Corollary 1. If the graph Γ satisfies the No SILs condition, the subgroup
AutPC(G(Γ)) of the automorphism group of G(Γ) generated by partial con-
jugations is CAT(0).

Proof. A graph Γ contains a SIL if there are vertices v, w in Γ of distance
at least 2 such that the following holds: removing the intersection of the
links of these two vertices results in a connected component that does not
contain either v or w. By [CRSV10, Theorem 3.6], if Γ does not contain any
SILs then AutPC(G(Γ)) is again a graph product of cyclic groups. �

When trying to prove that a supergroup G1 of a CAT(0) group G0 is
CAT(0), it is a natural idea to see whether the action extends. For this it
is of course necessary to have an explicit description of the CAT(0) space
and the G0-action. The group AutPC(G(Γ)) (= G1) is in general a semi-
direct product extension of G(Γ) (= G0) by [GPR12, Theorem 1.2]. Under
the hypotheses of the main theorem there, the extension is by a finitely
generated abelian group which is finite if all vertex groups are finite. Thus
one attempt at showing this group is CAT(0) is to extend the action of G(Γ)
on X(Γ). In the end, this could be avoided by using the group theoretic
statement that AutPC(G(Γ)) is again a graph product of cyclic groups.

A straightforward application of the strategy to extend the action is:
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Corollary 2. For any graph Γ, the action of G(Γ) on X(Γ) can be extended
by the automorphism group of the (labelled) graph Γ. In particular,

G(Γ) o Aut(Γ)

is CAT(0) and so is AutPC(G(Γ)) o Aut(Γ) provided Γ contains no SILs.

Proof. The construction of the cube complex is functorial by Observa-
tion 2.4. �

The paper is organized as follows. In Section 1 we recall some facts
about graph products of groups and set notation. The cubical complex
is constructed in Section 2 and shown to be contractible and CAT(0) in
Section 3. In Section 4 we make the connection to the Davis–Januszkiewicz
construction.

Acknowledgements. The authors are grateful to S. Kim for pointing out
the connection with his work on virtually cocompact special groups and to
three anonymous referees for several helpful comments.

1. Graph products of cyclic groups

As mentioned in the introduction we may restrict ourselves to graph prod-
ucts of cyclic groups and we introduce notation accordingly. Let Γ be a
simplicial graph with vertex set V and edge set E. Let c : V → N∪ {∞} be
a vertex-labeling. We define the graph product of Γ to be the group G(Γ)
with presentation

G(Γ) :=
〈
s ∈ V | sc(s) = 1 for s ∈ V, [s, t] = 1 for {s, t} ∈ E

〉
.

Thus every vertex s ∈ V is an element of order c(s) in G(Γ).
We will need a fact about general graph products which provides a solu-

tion to the word problem (with the elements of the vertex groups as gen-
erators). It was first proved by Green [Gre90] and later reproved using
geometric methods by Hsu and Wise [HW99]. We only describe it in our
case of cyclic vertex groups.

Every element g ∈ G(Γ) can be written as a word (se1
1 , . . . , s

ek
k ) with each

si one of the vertices of Γ (not necessarily distinct) and ei ∈ Z. By that we
mean that the product se1

1 · · · s
ek
k in G(Γ) equals g. The following operations

on words clearly do not change the element of G(Γ) that the word describes:

(i) Remove the letter 1(= s0
i ).

(ii) Replace two consecutive letters seii and s
ei+1

i+1 which are powers of

the same generator si = si+1 by s
ei+ei+1

i .
(iii) Replace two consecutive letters seii , s

ei+1

i+1 such that si and si+1 are

connected by an edge in Γ by s
ei+1

i+1 , s
ei
i .

A word that cannot be shortened using these operations is called reduced.
The following is [HW99, Theorem 2.5].
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Theorem 1.1. A reduced word describes the identity element if and only if
it is empty.

By induction on the word length one obtains the seemingly stronger ver-
sion formulated by Green [Gre90, Theorem 3.9].

