
New York Journal of Mathematics
New York J. Math. 22 (2016) 405–440.

Simplicial principal bundles in
parametrized spaces

David Michael Roberts and Danny Stevenson

Abstract. In this paper we study the classifying theory of princi-
pal bundles in the parametrized setting, motivated by recent inter-
est in higher gauge theory. Using simplicial techniques, we construct
a product-preserving classifying space functor for groups in the cate-
gory of spaces over a fixed space B. Additionally, we prove that the
fiberwise geometric realization functor sends a large class of simplicial
parametrized principal bundles to ordinary parametrized principal bun-
dles. As an application we show that the fiberwise geometric realization
of the universal simplicial principal bundle for a simplicial group G in the
category of spaces over B gives rise to a parametrized principal bundle
with structure group |G|.
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1. Introduction

The construction of a classifying space for a topological group is con-
veniently done using simplicial techniques, namely via the geometric real-
ization of a certain simplicial space. Similarly a model for the universal
principal bundle can be constructed as the geometric realization of a cer-
tain simplicial principal bundle. The utility of these constructions rests in
part on the fact that the classifying space functor so obtained is product-
preserving. The aim of this paper is to extend these constructions to the
parametrized setting of [MaS06], in which the category of topological spaces
is replaced by a suitable category of spaces over a fixed space B.

We recall the setting for parametrized homotopy theory from [MaS06].
Let K denote the category of k-spaces [V71] and let U denote the full
subcategory of compactly generated spaces (i.e., weakly Hausdorff k-spaces).
Let B be an object of U which will remain fixed throughout the paper. We
will work in the category K/B of spaces over B; an object of K/B is thus a
space X together with a map X → B (the structure map), while a morphism
is a map of the underlying spaces which is compatible with the structure
maps. There is a natural homotopy theory associated to the category K/B,
this is described by the f -model structure of May and Sigurdsson, recalled
in Theorem 5 below.

We will be interested in groups in the category K/B. In fact there are
four notions of (internal) group that will play a role in this paper: groups
in the category K (which we will refer to as groups), groups in the cat-
egory sK of simplicial objects in K (which we will refer to as simplicial
groups), groups in the category K/B (which we will refer to as parametrized
groups) and groups in the category sK/B (which we will refer to as simpli-
cial parametrized groups). In each case, it should be clear from the ambient
category with respect to which we are working internal to, which of these
labels for group objects applies. For each of the four notions of group, we
have a corresponding notion of principal bundle. For example, we have
parametrized principal bundles (Definition 12) and simplicial parametrized
principal bundles (Definition 13).

The main result of this paper is the construction of a product-preserving
classifying space functor for parametrized groups, together with a corre-
sponding classification theorem for parametrized principal bundles. If G is
a parametrized group, we will denote by BG the fiberwise geometric realiza-
tion of the standard simplicial model (see [Ma75, Se68]; see also the descrip-
tion following Definition 18) for the classifying space of G. Our main result
states that BG is a classifying space for parametrized principal G-bundles.
One advantage of this result over previous constructions of classifying spaces
in the parametrized setting (see for instance [CJ98]) is that the classifying
space functor B(−) so defined is product-preserving.
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Theorem 1. Let M be a paracompact space over B and let G be a well-
sectioned fibrant parametrized group. Then there is a bijection

H1(M,G)K/B
' [M,BG]K/B

.

Here if X and Y are spaces over B, we denote by [X,Y ]K/B
the set

of fiberwise homotopy classes of maps from X to Y (see Section 2), and
H1(M,G)K/B

denotes the set of isomorphism classes of parametrized prin-

cipal G-bundles on M (see Section 4). We now explain the hypotheses in
the theorem above. The assumption that G is well-sectioned (Definition 6)
is the parametrized analog of the notion of well-pointed group, which is a
standard hypothesis to impose in the analogous construction of a classifying
space for a group in the topological setting. One new feature here is that we
must also impose a fibrancy condition on our parametrized groups; namely
we must require that they are fibrant objects in the model structure of The-
orem 5, and we then refer to fibrant parametrized groups. This is necessary
so that, among other things, the projection maps of principal bundles are
fibrations.

There is a fiberwise geometric realization functor | − | : sK/B → K/B

sending simplicial parametrized spaces to parametrized spaces. We shall
see, in Lemma 8, that in analogy with the corresponding results for ordi-
nary geometric realization, the fiberwise geometric realization of a simplicial
parametrized group G is a parametrized group |G|. More generally, we shall
prove the following technical theorem which asserts that fiberwise geometric
realization sends a large class of simplicial parametrized principal bundles
to ordinary parametrized principal bundles; this theorem is a key ingredient
in the proof of Theorem 1.

Theorem 2. Let G be a fibrant simplicial parametrized group and let M be
a proper simplicial object in K/B. If P is a simplicial principal bundle over
M with structure group G such that Pn →Mn is a numerable, parametrized
principal Gn-bundle in K/B for all n ≥ 0, then the induced map

|P | → |M |
on fiberwise geometric realizations is the projection map for a locally trivial
parametrized principal |G|-bundle |P |(|M |, |G|) in K/B. Moreover, if the
bundle Pn →Mn is trivial for all n ≥ 0, then |P | → |M | is numerable.

Here by a fibrant simplicial parametrized group, we mean one for which
the parametrized groups of n-simplices are fibrant for all n ≥ 0. By a
proper simplicial object in K/B we just mean the obvious generalization of
the classical notion of proper simplicial space [Ma72] to the parametrized
setting (see Definition 20). A standard argument (see Appendix A) shows
that every good simplicial object in K/B, i.e., one whose degeneracy maps
are cofibrations in the f -model structure, is automatically proper.

A prime example of a simplicial principal bundle is the classical no-
tion of principal twisted cartesian product internal to the category K/B
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of parametrized spaces (see Section 5). In particular, if G is a simplicial
parametrized group then we may consider the universal principal twisted
cartesian product WG → WG. The following proposition gives a criterion
on G which ensures that WG is proper and hence satisfies the hypotheses
of Theorem 2.

Proposition 3. Let G be a well-sectioned simplicial parametrized group.
Then the following statements are true:

(1) G is a good simplicial group in K/B.

(2) WG is proper in sK/B.
(3) |G| is a well-sectioned group in K/B.

Using Proposition 3 we can easily establish that the hypotheses of Theo-
rem 2 are met for the universal principal twisted cartesian product

WG→WG.

Hence we obtain the following result.

Proposition 4. Let G be a well-sectioned fibrant simplicial parametrized
group. Then the fiberwise geometric realization |WG| → |WG| of the uni-
versal G-bundle WG→WG is a numerable parametrized principal |G| bun-
dle. Moreover |WG| is a fiberwise contractible group in K/B containing |G|
as a closed subgroup.

Our motivation comes from recent interest in higher principal bundles
or gerbes [B06, JaL06, Mu96, R10, Sch11, St04, W11]. Recall that for a
paracompact space M , there is a bijection between H3(M,Z) and the set
of equivalence classes of S1-bundle gerbes on M . An S1-bundle gerbe on M
is, roughly speaking, a principal bundle on M where the structure group S1

is replaced by the simplicial topological group WS1. From another point
of view, H3(M,Z) parametrizes the set of isomorphism classes of principal
K(Z, 2) bundles on M . The process of passing from a simplicial principal
bundle for WS1 to a principal K(Z, 2) bundle can be viewed as an instance
of our Theorem 2 (recall the geometric realisation of WS1 is a K(Z, 2)).

Our interest lies in a generalization of this, namely when the simplicial
group WS1 is replaced by an arbitrary simplicial parametrized topological
group G (subject to quite minor topological conditions) and we consider
simplicial principal bundles with structure group G on M . The result-
ing set of equivalence classes is isomorphic to the nonabelian cohomology
set H1(M,G). In this case the process of geometric realization produces
an ordinary principal |G| bundle from a simplicial principal G bundle and
therefore gives rise to a map H1(M,G) → H1(M, |G|). In [St12b], based
on the results of this paper, the second author proves that this map is an
isomorphism provided that M is paracompact and G satisfies some mild
topological conditions.

In outline then this paper is as follows. In Section 2 we review the homo-
topy theory of parametrized spaces from [MaS06]. In Section 3 we specialize
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our discussion to parametrized groups and we follow this in Section 4 with a
discussion of principal bundles in the parametrized setting. In Section 5 we
consider simplicial parametrized bundles and in particular the classical no-
tion of principal twisted cartesian product. Section 6 contains the detailed
statements of our main results and the proof of Theorem 1. Sections 7 and 8
contain the proofs of Theorems 2 and 3 respectively, while Appendix A is
devoted to a discussion of the relation between good and proper simplicial
objects.

Acknowledgements. We thank the referee for their very helpful comments
which have greatly improved the structure and readability of the paper. We
would also like to thank another anonymous referee for some very useful
comments on an earlier version of this paper. DS would like to thank Tom
Leinster for some useful conversations, and Urs Schreiber for many email
discussions and encouragement.

2. Parametrized spaces

In this section we recall some of the basic notions of parametrized homo-
topy theory from [MaS06]; in particular we recount some of the details of
the f -model structure on the category K/B of spaces over B.

Recall from [MaS06] that K/B is a topological bicomplete category, in the
sense that K/B is enriched over K , the underlying category is complete and
cocomplete, and that it is tensored and cotensored over K . For any space
K and space X over B the tensor X⊗K is defined to be the space X×K in
K , considered as a space over B via the obvious map X ×K → B. In the
sequel, we will often denote the tensor X⊗K simply as X×K. Similarly, the
cotensor XK is defined to be the space MapB(K,X) given by the pullback
square

MapB(K,X) //

��

Map(K,X)

��

B // Map(K,B)

in K , where the map B → Map(K,B) is the conjugate of the projec-
tion B × K → B. Recall also (see [MaS06]) that K/B is cartesian closed
under the fiberwise cartesian product X ×B Y and the fiberwise mapping
space MapB(X,Y ) over B. The definition of the fiberwise mapping space
MapB(X,Y ) is rather subtle and we will not give it here, we instead refer
the reader to Definition 1.3.7 of [MaS06].

