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Applications of reproducing kernels and
Berezin symbols
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and Houcine Sadraoui

Abstract. Using techniques from the theory of reproducing kernels
and Berezin symbols, we investigate some problems related to classes of
linear operators acting on reproducing kernel Hilbert spaces (RKHS’s).
In particular, we establish new estimates related to the numerical radii
and Berezin numbers of some operators on RKHS’s. Further, in terms
of the distance function, we describe invariant subspaces of isometric
composition operators on a RKHS H(Ω) of complex-valued, but not
necessarily analytic, functions on a set Ω. Moreover, we consider a
modification of Sarason’s question about truncated Toeplitz operators.
We also discuss related problems.
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1. Introduction

In this paper we apply techniques from the theory of reproducing ker-
nel Hilbert spaces (RKHS’s) and Berezin symbols to study questions about
linear operators on various reproducing kernel Hilbert spaces. We establish
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estimates for numerical radii and Berezin numbers. We prove some operator
norm inequalities. We study invariant subspaces and boundedness questions
for truncated Toeplitz operators with bounded Berezin numbers.

Recall that a RKHS is a Hilbert space H = H (Ω) of complex-valued func-
tions on a (nonempty) set Ω which has the property that point evaluations
f → f (λ) are continuous in H for all λ ∈ Ω. The classical Riesz represen-
tation theorem guarantees the existence of a unique element kH,λ ∈ H such
that f(λ) = 〈f, kH,λ〉 for all f ∈ H, where 〈, 〉 stands for the inner prod-
uct in H. The function kH,λ (z) is called the reproducing kernel of H. The

normalized reproducing kernel k̂H,λ is defined by k̂H,λ :=
kH,λ

‖kH,λ‖ . A RKHS

is said to be standard if the underlying set Ω is a subset of a topological

space and the boundary ∂Ω is nonempty and has the property that
{
k̂H,λn

}
converges weakly to 0 whenever {λn} is a sequence in Ω that converges to a
point in ∂Ω. (This concept is due to Nordgren and Rosenthal [NR94].) It is
well known that the Hardy, Bergman and Fock spaces of analytic functions
are examples of standard RKHS’s.

For any bounded linear operator A on H, its Berezin symbol Ã is defined
by

Ã(λ) :=< Ak̂H,λ, k̂H,λ > (λ ∈ Ω).

The Berezin symbol of an operator provides important information about
it. For example, it is well known that on most familiar RKHS’s, including the
Hardy, Bergman and Fock spaces, the Berezin symbol uniquely determines

the operator, i.e., A1 = A2 if and only if Ã1 = Ã2. (See, Zhu [Z07].) It is one
of the most useful tools in the study of Toeplitz and Hankel operators on
Hardy and Bergman spaces. The concept of the Berezin symbol of an oper-
ator arose in connection with quantum mechanics and non-commutative ge-
ometry (see, for instance, [Ber72, BerC86]). On the other hand, the method
of reproducing kernels is actively developed by Saitoh & Castro and their
collaborators, in order to solve various problems of applied mathematics
(see, [CSSS12, CIS12, CS13], and the references therein). For other applica-
tions of reproducing kernels and Berezin symbols, see for instance the first
author’s papers [Kar08a, Kar12, Kar06, Kar08b].

Finally, recall that for a bounded operator A on a RKHS, the correspond-
ing Berezin set and Berezin number of A are defined, respectively, as follows
(see [Kar06]):

Ber (A) = Range
(
Ã
)

=
{
Ã (λ) : λ ∈ Ω

}
ber (A) = sup {|µ| : µ ∈ Ber (A)} .

This paper is organized as follows:
In Section 2, we prove some results concerning Berezin numbers and nu-

merical radii of operators. We demonstrate some new relations among these
numerical characteristics of operators on RKHS’s.
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Section 3 is devoted to the solution of the following modification of a
question first studied by Sarason: Does every truncated Toeplitz operator
Aθϕ with finite Berezin number ber

(
Aθϕ
)

possess an L∞ symbol? Here also

an inequality for the Berezin number of Aθϕ is proved.
In Section 4, we describe the invariant subspaces of isometric composition

operators Cϕ on the RKHS H (Ω).
In Section 5, submodules M of the Hardy module H2

(
D2
)

over the bidisk

D2 = D×D are investigated in terms of Berezin symbols P̃M of the orthog-
onal projection PM onto M. We improve some of results of Yang [Yan04]
and Guo and Yang [GY04].

In Section 6, we estimate the limits lim
n
‖TnS‖ for some appropriate op-

erators T and S on a RKHS. Such limits have important applications, for
example, in investigating the compactness of operators S (see, for instance,
[ESZ, KZ09, Le09, Muh71, MusH14]).

2. Estimates for Berezin numbers and numerical radii

In this section, we prove some new inequalities for Berezin numbers and
numerical radii of operators on the Hardy space H2.

Let (
∑

) denote the set of all inner functions in H2, and(
H2
)

1
:=
{
f ∈ H2 : ‖f‖2 = 1

}
the unit sphere of H2.

Proposition 1. Let A : H2 → H2 be an arbitrary bounded linear operator.
Then

(2.1) sup
θ∈(
∑

)∪{1}
ber

(
TθATθ

)
≤ w (A) ≤ sup

f∈H∞∩(H2)1

ber
(
TfATf

)
.

Proof. Since H∞ is dense in H2, it is easy to show that

sup
{
|〈Af, f〉| : f ∈

(
H2
)

1

}
= sup

{
|〈Af, f〉| : f ∈ H∞ ∩

(
H2
)

1

}
.

Then we have:

w (A) = sup
{
|〈Af, f〉| : f ∈ H∞ ∩

(
H2
)

1

}
= sup

{∣∣〈T ∗fATf1, 1
〉∣∣ : f ∈ H∞ ∩

(
H2
)

1

}
= sup

{∣∣∣〈TfATf k̂0, k̂0

〉∣∣∣ : f ∈ H∞ ∩
(
H2
)

1

}
= sup

{∣∣∣T̃fATf (0)
∣∣∣ : f ∈ H∞ ∩

(
H2
)

1

}
≤ sup

f∈H∞∩(H2)1

sup
{∣∣∣T̃fATf (λ)

∣∣∣ : λ ∈ D
}

= sup
f∈H∞∩(H2)1

ber
(
TfATf

)
,
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i.e.,

(2.2) w (A) ≤ sup
f∈H∞∩(H2)1

ber
(
TfATf

)
.

