New York Journal of Mathematics

New York J. Math. 22 (2016) 277-291.

Realising the Toeplitz algebra of a higher-rank graph as a Cuntz-Krieger algebra

Yosafat E. P. Pangalela

Abstract

For a row-finite higher-rank graph Λ, we construct a higherrank graph $T \Lambda$ such that the Toeplitz algebra of Λ is isomorphic to the Cuntz-Krieger algebra of $T \Lambda$. We then prove that the higher-rank graph $T \Lambda$ is always aperiodic and use this fact to give another proof of a uniqueness theorem for the Toeplitz algebras of higher-rank graphs.

Contents

1. Introduction 277
2. Higher-rank graphs 278
3. The k-graph $T \Lambda$ 280
4. Realising $T C^{*}(\Lambda)$ as a Cuntz-Krieger algebra 283
References 290

1. Introduction

Higher-rank graphs and their Cuntz-Krieger algebras were introduced by Kumjian and Pask in [5] as a generalisation of the Cuntz-Krieger algebras of directed graphs. Kumjian and Pask proved an analogue of the CuntzKrieger uniqueness theorem for a family of aperiodic higher-rank graphs [5, Theorem 4.6]. Aperiodicity is a generalisation of Condition (L) for directed graphs and comes in several forms for different kinds of higher-rank graphs (see $[1,5,6,10,11,12,13,14]$).

The Toeplitz algebra of a directed graph is an extension of the CuntzKrieger algebra in which the Cuntz-Krieger equations at vertices are replaced by inequalities. An analogous family of Toeplitz algebras for higherrank graph was introduced and studied by Raeburn and Sims [9]. They

[^0]proved a uniqueness theorem for Toeplitz algebras [9, Theorem 8.1], generalising a previous theorem for directed graphs [3, Theorem 4.1].

For a directed graph E, the Toeplitz algebra of E is canonically isomorphic to the Cuntz-Krieger algebra of a graph $T E$ (see [7, Theorem 3.7] and [15, Lemma 3.5]). Here we provide an analogous construction for a row-finite higher-rank graph Λ. We build a higher-rank graph $T \Lambda$, and show that the Toeplitz algebra of Λ is canonically isomorphic to the Cuntz-Krieger algebra of $T \Lambda$ (Theorem 4.1). Our proof relies on the uniqueness theorem of [9]. However, it is interesting to observe that the higher-rank graph $T \Lambda$ is always aperiodic. Hence our isomorphism shows that the uniqueness theorem of [9] is a consequence of the general Cuntz-Krieger uniqueness theorem of [11] (see Remark 4.3).

2. Higher-rank graphs

Let k be a positive integer. We regard \mathbb{N}^{k} as an additive semigroup with identity 0 . For $m, n \in \mathbb{N}^{k}$, we write $m \vee n$ for their coordinate-wise maximum.

A higher-rank graph or k-graph is a pair (Λ, d) consisting of a countable small category Λ together with a functor $d: \Lambda \rightarrow \mathbb{N}^{k}$ satisfying the factorisation property: for every $\lambda \in \Lambda$ and $m, n \in \mathbb{N}^{k}$ with $d(\lambda)=m+n$, there are unique elements $\mu, \nu \in \Lambda$ such that $\lambda=\mu v$ and $d(\mu)=m, d(\nu)=n$. We then write $\lambda(0, m)$ for μ and $\lambda(m, m+n)$ for ν. We regard elements of Λ^{0} as vertices and elements of Λ as paths. For detailed explanation and examples, see [8, Chapter 10].

For $v \in \Lambda^{0}$ and $E \subseteq \Lambda$, we define $v E:=\{\lambda \in E: r(\lambda)=v\}$ and $m \in \mathbb{N}^{k}$, we write $\Lambda^{m}:=\{\lambda \in \Lambda: d(\lambda)=m\}$. We use term edge to denote a path $e \in \Lambda^{e_{i}}$ where $1 \leq i \leq k$, and write

$$
\Lambda^{1}:=\bigcup_{1 \leq i \leq k} \Lambda^{e_{i}}
$$

for the set of all edges. We say that Λ is row-finite if for every $v \in \Lambda^{0}$, the set $v \Lambda^{e_{i}}$ is finite for $1 \leq i \leq k$. Finally, we say $v \in \Lambda^{0}$ is a source if there exists $m \in \mathbb{N}^{k}$ such that $v \Lambda^{m}=\emptyset$.

For a row-finite k-graph Λ, we shall construct a k-graph $T \Lambda$ which is rowfinite and always has sources. Our k-graph $T \Lambda$ is typically not locally convex in the sense of [10, Definition 3.9] (see Remark 3.3), so the appropriate definition of Cuntz-Krieger Λ-family is the one in [11]. For detailed discussion about row-finite k-graphs and their generalisations, see [16, Section 2].

From now on, we focus on a row-finite k-graph Λ. For $\lambda, \mu \in \Lambda$, we say that τ is a minimal common extension of λ and μ if

$$
d(\tau)=d(\lambda) \vee d(\mu), \tau(0, d(\lambda))=\lambda \text { and } \tau(0, d(\mu))=\mu
$$

Let $\operatorname{MCE}(\lambda, \mu)$ denote the collection of all minimal common extensions of λ and μ. Then we write

$$
\Lambda^{\min }(\lambda, \mu):=\left\{\left(\lambda^{\prime}, \mu^{\prime}\right) \in \Lambda \times \Lambda: \lambda \lambda^{\prime}=\mu \mu^{\prime} \in \operatorname{MCE}(\lambda, \mu)\right\} .
$$

A set $E \subseteq v \Lambda^{1}$ is exhaustive if for all $\lambda \in v \Lambda$, there exists $e \in E$ such that $\Lambda^{\min }(\lambda, e) \neq \emptyset$.

A Toeplitz-Cuntz-Krieger Λ-family is a collection $\left\{t_{\lambda}: \lambda \in \Lambda\right\}$ of partial isometries in a C^{*}-algebra B satisfying:
(TCK1) $\left\{t_{v}: v \in \Lambda^{0}\right\}$ is a collection of mutually orthogonal projections.
(TCK2) $t_{\lambda} t_{\mu}=t_{\lambda \mu}$ whenever $s(\lambda)=r(\mu)$.
(TCK3) $t_{\lambda}^{*} t_{\mu}=\sum_{\left(\lambda^{\prime}, \mu^{\prime}\right) \in \Lambda^{\min }(\lambda, \mu)} t_{\lambda^{\prime}} t_{\mu^{\prime}}^{*}$ for all $\lambda, \mu \in \Lambda$.
Remark 2.1. In [9, Lemma 9.2], Raeburn and Sims required also that "for all $m \in \mathbb{N}^{k} \backslash\{0\}, v \in \Lambda^{0}$, and every set $E \subseteq v \Lambda^{m}, t_{v} \geq \sum_{\lambda \in E} t_{\lambda} t_{\lambda}^{*}$ ". However, by [11, Lemma 2.7 (iii)], this follows from (TCK1)-(TCK3), and hence our definition is basically same as that of [9].