Since K/B is a topological bicomplete category there is a natural notion of
geometric realization for simplicial objects in K/B — the notion of fiberwise
geometric realization. If X is a simplicial object in K/B, i.e., a parametrized
simplicial space, then the fiberwise geometric realization |X| of X is defined
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by the usual coend formula:

|X| =
∫ [n]∈∆

Xn ×∆n.

In other words, one regards X as a simplicial object in K and computes the
ordinary geometric realization, and then one equips this with the induced
map to B. In particular, |X| is obtained as a quotient from the coproduct
tn≥0Xn ×∆n.

It follows from the nonparametrized case that fiberwise geometric real-
ization gives rise to a co-continuous functor | · | : sK/B → K/B. Since ordi-
nary geometric realization commutes with finite limits, fiberwise geometric
realization also commutes with finite limits in K/B, and moreover is com-
patible with the topological structures on sK/B and K/B in the sense that
|X × K| = |X| × K for any space K in K . Note also that the fiberwise
geometric realization of a level-wise closed inclusion is a closed inclusion.

In [MaS06] several model structures on K/B are introduced. The model
structure on K/B that we will be interested in has its origins in the work
[ScV02] of Schwänzl and Vogt. In [ScV02] (see also [C06] and [MaS06])
the authors consider a topological bicomplete category C and define three
classes of morphisms: h-equivalences, h-fibrations and h̄-cofibrations. A
morphism f : X → Y in C is an h-equivalence if and only if it is a homotopy
equivalence, defined in terms of the cylinder object X × I where I denotes
the unit interval. A morphism f : X → Y is called an h-fibration if and only
if it has the RLP (right lifting property) with respect to all morphisms of
the form Z × {0} → Z × I, while f is called an h̄-cofibration if and only
if X × I ∪X×{0} Y × {0} → Y × I has the LLP (left lifting property) with
respect to all h-fibrations in C .

In [ScV02] the h̄-cofibrations are called strong cofibrations and the follow-
ing alternative characterization of them is given: a morphism f : X → Y
is an h̄-cofibration if and only if it has the LLP with respect to all h-
fibrations which are also h-equivalences — i.e., the h-acyclic h-fibrations.
When C = K , the class of strong cofibrations equals the class of closed
cofibrations. Under suitable hypotheses on C (see Theorem 4.2 of [C06]
and Theorem 4.2.12 of [MaS06]; see also [BR13]) these three classes of mor-
phisms equip C with the structure of a proper, topological model category.
This model structure is sometimes called the h-model structure.

If we specialize to the case when C = K/B, it turns out (see [BR13, C06,
MaS06]) that the required hypotheses are satisfied and the above notions of
h-equivalence, h-fibration and h̄-cofibration equip K/B with the structure of
a model category. This model structure is called the f -model structure (for
fiberwise) and the weak equivalences, fibrations and cofibrations are labelled
accordingly. A precise statement is the following.

Theorem 5 (May–Sigurdsson [MaS06], Theorem 5.2.8). K/B has the struc-
ture of a proper, topological model category for which
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• the weak equivalences are the f -equivalences,
• the fibrations are the f -fibrations,
• the cofibrations are the f̄ -cofibrations.

Recall that a model category C is said to be topological if it is a K -model
category in the sense of Definition 4.2.18 of [H99], for the monoidal model
structure on K given by the above h-model structure (observe that this
coincides with the classical Strøm model structure [C06, MaS06, Str72] on
K ).

To be completely explicit, we explain the labels on the three classes of
maps in the above theorem. A map g : X → Y in K/B is called an f -
equivalence if it is a fiberwise homotopy equivalence. This needs the notion of
homotopy over B, which is formulated in terms of X× I. A map g : X → Y
in K/B is called an f -fibration if it has the fiberwise covering homotopy
property, i.e., if it has the RLP property with respect to all maps of the
form i0 : Z → Z × I for all Z ∈ K/B. A map g : X → Y in K/B is called an

f̄ -cofibration, or a strong cofibration if it has the LLP property with respect
to all f -acyclic f -fibrations. There is also the notion of an f -cofibration:
this is a map g : X → Y which satisfies the LLP property with respect to
all maps of the form p0 : MapB(I, Z) → Z for some Z ∈ K/B. Every f̄ -
cofibration g : X → Y in K/B is an f -cofibration. The converse is not true
in general. However May and Sigurdsson prove (see Theorems 4.4.4 and
5.2.8 of [MaS06]) that if g : X → Y is a closed f -cofibration then g is an
f̄ -cofibration.

Moreover, in analogy with the standard characterization of closed Hure-
wicz cofibrations in terms of NDR pairs, May and Sigurdsson give a criterion
(see Lemma 5.2.4 of [MaS06]) which detects when a closed inclusion i : A→
X in K/B is an f̄ -cofibration. Such an inclusion i : A→ X in K/B is an f̄ -
cofibration if and only if (X,A) is a fiberwise NDR pair in the sense that there
is a map u : X → I for which A = u−1(0) and a homotopy h : X × I → X
over B such that h0 = id , ht|A = idA for all 0 ≤ t ≤ 1 and h1(x) ∈ A
whenever u(x) < 1.

3. Parametrized groups

In this section we study the four classes of groups described in the in-
troduction: groups, parametrized groups, simplicial groups and simplicial
parametrized groups, corresponding to group objects in K , K/B, sK and
sK/B respectively.

As a group object in K/B, a parametrized group has a natural structure as
an ex-space, i.e., a space X over B equipped with a section of the structure
map X → B (see Section 1.3 of [MaS06] for more details). For such a
parametrized group G, the structure as an ex-space arises from the canonical
section of the structure map ofG given by the identity section. In the context
of parametrized spaces, ex-spaces are the analog of pointed spaces in the
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nonparametrized setting. The analog of a well-pointed, or nondegenerately
based space, is the notion of a well-sectioned ex-space, i.e., one for which the
distinguished section of the structure map is an f̄ -cofibration. In particular
the ex-space analog of a well-pointed group is the notion of a well-sectioned
parametrized group in the sense of the following definition.

Definition 6. Let G be a parametrized group. We say that G is well-
sectioned if the identity section 1G : B → G is an f̄ -cofibration. We say that
a simplicial parametrized group is well-sectioned if the parametrized group
of n-simplices is well-sectioned for every n ≥ 0.

We shall also need to impose a fibrancy condition on parametrized groups.
Accordingly, we make the following definition.

Definition 7. Let G be a parametrized group. We say that G is fibrant,
if G is f -fibrant considered as an object of K/B. We say that a simplicial
parametrized group is fibrant if it is level-wise fibrant in the sense that Gn
is fibrant for all n ≥ 0.

We shall see that in order to obtain a notion of parametrized principal
G-bundle (Definition 12 below) that is well-behaved homotopically in the
sense that is a f -fibration, then we need to impose the condition that G is
fibrant (see Theorem 14 below).

Recall from Section 2 above, that the fiberwise geometric realization func-
tor | · | : sK/B → K/B preserves products. Hence we have the following
obvious Lemma.

Lemma 8. The fiberwise geometric realization functor | − | : sK/B → K/B

sends group objects in sK/B to group objects in K/B, in other words, if G
is a simplicial parametrized group then |G| is a parametrized group.

If G is a parametrized group then there is a natural notion of a G-space
over B and a G-map between G-spaces over B. A G-space over B is a
space X over B equipped with an action of G, i.e., a map X ×B G → X
of spaces over B making the usual diagrams commute, and a G-map from
X to Y is a map X → Y in K/B compatible with the respective G-actions.
We write GK/B for the category consisting of G-equivariant objects and
G-maps between them. We have the following lemma.

Lemma 9. The category GK/B is a topological bicomplete category.

Proof. To construct limits in GK/B one first constructs the corresponding
limit in K/B and then equips it with the induced G-action. To construct
colimits in GK/B one first constructs the colimit in K/B and then one
observes that, sinceG×B(−) is a left adjoint and therefore preserves colimits,
the colimit in K/B comes equipped with a natural G-action. The category
GK/B is naturally enriched over K ; if X and Y are objects of GK/B then
the space of morphisms GK/B(X,Y ) is given by the equalizer diagram

GK/B(X,Y )→ K/B(X,Y ) ⇒ K/B(X ×B G, Y )
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in K , where the last two maps are induced by the actions of G on X and
Y respectively, i.e., the maps which send a map f : X → Y in K/B to the
compositions

X ×B G
f×B1G−−−−→ Y ×B G→ Y and X ×B G→ X

f−→ Y.

If X ∈ GK/B and K ∈ K then the tensor X ⊗K is the usual one in K/B

equipped with the G-action where G acts trivially on the K factor. The
cotensor in GK/B is the usual cotensor in K/B equipped with an action of
G described as follows. The commutative diagram

G

��

// Map(K,G)

��

B // Map(K,B),

where the top horizontal map is the adjoint of the projection G ×K → G
in K , shows that there is a natural morphism G → MapB(K,G) in K/B.
The action of G on MapB(K,X) is given by the following composite:

MapB(K,X)×B G→ MapB(K,X)×B MapB(K,G)→ MapB(K,X),

where the second map is induced by the action of G on X via the identifi-
cation

MapB(K,X)×B MapB(K,G) ∼= MapB(K,X ×B G).