Corollary 1.2. Two words describe the same element if and only if they can
be transformed into a common word using only the operations (i) to (iii).

In particular a word has minimal length (among those representing the
corresponding element) if and only if it is reduced. For our purposes, a
slightly different measurement of length will be useful. It corresponds to
the generating set of G(Γ) consisting of all the elements of the finite vertex
groups, but only one generator for each infinite cyclic subgroup.

So if we partition the vertex set of Γ into

Vfin = {s ∈ V | c(s) <∞} and Vinf = {s ∈ V | c(s) =∞}
the length of a word is given by

`(se1
1 , . . . , s

ek
k ) =

∑
si∈Vinf

|ei|+
∑

si∈Vfin

1.

It follows from Corollary 1.2 that every reduced word has minimal length
with respect to this length function though the converse is not true. The
length of an element of G(Γ) is defined to be the minimal length of a word
representing it (for example a reduced word).

We say that an element g ∈ G(Γ) ends with s ∈ V if there is a reduced
word (se1

1 , . . . , s
ek
k ) representing g with s = sk. Another consequence of

Corollary 1.2 is:

Corollary 1.3. If g ends with s and g ends with t then s and t commute
(that is, are connected by an edge).

We end this section by giving an inexplicit proof of most of our main
result by collecting references.

Theorem 1.4. For Γ as above the group G(Γ) acts properly and cocompactly
on a CAT(0) cubical complex.

Proof. By Corollary 5.11 in [JŚ01] there is a Coxeter group W that contains
G(Γ) as a finite index subgroup. In fact, tracing the proof back one finds
that the Coxeter group has presentation

W = 〈sv, tv, v ∈ V | s2
v = t2v = 1, (svtv)c(v) = 1 for v ∈ V,

[sv, tw] = [tv, tw] = 1 for v, w ∈ V,
[sv, sw] = 1 if {v, w} ∈ E〉.

This Coxeter system has no irreducible affine Coxeter subsystem of rank ≥ 3
because the only Coxeter relations with exponents other than 2 and ∞ are
between generators named s and generators named t. Using Theorem 1.3 of
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[CM05] we deduce that W contains only finitely many conjugacy classes of
triangle groups. Thus by Theorem 1 and Theorem 4 of [NR03] there exists
a CAT(0) cubical complex on which W acts properly and cocompactly and
thus the same is true of G(Γ). �

2. The complex

From now on fix a finite graph Γ with labeling c and let G := G(Γ) be
the associated group. Let V ± = V ∪ V −1 denote the set of generators and
their inverses of G(Γ) and define V ±inf accordingly. We define a new graph

∆ whose vertex set is V̂ := Vfin ∪ V ±inf and whose edges are given by pulling

back the edges of Γ via the obvious projection V̂ → V (note that this means
that s and s−1 are not connected for s ∈ Vinf).

For s ∈ V ± we define the expression

[s] :=

{
〈s〉 , s ∈ Vfin,

{1, s}, s ∈ V ±inf .

We extend this expression to cliques (vertices spanning complete subgraphs)
of ∆ by setting [C] = [s1] · · · [sk] (element-wise product) if s1, . . . , sk are the
elements of C. Note that the order of the product does not matter since all
the si commute. Moreover the clique C can be recovered from [C], being

just [C] ∩ V̂ . Note that [∅] = {1}.
We omit the straightforward proof of the following lemma.

Lemma 2.1. Let g ∈ G(Γ) be arbitrary and let C ⊆ V (Γ) be a clique, i.e.,
any two elements of C commute. For s ∈ C we have max `(g[s]) > `(g) if
and only if max `(g[C]) > max `(g[C \ {s}]).