Meanwhile, based on [11, Proposition C.3], a Cuntz-Krieger Λ-family is a Toeplitz-Cuntz-Krieger Λ-family $\left\{t_{\lambda}: \lambda \in \Lambda\right\}$ which satisfies
(CK) $\prod_{e \in E}\left(t_{v}-t_{e} t_{e}^{*}\right)=0$ for all $v \in \Lambda^{0}$ and exhaustive $E \subseteq v \Lambda^{1}$.
Raeburn and Sims proved in [9, Section 4] that there is a C^{*}-algebra $T C^{*}(\Lambda)$ generated by a universal Toeplitz-Cuntz-Krieger Λ-family

$$
\left\{t_{\lambda}: \lambda \in \Lambda\right\} .
$$

If $\left\{T_{\lambda}: \lambda \in \Lambda\right\}$ is a Toeplitz-Cuntz-Krieger Λ-family in a C^{*}-algebra B, we write ϕ_{T} for the homomorphism of $T C^{*}(\Lambda)$ into B such that $\phi_{T}\left(t_{\lambda}\right)=T_{\lambda}$ for $\lambda \in \Lambda$. The quotient of $T C^{*}(\Lambda)$ by the ideal generated by

$$
\left\{\prod_{e \in E}\left(t_{v}-t_{e} t_{e}^{*}\right): v \in \Lambda^{0}, E \subseteq v \Lambda^{1} \text { is exhaustive }\right\}
$$

is generated by a universal family of the Cuntz-Krieger Λ-family

$$
\left\{s_{\lambda}: \lambda \in \Lambda\right\},
$$

and hence we can identify it with the C^{*}-algebra $C^{*}(\Lambda)$. For a CuntzKrieger Λ-family $\left\{S_{\lambda}: \lambda \in \Lambda\right\}$ in a C^{*}-algebra B, we write π_{S} for the homorphism of $C^{*}(\Lambda)$ into B such that $\pi_{S}\left(s_{\lambda}\right)=S_{\lambda}$ for $\lambda \in \Lambda$. Furthermore, we have $s_{v} \neq 0$ for $v \in \Lambda^{0}$ [11, Proposition 2.12].

As for directed graphs, we have uniqueness theorems for the Toeplitz algebra [9 , Theorem 8.1] and the Cuntz-Krieger algebra [6, Theorem 4.7]. The former does not need any hypothesis on the k-graph as stated in the following theorem.
Theorem 2.2. Let Λ be a row-finite k-graph. Let $\left\{T_{\lambda}: \lambda \in \Lambda\right\}$ be a Toeplitz-Cuntz-Krieger Λ-family in a C^{*}-algebra B. Suppose that for every $v \in \Lambda^{0}$,

$$
\begin{equation*}
\prod_{e \in v \Lambda^{1}}\left(T_{v}-T_{e} T_{e}^{*}\right) \neq 0 \tag{*}
\end{equation*}
$$

(where this includes $T_{v} \neq 0$ if $v \Lambda^{1}=\emptyset$). Suppose that $\phi_{T}: T C^{*}(\Lambda) \rightarrow B$ is the homomorphism such that $\phi_{T}\left(t_{\lambda}\right)=T_{\lambda}$ for $\lambda \in \Lambda$. Then

$$
\phi_{T}: T C^{*}(\Lambda) \rightarrow B
$$

is injective.
Remark 2.3. Every k-graph Λ gives a product system of graphs over \mathbb{N}^{k} and a Toeplitz-Cuntz-Krieger Λ-family gives a Toeplitz Λ-family of the product system [9, Lemma 9.2]. Lemma 9.3 of [9] shows that, if the Toeplitz-Cuntz-Krieger Λ-family satisfies ($*$), then the Toeplitz Λ-family satisfies the hypothesis of [9, Theorem 8.1].

Remark 2.4. In the actual hypothesis, we need to verify whether

$$
\prod_{1 \leq i \leq k}\left(T_{v}-\sum_{e \in G_{i}} T_{e} T_{e}^{*}\right) \neq 0
$$

for every $v \in \Lambda^{0}, 1 \leq i \leq k$, and finite set $G_{i} \subseteq v \Lambda^{e_{i}}$. However, since we only consider row-finite k-graphs, then for every $v \in \Lambda^{0}$ and $1 \leq i \leq k$, the set $v \Lambda^{e_{i}}$ is finite. Thus for a row finite k-graph, we can simplify Lemma 9.3 of [9] as Theorem 2.2.

On the other hand, Lewin and Sims in [6, Theorem 4.7] proved that the Cuntz-Krieger uniqueness theorem only holds for k-graphs which satisfy the following aperiodicity condition: for every pair of distinct paths $\lambda, \mu \in \Lambda$ with $s(\lambda)=s(\mu)$, there exists $\eta \in s(\lambda) \Lambda$ such that $\operatorname{MCE}(\lambda \eta, \mu \eta)=\emptyset[6$, Definition 3.1]. (For discussion about the equivalence of various aperiodicity definitions, see $[6,12,13,14]$.) Now we state the uniqueness theorem as follows:

Theorem 2.5 ([6, Theorem 4.7]). Suppose that Λ is an aperiodic row-finite k-graph and $\left\{S_{\lambda}: \lambda \in \Lambda\right\}$ is a Cuntz-Krieger Λ-family in a C^{*}-algebra B such that $S_{v} \neq 0$ for $v \in \Lambda^{0}$. Suppose that $\pi_{S}: C^{*}(\Lambda) \rightarrow B$ is the homomorphism such that $\pi_{S}\left(s_{\lambda}\right)=S_{\lambda}$ for $\lambda \in \Lambda$ for $\lambda \in \Lambda$. Then π_{S} is an injective homomorphism.

3. The k-graph $T \Lambda$

Suppose that Λ is a row-finite k-graph. In this section, we define a k-graph $T \Lambda$; later we show that $T C^{*}(\Lambda) \cong C^{*}(T \Lambda)$ (Theorem 4.1). Interestingly, our k-graph $T \Lambda$ is always aperiodic (Proposition 3.5).