On the other hand, if θ ∈ (
∑

) is an arbitrary inner function, then, by
considering that θg ∈

(
H2
)

1
for every g ∈

(
H2
)

1
, we have:

ber
(
TθATθ

)
= sup

λ∈D

∣∣∣T̃θATθ (λ)
∣∣∣ = sup

λ∈D

∣∣∣TθATθk̂λ, k̂λ∣∣∣
= sup

λ∈D

∣∣∣〈ATθk̂λ, Tθk̂λ〉∣∣∣ = sup
λ∈D

∣∣∣〈Aθk̂λ, θk̂λ〉∣∣∣
≤ sup

λ∈D
sup

h∈(H2)1

|〈Ah, h〉|

= sup
h∈(H2)1

|〈Ah, h〉| = w (A) .

That is

ber
(
TθATθ

)
≤ w (A)

for any θ ∈ (
∑

) . Thus

ber (TηATη) ≤ w (A)

for any η ∈ (
∑

) ∪ {1} . Therefore, we obtain

(2.3) sup
η∈(

∑
)∪{1}

ber (TηATη) ≤ w (A) .

Now, the desired inequality (2.1) follows from (2.2) and (2.3), which com-
pletes the proof. �

Corollary 1. If supf∈H∞∩(H2)1
ber

(
TfATf

)
= ber

(
TθATθ

)
for some θ ∈

(
∑

) , then w (A) = ber
(
TθATθ

)
.

Corollary 2. If

sup
η∈(

∑
)∪{1}

ber (TηATη) = sup
f∈H∞∩(H2)1

ber
(
TfATf

)
= ber (A) ,

then w (A) = ber (A) .

Corollary 3. Let ϕ ∈ L∞ (T) and Tϕ be a Toeplitz operator on the Hardy
space H2. Then

ber (Tϕ) = w (Tϕ) = ‖Tϕ‖ = ‖ϕ‖∞ .

The proof of the latter corollary uses the well-known result that T̃ϕ = ϕ̃
for any Teoplitz operator Tϕ , ϕ ∈ L∞ (T) , on the Hardy space H2, where
ϕ̃ denotes the harmonic extension of ϕ.

Similar arguments allow us to state the following result in the Bergman
space L2

a (D) .
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Proposition 2. Let ϕ ∈ L∞ (D) and Tϕ be a Toeplitz operator on the
Bergman space L2

a (D) . Then

w (Tϕ) ≤ sup
f∈H∞∩(L2

a)1

ber
(
T|f |2ϕ

)
.

Recall that for any inner function θ and any symbol ϕ ∈ L∞ (T), the
truncated Toeplitz operator Aθϕ : Kθ → Kθ is defined by Aθϕf = Pθ (ϕf) .

Our next result estimates the numerical radius of Aθϕ.

Proposition 3. Let θ be an inner function, ϕ ∈ L∞ (T) be a function and
Aθϕ : Kθ → Kθ be a truncated Toeplitz operator. Then the numerical radius

of Aθϕ satisfies the following inequality

w
(
Aθϕ

)
≥ sup

λ∈D

∣∣∣∣(∣∣∣1− θ (λ)θ
∣∣∣2 ϕ)∼

(λ)

∣∣∣∣
1− |θ (λ)|2

.

Proof. Since ϕ ∈ L∞ (T) , the truncated Toeplitz Aθϕ is bounded. For any
f ∈ Kθ, ‖f‖2 = 1, we have〈

Aθϕf, f
〉

= 〈PθTϕf, f〉 = 〈Tϕf, f〉 .

By considering this and the formula

k̂θ,λ (z) =

(
1− |λ|2

1− |θ (λ)|2

) 1
2 1− θ (λ)θ (z)

1− λz
,

we have

sup
‖f‖2=1

∣∣∣〈Aθϕf, f〉∣∣∣
= sup
‖f‖2=1

〈Tϕf, f〉 ≥ sup
λ∈D

∣∣∣〈Tϕk̂θ,λ, k̂θ,λ〉∣∣∣
= sup

λ∈D

1− |λ|2

1− |θ (λ)|2

∣∣∣∣∣
〈
Tϕ

1− θ (λ)θ

1− λz
,
1− θ (λ)θ

1− λz

〉∣∣∣∣∣
= sup

λ∈D

1

1− |θ (λ)|2

∣∣∣∣∣∣∣
〈
T1−θ(λ)θTϕT1−θ(λ)θ

(
1− |λ|2

) 1
2

1− λz
,

(
1− |λ|2

) 1
2

1− λz

〉∣∣∣∣∣∣∣
= sup

λ∈D

1

1− |θ (λ)|2

∣∣∣∣〈Tϕ|1−θ(λ)θ|2 k̂λ, k̂λ
〉∣∣∣∣

= sup
λ∈D

1

1− |θ (λ)|2

∣∣∣∣T̃ϕ|1−θ(λ)θ|2 (λ)

∣∣∣∣
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= sup
λ∈D

(∣∣∣1− θ (λ)θ
∣∣∣2 ϕ)∼

(λ)

1− |θ (λ)|2
.

In the last equality we again used the well known result that T̃h = h̃ for
every h ∈ L∞ (T) (see, for example, Zhu [Z07]). Thus we have

w
(
Aθϕ

)
≥ sup

λ∈D

(∣∣∣1− θ (λ)θ
∣∣∣2 ϕ)∼

(λ)

1− |θ (λ)|2
,

which proves the proposition. �

Our next result establishes an inequality for the Berezin number of an
abstract operator.