Let S be the poset of the [C] where C ranges over cliques of ∆ and let
K := |S| be its realization. That is, the vertices of K are the sets [C]
and the simplices are flags of those, ordered by inclusion. The poset S is
covered by the intervals [[∅], [C]] which are boolean lattices. Therefore K
naturally carries a cubical structure in which intervals are cubes (see for
example [AB08, Proposition A.38]). The link of [∅] in this cubical structure
is the flag complex of ∆ (see Observation 3.5 below). This can be used to
see that K is CAT(0) cubical, which also follows from the fact that S is a
discrete median semilattice which is equivalent to the structure of a discrete
median algebra or of a median graph (see Theorem 3.1 and Theorem 4.3 of
[BH83]) and gives rise to a CAT(0) cube structure by [Rol98, Theorem 10.3]
or [Che00, Theorem 6.1]. However, neither that K is CAT(0) nor the median
structures will be used in what follows.

Let T := GS be the set of cosets of elements of S (see below for pictures).
This set is again ordered by inclusion and its realization X = X(Γ) := |T |
is the space we are looking for. For the same reason as before X can be
regarded as a cubical complex. Note that if Γ has no vertices labeled ∞,
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then Γ = ∆ and X(Γ) is just the usual coset-complex (the right-angled
building from [Dav98, Section 5]). Every edge of X is of the form

gsk[C] ≤ gsk[C ∪ {s}]

with k ∈ Z, g not ending with s, and s ∈ V̂ \ C.

Observation 2.2. The subspace K is a weak fundamental domain for the
action of G on X.

An alternative description of X is as a quotient G×K/∼ where ∼ is the
equivalence relation generated by (the reflexive, symmetric, transitive hull
of) the following two kinds of relations: firstly (g, x) ∼ (gt, x) if t ∈ 〈s〉 and
x ∈ [〈t〉 , 〈C〉] for t ∈ C ⊆ Vfin; and secondly (gs, x) ∼ (gs−1, y) for s ∈ Vinf if
the barycentric coordinates of y can be obtained from those of x by replacing
s−1 by s.

Observation 2.3. The complex X is locally finite and the action of G is
proper.

Proof. This essentially follows from the finiteness of the sets [C]. �

We close the section by discussing functoriality of the assignments Γ 7→
G(Γ) and Γ 7→ X(Γ). We describe a category VGph whose objects are sim-
ple, vertex labelled graphs. A morphism Γ→ Γ′ is a map ϕ : V (Γ)→ V (Γ′)
that takes incident vertices to incident vertices such that c(ϕ(s)) divides
c(s) for every vertex s. The convention here is that every natural number
divides ∞. Such a morphism gives rise to a homomorphism G(Γ) → G(Γ′)
that takes s to ϕ(s). Similarly, taking [s] to [ϕs] induces a morphism of cube
complexes.

This can be summarized as follows. Denote by Grp the category of
groups, by Cub the category of cube complexes and by CubAct the cate-
gory of groups acting on cube complexes:

Observation 2.4. The above data define functors

G : VGph→ Grp and X : VGph→ Cub

that are compatible in the sense that they define a functor

(Gy X) : VGph→ CubAct.

It seems likely that the construction in the proof of Theorem 1.4 has the
same functoriality property, but it is not as easily verified.

3. Contractibility and CAT(0)-ness

One reason for the popularity of cubical complexes is Gromov’s link con-
dition [Gro87, Proposition 4.2.C], see also [BH99, Theorem II.5.20]:

Theorem 3.1. A finite dimensional cubical complex has nonpositive curva-
ture if and only if the link of each of its vertices is a flag complex.
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To get a criterion for a complex to be CAT(0) (rather than nonposi-
tively curved) we also need the Cartan–Hadamard theorem [BH99, Theo-
rem II.4.1]:

Theorem 3.2. A complete connected metric space that is nonpositively
curved and simply connected is CAT(0).

Using both results, we only have to show that X is simply connected
and has flag complexes as links to conclude that X is CAT(0). However, in
our case showing that X is simply connected is not significantly easier than
showing it to be contractible. We will therefore directly show:

Theorem 3.3. X is contractible.

We will prove Theorem 3.3 by building up from a vertex to the whole
complex while taking care that contractibility is preserved at each step.
The technical tool to do this is combinatorial Morse theory.