Proposition 3.1. Let $\Lambda=(\Lambda, d, r, s)$ be a row-finite k-graph. Then define sets $T \Lambda^{0}$ and $T \Lambda$ as follows:

$$
\begin{gathered}
T \Lambda^{0}:=\left\{\alpha(v): v \in \Lambda^{0}\right\} \cup\left\{\beta(v): v \Lambda^{1} \neq \emptyset\right\} \\
T \Lambda:=\{\alpha(\lambda): \lambda \in \Lambda\} \cup\left\{\beta(\lambda): \lambda \in \Lambda, s(\lambda) \Lambda^{1} \neq \emptyset\right\} .
\end{gathered}
$$

Define functions $r, s: T \Lambda \backslash T \Lambda^{0} \rightarrow T \Lambda^{0}$ by

$$
\begin{aligned}
& r(\alpha(\lambda))=\alpha(r(\lambda)), s(\alpha(\lambda))=\alpha(s(\lambda)), \\
& r(\beta(\lambda))=\alpha(r(\lambda)), s(\beta(\lambda))=\beta(s(\lambda))
\end{aligned}
$$

(r, s are the identity on $T \Lambda^{0}$). We also define a partially defined product $(\tau, \omega) \mapsto \tau \omega$ from

$$
\{(\tau, \omega) \in T \Lambda \times T \Lambda: s(\tau)=r(\omega)\}
$$

to $T \Lambda$, where

$$
\begin{aligned}
(\alpha(\lambda), \alpha(\mu)) & \mapsto \alpha(\lambda \mu) \\
(\alpha(\lambda), \beta(\mu)) & \mapsto \beta(\lambda \mu)
\end{aligned}
$$

and a function $d: T \Lambda \rightarrow \mathbb{N}^{k}$ where

$$
d(\alpha(\lambda))=d(\beta(\lambda))=d(\lambda) .
$$

Then $(T \Lambda, d)$ is a k-graph.
Proof. First we claim that $T \Lambda$ is a countable category. Note that $T \Lambda$ is countable since Λ is countable.

Now we show that for all paths η, τ, ω in $T \Lambda$ where $s(\eta)=r(\tau)$ and $s(\tau)=r(\omega)$, we have $s(\tau \omega)=s(\omega), r(\tau \omega)=r(\tau)$, and $(\eta \tau) \omega=\eta(\tau \omega)$. If one of τ, ω is a vertex then we are done. So assume otherwise, and we have $\eta=\alpha(\lambda), \tau=\alpha(\mu)$, and ω is either $\alpha(\nu)$ or $\beta(\nu)$ for some paths λ, μ, ν in Λ. In both cases, we always have $s(\lambda)=r(\mu), s(\mu)=r(\nu)$, and $(\lambda \mu) \nu=\lambda(\mu \nu)$. If $\omega=\alpha(\nu)$, we have

$$
\begin{aligned}
s(\tau \omega) & =s(\alpha(\mu) \alpha(\nu))=s(\alpha(\mu \nu)) \\
& =\alpha(s(\mu \nu))=\alpha(s(\nu))=s(\alpha(\nu))=s(\omega), \\
r(\tau \omega) & =r(\alpha(\mu) \alpha(\nu))=r(\alpha(\mu \nu)) \\
& =\alpha(r(\mu \nu))=\alpha(r(\mu))=r(\alpha(\mu))=r(\tau),
\end{aligned}
$$

and

$$
\begin{aligned}
(\eta \tau) \omega & =(\alpha(\lambda) \alpha(\mu)) \alpha(\nu)=\alpha(\lambda \mu) \alpha(\nu)=\alpha((\lambda \mu) \nu) \\
& =\alpha(\lambda(\mu \nu))=\alpha(\lambda) \alpha(\mu \nu)=\alpha(\lambda)(\alpha(\mu) \alpha(\nu))=\eta(\tau \omega) .
\end{aligned}
$$

On the other hand, if $\omega=\beta(\nu)$, then

$$
\begin{aligned}
s(\tau \omega) & =s(\alpha(\mu) \beta(\nu))=s(\beta(\mu \nu)) \\
& =\beta(s(\mu \nu))=\beta(s(\nu))=s(\beta(\nu))=s(\omega), \\
r(\tau \omega) & =r(\alpha(\mu) \beta(\nu))=r(\beta(\mu \nu)) \\
& =\alpha(r(\mu \nu))=\alpha(r(\mu))=r(\alpha(\mu))=r(\tau),
\end{aligned}
$$

and

$$
\begin{aligned}
(\eta \tau) \omega & =(\alpha(\lambda) \alpha(\mu)) \beta(\nu)=\alpha(\lambda \mu) \beta(\nu)=\beta((\lambda \mu) \nu) \\
& =\beta(\lambda(\mu \nu))=\alpha(\lambda) \beta(\mu \nu)=\alpha(\lambda)(\alpha(\mu) \beta(\nu))=\eta(\tau \omega) .
\end{aligned}
$$

Thus, $T \Lambda$ is a countable category, as claimed.
Now we show that d is a functor. Note that both $T \Lambda$ and \mathbb{N}^{k} are categories. First take object $x \in T \Lambda^{0}$, then $d(x)=0$ is an object in category \mathbb{N}^{k}. Next take morphisms $\tau, \omega \in T \Lambda$ with $s(\tau)=r(\omega)$. Then by definition of d,

$$
d(\tau \omega)=d(\tau)+d(\omega) .
$$

Hence, d is a functor.
To show that d satisfies the factorisation property, take $\omega \in T \Lambda$ and $m, n \in \mathbb{N}^{k}$ such that $d(\omega)=m+n$. By definition, ω is either $\alpha(\lambda)$ or $\beta(\lambda)$ for some path λ in Λ. In both cases, there exist paths μ, ν in Λ such that $\lambda=\mu \nu, d(\mu)=m$, and $d(\nu)=n$. Then, we have $d(\alpha(\mu))=m$, $d(\alpha(\nu))=d(\beta(\nu))=n$, and ω is either equal to $\alpha(\mu) \alpha(\nu)$ or $\alpha(\mu) \beta(\nu)$. Therefore, the existence of factorisation is guaranteed.