One can check that this gives a G-action as claimed. To check that we have
required adjunction homeomorphisms, observe that we have the following
isomorphisms of diagrams in K :

K/B(X ×K,Y ) ∼= K/B(X,Y K) ∼= K (X,K/B(X,Y ))

K/B((X ×B G)×K,Y )∼= K/B(X ×B G, Y K) ∼= K (K,K/B(X ×B G, Y ))
�� �� �� �� �� ��

where we have used the fact that we have an isomorphism

(X ×K)×B G ∼= (X ×B G)×K.
Therefore, on forming equalizers we get the required natural isomorphisms

GK/B(X ×K,Y ) ∼= GK/B(X,Y K) ∼= K (K,GK/B(X,Y )),

using the fact that K (K,−) preserves equalizers. �

Let G continue to denote a group object in K/B. In GK/B there are nat-

ural notions of f -equivalence, f -fibration, f -cofibration and f̄ -cofibration.
Thus a map g : X → Y in GK/B is an f -cofibration if it has the LLP in
GK/B with respect to G-maps of the form p0 : MapB(I, Z)→ Z for all Z in
GK/B. Similarly, we say that a map g : X → Y in GK/B is an f -equivalence
if it is a fiberwise G-homotopy equivalence. A map g : X → Y in K/B is
an f -fibration if it has the RLP in GK/B with respect to G-maps of the
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form i0 : Z → Z × I for all Z in GK/B. A map g : X → Y in GK/B is

an f̄ -cofibration if it has the LLP in GK/B with respect to all f -acyclic
f -fibrations in GK/B.

Just as above, there is a criterion to detect when an inclusion i : A→ X
in GK/B is an f̄ -cofibration in GK/B. We have the following result which
will play a key role in the proof of Theorem 2.

Lemma 10. An inclusion i : A → X in GK/B is an f̄ -cofibration if and
only if i(A) is closed in X and there is a representation of (X,A) as a
G-fiberwise NDR pair.

Here by a representation of (X,A) as a G-fiberwise NDR pair we un-
derstand, in analogy with [St68], that there is a pair (u, h) of maps with
u : X → I and h : X × I → X which represent (X,A) as a fiberwise
NDR pair and which satisfy u(xg) = u(x) for all x ∈ X and g ∈ G, and
h(xg, t) = h(x, t)g for all (x, t) ∈ X × I and g ∈ G.

Proof. We will explain how to adapt Steps 1–3 in the proof of Theorem
4.4.4 of [MaS06] to our setting. Step 3 adapts in a straightforward way
to show that i(A) is closed in X: factor the inclusion i : A → X as A →
E → X where E = A × I ∪ X × (0, 1] and where i0 : A → E is given by
i0(a) = (a, 0). Analogous to the corresponding statement in [MaS06], the
projection π : E → X is an f -acyclic f -fibration in GK/B. Therefore there
exists a map λ : X → E extending i, i.e., λ ◦ i = i0. Let ψ : E → I denote
the projection onto the second factor and note that ψ−1(0) = i0(A), so that
i0(A) is closed in E. Therefore λ−1 (i0(A)) = i(A) is closed in X (since λ is
injective). Standard arguments now show that (X,A) has a representation
as a G-fiberwise NDR pair.

Next we explain how Steps 1 and 2 can be adapted to show that if (X,A)
has a representation as a G-fiberwise NDR pair then i : A → X is an f̄ -
cofibration. The usual argument shows that X × {0} ∪ A × I is a retract
of X × I in GK/B. Hence i : A → X is a closed f -cofibration in GK/B

and so Mi→ X × I is the inclusion of a strong deformation retraction (see
Lemma 4.2.5 of [MaS06]), where Mi is the mapping cylinder of i. The map
u in a representation (u, h) of (X,A) as a G-fiberwise NDR pair can be used
to show that there exists a map ψ : X × I → I such that ψ−1(0) = Mi.
The analogue of Theorem 3 of [Str66] for the category GK/B then shows
that Mi → X × I has the LLP with respect to all f -fibrations and hence
i : A→ X is an f̄ -cofibration. �

Finally, let us note ([ScV02] Lemma 2.6) that since f̄ -cofibrations in
GK/B are defined by a left lifting property, the following is true.

Lemma 11. If X0 → X1 → · · · → Xn → · · · is a sequence of f̄ -cofibrations
in GK/B, then Xn → X is an f̄ -cofibration in GK/B for all n ≥ 0, where
X = colimXn.
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4. Parametrized principal bundles

In this section we study the notion of a principal bundle in K/B for a
parametrized group G, in other words the notion of a parametrized prin-
cipal bundle. In particular we study some homotopy-theoretic properties
of parametrized principal bundles for the homotopy theory of Theorem 5.
The notion of parametrized principal bundle was introduced in [CJ98], we
re-phrase it in the following way.

Definition 12 ([CJ98]). Let G be a parametrized group. A parametrized
principal G bundle in K/B consists of a G-space P in K/B together with a
map π : P →M such that:

(i) π admits local sections (in K/B).
(ii) The square

(1)

P ×B G

P

P

M

p1
��

//

π
��

π
//

is a pullback in K/B, where the horizontal map P ×B G→ P is the
action of G on P and the map p1 is projection onto the first factor.

The condition (ii) implies that the action of G on P is principal with M
as its space of orbits and that the action of G preserves the fibers of π. The
condition that π : P → M admits local sections means that for every point
of m of M there is an open neighborhood Um ⊂ M of m together with a
fiberwise map s : Um → P which is a section of π.

We use the standard terminology: P is the total space, M is the base space
and G is the structure group of a parametrized principal bundle, which we
shall sometimes denote by P (M,G). A morphism P (M,G)→ P ′(M ′, G′) of
parametrized principal bundles consists of a triple of maps f : M → M ′,
f̄ : P → P ′ and α : G → G′ in K/B, where α is a homomorphism of

parametrized groups and f̄ is equivariant for α. Parametrized principal
bundles, together with the morphisms between them, form the category of
parametrized principal bundles.

We make the following definition.

Definition 13. A simplicial parametrized principal bundle is a simplicial
object in the category of parametrized principal bundles.

Thus if P (M,G) is a simplicial parametrized principal bundle with pro-
jection map π : P → M , then each map πn : Pn → Mn is a parametrized
principal Gn-bundle and the face and degeneracy maps are morphisms of
parametrized principal bundles.

It is worth reformulating this definition in a slightly different way. A sim-
plicial parametrized principal bundle consists of a simplicial parametrized
group G, a simplicial parametrized space P equipped with an action of G
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in sK/B and a map π : P → M which satisfies the analogs of (i) and (ii)
in Definition 12 above. Thus the diagram analogous to (1) is a pullback
in sK/B and the map π admits local sections level-wise in the sense that
πn : Pn →Mn admits local sections for all n ≥ 0. Note that we do not require
any compatibility between these local sections and the face and degeneracy
maps for the simplicial spaces.

Recall from Section 2 that the fiberwise geometric realization functor
| · | : sK/B → K/B preserves finite limits. It follows that if P (M,G) is a
simplicial parametrized principal bundle then there is an induced action of
|G| (see Lemma 8) on |P | in K/B such that the diagram

|P | ×B |G|

p1
��

// |P |

|π|
��

|P |
|π|

// |M |

is a pullback in K/B. In Theorem 2 we will give conditions on M and G
which ensure that the map |π| : |P | → |M | has local sections and hence that
|P |(|M |, |G|) is a parametrized principal bundle.

If we consider morphisms of parametrized principal bundles with fixed
structure group G and fixed base space M (both parametrized, of course),
then, just as for ordinary principal bundles, every such morphism is an
isomorphism. We denote the set of isomorphism classes of parametrized
principal G-bundles on M by H1(M,G)K/B

.
Every parametrized principal G-bundle π : P →M is a parametrized fiber

bundle in the sense that each point of M has an open neighborhood U such
that the restriction of P to U is isomorphic to the trivial parametrized G-
bundle U×BG. If G is fibrant, such a trivial parametrized fiber bundle is an
f -fibration in the sense of Theorem 5. When B is a point it is a well known
theorem that every numerable fiber bundle E →M is a Hurewicz fibration.
There is an obvious extension of this notion to the notion of a numerable
parametrized fiber bundle: a parametrized fiber bundle is numerable if it is
fiberwise locally trivial relative to a numerable open cover of the base space.
We have the following theorem from [CJ98].

Theorem 14 ([CJ98]). Let p : E → M be a map in K/B. Suppose that

p−1Vi → Vi is an f -fibration for each open set Vi in a numerable covering
(Vi)i∈I of M . Then p is an f -fibration. In particular, if G is a fibrant
parametrized group, then any parametrized principal G-bundle π : P → M
in K/B over a paracompact base space M , or more generally any numerable
parametrized principal G bundle in K/B, is an f -fibration.

This theorem has the following important corollary. In the parametrized
context, principal G-bundles P0 and P1 on M are said to be fiberwise concor-
dant if there exists a parametrized principal G-bundle P on M × I together
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with fiberwise isomorphisms P0
∼= P |M×{0} and P1

∼= P |M×{1}. The fiber-
wise concordance relation is clearly an equivalence relation. When B is
a point it is well known that there is a bijection between the set of iso-
morphism classes of numerable principal G bundles on M and concordance
classes of principal G bundles on M . From Theorem 14, we see that in the
parametrized setting there is an analogous bijection.

Corollary 15. Let M be a paracompact space in K/B and let G be a fibrant

parametrized group. Then there is a bijection between H1(M,G)K/B
and the

set of fiberwise concordance classes of parametrized principal G-bundles on
M .

Proof. To prove that there is such a bijection one needs to know that fiber-
wise concordant bundles are isomorphic. For this, it is enough to prove that
there is an isomorphism P ∼= P0 × I, when P is a parametrized principal
G-bundle on M × I, and P0 denotes the restriction to M × {0}. Consider
the bundle P ×G (P0 × I) on M × I. There is a section of this bundle over
the closed subspace M × {0} of M × I. We want to know that this section
extends to a section defined over M × I. Since P ×G (P0 × I) is a fiberwise
locally trivial bundle on M × I, it is an f -fibration. Therefore the required
extension of the section exists, since the inclusion M × {0} ⊂ M × I is
an f -acyclic f̄ -cofibration. It follows that the set of fiberwise concordance
classes of G-bundles on M is isomorphic to H1(M,G)K/B

. �

We shall also need the following result, related to Theorem 12 of [Str68].