A Morse function on an affine cell complex X is a map f : X(0) → Z such
that every cell σ of X has a unique vertex in which f attains its maximum.
The descending link lk↓ v of a vertex v consists of those cofaces σ for which
v is that vertex. We denote the sublevel set, the complex supported on
f−1((−∞, n]), by X≤n. The Morse lemma in its most basic form — which
is good enough for us — can be stated as follows.

Lemma 3.4. If X≤n−1 is contractible and for every vertex v with f(v) = n

the descending link lk↓ v is contractible then X≤n is contractible.

Returning to our concrete setting, we first study the links of vertices in
X. Let L denote the flag complex of ∆.

Observation 3.5. The link of a vertex of the form g[∅] = {g} is isomorphic
to L. Indeed, the correspondence C 7→ g[C] is a bijection between the faces
of L and the cofaces of g[∅].

The link of a general vertex is not much more complicated:

Observation 3.6. Let g[C] be a vertex of X. The link decomposes as

lk g[C] = ulk g[C] ∗ dlk g[C]

into an up-link ulk g[C] with simplices g[C ′] with C ′ ) C, and a down-link
dlk g[C] with simplices gh[C ′] with C ′ ( C, h ∈ [C \ C ′]. The up-link is
isomorphic to the link of C in L. The down-link is isomorphic to the join
of the sets [s], s ∈ C.

Note that the simplices in the link of a vertex correspond to vertices in
the ambient complex. This is a feature of cubical complexes, see Figure 1.
Observation 3.6 implies in particular:

Corollary 3.7. The link of every vertex of X is a flag complex.
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3 2 ∞
a b c

[∅]
(0,0)

[c−1]
(1,−1) c−1[∅]

(1,0)

c−1[c−1]
(2,−1)

[b]
(1,−1)

[b, c−1]
(2,−2)

c−1[b]
(2,−1)

c−1[b, c−1]
(3,−2)

bc[∅]
(2,0)

b[c]

(2,−1)

b[∅]
(1,0)

b[c−1]

(2,−1)

bc−1[∅]
(2,0)

bc−1[c−1]

(3,−1)
b[a]

(2,−1)

[a, b]
(2,−2)

[a]
(1,−1)

a2[∅]
(1,0)

a2[c−1]
(2,−1)

a2[b]
(2,−1)

a2[b, c−1]
(3,−2)

a2bc[∅]
(3,0)

a2b[c]
(3,−1)

a2b[∅]
(2,0)

a2b[c−1]

(3,−1)

a[∅]
(1,0)

a[b](2,−1)

ab[∅]
(2,0)

Figure 1. Part of the complex X(Γ) for the graph Γ indi-
cated in the upper left corner. The smaller ordered pair of
numbers next to a vertex indicates the value of f on that
vertex. The arrows indicate the poset relation. The “bottom
layer” of the complex is the complex of the graph obtained
from Γ by deleting the vertex b, see Figure 2.

We are now ready to start the proof of Theorem 3.3. The function we
will be using is

f : X → Z× Z
g[C] 7→ (max `(g[C]),−#C)

where ` is length of an element as defined in Section 1 and the codomain
is ordered lexicographically. This is not technically a Morse function as
defined before since the codomain is not Z. However, since #C is uniformly
bounded by #V , one could work with the map v 7→ (#V + 1)f1(v) + f2(v)
in order to match the definition literally. The values of f are indicated in
Figure 1.

Lemma 3.8. Let σ be a cube in X and let v be a vertex of σ. If v is a local
f -maximum on σ then it is a global f -maximum. That is if f(v) > f(w) for
all w ∈ σ adjacent to v then f(v) > f(w) for all w ∈ σ, w 6= v.