Now we show that the factorisation is unique. First suppose

$$
\omega=\alpha(\mu) \alpha(\nu)=\alpha\left(\mu^{\prime}\right) \alpha\left(\nu^{\prime}\right)
$$

where $d(\alpha(\mu))=d\left(\alpha\left(\mu^{\prime}\right)\right)$ and $d(\alpha(\nu))=d\left(\alpha\left(\nu^{\prime}\right)\right)$. We consider paths $\lambda=\mu \nu$ and $\lambda^{\prime}=\mu^{\prime} \nu^{\prime}$. Since $\alpha(\lambda)=\omega=\alpha\left(\lambda^{\prime}\right)$, then $\lambda=\lambda^{\prime}$. This implies $\mu=\mu^{\prime}$ and $\nu=\nu^{\prime}$ based on the uniquness of factorisation in Λ. Then $\alpha(\mu)=\alpha\left(\mu^{\prime}\right)$ and $\alpha(\nu)=\alpha\left(\nu^{\prime}\right)$. For the case $\omega=\alpha(\mu) \beta(\nu)$, we get the same result by using the same argument. The conclusion follows.
Remark 3.2. For a directed graph E (that is, for $k=1$), the graph $T E$ was constructed by Muhly and Tomforde [7, Definition 3.6] (denoted E_{V}), and by Sims $[15$, Section 3] (denoted \widetilde{E}). Our notation follows that of Sims because we want to distinguish between paths in $T \Lambda$ (denoted $\alpha(\lambda)$ and $\beta(\lambda))$ and those in $\Lambda(\operatorname{denoted} \lambda)$.

Remark 3.3. Every vertex $\beta(v)$ satisfies $\beta(v) T \Lambda^{1}=\emptyset$. Then if Λ has a vertex v which receives edges e, f with $d(e) \neq d(f)$, then there is no edge $g \in \beta(s(e)) T \Lambda^{d(f)}\left(\right.$ or $g \in \alpha(s(e)) T \Lambda^{d(f)}$ if $\left.s(e) \Lambda=\emptyset\right)$, and hence $T \Lambda$ is not locally convex.

To give an illustration how we construct the k-graph $T \Lambda$ from a k-graph Λ, we first recall coloured graphs of [4]. By choosing k-different colours c_{1}, \ldots, c_{k}, we can view paths in $\Lambda^{e_{i}}$ as edges of colour c_{i}. For a k-graph Λ, we call its corresponding coloured graph the skeleton of Λ. For further discussion about k-graphs and their skeletons, see [4].
Example 3.4. Consider the 2 -graph Λ which has skeleton

where $e_{i} f_{j}=f_{i} e_{j}$ for all $i, j \in\{1,2\}$, the solid edges have degree $(1,0)$ and the dashed edges have degree $(0,1)$. Then the 2 -graph $T \Lambda$ has skeleton

where $\alpha\left(e_{i}\right) \alpha\left(f_{j}\right)=\alpha\left(f_{i}\right) \alpha\left(e_{j}\right)$ and $\alpha\left(e_{i}\right) \beta\left(f_{j}\right)=\alpha\left(f_{i}\right) \beta\left(e_{j}\right)$ for all $i, j \in$ $\{1,2\}$, the solid edges have degree $(1,0)$ and the dashed edges have degree $(0,1)$.

The following lemma tells about properties of the k-graph $T \Lambda$.
Proposition 3.5. Let Λ be a row-finite k-graph and $T \Lambda$ be the k-graph as in Proposition 3.1. Then,
(a) $T \Lambda$ is row-finite.
(b) $T \Lambda$ is aperiodic.

Proof. To show part (a), take $x \in T \Lambda^{0}$. If $x=\beta(v)$ for some $v \in \Lambda^{0}$, then $x T \Lambda^{1}=\emptyset$ by Remark 3.3. Suppose $x=\alpha(v)$ for some $v \in \Lambda^{0}$. If $v \Lambda^{1}=\emptyset$, then $x T \Lambda^{1}=\emptyset$. Otherwise, for $1 \leq i \leq k$ such that $v \Lambda^{e_{i}} \neq \emptyset$, we have

$$
\left|x T \Lambda^{e_{i}}\right| \leq 2\left|v \Lambda^{e_{i}}\right|,
$$

which is finite.
For part (b), take $\tau, \omega \in T \Lambda$ such that $\tau \neq \omega$ and $s(\tau)=s(\omega)$. We have to show there exists $\eta \in s(\tau) T \Lambda$ such that $\operatorname{MCE}(\tau \eta, \omega \eta)=\emptyset$. If $s(\tau)=\beta(v)$ for some $v \in \Lambda^{0}$, then choose $\eta=\beta(v)$ and $\operatorname{MCE}(\tau \eta, \omega \eta)=\emptyset$. So suppose $s(\tau)=\alpha(v)$ for some $v \in \Lambda^{0}$. If $v \Lambda^{1}=\emptyset$, then choose $\eta=\alpha(v)$ and $\operatorname{MCE}(\tau \eta, \omega \eta)=\emptyset$. Suppose $v \Lambda^{1} \neq \emptyset$. Take $e \in v \Lambda^{1}$. If $s(e) \Lambda^{1}=\emptyset$, then choose $\eta=\alpha(e)$ and $\operatorname{MCE}(\tau \eta, \omega \eta)=\emptyset$. Otherwise, we have $s(e) \Lambda^{1} \neq \emptyset$. Then choose $\eta=\beta(e)$ and $\operatorname{MCE}(\tau \eta, \omega \eta)=\emptyset$. Hence, $T \Lambda$ is aperiodic.

4. Realising $T C^{*}(\Lambda)$ as a Cuntz-Krieger algebra

Let Λ be a row-finite k-graph and $T \Lambda$ be the k-graph as in Proposition 3.1. In this section, we show that $T C^{*}(\Lambda)$ is isomorphic to $C^{*}(T \Lambda)$.

Theorem 4.1. Let Λ be a row-finite k-graph and $T \Lambda$ be the k-graph as in Proposition 3.1. Let $\left\{t_{\lambda}: \lambda \in \Lambda\right\}$ be the universal Toeplitz-Cuntz-Krieger
Λ-family and $\left\{s_{\omega}: \omega \in T \Lambda\right\}$ be the universal Cuntz-Krieger $T \Lambda$-family. For $\lambda \in \Lambda$, let

$$
T_{\lambda}:= \begin{cases}s_{\alpha(\lambda)}+s_{\beta(\lambda)} & \text { if } s(\lambda) \Lambda^{1} \neq \emptyset \\ s_{\alpha(\lambda)} & \text { if } s(\lambda) \Lambda^{1}=\emptyset\end{cases}
$$

Then there is an isomorphism $\phi_{T}: T C^{*}(\Lambda) \rightarrow C^{*}(T \Lambda)$ satisfying

$$
\phi_{T}\left(t_{\lambda}\right)=T_{\lambda}
$$

for every $\lambda \in \Lambda$.
Furthermore, $s_{\alpha(\lambda)}=\phi_{T}\left(t_{\lambda}\right)$ if $s(\lambda) \Lambda^{1}=\emptyset$. Meanwhile, if $s(\lambda) \Lambda^{1} \neq \emptyset$, we have

$$
\begin{gathered}
s_{\alpha(\lambda)}=\phi_{T}\left(t_{\lambda}-t_{\lambda} \prod_{e \in s(\lambda) \Lambda^{1}}\left(t_{v}-t_{e} t_{e}^{*}\right)\right), \\
s_{\beta(\lambda)}=\phi_{T}\left(t_{\lambda} \prod_{e \in s(\lambda) \Lambda^{1}}\left(t_{v}-t_{e} t_{e}^{*}\right)\right) .
\end{gathered}
$$