Proposition 16. Let π : P → M be a numerable parametrized principal G
bundle for a fibrant parametrized group G and suppose that A ⊂ M is a
closed inclusion which is an f̄ -cofibration in K/B. Then the closed inclusion

P |A ⊂ P is an f̄ -cofibration in GK/B.

Proof. The proof of the analogous result in [Str68] can be adapted to this
setting as follows. Choose a representation (u, h) of (M,A) as a fiberwise
NDR pair in K/B. Next observe that in the diagram

P

i0
��

// P

π

��

P × I
h(π×1)

//

h̄
;;

M

the indicated lifting h̄ can be found, and moreover can be chosen to be
G-equivariant, in light of the proof of Corollary 15 above. To finish the
proof, we need to show that we can choose h̄ so that h̄(x, t) = x for any
x ∈ P |A. Consider the associated bundle Aut0(P × I) = (P × I) ×G G on
M × I, where the action of G on itself is conjugation. Note that sections
of Aut0(P × I) are bundle automorphisms of P × I covering the identity
on M × I. Since πh̄ = h(π × 1) and h̄ is equivariant, it follows that h̄
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restricts to a section of Aut0(P × I) over A × I ⊂ M × I. Similarly the
restriction of h̄ to P × {0} defines a section of Aut(P × I) over M × {0}.
Since Aut0(P × I) → M × I is a locally trivial, numerable, parametrized
bundle, and (A× I)∪ (M ×{0}) ⊂M × I is a closed f̄ -cofibration, it follows
that we can find the indicated lifting in the diagram

(A× I) ∪ (M × {0})

��

// Aut0(P × I)

��

M × I
1

//

k̄
55

M × I.

Now define h̃ = h̄k̄−1. Then h̃ : P × I → P is G-equivariant and satisfies
πh̃ = h(π × 1). If we set ũ = uπ then it is easily checked that (ũ, h̃) is a
representation of (P, P |A) as a G-equivariant NDR pair. �

5. Simplicial principal bundles and twisted cartesian
products

In this section we recall the notion of principal twisted Cartesian product
defined internally to a category C with finite limits, and we recall the defini-
tion of the universal simplicial G-bundle WG→WG associated to a group
object G in C . Recall the following classical definition (see for instance
[Ma67]).

Definition 17. Let G be a group in sSet . A principal twisted cartesian
product with structure group G in sSet consists of a G-simplicial set P and
a map π : P → M such that π has a pseudo-cross section and the diagram
analogous to (1) above is a pullback.

By a pseudo-cross section (Definition 18.5 of [Ma67]) we mean a collection
of maps σn : Mn → Pn for all n ≥ 0 such that σisi = siσi for all 0 ≤ i ≤ n+1,
n ≥ 0, and σidi = diσi for all 0 < i ≤ n and n ≥ 0. We note that a pseudo-
cross section can be conveniently reformulated in terms of Illusie’s décalage
functor (see [Du75] and also the discussion below) and that this leads to
a simple description of the classifying theory of principal twisted cartesian
products (see [St12a]).

It is clear from the preceding discussion that we may replace the category
Set of sets with any category C with finite limits and obtain the notion of
principal twisted cartesian product internal to the category sC of simplicial
objects in C . Of particular interest for us will be the case where C = K/B;
note that principal twisted cartesian products in this case are examples of
simplicial parametrized principal bundles (Definition 13).

The data of a principal twisted cartesian product may be conveniently
reformulated in terms of twisting functions, as we now recall. A family of
maps tn : Mn → Gn−1 defined for n ≥ 1 is called a twisting function if the
identities (T ) on page 71 of [Ma67] are satisfied, when interpreted internally
in the obvious fashion. Every principal twisted cartesian product determines
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a unique twisting function, and conversely a twisting function determines a
principal twisted cartesian product

M ×t G
in which the object of n-simplices is the product (M ×t G)n = Mn × Gn,
and where the face and degeneracy maps are defined as in Definition 18.3 of
[Ma67]. In particular the description in terms of twisting functions explains
the origin of the terminology ‘twisted cartesian product’.

If G is a simplicial group internal to C (for instance a simplicial group or
a simplicial parametrized group), then the universal G bundle WG→ WG
has a convenient description via twisting functions.

Definition 18. Let C be a category with finite limits and let G be a group
in sC . The classifying complex WG is defined to be the simplicial object of
C with (WG)0 = 1, the terminal object of C , and

(WG)n = Gn−1 × · · · ×G0

for n ≥ 1, with face and degeneracy maps defined by the following formulae:

di(gn−1, . . . , g0) = (di(gn−1), . . . , (di(gi))gi−1, . . . , gi−2, . . . , g0)

si(gn−1, . . . , g0) = (si(gn−1), . . . , si(gi), 1, gi−1, . . . , g0),

if (gn−1, . . . , g0) ∈ (WG)n.

When C = Set is the category of sets and so G is an ordinary simplicial
group, this is the traditional classifying complex construction introduced
in [K58]. In the next section we shall make a more careful study of this
construction in the case when C = K/B. Note that when G is group in C
and we abusively denote by G the constant simplicial group in C with all
face and degeneracy maps equal to the identity, then WG reduces to the
familiar description in terms of the nerve of the one-object groupoid G in
C . Therefore, in this case we have the identification

(2) (WG)n = G× · · · ×G (n factors)

with face and degeneracy maps defined by the usual formulae:

di(g0, . . . , gn−1) =


(g1, . . . , gn−1) if i = 0,

(g0, . . . , gi−1gi, . . . , gn−1) if 1 ≤ i ≤ n− 1,

(g0, . . . , gn−2) if i = n.

(3)

si(g0, . . . , gn−1) = (g0, . . . , gi−1, 1, gi, . . . , gn).(4)

Alternatively, we may think of the one-object groupoid G as the action
groupoid 1//G in C , associated to the trivial action of G on the terminal
object 1 of C . Although it will not play an important role in this paper,
we mention in passing a very useful conceptual approach to the classifying
complex construction due to Duskin.

For every n ≥ 0, we may form the simplicial object N(1//Gn) which is
the nerve of the action groupoid 1//Gn associated to the group Gn; in this
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way we obtain a bisimplicial object N(1//G) in C . In the paper [AM69],
Artin and Mazur introduced the construction of the total simplicial set T (X)
associated to a bisimplicial set X. This construction makes sense in any
category C with finite limits and defines a functor

T : ssC → sC ,

called the total simplicial object functor. It is not hard to show, using
explicit formulas for face and degeneracy maps, that there is an isomorphism

WG = T (N(1//G))

of simplicial objects in C . Besides the conceptual understanding that this
observation brings to the classifying complex construction, it also gives a
useful perspective on the construction of the universal principal twisted
cartesian product over WG.

The right action of G on itself defines an action groupoid G//G in C ;
there is a natural functor G//G→ 1//G and hence a simplicial map

(5) T (N(G//G))→ T (N(1//G))

on taking nerves and applying the total simplicial object functor. It is
straightforward to see that there is a canonical action of the simplicial group
G on T (N(G//G)) such that the diagram analogous to (1) above is a pull-
back. With a little more work, exploiting the close relationship between the
functor T and Illusie’s décalage functor, one may show that the map (5)
has a pseudo-cross section, and hence has a natural structure as a principal
twisted cartesian product. It is not hard to show that the principal twisted
cartesian product (5) is equal to the universal twisted cartesian product (see
pages 88–89 of [Ma67])

WG→WG

defined in terms of the canonical twisting function t on WG defined by

tn : (WG)n → Gn−1, tn(gn−1, . . . , g0) = gn−1.

We summarize the preceding discussion in the following lemma.

Lemma 19. Let C be a category with finite limits and let G be a group in sC .
Then there is a canonical principal twisted cartesian product WG → WG
with structure group G. Moreover WG has a natural structure as a group
in sC containing G as a subgroup.

The only statement in Lemma 19 that has not been discussed above is the
statement regarding the group structure onWG; this is a simple consequence
of the description of WG in terms of the total simplicial object functor. We
refer to [R13] for further discussion of this.

Finally, we note that there is another useful perspective on the universal
principal twisted cartesian product π : WG → WG; the map π is equal to
the canonical map Dec0WG→WG, where Dec0 : sC → sC is the décalage
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functor. In this description the pseudo-cross section appears as a certain
monadic structure on the functor Dec0.

Recall (see for example [Du75, I72, St12a]), that Dec0 is the functor
which shifts degrees up by one so that if X is a simplicial object in C
then Dec0(X)n = Xn+1 with the first face and degeneracy map at each
level forgotten or ‘stripped away’. In other words Dec0 is the functor in-
duced by restriction along the functor σ0 : ∆ → ∆, where σ0 is defined by
σ0([n]) = σ([0], [n]), where σ : ∆×∆→ ∆ is ordinal sum, i.e.,

σ([m], [n]) = [m+ n+ 1].

Observe that the first face map at every level defines a simplicial map
dfirst : Dec0X → X for any simplicial object X in C which in degree n
is given by d0 : Xn+1 → Xn.

6. Geometric realization of simplicial principal bundles

In this section we show that fiberwise geometric realization of a large class
of simplicial parametrized principal bundles gives parametrized principal
bundles. We discuss sufficient conditions on a simplicial parametrized group
G to ensure that G is good and WG is proper (see Definition 20 below).

Recall from Section 4 that if P (M,G) is a simplicial parametrized prin-
cipal bundle, then after taking fiberwise geometric realizations there is a
principal action of |G| on |P | with |M | as the space of orbits. To prove that
|π| : |P | → |M | is the projection map in a parametrized principal bundle all
that remains is to prove that |π| admits local sections.