Proof. Let the cube σ be g[[C1], [C2]] and assume that the vertex v = g[C]
with C1 ⊆ C ⊆ C2 is a local maximum for f . We claim that C consists of C1

and those elements s ∈ C2 with the property that g[s] contains an element
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a c
3 ∞

ac1

a[c1]

ac−1

a[c−1]

a

a−1c1 a−1[c1]

a−1c−1

a−1[c−1]

a−1

[a]

c1a

c1a−1

c1[a]

c2

c1[c1]

c1

[c1]

c−1a

c−1a−1
c−1[a]

c−2

c−1[c−1]

c−1

[c−1]

1

Figure 2. Part of the complex X(Γ) for the graph Γ indi-
cated in the upper left corner.

longer than g. By Lemma 2.1 for this purpose it does not matter whether
we look at g or at g[C ′] for some C ′ ⊆ C2 not containing s.

For s ∈ C2\C the vertex w = g[C∪{s}] is adjacent to v. So by assumption
f(w) < f(v). Looking at the first component of f this means that max `(C∪
{s}) ≤ max `(C) and since C ∪ {s} ⊇ C we see that actually

(3.1) max `(g[C ∪ {s}]) = max `(g[C]).

That is, multiplying on the right by any element of [C2 \ C] does not make
g longer.

Similarly if s ∈ C \ C1, then the vertex x = g[C \ {s}] is adjacent to
v. Now the second component of f has −#(C \ {s}) > −#C so in order
for f(x) to be smaller than f(v), it is necessary that the first component is
smaller, that is,

(3.2) max `(g[C \ {s}]) < max `(g[C]).
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That is, multiplying on the right by some element of C \C1 makes g longer.
Now let y ∈ σ be an arbitrary vertex and write y = g[C ′] with C1 ⊆ C ′ ⊆

C2. If C ′ does not contain C then (3.1) and (3.2) imply that max `(g[C ′]) <
max `(g[C]). So f(y) < f(v) by the first component. On the other hand if
C ′ strictly contains C then (3.1) implies max `(g[C ′]) = max `(g[C]). Then
f(y) < f(v) by the second component: −#C ′ < −#C. The only remaining
case is C ′ = C where there is nothing to show. �

The first consequence of this is that f is indeed a Morse function.

Corollary 3.9. The function f attains its maximum over the vertices of a
cube of X in a unique vertex.

Proof. Note that two adjacent vertices cannot have same height: if C ( C ′

then −#C ′ < −#C. So following an ascending edge path one finds that
every cube has a strict local maximum. Now Lemma 3.8 shows that this is
in fact a strict global maximum and in particular is unique. �

To apply Lemma 3.4 we have to show that descending links are con-
tractible. For this purpose we separately look at the up- and down-link.

Corollary 3.10. For every vertex the descending link is a full subcom-
plex of the link. In particular it decomposes as lk↓ v = ulk↓ v ∗ dlk↓ v into
the descending up-link ulk↓ v = lk↓ v ∩ ulk v and the descending down-link
dlk↓ v = lk↓ v ∩ dlk v.

Proof. This is immediate from Lemma 3.8: a simplex in the link of v whose
vertices lie in the descending link corresponds to a cube σ above v such that
the neighbors of v in σ are descending. The Lemma now implies that the
whole simplex lies in the descending link. �

Since the join of a contractible complex with any complex is contractible,
it suffices to show that one of the two join factors is contractible. For vertices
of the form g[∅] we prove it for the up-link, for all others for the down-link.

Lemma 3.11. Let g[C] be a vertex of X. If C 6= ∅ then the descending
down-link is contractible.

Proof. Let s ∈ C. The vertices corresponding to the join factor [s] in
Observation 3.6 point to the vertices gh[C \ {s}], h ∈ [s]. Such a vertex
is descending only for the unique h ∈ [s] such that g ends with h−1 or, if
no such h exists, for h = 1. In either case it is a single point. Thus the
descending down-link is a join of singleton sets, that is, a simplex. �

Lemma 3.12. The descending up-link of a vertex of the form g[∅] is con-
tractible provided g 6= 1.