Proof that $\left\{T_{\lambda}: \lambda \in \Lambda\right\}$ is a Toeplitz-Cuntz-Krieger Λ-family. To avoid an argument by cases, for $\lambda \in \Lambda$ with $s(\lambda) \Lambda^{1}=\emptyset$, we write

$$
s_{\beta(\lambda)}:=0,
$$

so that

$$
T_{\lambda}=s_{\alpha(\lambda)}+s_{\beta(\lambda)} .
$$

First, we want to show $\left\{T_{\lambda}: \lambda \in \Lambda\right\}$ is a Toeplitz-Cuntz-Krieger Λ-family in $C^{*}(T \Lambda)$. For (TCK1), take $v \in \Lambda^{0}$. Since $\left\{s_{\alpha(v)}\right\} \cup\left\{s_{\beta(v)}\right\}$ are mutually orthogonal projections, then T_{v} is a projection. Meanwhile, for $v, w \in \Lambda^{0}$ with $v \neq w$,

$$
T_{v} T_{w}=s_{\alpha(v)} s_{\alpha(w)}+s_{\alpha(v)} s_{\beta(w)}+s_{\beta(v)} s_{\alpha(w)}+s_{\beta(v)} s_{\beta(w)}=0
$$

Next we show (TCK2). Take $\mu, \nu \in \Lambda$ where $s(\mu)=r(\nu)$. Then

$$
T_{\mu} T_{\nu}=s_{\alpha(\mu)} s_{\alpha(\nu)}+s_{\alpha(\mu)} s_{\beta(\nu)}+s_{\beta(\mu)} s_{\alpha(\nu)}+s_{\beta(\mu)} s_{\beta(\nu)}
$$

If ν is a vertex, the middle terms vanish and we get

$$
T_{\mu} T_{\nu}=s_{\alpha(\mu)}+s_{\beta(\mu)}=T_{\mu},
$$

as required. Otherwise, the last two terms vanish and we get

$$
T_{\mu} T_{\nu}=s_{\alpha(\mu)} s_{\alpha(\nu)}+s_{\alpha(\mu)} s_{\beta(\nu)}=s_{\alpha(\mu \nu)}+s_{\beta(\mu \nu)}=T_{\mu \nu}
$$

which is (TCK2).
To show (TCK3), take $\lambda, \mu \in \Lambda$. Then

$$
\begin{equation*}
T_{\lambda}^{*} T_{\mu}=s_{\alpha(\lambda)}^{*} s_{\alpha(\mu)}+s_{\alpha(\lambda)}^{*} s_{\beta(\mu)}+s_{\beta(\lambda)}^{*} s_{\alpha(\mu)}+s_{\beta(\lambda)}^{*} s_{\beta(\mu)} . \tag{4.1}
\end{equation*}
$$

We give separate arguments for $\Lambda^{\min }(\lambda, \mu)=\emptyset$ and $\Lambda^{\min }(\lambda, \mu) \neq \emptyset$. For case $\Lambda^{\min }(\lambda, \mu)=\emptyset$, we have

$$
\begin{aligned}
\emptyset & =T \Lambda^{\min }(\alpha(\lambda), \alpha(\mu))=T \Lambda^{\min }(\alpha(\lambda), \beta(\mu)) \\
& =T \Lambda^{\min }(\beta(\lambda), \alpha(\mu))=T \Lambda^{\min }(\beta(\lambda), \beta(\mu)) .
\end{aligned}
$$

Hence, $s_{\alpha(\lambda)}^{*} s_{\alpha(\mu)}=s_{\alpha(\lambda)}^{*} s_{\beta(\mu)}=s_{\beta(\lambda)}^{*} s_{\alpha(\mu)}=s_{\beta(\lambda)}^{*} s_{\beta(\mu)}=0$ and then Equation (4.1) becomes

$$
T_{\lambda}^{*} T_{\mu}=0=\sum_{\left(\lambda^{\prime}, \mu^{\prime}\right) \in \Lambda^{\min }(\lambda, \mu)} T_{\lambda^{\prime}} T_{\mu^{\prime}}^{*} .
$$

Now suppose $\Lambda^{\min }(\lambda, \mu) \neq \emptyset$. Take $(a, b) \in \Lambda^{\min }(\lambda, \mu)$. We consider several cases: whether a equals $s(\lambda)$ and/or b equals $s(\mu)$. First suppose $a=s(\lambda)$ and $b=s(\mu)$. So $\lambda=\lambda s(\lambda)=\mu s(\mu)=\mu$. Because $\alpha(\lambda)$ and $\beta(\lambda)$ are paths with the same degree and different sources, then $T \Lambda^{\min }(\alpha(\lambda), \beta(\lambda))=\emptyset$. Thus,

$$
s_{\beta(\lambda)}^{*} s_{\alpha(\lambda)}=0=s_{\alpha(\lambda)}^{*} s_{\beta(\lambda)}
$$

and Equation (4.1) becomes

$$
\begin{aligned}
T_{\lambda}^{*} T_{\lambda} & =s_{\alpha(\lambda)}^{*} s_{\alpha(\lambda)}+s_{\beta(\lambda)}^{*} s_{\beta(\lambda)} \\
& =s_{s(\alpha(\lambda))}+s_{s(\beta(\lambda))}=s_{\alpha(s(\lambda))}+s_{\beta(s(\lambda))} \\
& =T_{s(\lambda)}=T_{s(\lambda)} T_{s(\lambda)}^{*} \\
& =\sum_{\left(\lambda^{\prime}, \mu^{\prime}\right) \in \Lambda^{\min }(\lambda, \lambda)} T_{\lambda^{\prime}} T_{\mu^{\prime}}^{*}\left(\text { since } \Lambda^{\min }(\lambda, \lambda)=\{s(\lambda), s(\lambda)\}\right) .
\end{aligned}
$$

Next suppose $a=s(\lambda)$ and $b \neq s(\mu)$. Then $\lambda=\mu b$ and

$$
T \Lambda^{\min }(\alpha(\lambda), \beta(\mu))=\emptyset=T \Lambda^{\min }(\beta(\lambda), \beta(\mu))
$$

since $s(\beta(\mu)) T \Lambda^{1}=\emptyset$. Hence

$$
s_{\alpha(\lambda)}^{*} s_{\beta(\mu)}=0=s_{\beta(\lambda)}^{*} s_{\beta(\mu)}
$$

and Equation (4.1) becomes

$$
T_{\lambda}^{*} T_{\mu}=s_{\alpha(\lambda)}^{*} s_{\alpha(\mu)}+s_{\beta(\lambda)}^{*} s_{\alpha(\mu)} .
$$