Proposition 4. Let H = H(Ω) be a reproducing kernel Hilbert space of
complex-valued functions on some set Ω with reproducing kernel

kH,λ (z) =

∞∑
n=0

en (λ)en (z) ,

where {en (z)}n≥0 is any orthonormal basis of the space H. Let A : H → H
be a bounded linear operator with matrix entries

an,m := 〈Aen (z) , em (z)〉 , n,m = 0, 1, 2, . . . ,

satisfying the inequality

(2.4) |an,m| ≤ C |an| |bm| ≤ ‖A‖ (∀n,m ≥ 0) ,

for some sequences {an}n≥0 ∈ `2, {bn}n≥0 ∈ `2 and C > 0. Then

ber (A) ≤ C ‖{an}‖`2 ‖{bn}‖`2 .

Proof. First, let us determine the Berezin symbol of the operator A :

Ã (λ) =
〈
Ak̂H,λ, k̂H,λ

〉
=

1

‖kH,λ‖2
〈Akλ, kλ〉

=
1

‖kH,λ‖2

〈
A

∞∑
n=0

en (λ)en (z) ,

∞∑
n=0

en (λ)en (z)

〉

=
1

‖kH,λ‖2

〈 ∞∑
n=0

en (λ)Aen (z) ,
∞∑
n=0

en (λ)en (z)

〉

=
1

‖kH,λ‖2
∞∑

n,m=0

en (λ)em (λ) 〈Aen (z) , em (z)〉

=
1

‖kH,λ‖2
∞∑

n,m=0

an,men (λ)em (λ) ,
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or

(2.5) Ã (λ) =
1

‖kH,λ‖2
∞∑

n,m=0

an,men (λ)em (λ) ,

for all λ ∈ Ω.
Now using condition (2.4) and formula (2.5), we have∣∣∣Ã (λ)

∣∣∣
≤ C 1

‖kH,λ‖2
∞∑
n=0

∞∑
m=0

|an| |bm| |en (λ)| |em (λ)|

= C
1

‖kH,λ‖2
∞∑
n=0

|an| |en (λ)|
∞∑
m=0

|bm| |em (λ)|

≤ C 1

‖kH,λ‖2

( ∞∑
n=0

|an|2
) 1

2
( ∞∑
n=0

|en (λ)|2
) 1

2
( ∞∑
m=0

|bm|2
) 1

2
( ∞∑
m=0

|em (λ)|2
) 1

2

= C ‖{an}‖`2 ‖{bn}‖`2
for all λ ∈ Ω, which implies that

ber (A) = sup
λ∈Ω

∣∣∣Ã (λ)
∣∣∣ ≤ C ‖{an}‖`2 ‖{bn}‖`2 .

The proposition is proved. �

3. On a modification of a question of Sarason for truncated
Toeplitz operators

Let S∗ denote the backward shift on the Hardy space H2, which is given

by S∗f (z) = f(z)−f(0)
z , and let θ be a nonconstant inner function. The S∗-

invariant subspace H2	 θH2 will be denoted by Kθ. The kernel function in
Kθ for the evaluation functional at the point λ of D is , as mentioned above,
the function

kθ,λ (z) :=
1− θ (λ)θ (z)

1− λz
(z ∈ D) .

Now let ϕ ∈ L∞ (T), and recall that the truncated Toeplitz operator Aθϕ
acting on bounded functions from Kθ is defined by the formula

Aθϕf = Pθ (ϕf) ,

f ∈ Kθ ∩ L∞ (T) ; here Pθf = P+f − P+

(
θf
)

is the orthogonal projection

ontoKθ. In contrast with the Toeplitz operators onH2 (which satisfy ‖Tϕ‖ =

‖ϕ‖∞), the operator Aθϕ may be extended to a bounded operator on Kθ even
for some unbounded symbol ϕ.

The symbol of a truncated Toeplitz operator is highly nonunique. In
fact, Sarason proved in [Sar07, Theorem 3.1] that Aθϕ = 0 if and only if ϕ
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belongs to θH2 + θH
2
. A truncated Toeplitz operator obviously is bounded

if it has a symbol in L∞. The following natural question is due to Sarason
[Sar07, Sar08]: does every bounded truncated Toeplitz operator possess an
L∞ symbol?

It is shown in [BaCFMT10] that in general the answer to this question
is negative. Namely, a class of inner functions θ for which there exist rank
one truncated Toeplitz operators Kθ without bounded symbols has been
constructed.

Among the results of that paper, a negative answer to a weaker question
has been given, namely: Does every truncated Toeplitz operator Aθϕ with

finite Berezin number ber
(
Aθϕ
)

possess an L∞ symbol?
However, it is still interesting to find necessary and sufficient conditions

under which a given truncated Toeplitz operator with finite Berezin number
possesses an L∞ symbol.

Here, in terms of the harmonic extension, we give the necessary and suf-
ficient conditions ensuring the existence of a bounded symbol for any trun-
cated Toeplitz operator Aθϕ with finite Berezin number ber

(
Aθϕ
)
.

Recall that for any function ψ ∈ L1, its harmonic extension into D will

be denoted by ψ̃.

Theorem 1. Let θ be an inner function. For ϕ in L2, let Aθϕ be a truncated

Toeplitz operator on Kθ defined by Aθϕf = Pθ (ϕf) with finite Berezin number

ber
(
Aθϕ
)
. Then Aθϕ possesses a bounded symbol if and only if there exist

functions h1, h2 ∈ H2 such that

sup
λ∈D

∣∣∣((ϕ+ θh1 + θh2

)
Re
(
θ (λ)θ

))∼
(λ)
∣∣∣ < +∞.