Proof. A vertex of the form g[C] is descending for g[∅] unless max `(g[C]) >
`(g), that is, unless C contains a letter that g does not end with. In other
words g[C] is descending if C contains only letters that g ends with. The
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poset of such g[C] is a barycentrically subdivided simplex by Corollary 1.3
(unless g = 1 in which case it is empty). �

Proof of Theorem 3.3. The sublevel set X≤(0,0) contains vertices g[C]
whose longest elements have length 0. The only possibility for this is {1},
so X≤(0,0) consists of a single vertex and in particular is contractible. Using
that the descending link of every vertex is contractible by Lemmas 3.11 and
3.12, an inductive application of Lemma 3.4 shows that every sublevel set
of X is contractible. But the whole complex is the limit of these, and thus
is contractible as well. �

From Theorems 3.1, 3.2 and 3.3 and Corollary 3.7 we get:

Corollary 3.13. X is CAT(0).

That X is CAT(0) implies that it is in particular special in the sense of
Haglund and Wise [HW08]. We would like to say that the quotient G\X
(and in fact H\X for every H ≤ G) is special as well. This follows from
[HW10, Theorem 3.5] if the action of G on X is special in the sense of
[HW10, Definition 3.4]. In view of the known cases for right-angled Artin
and Coxeter groups [HW08, Example 3.3 (ii)] it is not surprising that this
condition is indeed satisfied:

Observation 3.14. The action of G on X is special.

Proof. Since every edge is of the form gsk[C] ≤ gsk[C ∪{s}], it is naturally
oriented and labeled by some sk. Orientation and label are preserved along
walls and under the action of G. Walls with the same label cannot cross
and cannot osculate. Walls with label sk and t` can cross only if s and t
commute in which case no two such walls can osculate. The conditions in
[HW10, Definition 3.4] now follow. �

Corollary 3.15. G is virtually cocompact special.

Proof. By Corollary 3.13 X is CAT(0) and hence special (see [HW08, Ex-
ample 3.3 (ii)]). Every torsion element in G fixes a cell of X [BH99, Corol-
lary II.2.8(1)] and hence is conjugate to an element of 〈C〉 for some clique
C ⊆ Vfin. Thus any nontrivial torsion element is mapped to a nontrivial
element under the projection G →

∏
s∈Vfin

〈s〉. So the kernel H of this

map acts freely and cocompactly on X. The quotient H\X is special by
Observation 3.14 and [HW10, Theorem 3.5]. �

4. Comparison to Davis–Januszkiewicz

When all vertices of Γ are labeled ∞, then G(Γ) is a right-angled Artin
group. For that case Davis and Januszkiewicz constructed graphs Γ′ and Γ′′,
which in our notation would have every vertex labeled 2. They showed that
G(Γ) embeds as a finite index subgroup into G(Γ′′) which in turn acts on
the Coxeter complex of G(Γ′). We want to explain how their construction
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carries over to graph products of general cyclic groups and how it relates
to the construction from Section 2. The contents of this section could be
used to reduce the proof of the Main Theorem to the (known) case of graph
products of finite cyclic groups. However, having the self-contained proof
from Section 3, we will skip the technical verifications needed.

The graph Γ′ has vertices Vfin ∪ (Vinf × {−1, 1}) and edges are given by
pulling back the edges from Γ via the obvious projection to V . The graph
Γ′′ has vertices Vfin ∪ (Vinf × {0, 1}) and the following edges: the subgraph
on Vfin ∪ (Vinf × {1}) is canonically isomorphic to Γ; and a vertex (v, 0) is
connected to every other vertex except for (v, 1). Each of the vertices in Vfin

keeps its label and the vertices in (Vinf × {−1, 0, 1}) are labeled by 2. For a
vertex i ∈ Vinf Davis–Januzskiewicz denote these elements gi = i, si = (i, 1),
ti = (i,−1), and ri = (i, 0) respectively.