Every $(\alpha(s(\lambda)), \eta) \in T \Lambda^{\min }(\alpha(\lambda), \alpha(\mu))$ has $\eta=\alpha\left(\mu^{\prime}\right)$ with

$$
\left(s(\lambda), \mu^{\prime}\right) \in \Lambda^{\min }(\lambda, \mu) .
$$

Similarly, every $(\beta(s(\lambda)), \eta) \in T \Lambda^{\min }(\beta(\lambda), \alpha(\mu))$ has $\eta=\beta\left(\mu^{\prime}\right)$ with $\left(s(\lambda), \mu^{\prime}\right) \in \Lambda^{\min }(\lambda, \mu)$. Thus, by using (TCK3) in $C^{*}(T \Lambda)$,

$$
\begin{aligned}
& T_{\lambda}^{*} T_{\mu} \\
& =s_{\alpha(\lambda)}^{*} s_{\alpha(\mu)}+s_{\beta(\lambda)}^{*} s_{\alpha(\mu)} \\
& =\sum_{(\alpha(s(\lambda)), \eta) \in T \Lambda^{\min }(\alpha(\lambda), \alpha(\mu))} s_{\alpha(s(\lambda))} s_{\eta}^{*}+\sum_{(\beta(s(\lambda)), \eta) \in T \Lambda^{\min (\beta(\lambda), \alpha(\mu))}} s_{\beta(s(\lambda))} s_{\eta}^{*} \\
& =\sum_{\left(s(\lambda), \mu^{\prime}\right) \in \Lambda^{\min }(\lambda, \mu)} s_{\beta(s(\lambda))} s_{\alpha\left(\mu^{\prime}\right)}^{*}+\sum_{\left(s(\lambda), \mu^{\prime}\right) \in \Lambda^{\min }(\lambda, \mu)} s_{\beta\left(\mu^{\prime}\right)}^{*} \\
& =\sum_{\left(s(\lambda), \mu^{\prime}\right) \in \Lambda^{\min }(\lambda, \mu)}\left(s_{\alpha(s(\lambda)))} s_{\alpha\left(\mu^{\prime}\right)}^{*}+s_{\beta(s(\lambda)))}^{*} s_{\beta\left(\mu^{\prime}\right)}^{*}\right) \\
& =\sum_{\left(s(\lambda), \mu^{\prime}\right) \in \Lambda^{\min }(\lambda, \mu)}\left(s_{\alpha(s(\lambda))}+s_{\beta(s(\lambda)))} s_{\left.s_{\alpha\left(\mu^{\prime}\right)}^{*}+s_{\beta\left(\mu^{\prime}\right)}^{*}\right)}^{=} \sum_{\left(s(\lambda), \mu^{\prime}\right) \in \Lambda^{\min }(\lambda, \mu)} T_{s(\lambda)} T_{\mu^{\prime}}^{*}=\sum_{\left(\lambda^{\prime}, \mu^{\prime}\right) \in \Lambda^{\min }(\lambda, \mu)} T_{\lambda^{\prime}} T_{\mu^{\prime}}^{*}\right.
\end{aligned}
$$

By taking adjoints, we deduce (TCK3) when $a \neq s(\lambda)$ and $b=s(\mu)$.
Now we consider the last case, which is $a \neq s(\lambda)$ and $b \neq s(\mu)$. This means we have neither $\lambda=\mu b$ nor $\mu=\lambda a$. Hence,
$T \Lambda^{\min }(\alpha(\lambda), \beta(\mu))=T \Lambda^{\min }(\beta(\lambda), \alpha(\mu))=T \Lambda^{\min }(\beta(\lambda), \beta(\mu))=\emptyset$
since $s(\beta(\lambda)) T \Lambda^{1}=\emptyset=s(\beta(\mu)) T \Lambda^{1}=\emptyset$. Hence,

$$
s_{\alpha(\lambda)}^{*} s_{\beta(\mu)}=s_{\beta(\lambda)}^{*} s_{\alpha(\mu)}=s_{\beta(\lambda)}^{*} s_{\beta(\mu)}=0
$$

On the other hand, we have

$$
\begin{aligned}
& T \Lambda^{\min }(\alpha(\lambda), \alpha(\mu)) \\
& \quad=\left\{\left(\alpha\left(\lambda^{\prime}\right), \alpha\left(\mu^{\prime}\right)\right),\left(\beta\left(\lambda^{\prime}\right), \beta\left(\mu^{\prime}\right)\right):\left(\lambda^{\prime}, \mu^{\prime}\right) \in \Lambda^{\min }(\lambda, \mu)\right\}
\end{aligned}
$$

Therefore, Equation (4.1) becomes

$$
\begin{aligned}
T_{\lambda}^{*} T_{\mu} & =s_{\alpha(\lambda)}^{*} s_{\alpha(\mu)}=\sum_{(\omega, \eta) \in T \Lambda^{\min }(\alpha(\lambda), \alpha(\mu))} s_{\omega} s_{\eta}^{*} \\
& =\sum_{\left(\lambda^{\prime}, \mu^{\prime}\right) \in \Lambda^{\min }(\lambda, \mu)}\left(s_{\alpha\left(\lambda^{\prime}\right)} s_{\alpha\left(\mu^{\prime}\right)}^{*}+s_{\beta\left(\lambda^{\prime}\right)} s_{\beta\left(\mu^{\prime}\right)}^{*}\right) \\
& =\sum_{\left(\lambda^{\prime}, \mu^{\prime}\right) \in \Lambda^{\min }(\lambda, \mu)}\left(s_{\alpha\left(\lambda^{\prime}\right)}+s_{\beta\left(\lambda^{\prime}\right)}\right)\left(s_{\alpha\left(\mu^{\prime}\right)}^{*}+s_{\beta\left(\mu^{\prime}\right)}^{*}\right) \\
& =\sum_{\left(\lambda^{\prime}, \mu^{\prime}\right) \in \Lambda^{\min }(\lambda, \mu)} T_{\lambda^{\prime}} T_{\mu^{\prime}}^{*}
\end{aligned}
$$

So for all cases, we have

$$
T_{\lambda}^{*} T_{\mu}=\sum_{\left(\lambda^{\prime}, \mu^{\prime}\right) \in \Lambda^{\min }(\lambda, \mu)} T_{\lambda^{\prime}} T_{\mu^{\prime}}^{*}
$$

and $\left\{T_{\lambda}: \lambda \in \Lambda\right\}$ satisfies (TCK3).
Proof that ϕ_{T} is injective. Now the universal property of $T C^{*}(\Lambda)$ gives a homomorphism $\phi_{T}: T C^{*}(\Lambda) \rightarrow C^{*}(T \Lambda)$ satisfying $\phi_{T}\left(t_{\lambda}\right)=T_{\lambda}$ for every $\lambda \in \Lambda$.