Proof. For the “only if” part, suppose that Aθϕ possesses a bounded sym-

bol ψ ∈ L∞. This means that there exist functions h1, h2 ∈ H2 such that
ψ = ϕ+ θh1 + θh2. Then, using standard arguments for bounded harmonic
functions, we obtain:∣∣∣((ϕ+ θh1 + θh2

)
Re
(
θ (λ)θ

))∼
(λ)
∣∣∣

=

∣∣∣∣∣
∫
T

1− |λ|2

|ξ − λ|2
((
ϕ (ξ) + θ (ξ)h1 (ξ) + θ (ξ)h2 (ξ)

)
Re
(
θ (λ)θ (ξ)

))
dm (ξ)

∣∣∣∣∣
≤
∫
T

1− |λ|2

|ξ − λ|2
∣∣ϕ (ξ) + θ (ξ)h1 (ξ) + θ (ξ)h2 (ξ)

∣∣ ∣∣∣Re
(
θ (λ)θ (ξ)

)∣∣∣ dm (ξ)

≤
∥∥ϕ+ θh1 + θh2

∥∥
L∞(T)

∫
T

1− |λ|2

|ξ − λ|2
|θ (λ) θ (ξ)| dm (ξ)

≤
∥∥ϕ+ θh1 + θh2

∥∥
L∞(T)

,
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for all λ ∈ D, which shows that

sup
λ∈D

∣∣∣((ϕ+ θh1 + θh2

)
Re
(
θ (λ)θ

))∼
(λ)
∣∣∣ ≤ ∥∥ϕ+ θh1 + θh2

∥∥
L∞(T)

< +∞.

Now, we prove the “if” part. We first calculate the Berezin symbol of the

bounded operator Aθϕ, which is the function Ãθϕ defined on D by

Ãθϕ (λ) :=
〈
Aθϕk̂θ,λ, k̂θ,λ

〉
,

where

k̂θ,λ (z) :=

(
1− |λ|2

1− |θ (λ)|2

)1/2
1− θ (λ)θ (z)

1− λz
is the normalized reproducing kernel of the subspace Kθ. We have:

Ãθϕ (λ) =
〈
Aθϕk̂θ,λ, k̂θ,λ

〉
=

1− |λ|2

1− |θ (λ)|2
〈Pθ (ϕkθ,λ) , kθ,λ〉

=
1− |λ|2

1− |θ (λ)|2

〈
ϕ

1− θ (λ)θ

1− λz
,
1− θ (λ)θ

1− λz

〉

=
1− |λ|2

1− |θ (λ)|2

〈
P+

(
ϕ

1− θ (λ)θ

1− λz

)
,
1− θ (λ)θ

1− λz

〉

=
1− |λ|2

1− |θ (λ)|2

〈
Tϕ

(
1− θ (λ)θ

1− λz

)
,
1− θ (λ)θ

1− λz

〉

=
1− |λ|2

1− |θ (λ)|2

〈
TϕT1−θ(λ)θ

1

1− λz
, T

1−θ(λ)θ

1

1− λz

〉

=
1

1− |θ (λ)|2

〈
T ∗

1−θ(λ)θ
TϕT1−θ(λ)θ

(
1− |λ|2

)1/2

1− λz
,

(
1− |λ|2

)1/2

1− λz

〉
.

Since for ϕ ∈ L2 one has S∗TϕS = Tϕ (see Sarason [Sar07]), where S is the
shift operator on H2 defined by Sf (z) = zf (z) , it is easy to show that

T ∗
1−θ(λ)θ

TϕT1−θ(λ)θ
= T(

1−θ(λ)θ
)
ϕ(1−θ(λ)θ)

.

On the other hand, by considering that the function k̂λ (z) :=
(1−|λ|2)

1/2

1−λz is

the normalized reproducing kernel for the Hardy space H2 and T̃ψ = ψ̃ for
every function ψ ∈ L2 (T) (see, for example, Zhu [Z07]), we obtain:

Ãθϕ (λ)(3.1)

=
1

1− |θ (λ)|2
〈
T(1−θ(λ)θ)(1−θ(λ)θ)ϕk̂λ, k̂λ

〉
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=
1

1− |θ (λ)|2
〈
T(1−2Re(θ(λ)θ)+|θ(λ)|2)ϕk̂λ, k̂λ

〉
=

1

1− |θ (λ)|2
[(

1 + |θ (λ)|2 − 2Re
(
θ (λ)θ

))
ϕ
]∼

(λ)

=
1

1− |θ (λ)|2
((

1 + |θ (λ)|2
)
ϕ̃ (λ)− 2

((
Re
(
θ (λ)θ

))
ϕ
)∼

(λ)
)
.

Then we obtain

(3.2) ϕ̃ (λ) =
1− |θ (λ)|2

1 + |θ (λ)|2
Ãθϕ (λ) +

2

1 + |θ (λ)|2
((

Re
(
θ (λ)θ

))
ϕ
)∼

(λ) ,

for all λ ∈ D. Analogously we have that(
ϕ+ θh1 + θh2

)∼
(λ)(3.3)

=
(
ϕ̃ (λ) + θ (λ)h1 (λ) + θ (λ)h2 (λ)

)
=

1− |θ (λ)|2

1 + |θ (λ)|2
Ãθϕ+θh1+θh2

(λ)

+
2

1 + |θ (λ)|2
((
ϕ+ θh1 + θh2

)
Re
(
θ (λ)θ

))∼
(λ)

=
1− |θ (λ)|2

1 + |θ (λ)|2
Ãθϕ (λ)

+
2

1 + |θ (λ)|2
((
ϕ+ θh1 + θh2

)
Re
(
θ (λ)θ

))∼
(λ) .

Since
1− |θ (λ)|2

1 + |θ (λ)|2
≤ 1

and
∣∣∣Ãθϕ (λ)

∣∣∣ ≤ C for all λ ∈ D and some C > 0, it follows from equality (3)

that
(
ϕ+ θh1 + θh2

)∼ ∈ L∞ (D) if and only if

(3.4) sup
λ∈D

∣∣∣((ϕ+ θh1 + θh2

)
Re
(
θ (λ)θ

))∼
(λ)
∣∣∣ < +∞.

Thus, by considering that Ψ ∈ L∞ (T) if and only if Ψ̃ ∈ L∞ (D), we deduce
that ϕ + θh1 + θh2 ∈ L∞ if and only if (3.4) is satisfied. The theorem is
proved. �

Let Zθ := {λn}n≥1 ⊂ D be a sequence of zeros of the inner function θ,
and let

θ = B exp

(
−
∫
T

ξ + z

ξ − z
dµsθ (ξ)

)
be its canonical factorization. Let σ (θ) denote the spectrum of the function
θ. It is well-known [Nik86] that

σ (θ) = clos (Zθ) ∪ supp (µsθ) =
{
λ ∈ D : limz→λ,z∈D |θ (z)| = 0

}
.
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The following is an immediate corollary of formulas (3.1) and (3.2).