We will show that a sufficient condition for this is that the following hold:

(a) The group G is fibrant in the sense of Definition 7.
(b) M satisfies a cofibrancy condition.

This latter condition is the parametrized analog of May’s notion of proper
simplicial space introduced in [Ma72]. In fact this notion, and the allied
notion of a good simplicial space [Se74], makes sense in any topological bi-
complete category.

Definition 20. Let C be a bicomplete topological category. A simplicial
object X in C is called proper if the latching maps LnX → Xn are h̄-
cofibrations for all n ≥ 0; X is called good if all of the degeneracy morphisms
si : Xn → Xn+1 are h̄-cofibrations.

In particular, specialized to the case where C = K/B, we obtain the
notion of a proper simplicial parametrized space. With these definitions
understood, we re-state Theorem 2 from the Introduction.

Theorem 2. Let G be a fibrant simplicial parametrized group and let M be
a proper simplicial object in K/B. If P is a simplicial principal bundle over
M with structure group G such that Pn →Mn is a numerable, parametrized
principal Gn-bundle in K/B for all n ≥ 0, then the induced map

|P | → |M |
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on fiberwise geometric realizations is the projection map for a locally trivial
parametrized principal |G|-bundle |P |(|M |, |G|) in K/B. Moreover, if the
bundle Pn →Mn is trivial for all n ≥ 0, then |P | → |M | is numerable.

Since the proof of Theorem 2 is somewhat technical we have deferred it
to Section 7. We discuss some consequences. Observe that, subject to the
hypotheses above, if P → M is a principal twisted cartesian product with
structure group G, then |P | → |M | is a numerable parametrized principal
|G| bundle. An example of special interest is the universal principal twisted
cartesian product WG→WG (Lemma 19); in order to apply Theorem 2 in
this case we need to investigate sufficient conditions for WG to be proper.

In principle, it is easier to check that a simplicial object is good than it is
to check that it is proper. In Appendix A we give a proof, in the setting of
a topological bicomplete category, of Proposition 26, which says that every
good simplicial object is proper. This fact is standard for simplicial spaces
(see for instance [GaL82]; we show that the proof given in op. cit. carries
through to this more general setting). Therefore, we search for a condition
on the simplicial parametrized group G which ensures that WG is proper.

Recall (Definition 6) the notion of a well-sectioned simplicial parametrized
group. We will say that a simplicial parametrized groupG is a good simplicial
group if the object in sK/B underlying G is good. We recall the statement of
Proposition 3 from the Introduction; it gives a condition on G which ensures
that G is good, and that WG is good and hence proper.

Proposition 3. Let G be a well-sectioned simplicial parametrized group.
Then the following statements are true:

(1) G is a good simplicial group in K/B.

(2) WG is proper in sK/B.
(3) |G| is a well-sectioned group in K/B.

We have deferred the proof of Proposition 3 to Section 8. Note that there
is a partial converse to the first statement: if G is a good simplicial group
in K/B such that G0 is well-sectioned, then Gn is well-sectioned for every
n ≥ 0.

Combining Theorem 2, Proposition 3 and Lemma 19 we obtain Proposi-
tion 4 from the Introduction.

Proposition 4. Let G be a well-sectioned fibrant simplicial parametrized
group. Then the fiberwise geometric realization |WG| → |WG| of the uni-
versal G-bundle WG→WG is a numerable parametrized principal |G| bun-
dle. Moreover |WG| is a fiberwise contractible group in K/B containing |G|
as a closed subgroup.

Now we turn to the statement and proof of the main result of this paper.
Let G denote a parametrized group. In [CJ98] (see pages 37–39) a construc-
tion of a universal parametrized principal G-bundle is given, based on the
Milnor construction of a universal bundle, using infinite joins. This model
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of the universal bundle is very useful as it makes almost no assumptions
on G. We will impose a mild restriction on G — we will require that G is
well-sectioned — and build a model with more convenient properties.

If G is well-sectioned, Proposition 4 specializes, with G regarded as a
constant simplicial parametrized group, to the statement that

|WG| → |WG|

is a numerable parametrized principal G-bundle. Here WG is the simplicial
parametrized space whose n-simplices are described in (2) and whose face
and degeneracy maps are described in (3) and (4). In the remainder of this
section we shall write

BG := |WG| and EG := |WG|,

since, as we will see, the parametrized G-bundle EG → BG is a model for
the universal parametrized G-bundle. Firstly, let us note that if H is another
parametrized group, then there is a canonical isomorphism W (G ×B H) =
WG×BWH and hence a canonical isomorphism B(G×H) = BG×B BH,
since the fiberwise geometric realization functor preserves finite limits. Thus
by construction the classifying space functor B(−) is product-preserving.

Recall Theorem 1 from the Introduction:

Theorem 1. Let M be a paracompact space over B and let G be a well-
sectioned fibrant parametrized group. Then there is a bijection

H1(M,G)K/B
' [M,BG]K/B

.

We now turn to the proof of this theorem.

Proof. We make use of the fact that H1(M,G)K/B
is isomorphic to the

set of fiberwise concordance classes of fiberwise principal G bundles on M
(Corollary 15). We define a map

[M,BG]K/B
→ H1(M,G)K/B

(6)

[f ] 7→ [f∗EG]

for f : M → BG. It is easy to verify that this map is well defined. To
prove that it is a bijection we construct an inverse. For this we need some
preparation.

Suppose that P is a parametrized principal G-bundle on M . Recall that
the Čech nerve Č(P ) of P →M is the augmented simplicial object

(7) · · · :
//

P ×M P ×M P:oo

//
//
// P ×M Poo

oo

//
// Poo

// M

in K/B where the face and degeneracy maps are given by omission and

inclusions by diagonals. Since Č(P ) is augmented over M it follows on
taking fiberwise geometric realizations that we obtain a map

|Č(P )| →M
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in K/B. The Čech nerve Č(Y ) can of course be defined for any map π : Y →
M . It is a well known fact (essentially going back to [Se68]) that if π
admits local sections and M is paracompact then the map |Č(Y )| →M is a
homotopy equivalence. The following lemma is a straightforward variation
on this result whose proof we leave to the reader.

Lemma 21. If π : Y →M is a map in K/B which admits local sections and
M is paracompact then the canonical map

|Č(Y )| →M

is a fiberwise homotopy equivalence.

With these preparations out of the way, we can return to the problem of
defining an inverse for the map [M,BG]K/B

→ H1(M,G)K/B
. Let π be the

projection map P →M of the bundle. Since G acts principally on P , there
exist maps

P ×M P → G, P ×M P ×M P → G×G, . . . etc.

which fit together to give a simplicial map Č(P )→WG. Observe that there
is another simplicial map Č(π∗P ) → WG defined in an analogous fashion
which forms part of a pullback diagram

Č(π∗P )

Č(P )

WG

WG

��

//

//
��

in sK/B. On taking fiberwise geometric realizations we obtain a map

(8) |Č(P )| → |WG| =: BG

in K/B. Let σ : M → |Č(P )| denote a homotopy inverse to the map

|Č(P )| → M from Lemma 21. Composing σ with the map (8) gives a
map M → BG. It is clear that this map respects the relation of concor-
dance (recall that we are identifying H1(M,G)K/B

with the set of fiberwise

concordance classes using Corollary 15) to give a map

(9) H1(M,G)K/B
→ [M,BG]K/B

.

We need to prove that this map is the inverse of the map (6). We first
examine the composite H1(M,G)K/B

→ [M,BG]K/B
→ H1(M,G)K/B

. To
show that this is the identity we need to show that the pullback of EG→ BG
under the map |Č(P )| → BG (equation (8) above) is fiberwise isomorphic to
q∗P where we use q to denote the map |Č(P )| →M . For it then follows that
the pullback of EG → BG under the composite map M → |Č(P )| → BG
is isomorphic to σ∗q∗P ∼= P . Observe that on taking fiberwise geometric
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realizations we obtain the commutative diagram

P

��

|Č(π∗P )|

��

oo // |WG|

��

M |Č(P )|oo // |WG|

in K/B in which each square is a pullback. Hence it follows that the com-

posite H1(M,G)K/B
→ [M,BG]K/B

→ H1(M,G)K/B
is the identity.

Now we examine the composite map

[M,BG]K/B
→ H1(M,G)K/B

→ [M,BG]K/B
.

To prove that this is the identity it is sufficient to prove the following: in
the diagram

(10)

|Č(EG)|

BG

|WG| = BG

��

//

the two maps |Č(EG)| → BG are fiberwise homotopic. Here the horizontal
map is the fiberwise geometric realization of the map (8) (in the special case
of P = EG) and the vertical map is the canonical map obtained by the
augmentation of the Čech nerve Č(EG) of EG→ BG.

The existence of this fiberwise homotopy can be understood as a simple
fact about the total décalage functor; therefore we shall need a short interlude
to discuss this latter object. Recall (see for example [Du75, St12a]) that
Dec: sK/B → ssK/B is the functor induced by restriction along the ordinal
sum functor σ : ∆ ×∆ → ∆ defined above. Thus DecX is the bisimplicial
parametrized space whose columns form the simplicial object

Dec0X // Dec1Xoo
oo

//
//
Dec2X · · ·oo

oo
oo

where DecnX = (Dec0)n+1X. In particular the 0-skeleton of DecX is
Dec0X. Ordinal sum with the empty set defines canonical natural trans-
formations p1 → σ and p2 → σ, where p1, p2 : ∆ ×∆ → ∆ denote the pro-
jections onto the first and second factors. Hence the total décalage DecX
of a simplicial parametrized space X comes equipped with row and column
augmentations DecX → p∗1X and DecX → p∗2X respectively. On taking
diagonals and fiberwise geometric realizations, we obtain a diagram

(11)

|dDecX|

X

X

q1

��

q2
//
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A further useful property of the total décalage is that the fiberwise geometric
realization |dDecX| is isomorphic to X, for dDecX is easily seen to be equal
to the edge-wise subdivision of X as defined in [BöHM93].