We show the injectivity of ϕ_{T} by using Theorem 2.2. Take $v \in \Lambda^{0}$. We show

$$
\prod_{e \in v \Lambda^{1}}\left(T_{v}-T_{e} T_{e}^{*}\right) \neq 0
$$

First suppose $v \Lambda^{1} \neq \emptyset$. Take $1 \leq i \leq k$ such that $v \Lambda^{e_{i}} \neq \emptyset$. We claim

$$
\prod_{e \in v \Lambda^{e_{i}}}\left(T_{v}-T_{e} T_{e}^{*}\right) \geq s_{\beta(v)}
$$

Since $v \Lambda^{e_{i}} \neq \emptyset$, then $\alpha(v) T \Lambda^{e_{i}} \neq \emptyset$ and by [11, Lemma 2.7 (iii)],

$$
\begin{aligned}
s_{\alpha(v)} & \geq \sum_{\substack{ \\
g(v) T \Lambda^{e} i}} s_{g} s_{g}^{*} \\
& =\sum_{e \in v \Lambda^{e_{i}}} s_{\alpha(e)} s_{\alpha(e)}^{*}+\sum_{\substack{e \in v \Lambda^{e_{i}} \\
s(e) \Lambda^{1} \neq \emptyset}} s_{\beta(e)} s_{\beta(e)}^{*} \\
& =\sum_{\substack{e \in v \Lambda^{e_{i}} \\
s(e) \Lambda^{1} \neq \emptyset}}\left(s_{\alpha(e)} s_{\alpha(e)}^{*}+s_{\beta(e)} s_{\beta(e)}^{*}\right)+\sum_{\substack{e \in v \Lambda^{e_{i}} \\
s(e) \Lambda^{1}=\emptyset}} s_{\alpha(e)} s_{\alpha(e)}^{*} \\
& =\sum_{\substack{e \in v \Lambda^{e_{i}} \\
s(e) \Lambda^{1} \neq \emptyset}} T_{e} T_{e}^{*}+\sum_{\substack{e \in v \Lambda^{e_{i}} \\
s(e) \Lambda^{1}=\emptyset}} T_{e} T_{e}^{*} \\
& =\sum_{e \in v \Lambda^{e_{i}}} T_{e} T_{e}^{*} .
\end{aligned}
$$

Meanwhile, since every $e \in v \Lambda^{e_{i}}$ has the same degree,

$$
\begin{aligned}
\prod_{e \in v \Lambda^{e}}\left(T_{v}-T_{e} T_{e}^{*}\right) & =T_{v}-\sum_{e \in v \Lambda^{e_{i}}} T_{e} T_{e}^{*} \\
& =\left(s_{\alpha(v)}+s_{\beta(v)}\right)-\sum_{e \in v \Lambda^{e} i} T_{e} T_{e}^{*} \\
& =s_{\beta(v)}+\left(s_{\alpha(v)}-\sum_{e \in v \Lambda^{e} i} T_{e} T_{e}^{*}\right) \\
& \geq s_{\beta(v)},
\end{aligned}
$$

as claimed. This claim implies

$$
\prod_{e \in v \Lambda^{1}}\left(T_{v}-T_{e} T_{e}^{*}\right) \geq \prod_{\left\{i: v \Lambda^{e} i \neq \emptyset\right\}} s_{\beta(v)}=s_{\beta(v)} \neq 0
$$

since $v \Lambda^{1} \neq \emptyset$, as required.

Finally, for $v \in \Lambda^{0}$ with $v \Lambda^{1}=\emptyset$, we have

$$
T_{v}=s_{\alpha(v)} \neq 0 .
$$

Hence, by Theorem 2.2, ϕ_{T} is injective.
Proof that ϕ_{T} is surjective. Now we show the surjectivity of ϕ_{T}. Since $C^{*}(T \Lambda)$ is generated by $\left\{s_{\tau}: \tau \in T \Lambda\right\}$, then it suffices to show that for every $\tau \in T \Lambda, s_{\tau} \in \operatorname{im}\left(\phi_{T}\right)$. Recall that for every $\tau \in T \Lambda, s_{\tau}$ is either $s_{\alpha(\lambda)}$ or $s_{\beta(\lambda)}$ for some $\lambda \in \Lambda$.

Take $v \in \Lambda^{0}$. First we show $s_{\alpha(v)}$ and $s_{\beta(v)}$ (if it exists) belong to im $\left(\phi_{T}\right)$. If $v \Lambda^{1}=\emptyset$, then

$$
s_{\alpha(v)}=T_{v} \in \operatorname{im}\left(\phi_{T}\right) .
$$

Next suppose $v \Lambda^{1} \neq \emptyset$. First we show that $s_{\beta(v)}=\prod_{e \in v \Lambda^{1}}\left(T_{v}-T_{e} T_{e}^{*}\right)$. Note that for every $f \in \alpha(v) T \Lambda^{1}$, the projection $s_{\alpha(v)}-s_{f} s_{f}^{*} \leq s_{\alpha(v)}$ is othogonal to $s_{\beta(v)}$. This implies

$$
\begin{aligned}
\prod_{f \in \alpha(v) T \Lambda^{1}}\left(\left(s_{\alpha(v)}+s_{\beta(v)}\right)-s_{f} s_{f}^{*}\right) & =s_{\beta(v)}+\prod_{f \in \alpha(v) T \Lambda^{1}}\left(s_{\alpha(v)}-s_{f} s_{f}^{*}\right) \\
& =s_{\beta(v)}
\end{aligned}
$$