Corollary 4. Let Aθϕ
(
ϕ ∈ L2

)
be any truncated Toeplitz operator on Kθ

with ber
(
Aθϕ
)
< +∞. Then we have:

(i) ber
(
Aθϕ
)

= sup
λ∈D

∣∣∣1+|θ(λ)|2

1−|θ(λ)|2 ϕ̃ (λ)− 2
1−|θ(λ)|2

(
ϕRe

(
θ (λ)θ

))∼
(λ)
∣∣∣.

(ii) sup
λ∈σ(θ)

|ϕ̃ (λ)| ≤ ber
(
Aθϕ
)
.

It follows from Sarason’s description that any two symbols of the same

operator differ by an element of the set θH2 + θH
2
. Then we immediately

get the following criterion: a bounded truncated Toeplitz operator Aθϕ has

a bounded symbol if and only if there exists two functions h1, h2 ∈ H2 such
that ϕ+ θh1 + θh2 ∈ L∞ (T) , which is obviously equivalent to

(3.5) sup
λ∈D

∣∣(ϕ+ θh1 + θh2

)∼
(λ)
∣∣ < +∞.

The next corollary to Theorem 1 somewhat improves Sarason’s criterion
(3.5), because our criterion (3.6) below is weaker than (3.5) due to the

presence of the factor Re
(
θ (λ)θ

)
.

Corollary 5. Let θ be an inner function. For ϕ in L2, let Aθϕ be a bounded

truncated Toeplitz operator on Kθ. Then Aθϕ possesses a bounded symbol if

and only if there exist functions h1, h2 ∈ H2 such that

(3.6) sup
λ∈D

∣∣∣((ϕ+ θh1 + θh2

)
Re
(
θ (λ)θ

))∼
(λ)
∣∣∣ < +∞.

4. Distance function and invariant subspaces of isometric
composition operators

Let H = H (Ω) be a RKHS of complex-valued functions on some set Ω
with reproducing kernel kH,λ (z) ; that is 〈f, kH,λ〉 = f(λ) for every f ∈ H.
For any suitable function ϕ : Ω → Ω, the associated composition operator
Cϕ on H is defined by Cϕf = f ◦ϕ. In this section, we describe the invariant
subspaces of the composition operator Cϕ in terms of the so-called distance
function.

Recall that Nikolski introduces in [Nik95] the concept of the distance
function defined in Ω, for a closed subspace E ⊂ H by

θE (λ) := sup {|f (λ)| : f ∈ E, ‖f‖ ≤ 1} , λ ∈ Ω.

In other words, θE (λ) = ‖Φλ|E‖ , λ ∈ Ω, where Φλ is the point evaluation
functional at λ ∈ Ω on H: Φλ (f) = f (λ) , f ∈ H. It is well known that the
distance function uniquely determines the subspace (see Nikolski [Nik95]).

Note that the description of invariant subspaces of composition operators
seems not to be well studied. Moreover, most of known results concern
mostly RKHS’s of analytic functions on the unit disk D = {z ∈ C : |z| < 1},
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(For instance, see Mahvidi [Mah01] and Nordgren, Rosenthal and Wintrobe
[NRW87]).

Theorem 2. Let H = H (Ω) be a RKHS of complex-valued functions on
some set Ω, and let ϕ : Ω → Ω, be a function such that Cϕ is an isometric
operator on H. If E ⊂ H is a closed subspace such that CϕE ⊆ E, then
θE (ϕ (λ)) ≤ θE (λ) for all λ ∈ Ω.

Proof. First, note that if kH,λ (z) is the reproducing kernel of H, then it
is easy to verify that C∗ϕkH,λ = kH,ϕ(λ) for all λ ∈ Ω (see, for instance,
[MarR07, Lemma 5.1.9] ). Let PE : H →E be the orthogonal projector, and
let kEH,λ denote the reproducing kernel of the subspace E. Since Cϕ is an
isometry on H, then it is easy to see that

PE	CϕE = PE − CϕPEC∗ϕ,

which implies that(
PE − CϕPEC∗ϕ

)
kH,λ (z) = k

E	CϕE
H,λ (z) .

Then, we obtain:

〈PEkH,λ (z) , kH,λ (z)〉 −
〈
CϕPEC

∗
ϕkH,λ (z) , kH,λ (z)

〉
= 〈PEkH,λ (z) , kH,λ (z)〉 −

〈
PEkH,ϕ(λ) (z) , C∗ϕkH,λ (z)

〉
= 〈PEkH,λ (z) , kH,λ (z)〉 −

〈
kEH,ϕ(λ) (z) , kH,ϕ(λ) (z)

〉
= 〈PEkH,λ (z) , kH,λ (z)〉 − kEH,ϕ(λ) (ϕ (λ))

=
〈
k
E	CϕE
H,λ (z) , kH,λ (z)

〉
=
〈
PE	CϕEkH,λ (z) , kH,λ (z)

〉
or

〈PEkH,λ (z) , kH,λ (z)〉 −
〈
PEkH,ϕ(λ) (z) , kH,ϕ(λ) (z)

〉
=
〈
PE	CϕEkH,λ (z) , kH,λ (z)

〉
for all λ ∈ D. From this〈

PE
kH,λ
‖kH,λ‖

,
kH,λ
‖kH,λ‖

〉
‖kH,λ‖2 −

〈
PE

kH,ϕ(λ)∥∥kH,ϕ(λ)

∥∥ , kH,ϕ(λ)∥∥kH,ϕ(λ)

∥∥
〉∥∥kH,ϕ(λ)

∥∥2

=

〈
PE	CϕE

kH,λ
‖kH,λ‖

,
kH,λ
‖kH,λ‖

〉
‖kH,λ‖2 ,

or

(4.1) P̃E (λ) ‖kH,λ‖2 − P̃E (ϕ (λ))
∥∥kH,ϕ(λ)

∥∥2
= P̃E	CϕE (λ) ‖kH,λ‖2 ,

for all λ ∈ D.
On the other hand, it is easy to show that

(4.2) P̃E (λ) ‖kH,λ‖2 = θ2
E (λ) (∀λ ∈ Ω) .
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Indeed,

θ2
E (λ) = ‖Φλ|E‖2 = ‖PEkH,λ‖2 =

∥∥kEH,λ∥∥2
=
〈
kEH,λ, k

E
H,λ
〉

= 〈PEkH,λ, kH,λ〉 = ‖kH,λ‖2
〈
PE

kH,λ
‖kH,λ‖

,
kH,λ
‖kH,λ‖

〉
= ‖kH,λ‖2 P̃E (λ) (∀λ ∈ Ω) .