We return to the problem at hand. Recall, see the remarks following
Lemma 19, that WG = Dec0WG. It follows, by an adjointness argument
using the fact that sk0DecWG = WG, that there is a canonical map of
bisimplicial parametrized spaces

(12) DecWG→ Č(WG) = cosk0(WG).

This map is easily checked to be an isomorphism and moreover the dia-
gram (11) is equal to the diagram (10) above with X = Č(WG). Note that
we also obtain the not-so-obvious fact that |Č(EG)| is isomorphic to BG.

Thus to prove that the two maps in (10) are fiberwise homotopic, it
suffices to prove that the two maps in (11) are fiberwise homotopic. We
shall prove that if X is a simplicial parametrized space, then there is a
canonical simplicial homotopy dDecX ⊗ ∆[1] → X from q1 to q2. Taking
fiberwise geometric realizations then gives the required fiberwise homotopy.

By adjointness, exhibiting such a simplicial homotopy, is equivalent to
exhibiting a map dDecX → X∆[1] such that the diagram

(13) dDecX

X

X

X∆[1]//

q2 ''

q1
77 OO

��

commutes, where X∆[1] denotes the usual simplicial path space of X, and the
two projections X∆[1] → X are induced by the inclusions 0, 1: ∆[0]→ ∆[1].

To be more concrete, X∆[1] is the simplicial parametrized space whose space
of n-simplices is the generalized matching object

(X∆[1])n = M∆[n]×∆[1]X

(see VII 1.21 of [GoJ99]). It is an easy calculation to see that the object of
n-simplices of dDec(X) is given by

(dDec(X))n = M∆[n]?∆[n]X = M∆[2n+1]X,

where ∆[n] ?∆[n] denotes the join of ∆[n] with itself [EP00]. To construct

the map dDecX → X∆[1] it suffices to construct a simplicial map

∆[n]×∆[1]→ ∆[2n+ 1],
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natural in [n], such that the diagram

∆[n]

��

q̃1

xx

∆[n] ?∆[n] = ∆[2n+ 1] ∆[n]×∆[1]oo

∆[n]

OO

q̃2

ff

commutes, where the two maps q̃1, q̃2 : ∆[n] → ∆[2n + 1] are induced by
σ([n], ∅) → σ([n], [n]) and σ(∅, [n]) → σ([n], [n]) respectively. The required
homotopy is the nerve of the canonical natural transformation α : q̃1 → q̃2

defined by α(i) : i→ n+ i+ 1. It is easy to see that this map is natural in
n in the appropriate sense. This finishes the proof of Theorem 1. �

7. Proof of Theorem 2

In this Section, we prove Theorem 2. First recall the statement of this
theorem.

Theorem 2. Let G be a fibrant simplicial parametrized group and let M be
a proper simplicial object in K/B. If P is a simplicial principal bundle over
M with structure group G such that Pn →Mn is a numerable, parametrized
principal Gn-bundle in K/B for all n ≥ 0, then the induced map

|P | → |M |
on fiberwise geometric realizations is the projection map for a locally trivial
parametrized principal |G|-bundle |P |(|M |, |G|) in K/B. Moreover, if the
bundle Pn →Mn is trivial for all n ≥ 0, then |P | → |M | is numerable.

The proof of Theorem 2 is a variation on the approach of the papers
[Ma75, Mc69, St68] (which deal with the case whereG is a constant simplicial
group) to the case where G is an arbitrary group in sK/B. We note that an
important ingredient in [Ma75, Mc69, St68] is the notion of an equivariant
NDR pair, a notion which we have already explained (see Section 3 above)
has a straightforward generalization to the parametrized setting.

Proof of Theorem 2. Let n ≥ 0 be an integer. Recall that the nth skele-
ton sknM of M comes equipped with a map sknM → M and that there
are natural maps sknM → skmM whenever m ≤ n. Recall also that
M = colimn sknM and that there is a pushout diagram of the form

(14)

(Mn ⊗ ∂∆[n]) ∪ (LnM ⊗∆[n])

Mn ⊗∆[n]

skn−1M

sknM

//

��

//
��
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(see for instance Proposition VII 1.7 of [GoJ99]), where ∆[n] denotes the
simplicial n-simplex and ∂∆[n] denotes its boundary.

We use the nth skeletons of M to define a filtration

|P |0 ⊂ |P |1 ⊂ · · · ⊂ |P |n ⊂ · · · ⊂ |P |

of |P | as follows. The canonical maps sknM → M induce by pullback
simplicial principal bundles with structure group G on each of the simplicial
spaces sknM . Let |P |n = |sknM ×M P |. Observe that |P |n ⊂ |P |n+1 and
|P |n ⊂ |P | are closed inclusions for all n ≥ 0. For convenience of notation we
will also denote |sknM | by |M |n, but note the potential confusion with |P |n:
we remind the reader that this does not denote the geometric realization
of the n-skeleton of P . Recall that M = colimn sknM and hence |M | =
colimn |M |n in K/B. We claim that P = colimn(sknM ×M P ). This is
easy to see in the special case that P is trivial. We can reduce the general
statement to this special case, since P is a colimit of trivial bundles and
colimits commute amongst themselves.

The map |P | → |M | is a quotient map, since the map

tn≥0Pn ×∆n → tn≥0Mn ×∆n

is a quotient map, and both of the maps

tn≥0Pn ×∆n → |P | and tn≥0 Mn ×∆n → |M |

are quotient maps. Since the diagram

|P |n //

��

|P |

��

|M |n // |M |

is a pullback, we see that |P |n → |M |n is also a quotient map (|M |n → |M |
is a closed inclusion, and quotient maps pullback along closed inclusions to
quotient maps). In particular |M |n has the quotient topology induced by
the map |π| : |P |n → |M |n.

The main step in our proof is to prove that (|P |n, |P |n−1) is a |G|-fiberwise
NDR pair in K/B for all n ≥ 1, so that we can apply the method of [Ma75,
Mc69, St68]. As a first step in this direction we have the following lemma.

Lemma 22. For every n ≥ 1 we have a pushout diagram in sK/B of the
form

(15)

((Mn ⊗ ∂∆[n]) ∪ (LnM ⊗∆[n]))×M P

(Mn ⊗∆[n])×M P

skn−1M ×M P

sknM ×M P .

//

��

//
��
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Proof. Observe that the canonical map from the pushout to sknM ×M P
is a continuous bijection in each degree. Therefore it suffices to show that
for each m ≥ 0 the induced map

(16) ((Mn⊗∆[n])m×MmPm)t((skn−1M)m×MmPm)→ (sknM)m×MmPm

is a quotient map. The map (16) is the map of fiberwise principal bundles
induced by pullback along the quotient map

(Mn ⊗∆[n])m t (skn−1M)m → (sknM)m.

Therefore to prove the lemma it suffices to establish the following claim: if
P →M is a fiberwise principal bundle and f : N →M is a quotient map in
K/B, then f∗P → P is also a quotient map. To see this observe that since
P can be constructed as a quotient of a coproduct of spaces of the form
U ×B G, and f∗P can be constructed as a quotient of a coproduct of spaces
of the form f−1U ×B G, it suffices to prove that f−1U ×B G → U ×B G
is a quotient map for any open set U ⊂ M . Since the functor (−) ×B G
preserves colimits this follows from the fact that f−1U → U is a quotient
map, since U ⊂M is open. �

Continuing the proof of Theorem 2, the second step is to show that in the
diagram (15) the realization of the left hand vertical map is an f̄ -cofibration
in |G|K/B. For this we will need the hypotheses that each Pn → Mn is a
numerable principal Gn bundle, and that M is proper.

Lemma 23. For every n ≥ 1, the map

(17) |(Mn ⊗ ∂∆[n]) ∪ (LnM ⊗∆[n])×M P | → |Mn ⊗∆[n]×M P |
is an f̄ -cofibration in |G|K/B and hence (|P |n, |P |n−1) is a |G|-fiberwise
NDR pair in K/B for all n ≥ 1.

Proof. Using the fact that geometric realization commutes with pullbacks,
we obtain a pullback diagram

|((Mn ⊗ ∂∆[n]) ∪ (LnM ⊗∆[n]))×M P |

��

// |Mn ⊗∆[n]×M P |

��

(Mn × ∂∆n) ∪ (LnM ×∆n) // Mn ×∆n.

Since M is proper, the closed inclusion LnM ⊂ Mn is an f̄ -cofibration and
standard results show that this induces a closed inclusion

(Mn × ∂∆n) ∪ (LnM ×∆n)→Mn ×∆n

which is also an f̄ -cofibration. Therefore if we can show that

|Mn ⊗∆[n]×M P | →Mn ×∆n

is a numerable fiberwise principal |G| bundle in K/B, then we may use

Proposition 16 to deduce that the closed inclusion (17) is an f̄ -cofibration in
K/B. It then follows from Lemma 22 that |P |n−1 → |P |n is an f̄ -cofibration,
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since these are preserved under pushout. Finally, it follows from Lemma 10
that (|P |n, |P |n−1) is a |G|-fiberwise NDR pair.