The graph products associated to these groups are related via the maps

β : G(Γ)→ G(Γ′′)

s 7→ s , s ∈ Vfin

s 7→ (s, 1) · (s, 0) , s ∈ Vinf

and

α : G(Γ′)→ G(Γ′′)

s 7→ s , s ∈ Vfin

(s, 1) 7→ (s, 1) , s ∈ Vinf

(s,−1) 7→ (s, 0) · (s, 1) · (s, 0) , s ∈ Vinf

which are easily seen to be injective. In fact, letting E denote the subgroup
of G(Γ′′) generated by the elements (s, 0), s ∈ Vinf we see that G(Γ′′) can be
written as semidirect products

(4.1) G(Γ) o E = G(Γ′′) = G(Γ′) o E

where the action is always trivial on Vfin and on the remaining generators is
given by

s(t,0) =

{
s s 6= t
s−1 s = t

respectively (s,±1)(t,0) =

{
(s,±1) s 6= t
(s,∓1) s = t .

This can be seen by writing

G(Γ′′) = 〈V ∪ (Vinf × {−1, 0, 1}) | all the previous relations,

s = (s, 1) · (s, 0), for s ∈ Vinf ,

(s,−1) = (s, 0) · (s, 1) · (s, 0) for s ∈ Vinf〉
and then applying Tietze transformations to remove generators. These alge-
braic considerations play the role of the geometric arguments in [DJ00]. One
of the main ingredients here is that the groups G(Γ) and G(Γ′) do indeed
admit the described actions of the group E. The basic example to keep in
mind is the following.
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Example 4.1. If Γ has just one vertex labeled∞, then X(Γ) can be thought
of as the real line. Then G(Γ) is the group generated by an element s which is
translation by 2. The group G(Γ′) is generated by elements (s, 1) and (s,−1)
which are reflection at 1 and −1 respectively. Finally, G(Γ′′) is generated
by elements (s, 1) and (s, 0) which are reflection at 1 and 0.

It is clear from the description that Γ′ is isomorphic to the graph ∆ from
Section 2. Therefore X(Γ′) is isomorphic to X(∆). We will show below that
they are also isomorphic to X(Γ). Note that X(Γ′′) is not typically homeo-
morphic to these complexes. Indeed if Γ consists of two isolated vertices at
least one of which is labeled ∞, then X(Γ′′) is 2-dimensional while X(Γ′)
and X(Γ′) are 1-dimensional. The importance of Γ′′ lies not so much in the
complex X(Γ′′) but rather in the group G(Γ′′).

To show that G(Γ′′) acts on X(Γ) and X(Γ′) and that both are equivari-
antly isomorphic, we define a third complex Y , that is a coset complex of
G(Γ′′). Recall that X(Γ) is the coset complex of sets of the form 〈s〉 , s ∈ Vfin

and [s], [s−1], s ∈ Vinf , while X(Γ′) is the coset complex of subgroups of the
form 〈s〉 , s ∈ Vfin and 〈(s, 1)〉 , 〈(s,−1)〉 , s ∈ Vinf . The construction of Y is
based on the observation that

(4.2) [s]E = 〈(s, 1)〉E and [s−1]E = 〈(s,−1)〉E

in G(Γ′′) for s ∈ Vinf (this follows from the formulas s = (s, 1) · (s, 0) and
s−1 = (s,−1) · (s, 0) for s ∈ Vinf). We therefore define P to be the poset of
sets 〈s〉E, s ∈ Vfin as well as those in (4.2). Further, Q is defined to be the
poset G(Γ′′)P of cosets of these sets and Y to be the realization of Q.

Proposition 4.2. The maps

g[s] 7→ α(g[s])E,

g 〈(s,±1)〉 7→ β(g 〈s,±1〉)E,

induce (G(Γ)- respectively G(Γ′)-) equivariant isomorphisms X(Γ)→ Y re-
spectively X(Γ′) → Y . In particular G(Γ′′) acts on X(Γ) and X(Γ′) and
they are equivariantly isomorphic.

Proof. Bijectivity of both maps follows from the semidirect product decom-
positions (4.1). Equivariance is clear by construction. The order is preserved
since it is just inclusion. �
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