Now, it follows from the formulae (4.1) and (4.2) that

(4.3) θ2
E (λ)− θ2

E (ϕ (λ)) = θ2
E	CϕE (λ) (∀λ ∈ Ω) .

Since CϕE ⊂ E, θE	CϕE (λ) ≥ 0, ∀λ ∈ Ω, so, it follows from (4.3) that

θE (ϕ (λ)) ≤ θE (λ) (∀λ ∈ Ω) ,

as desired. This proves the theorem. �

5. Submodules of the Hardy space over the bidisc

Let T denote the boundary of the unit disc D. Let D2 = D× D be the
Cartesian product of two copies of D and T2 = T× T is its distinguished
boundary. The points in D2 are thus ordered pairs z = (z1, z2) . As usual,
H2
(
D2
)
, which is H2 (D)⊗H2 (D) , is the Hardy space over the bidisc D2.

The bidisc algebra CA
(
D2
)

acts on H2
(
D2
)

by pointwise multiplication,

which makes H2
(
D2
)

into a CA
(
D2
)
-module. A closed subspace M of

H2
(
D2
)

is called a submodule if M is invariant under the module action,
or equivalently, M is invariant under multiplications by both z1 and z2. For
more details about the Hardy space H2

(
D2
)

and its submodules, see for
instance, Rudin [R69], Yang [Yan04] and the references therein.

In the classical Hardy space H2 (D) over the unit disc D, every z-invariant
(i.e., shift-invariant) subspace M is of the form θH2 (D) for some inner
function θ by the celebrated Beurling theorem [H62], and the reproduc-

ing kernel of M is kM,λ (z) = θ(λ)θ(z)

1−λz . The fact that θ is inner implies that(
1− |λ|2

)
kM,λ (z) has boundary value 1 almost everywhere on T. In the two

variable space H2
(
D2
)
, these questions are far more complicated and there

is no similar characterization of invariant subspacesM in terms of inner func-
tions. However, Yang [Yan04] showed an analogous phenomenon in terms of

reproducing kernels, namely,
(

1− |λ1|2
)(

1− |λ2|2
)
kM,(λ1,λ2) (λ1, λ2) has

boundary value 1 almost everywhere on T2. Yang’s paper [Yan04] sticks to
the idea of Beurling’s theorem and shows, in terms of their reproducing ker-
nels, that submodules in H2

(
D2
)

do exhibit a Beurling-type phenomenon.

For a submodule M in H2
(
D2
)
, a natural analogue of

(
1− |λ|2

)
kM,λ (λ)

is so-called core function (see Yang [Yan04])

GM (λ1, λ2) :=
(

1− |λ1|2
)(

1− |λ2|2
)
kM,(λ1,λ2) (λ1, λ2) ,
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where kM,λ (z) is the reproducing kernel of M. As is proved in [Yan04], GM

completely determines the submodule M. Moreover, Yang proved [Yan04]
under a mild condition that GM (λ1, λ2) = 1 almost everywhere on T2 (see
[Yan04, Theorem 4.5 and Corollary 4.6] ). In [Yan04], it is also conjectured
that GM (z) = 1 almost everywhere on the distinguished boundary T2 for
every submodule M. This conjecture was affirmatively solved by Guo and
Yang in [GY04, Theorem 2.1] . For the more general case see also the
Corollaries 2.3 and 2.4 in [Kar08b].

In the present section, we characterize submodules M of H2
(
D2
)

in terms

of Berezin symbols P̃M of the orthogonal projection PM onto M. We also
prove that

lim
z→ξ

GM (z) = 1

for every submodule M with finite co-dimension and ξ ∈ ∂D2. Since ∂D2 6=
T2, in case of submodules with finite co-dimensions, our result is stronger
than the results of Yang [Yan04] and Guo and Yang [GY04].

Theorem 3. For any nontrivial submodule M of the Hardy space H2
(
D2
)
,

the Berezin symbol P̃M of the operator PM has the representation

(5.1) P̃M (λ1, λ2) =
(

1− |λ1|2
) ∞∑
i=1

|ηi (λ1, λ2)|2 , (λ1, λ2) ∈ D2,

for some orthonormal basis {ηi}i≥1 of the subspace M 	 z2M.

Proof. Let M be any nontrivial submodule of H2
(
D2
)
, i.e., z1M ⊂M and

z2M ⊂M. Let

kλ (z) =
1(

1− λ1z1

) (
1− λ2z2

)
be a reproducing kernel of the space H2

(
D2
)
. Then

kM,λ (z) = PMkλ (z)
(
λ, z ∈ D2

)
is the reproducing kernel of the submodule M and

PM	z2Mkλ =
(
1− λ2z2

)
kM,λ

is the reproducing kernel of M 	 z2M. Therefore,

kM	z2M,λ (z) =

∞∑
i=1

ηi (λ)ηi (z)

for some orthonormal basis {ηi}i≥1 of the subspace M 	z2M. Then we have(
1− λ1z1

) (
1− λ2z2

)
kM,λ (z) =

(
1− λ1z1

)
kM	z2M,λ (z)

=
(
1− λ1z1

) ∞∑
i=1

ηi (λ1, λ2)ηi (z1, z2) ,
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which implies that

PMkλ (z)

=

∞∑
i=1

ηi (λ1, λ2)ηi (z1, z2)(
1− λ2z2

)
=
(
1− λ1z1

) ∞∑
i=1

ηi (λ1, λ2)ηi (z1, z2) kλ (z)