Since we have shown that |P | → |M | satisfies the condition (ii) of Def-
inition 12 for the group |G|, and this condition is stable under pullback,
|Mn⊗∆[n]×M P | →Mn×∆n also satisfies the condition (ii). We thus only
need to show that this map satisfies the condition (i). That is, it admits
local sections relative to a numerable open cover of Mn × ∆n. For this,
consider the commutative diagram

Pn ×∆n //

��

|P |

��

Mn ×∆n // |M |

where the horizontal maps are the canonical ones into the colimits defining
|P | and |M |. The map Pn ×∆n → |P | factors through |Mn ⊗∆[n] ×M P |
and hence |Mn⊗∆[n]×M P | →Mn×∆n admits local sections relative to a
numerable open cover of Mn×∆n since the principal Gn bundle Pn×∆n →
Mn ×∆n does by hypothesis. �

We now proceed in our proof of Theorem 2 in analogy with the arguments
in [Ma75, Mc69, St68]. Since (|P |n, |P |n−1) is a fiberwise |G|-equivariant
NDR pair for every n ≥ 1 and |P | = colimn |P |n, we see that (|P |, |P |n) is
a fiberwise |G|-equivariant NDR pair for every n ≥ 0 (by Lemma 10 and
Lemma 11). For any n ≥ 0 let hn : |P | × I → |P | and un : |P | → I be a
representation of (|P |, |P |n) as a fiberwise |G|-equivariant NDR pair. Define
functions ρ̂n : |P | → I for every n ≥ 1 by

ρ̂n(x) = (1− un(x))un−1(hn(x, 1)).

The functions ρ̂n are easily seen to be |G|-invariant and hence descend to
functions ρn : |M | → I. Let Un = ρ̂−1

n (0, 1] and let Vn = ρ−1
n (0, 1] so that

Un = |π|−1Vn (and hence Un is |G|-invariant). Following [Ma75, Mc69] let
rn : |P | → |P | denote the map rn(|x, t|) = hn(|x, t|, 1). Then we have (see
[Ma75, Mc69]) the following chain of inclusions

|P |n \ |P |n−1 ⊂ Un ⊂ r−1
n (|P |n \ |P |n−1).

Observe that we have a commutative diagram

(18)

Un |P |n \ |P |n−1 |Mn ⊗∆[n]×M P |

Vn |M |n \ |M |n−1 |Mn ⊗∆[n]|

|π|
��

rn // //

����

// //

in which the top horizontal maps are |G|-equivariant. The lower right hand
map in this diagram arises as follows: after taking geometric realizations
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in (14), we see that there is an isomorphism

|M |n \ |M |n−1 = |Mn ⊗∆[n]| \ |(Mn ⊗ ∂∆[n]) ∪ (LnM ⊗∆[n])|

and hence a natural inclusion |M |n \ |M |n−1 ⊂ |Mn ⊗∆[n]|.
After the previous Lemma 23 we observed that

|Mn ⊗∆[n]×M P | → |Mn ⊗∆[n]|

is a numerable fiberwise principal |G|-bundle in K/B and hence is locally
trivial. Using local sections of this map, we can find an open cover (Vn,i) of
Vn and |G|-equivariant maps ζn,i : Un,i → |G|, where Un,i = |π|−1Vn,i. Then
we can define |G|-invariant maps σ̂n,i : Un,i → Un,i by σ̂n,i(x) = xζn,i(x)−1.
Since σ̂n,i is |G|-invariant, it descends to define a unique map σn,i : Vn,i →
Un,i so that the diagram

Un,i

|π|
��

σ̂n,i
// Un,i

Vn,i

σn,i

<<

commutes. The set Vn,i has the quotient topology induced by |π| and hence
σn,i is continuous. Clearly σn,i is a section of |π|. Thus we have proven that
there exist trivializations of |π| : |P | → |M | over the open subsets Vn,i.

It remains to prove the statement regarding the numerability of the bundle
|P | → |M |. We argue as follows. From the proof above we obtain the
commutative diagram (18). In this case the bundle

|Mn ⊗∆[n]×M P | → |Mn ⊗∆[n]|

is trivial, and therefore we can define |G|-equivariant maps ζn : Un → |G|.
In exactly the same way as above we can use the maps ζn to define |G|-
invariant maps σ̂n : Un → Un which descend to sections σn : Vn → Un of |π|.
The problem now is to show that the open cover (Vn) is numerable. To do
this we use the functions ρn : Vn → I constructed earlier. The collection of
functions (ρn) may not be locally finite, this can be fixed however using the
method of Dold [D63, Proof of Proposition 6.7]; one defines new functions
φn : Un → I with supp(φn) ⊂ Un by

φn(x) = max

(
0, ρn(x)− n

n−1∑
i=1

ρi(x)

)
.

Then one can check as in [D63] that the collection of functions (φn) is locally
finite. It is now clear how to form a partition of unity from the φn. This
ends the proof of Theorem 2. �

8. Proof of Proposition 3

Recall the statement of Proposition 3.
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Proposition 3. Let G be a well-sectioned simplicial parametrized group.
Then the following statements are true:

(1) G is a good simplicial group in K/B.

(2) WG is proper in sK/B.
(3) |G| is a well-sectioned group in K/B.

Proof. We prove statement (1). We need to show that si : Gn → Gn+1 is
an f̄ -cofibration for all 0 ≤ i ≤ n and all n ≥ 0. Since si is a section of the
corresponding face operator di, we can identify si with the map

Gn → Gn ×B ker(di)

which sends g 7→ (g, 1). Therefore, by Lemma 24 below, to prove that si is
an f̄ -cofibration it is sufficient to prove that ker(di) is well sectioned. For
this, we observe that ker(di) is a retract of Gn+1 by the map

Gn+1 → ker(di)

sending g to gsidi(g)−1. Therefore the sectionB → ker(di) is an f̄ -cofibration
since it is a retract of the map B → Gn+1 which is an f̄ -cofibration by hy-
pothesis.

We prove statement (2). From what we have just proved, we have that
each degeneracy map of G is an f̄ -cofibration. Lemma 24 below implies
that the degeneracies of WG are f̄ -cofibrations and hence Proposition 29 in
Appendix A implies that WG is proper.

Finally we prove statement (3). Since G is well-sectioned, the simplicial
object G is proper, and hence the inclusion |G|n ⊂ |G|n+1 is an f̄ -cofibration
for all n ≥ 0 (with the notation of the proof of Theorem 2). This follows
from the fact that |G|n ⊂ |G|n+1 is a pushout of

|Gn ⊗ ∂∆[n]) ∪ (LnG⊗∆[n])| → |Gn ⊗∆[n]|,
which is an f̄ -cofibration using Proposition 3 and the fact that K/B is a

topological model category. Therefore the inclusion |G|n ⊂ |G| is an f̄ -
cofibration for all n ≥ 0 (by the nonequivariant version of Lemma 11).
Since |G|0 is well-sectioned and the composite of two f̄ -cofibrations is an
f̄ -cofibration, it follows that |G| is well-sectioned. �

To complete the proof of Proposition 3 we need to give the proof of the
following lemma.

Lemma 24. Suppose that A1 → X and A2 → Y are f̄ -cofibrations in K/B.

Then A1 ×B A2 → X ×B Y is also an f̄ -cofibration.

Proof. It is clearly sufficient to prove that if A→ X is an f̄ -cofibration and
Y is any space over B, then A×B Y → X ×B Y is an f̄ -cofibration, in other
words it has the LLP with respect to all f -acyclic f -fibrations U → V .
By adjointness, this is equivalent to checking that A → X has the LLP
against all maps of the form MapB(Y, U) → MapB(Y, V ) where U → V is
an f -acyclic f -fibration.
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By an adjointness argument, the functor MapB(Y,−) : K/B → K/B pre-
serves f -fibrations. It also preserves fiberwise homotopies: if g0, g1 : X → Z
are fiberwise homotopic through a fiberwise homotopy h : X × I → Z, then
the maps MapB(Y, g0) and MapB(Y, g1) are fiberwise homotopic through

the fiberwise homotopy h̃ : MapB(Y,X) × I → MapB(Y, Z) defined as the
composite

(19) MapB(Y,X)× I → MapB(Y,X × I)
MapB(Y,h)−−−−−−−→ MapB(Y,Z),

where the first map is the adjoint of the canonical map

Y ×B MapB(Y,X)× I → X × I.

One can check that h̃ so defined does give such a fiberwise homotopy as
claimed. It follows that the functor MapB(Y,−) preserves f -equivalences,
and hence f -acyclic f -fibrations, which proves the lemma. �

Appendix A. Good implies proper

Our goal in this section is to prove that a good simplicial object X in
a topological bicomplete category C is automatically proper, provided that
a generalization of Lillig’s union theorem on cofibrations [L73] holds in C ,
and an assumption on colimits in the slice categories C/Xn

is met. We begin
by making the following definition.

Definition 25. Let C be a topological bicomplete category. We say that
C satisfies the Lillig condition if the following is true: Given a pullback
diagram in C ,

A3
//

��

A2

��

A1
// X

such that the morphisms A1 → X, A3 → X and A2 → X are h̄-cofibrations,
then the canonical map A1 ∪A3 A2 → X is an h̄-cofibration.

When C = K this is Lillig’s union theorem [L73]. We will prove shortly
that a reworking of the proof in [L73] shows that the Lillig condition holds
when C = K/B; we do not know if this condition holds more generally.

With this definition understood we can turn to our main goal in this
appendix, which is the proof of the following proposition.

Proposition 26. Let C be a topological bicomplete category and let X be
a good simplicial object in C . Suppose that the following two conditions are
satisfied:

(1) C satisfies the Lillig condition of Definition 25.
(2) sk : Xn → Xn+1 is properly extensive for all n ≥ 0 and all 0 ≤ k ≤ n.

Then X is proper.
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Here we say that a map f : X → Y in C is properly extensive if the
pullback functors f∗ : C/Y → C/X commutes with finite colimits. The proof
of Proposition 26 that we shall give is based on the proof of Corollary 2.4(b)
of [GaL82]. We begin with some preparation.