=

( ∞∑
i=1

ηi (λ1, λ2)ηi (z1, z2)−
∞∑
i=1

λ1ηi (λ1, λ2)z1ηi (z1, z2)

)
kλ (z)

=

∞∑
i=1

ηi (λ1, λ2)ηi (z1, z2) kλ (z)−
∞∑
i=1

λ1ηi (λ1, λ2)z1ηi (z1, z2) kλ (z)

=

∞∑
i=1

Tηi(z1,z2)T
∗
ηi(z1,z2)k(λ1,λ2) (z1, z2)

−
∞∑
i=1

Tz1ηi(z1,z2)T
∗
z1ηi(z1,z2)k(λ1,λ2) (z1, z2)

=
∞∑
i=1

(
Tηi(z1,z2)T

∗
ηi(z1,z2) − Tz1ηi(z1,z2)T

∗
z1ηi(z1,z2)

)
k(λ1,λ2) (z1, z2) .

Since span
{
k(λ1,λ2) (z1, z2) : (λ1, λ2) ∈ D2

}
= H2

(
D2
)
, the latter equal-

ity shows that

PM =

∞∑
i=1

(
TηiT

∗
ηi − Tz1ηiT

∗
z1ηi

)
,

which implies that

P̃M (λ1, λ2) =
∞∑
i=1

(
|ηi (λ)|2 − |λ1|2 |ηi (λ)|2

)
=
(

1− |λ1|2
) ∞∑
i=1

|ηi (λ)|2 ,

or

P̃M (λ1, λ2) =
(

1− |λ1|2
) ∞∑
i=1

|ηi (λ1, λ2)|2

for all (λ1, λ2) ∈ D2, as desired. The theorem is proved. �
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Corollary 6. For any nontrivial finite co-dimensional submodule M of the
Hardy space H2

(
D2
)

we have

lim
(λ1,λ2)→∂D2

GM (λ1, λ2) = 1.

Proof. By using Theorem 3, the definition of the function GM (λ1, λ2) , and
formula (5.1), we obtain:

GM (λ1, λ2) =
(

1− |λ1|2
)(

1− |λ2|2
)
kM,(λ1,λ2) (λ1, λ2)

=
(

1− |λ1|2
)
kM	z2M,(λ1,λ2) (λ1, λ2)

=
(

1− |λ1|2
) ∞∑
i=1

|ηi (λ1, λ2)|2

= P̃M (λ1, λ2) .

In other words

(5.2) GM (λ1, λ2) = P̃M (λ1, λ2)
(
∀ (λ1, λ2) ∈ D2

)
.

It is proved by the first author in [Kar12] that the closed subspace E of the re-
producing kernel Hilbert space H (Ω) over some set Ω has finite codimension

if and only if lim
λ→∂Ω

P̃UE (λ) = 1 for any unitary operator U : H (Ω)→ H (Ω) .

Since co-dimM < +∞, by applying this result we conclude from (5.2) that
lim(λ1,λ2)→ξ∈∂D2 GM (λ1, λ2) = 1 for any ξ ∈ ∂D2. This proves the corol-
lary. �

Note that since T2 $ ∂D2, this corollary somewhat improves the result of
Guo and Yang [GY04] in case of submodules with finite codimensions.

6. On operator norm inequalities

In this section, we prove some operator norm inequalities. Namely, we
will estimate lim

n→∞
‖TnS‖ for some appropriate operators T and S on a

Hilbert space. Such type of limits is important, in particular, for the study
of the compactness property of the operator S. For, it is enough to re-
member, for instance, the well known Hartman-Sarason [Nik86] theorem
for compact model operators ϕ (Mθ) (ϕ ∈ H∞) defined on the model space
Kθ = H2 	 θH2 by ϕ (Mθ) f = Pθϕf, f ∈ Kθ. There are also many other
recent papers where the limit lim

n→∞
‖TnS‖ is investigated for different goals,

see, for instance, [ESZ, KZ09, Le09, Muh71, MusH14].
Before giving the results of this section, first let us introduce some addi-

tonal notation.
Let H be a complex Hilbert space. If {xn}n≥1 ⊂ H, we denote by

span {xn : n = 1, 2, . . . } the closure of the linear hull generated by {xn}n≥1 .

The sequence X = {xn}n≥1 is called:
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• complete if span {xn : n = 1, 2, . . . } = H;
• a Riesz basis if there exists an isomorphism U : H → H such that
{Uxn}n≥1 is an orthonormal basis in H. The operator U will be
called the orthogonalizer of X.

It is well known that (see, for example, Nikolski [Nik86]) X is a Riesz basis
in its closed linear span if there are constants C1 > 0, C2 > 0 such that

(6.1) C1

 ∞∑
n≥1

|an|2
1/2

≤

∥∥∥∥∥∥
∞∑
n≥1

anxn

∥∥∥∥∥∥ ≤ C2

 ∞∑
n≥1

|an|2
1/2

,

for all finite complex sequences {an}n≥1. Note that ‖U‖−1 and
∥∥U−1

∥∥ are

the best constants in inequality (6.1).
Now we state our main results of this section:

Theorem 4. Let H be an infinite dimensional separable Hilbert space with
Riesz basis {Ri}∞i=1 , and let T : H → H be a bounded linear operator. Then:

(i) ‖TnS‖ = O

(
sup
m≥1

(
m∑
i=1
‖T ∗nRi‖2

)1/2
)
, as n → ∞, for every S ∈

B (H).

(ii) If lim
n→∞

sup
m≥1

(
m∑
i=1
‖T ∗nRi‖2

)1/2

= 0, then lim
n→∞

‖TnS‖ = 0 for every

S ∈ B (H) .

Proof. (i) Since {Ri}∞i=1 is a Riesz basis in H (and hence is complete in
H), for every x ∈ H with ‖x‖ = 1 and ε > 0, there exists an integer
N := N (x, ε) > 0 and scalars ci = ci (x, ε) ∈ C (i = 1, 2, . . . , N) such that∥∥∥∥∥x−

N∑
i=1

ciRi

∥∥∥∥∥ < ε,

which implies that

(6.2)

∥∥∥∥∥
N∑
i=1

ciRi

∥∥∥∥∥ < 1 + ε.