Recall (Definition 20) that a proper simplicial object X in a topological
bicomplete category C is one for which the latching maps LnX → Xn are
h̄-cofibrations for all n ≥ 0. We need to examine the notion of latching
object in a little more detail. Recall (see for example Remark VII 1.8 of
[GoJ99]), that LnX may also be described as the coequalizer

(20)
⊔

0≤i<j≤n−2

Xn−2 ⇒
⊔

0≤l≤n−1

Xn−1 → LnX

where the two maps defining the coequalizer arise from the simplicial identity
sisj−1 = sjsi if i < j (see for example V Lemma 1.1 and VII Remark 1.8 of
[GoJ99]). It is well known that L0X = ∅, L1X = X0 and L2X = X1∪X0X1.

It will be convenient to introduce a family of partial latching objects Ln,kX
associated to the simplicial object X for k = 0, 1, . . . , n. For 0 ≤ k ≤ n we
define Ln,kX by the coequalizer

⊔
0≤i<j≤k−1

Xn−2 ⇒
k−1⊔
l=0

Xn−2 → Ln,kX

where the restrictions of the two displayed maps to the summand labelled
by the pair (i, j) are given by the composites

Xn−2
si−→ Xn−1

inj−−→
k−1⊔
l=0

Xn−1

Xn−2
sj−→ Xn−1

ini−→
k−1⊔
l=0

Xn−1

and where ini, inj denote the inclusions into the summands labelled by i
and j. Note that there are isomorphisms Ln,0X ' ∅, Ln,nX ' LnX. Note
also that there is a canonical map Ln,kX → Xn induced by the degeneracies
si : Xn−1 → Xn for 0 ≤ i ≤ k − 1. These partial latching objects are
precisely the objects Ln,kX defined on pages 362–363 of [GoJ99]. We have
the following result:

Lemma 27 ([GoJ99], chapter VII Proposition 1.27). Let X be a simplicial
object in C . Then for any 0 ≤ k ≤ n− 1 there is a pushout diagram

Ln−1,kX //

��

Xn−1

��

Ln,kX // Ln,k+1X.
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Proof. The lemma follows from the statements (i)–(iii) below, together with
the fact that colimits commute amongst themselves.

(i) The diagram

⊔
0≤i<j≤k−1

Xn−3
//

sk

��

⊔
0≤i<j≤k−1

Xn−3 t
k−1⊔
l=0

Xn−2

��⊔
0≤i<j≤k−1

Xn−2
//
⊔

0≤i<j≤k
Xn−2

is a pushout.
(ii) The diagram

k−1⊔
l=0

Xn−2

sk+1

��

//

k−1⊔
l=0

Xn−2 tXn−1

��

k−1⊔
l=0

Xn−1
//

k⊔
l=0

Xn−1

is a pushout.
(iii) The diagram⊔

0≤i<j≤k−1

Xn−3 t
k−1⊔
l=0

Xn−2 ⇒
k−1⊔
l=0

Xn−2 tXn−1 → Xn−1

is a coequalizer, where the two displayed maps are defined to be the
corresponding maps in the coequalizer defining Ln−1,kX on the first
summand

⊔
0≤i<j≤k−1Xn−3, and are defined to be the composites

Xn−2
ini−→

k−1⊔
l=0

Xn−2 →
k−1⊔
l=0

Xn−2 tXn−1

Xn−2
si−→ Xn−1 →

k−1⊔
l=0

Xn−2 tXn−1

on the summand Xn−2 labelled by i in
⊔k−1
i=0 Xn−2 (in this case it is

straightforward to check that the universal property for a coequalizer
is satisfied). �

Next, we need a lemma asserting that under certain hypotheses on colimits
in C , a canonical square built out of the partial latching objects is a pullback
square.
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Lemma 28. Suppose that sk : Xn → Xn+1 is properly extensive for all n ≥ 0
and for all 0 ≤ k ≤ n. Then for every 0 ≤ k ≤ n the diagram

Ln,kX //

��

Xn

sk

��

Ln+1,kX // Xn+1

is a pullback.

Proof. Under the hypothesis in the statement of the lemma, we have a
coequalizer diagram

Xn ×Xn+1 Ln+1,kX −→
⊔

0≤i<j≤k−1

Xn−1 ×Xn+1 Xn−1 ⇒
k−1⊔
l=0

Xn ×Xn+1 Xn

The result then follows from the well-known fact that the diagrams

Xn−1
si //

sj−1

��

Xn

sj

��

Xn si
// Xn+1

are pullbacks for i < j. �

We can now give the proof of Proposition 26.

Proof of Proposition 26. We will prove by induction on n ≥ 0 that the
maps Ln,kX → Xn are h̄-cofibrations for all 0 ≤ k ≤ n. The base case is the
statement that L0,0X → X0 is an h̄-cofibration. But L0,0X = ∅ and hence
the statement is true in this case, since every object of C is h̄-cofibrant.

Now we make the inductive assumption that the maps Ln−1,kX → Xn−1

are h̄-cofibrations for all 0 ≤ k ≤ n − 1. We will prove by induction on k
that Ln,kX → Xn is an h̄-cofibration for all 0 ≤ k ≤ n.

To start the induction, we again observe that Ln,0X = ∅ and hence
Ln,0X → Xn is an h̄-cofibration. Assume then that Ln,kX → Xn is an
h̄-cofibration for k ≥ 0 and consider the diagram

(21)

Ln−1,kX

Ln,kX

Xn−1

Ln,k+1X

Xn

��

//

//

**

sk

��$$

��

for 0 ≤ k ≤ n−1. Since the inner square in (21) is a pushout, it follows from
the assumption that Ln−1,kX → Xn−1 is an h̄-cofibration for 0 ≤ k ≤ n− 1
that Ln,kX → Ln,k+1X is an h̄-cofibration. By hypothesis, Ln,kX → Xn is
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an h̄-cofibration and sk : Xn−1 → Xn is an h̄-cofibration since X is good. By
Lemma 28 the outer square in (21) is a pullback. Therefore, since C satisfies
the Lillig condition of Definition 25 we conclude that Ln,k+1X → Xn is an
h̄-cofibration, completing the inductive step. Therefore Ln,nX → Xn is an
h̄-cofibration, i.e., LnX → Xn is an h̄-cofibration, completing the original
inductive step. Hence X is proper. �

As an application, we prove the following result, which we need in the
proof of Proposition 3 above.

Proposition 29. Let C = K/B. Then any good simplicial object in K/B is
proper.

Proof. We verify that the two conditions from Proposition 26 are satisfied;
we deal with Condition (2) first. We need to know that the functor

s∗n : (K/B)/Xn+1
→ (K/B)/Xn

,

i.e., restriction along the closed inclusion sn : Xn → Xn+1, preserves finite
colimits. In other words, since (K/B)/X ∼= K/X for any object X in K/B,
we have to show that s∗n : K/Xn+1

→ K/Xn
preserves finite colimits.

A colimit in K/Xn+1
is constructed as a quotient of a coproduct in K and

then equipped with the canonical map to Xn+1. Therefore it is sufficient to
prove two things: firstly that restriction along Xn preserves coproducts in
K/Xn+1

and secondly that if q : Y → Z is a quotient map in K/Xn+1
then in

the pullback diagram

Xn ×Xn+1 Y

��

// Y

q

��

Xn ×Xn+1 Z
// Z

in K the map Xn ×Xn+1 Y → Xn ×Xn+1 Z is a quotient map. The first
of these things is easy to prove, for the second it is enough to prove that
Xn ×Xn+1 Z → Z is a closed inclusion, since quotient maps restrict to
quotient maps along closed subspaces. This is clear however, since sn : Xn →
Xn+1 is a closed inclusion, and closed inclusions pull back along arbitrary
maps to closed inclusions.

For the Lillig condition, suppose that

A3
//

��

A2

��

A1
// X

is a pullback diagram in K/B as in Definition 25 above, i.e., the maps A1 →
X, A2 → X and A3 → X are f̄ -cofibrations. From the pushout-product
theorem (see [ScV02]) it follows that

(22) A1 ∪A3 A3 ⊗ I ∪A3 A2 → X ⊗ I
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is an f̄ -cofibration. This map fits into the commutative diagram

A1 ∪A3 A3 ⊗ I ∪A3 A2
//

��

A1 ∪A3 A2

��

X ⊗ I // X.

The pushout of (22) along A1∪A3A3⊗I∪A3A2 → A1∪A3A2 can be identified
with a map

A1 ∪A3 A2 → X ⊗ I ∪A3⊗I A3

which is also an f̄ -cofibration. Therefore, to prove that A1 ∪A3 A2 → X is
an f̄ -cofibration it suffices to prove that A1 ∪A3 A2 → X is a retract of

A1 ∪A3 A2 → X ⊗ I ∪A3⊗I A3.

Suppose (u1, h1) and (u2, h2) are representations of (X,A1) and (X,A2) as
fiberwise NDR pairs. As in [L73] define a map u : X → X ⊗ I ∪A3⊗I A3 by

u(x) =

{
[x, u1(x)/(u1(x) + u2(x))] if x /∈ A3,

[x, 0] if x ∈ A3.

Then it is easy to check that u(x) = [x, 0] if x ∈ A1 and u(x) = [x, 1] if
x ∈ A2. This map exhibits A1 ∪A3 A2 → X as a retract, as required. �

We do not know if the Lillig condition holds more generally; the proof
we have given (which is a re-working of Lillig’s original proof) uses crucially
the characterization of f̄ -cofibrations in terms of fiberwise NDR pairs. We
note that the result is false in general if f̄ -cofibrations are replaced by f -
cofibrations.
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[BöHM93] Bökstedt, M.; Hsiang, W. C.; Madsen, I. The cyclotomic trace and alge-
braic K-theory of spaces. Invent. Math. 111 (1993), no. 3, 465–539. MR1202133
(94g:55011), Zbl 0804.55004, doi: 10.1007/BF01231296.

[Br90] Breen, Lawrence. Bitorseurs et cohomologie nonabélienne. The Grothendieck
Festschrift, Vol. I, 401–476, Progr. Math., 86. Birkhäuser Boston, MA, 1990.
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