Taking into account the fact that {Ri}∞i=1 is a Riesz basis, and using (6.1)
and (6.2), we obtain for any S ∈ B (H) and n ≥ 1 that

‖TnS‖ = ‖(TnS)∗‖ = ‖S∗T ∗n‖ = sup
‖x‖=1

‖S∗T ∗nx‖

= sup
‖x‖=1

[∥∥∥∥∥S∗T ∗n
(
x−

N∑
i=1

ciRi

)
+ S∗T ∗n

N∑
i=1

ciRi

∥∥∥∥∥
]

≤ sup
‖x‖=1

[
‖TnS‖ ε+ ‖S‖

N∑
i=1

|ci| ‖T ∗nRi‖

]
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≤ sup
‖x‖=1

‖TnS‖ ε+ ‖S‖

(
N∑
i=1

|ci|2
)1/2( N∑

i=1

‖T ∗nRi‖2
)1/2


≤ sup
‖x‖=1

‖TnS‖ ε+ ‖S‖ ‖U‖

∥∥∥∥∥
N∑
i=1

ciRi

∥∥∥∥∥
(

N∑
i=1

‖T ∗nRi‖2
)1/2


≤ sup
‖x‖=1

‖TnS‖ ε+ ‖S‖ ‖U‖ (ε+ 1)

(
N∑
i=1

‖T ∗nRi‖2
)1/2


≤ ‖TnS‖ ε+ ‖S‖ ‖U‖ (ε+ 1) sup

‖x‖=1

(
N∑
i=1

‖T ∗nRi‖2
)1/2

≤ ‖TnS‖ ε+ ‖S‖ ‖U‖ (ε+ 1) sup
m≥1

(
m∑
i=1

‖T ∗nRi‖2
)1/2

,

where U is the orthogonalizer of {Ri}i≥1 .
Since n ≥ 1 is an arbitrary fixed number and ε is arbitrary, by letting ε

tend to zero, from the latter we deduce for all S ∈ B (H) that

(6.3) ‖TnS‖ ≤ ‖S‖ ‖U‖ sup
m≥1

(
m∑
i=1

‖T ∗nRi‖2
)1/2

,

for all n ≥ 1, which proves assertion (i) of the theorem.
Assertion (ii) is immediate from inequality (6.3). �

Corollary 7. If
∞∑
i=1
‖T ∗nRi‖2 < +∞ for all n ≥ 1 and

lim
n→∞

( ∞∑
i=1

‖T ∗nRi‖2
)

= 0,

then lim
n→∞

‖TnS‖ = 0 for all S ∈ B (H) .

A particular case of this corollary is the following.

Corollary 8. If lim
n→∞

‖T ∗nRi‖ = 0 for each i ≥ 1 and
∞∑
i=1
‖T ∗nRi‖2 < +∞

for each n ≥ 1, then lim
n→∞

‖TnS‖ = 0 for all S ∈ B (H) .

Remark 1. Observe that since Ri = U−1ei for some orthonormal basis
{ei}i≥1 ⊂ H, the condition

sup
m≥1

(
m∑
i=1

‖T ∗nRi‖2
)1/2

=: Mn < +∞

is satisfied, for example, for Hilbert-Schmidt operator T ∈ B (H) .
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Proposition 5. Let H be any infinite dimensional seperable Hilbert space
with Riesz basis {Ri}i≥1 , and let T, S ∈ B (H) be two operators such that:

(i) There exists an isometry V : H → H such that s-lim
n
Tn = V .

(ii)
∞∑
i=1
‖SRi‖2 < +∞.

Then

(6.4) lim
n→∞

‖TnS‖ ≤ ‖U‖

( ∞∑
i=1

‖SRi‖2
)1/2

.

Proof. The proof is similar to the proof of Theorem 4. Indeed, since
lim
n→∞

Tnx = V x for all x ∈ H, where V is an isometry. Then, it is stan-

dard to show that T is power bounded, i.e., ‖Tn‖ ≤ C for all n ≥ 0 and
some constant C > 0. Then, as in the proof of Theorem 4, we have for any
ε ∈ (0, 1) that

‖TnS‖ ≤ sup
‖x‖=1

C ‖S‖ ε+ ‖U‖ (ε+ 1)

(
N∑
i=1

‖TnSRi‖2
)1/2


≤ ‖S‖Cε+ ‖U‖ (ε+ 1)

( ∞∑
i=1

‖TnSRi‖2
)1/2

→ ‖U‖

( ∞∑
i=1

‖TnSRi‖2
)1/2

, as ε→ 0.

Thus

lim
n→∞

‖TnS‖ ≤ ‖U‖

( ∞∑
i=1

lim
n→∞

‖TnSRi‖2
)1/2

= ‖U‖

( ∞∑
i=1

lim
n→∞

‖V SRi‖2
)1/2

= ‖U‖

( ∞∑
i=1

‖SRi‖2
)1/2

,

which proves inequality (6.4), as desired. �

Remark 2. If Λ := {λn}n≥1 is a sequence of distinct points in D and

B = BΛ =
⋂
n≥1

bλn , where bλn (z) = |λn|
λn

λn−z
1−λnz

is the corresponding Blaschke

product, then it is well known that (see, for instance, Nikolski [Nik86]):
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(i) If Λ := {λn}n≥1 is a Blaschke sequence, i.e.,

∞∑
n=1

(
1− |λn|2

)
<∞,

then the system{
kH2,λn (z)

}
n≥1

:=

{
1

1− λnz

}
n≥1

is complete in the model space KB := H2 	BH2.
(ii) The system

{
k̃H2,λn (z)

}
n≥1

:=


√

1− |λn|2

1− λnz


n≥1

is a Riesz basis of KB if and only if {λn}n≥1 satisfies Carleson’s
condition

inf
n≥1
|Bn (λn)| > 0,

where Bn = B
bλn

.

Thus, all results obtained above can be stated for the operators acting in
KB.

Acknowledgements. We thank to the referee for his useful remarks and
suggestions which improved the presentation of the paper.
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