since $v \Lambda^{1}$ is an exhaustive set. Hence,

$$
\begin{aligned}
s_{\beta(v)} & =\prod_{\substack{ \\
f \in \alpha(v) T \Lambda^{1}}}\left(\left(s_{\alpha(v)}+s_{\beta(v)}\right)-s_{f} s_{f}^{*}\right) \\
& =\prod_{e \in v \Lambda^{1}}\left(T_{v}-s_{\alpha(e)} s_{\alpha(e)}^{*}\right) \prod_{\substack{e \in v \Lambda^{1} \\
s(e) \Lambda^{1} \neq \emptyset}}\left(T_{v}-s_{\beta(e)} s_{\beta(e)}^{*}\right) \\
& =\prod_{\substack{e \in v \Lambda^{1} \\
s(e) \Lambda^{1}=\emptyset}}\left(T_{v}-s_{\alpha(e)} s_{\alpha(e)}^{*}\right) \prod_{\substack{e \in v \Lambda^{1} \\
s(e) \Lambda^{1} \neq \emptyset}}\left(T_{v}-s_{\alpha(e)} s_{\alpha(e)}^{*}\right)\left(T_{v}-s_{\beta(e)} s_{\beta(e)}^{*}\right) \\
& =\prod_{\substack{e \in v \Lambda^{1} \\
s(e) \Lambda^{1}=\emptyset}}\left(T_{v}-s_{\alpha(e)} s_{\alpha(e)}^{*}\right) \prod_{\substack{e \in v \Lambda^{1} \\
s(e) \Lambda^{1} \neq \emptyset}}\left(T_{v}-\left(s_{\alpha(e)} s_{\alpha(e)}^{*}+s_{\beta(e)} s_{\beta(e)}^{*}\right)\right) \\
& =\prod_{\substack{e \in v \Lambda^{1} \\
s(e) \Lambda^{1}=\emptyset}}\left(T_{v}-T_{e} T_{e}^{*}\right) \prod_{\substack{e \in v \Lambda^{1} \\
s(e) \Lambda^{1} \neq \emptyset}}\left(T_{v}-T_{e} T_{e}^{*}\right) \\
& =\prod_{e \in v \Lambda^{1}}\left(T_{v}-T_{e} T_{e}^{*}\right),
\end{aligned}
$$

as required, and $s_{\beta(v)}$ belongs to im $\left(\phi_{T}\right)$. Furthermore,

$$
s_{\alpha(v)}=T_{v}-s_{\beta(v)}=T_{v}-\prod_{e \in v \Lambda^{1}}\left(T_{v}-T_{e} T_{e}^{*}\right) \in \operatorname{im}\left(\phi_{T}\right),
$$

as required.

Now take $\lambda \in \Lambda$. We have to show $s_{\alpha(\lambda)}$ and $s_{\beta(\lambda)}$ (if it exists) belong to $\operatorname{im}\left(\phi_{T}\right)$. If $s(\lambda) \Lambda^{1}=\emptyset$, then

$$
s_{\alpha(\lambda)}=s_{\alpha(\lambda)} s_{\alpha(s(\lambda))}=T_{\lambda} T_{s(\lambda)}=T_{\lambda} \in \operatorname{im}\left(\phi_{T}\right) .
$$

Next suppose $s(\lambda) \Lambda^{1} \neq \emptyset$. Then $s_{\beta(\lambda)} s_{\alpha(s(\lambda))}=0$ and $s_{\alpha(\lambda)} s_{\beta(s(\lambda))}=0$. Hence,

$$
\begin{aligned}
s_{\alpha(\lambda)} & =s_{\alpha(\lambda)} s_{\alpha(s(\lambda))}=\left(s_{\alpha(\lambda)}+s_{\beta(\lambda)}\right) s_{\alpha(s(\lambda))} \\
& =T_{\lambda}\left(T_{s(\lambda)}-\prod_{e \in s(\lambda) \Lambda^{1}}\left(T_{s(\lambda)}-T_{e} T_{e}^{*}\right)\right) \\
& =T_{\lambda}-T_{\lambda} \prod_{e \in s(\lambda) \Lambda^{1}}\left(T_{s(\lambda)}-T_{e} T_{e}^{*}\right) \in \operatorname{im}\left(\phi_{T}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
s_{\beta(\lambda)} & =s_{\beta(\lambda)} s_{\beta(s(\lambda))}=\left(s_{\alpha(\lambda)}+s_{\beta(\lambda)}\right) s_{\beta(s(\lambda))} \\
& =T_{\lambda} \prod_{e \in s(\lambda) \Lambda^{1}}\left(T_{s(\lambda)}-T_{e} T_{e}^{*}\right) \in \operatorname{im}\left(\phi_{T}\right) .
\end{aligned}
$$

Therefore, ϕ_{T} is surjective and an isomorphism.
Corollary 4.2. Let Λ be a row-finite k-graph and $T \Lambda$ be the k-graph as in Proposition 3.1. Let $\left\{t_{\lambda}: \lambda \in \Lambda\right\}$ be the universal Toeplitz-Cuntz-Krieger Λ-family and $\left\{s_{\omega}: \omega \in T \Lambda\right\}$ be the universal Cuntz-Krieger T Λ-family. For $\tau \in T \Lambda$, define

$$
S_{\tau}:= \begin{cases}t_{\lambda} & \text { if } \tau=\alpha(\lambda) \text { with } s(\lambda) \Lambda^{1}=\emptyset \\ t_{\lambda}-t_{\lambda} \prod_{e \in s(\lambda) \Lambda^{1}}\left(t_{v}-t_{e} t_{e}^{*}\right) & \text { if } \tau=\alpha(\lambda) \text { with } s(\lambda) \Lambda^{1} \neq \emptyset \\ t_{\lambda} \prod_{e \in s(\lambda) \Lambda^{1}}\left(t_{v}-t_{e} t_{e}^{*}\right) & \text { if } \tau=\beta(\lambda) \text { with } s(\lambda) \Lambda^{1} \neq \emptyset\end{cases}
$$

Suppose that $\phi_{T}: T C^{*}(\Lambda) \rightarrow C^{*}(T \Lambda)$ is the isomorphism as in Theorem 4.1 and $\pi_{S}: C^{*}(T \Lambda) \rightarrow T C^{*}(\Lambda)$ is the homomorphism such that $\pi_{S}\left(s_{\tau}\right)=S_{\tau}$ for $\tau \in T \Lambda$. Then $\phi_{T}^{-1}=\pi_{S}$.
Proof. Take $\lambda \in \Lambda$. By Theorem 4.1, we get $\phi_{T}^{-1}\left(s_{\alpha(\lambda)}\right)=t_{\lambda}$ if $s(\lambda) \Lambda^{1}=\emptyset$. Meanwhile, if $s(\lambda) \Lambda^{1} \neq \emptyset$, by Theorem 4.1, we have

$$
\begin{aligned}
& \phi_{T}^{-1}\left(s_{\alpha(\lambda)}\right)=t_{\lambda}-t_{\lambda} \prod_{e \in v \Lambda^{1}}\left(t_{v}-t_{e} t_{e}^{*}\right), \\
& \phi_{T}^{-1}\left(s_{\beta(\lambda)}\right)=t_{\lambda} \prod_{e \in v \Lambda^{1}}\left(t_{v}-t_{e} t_{e}^{*}\right) .
\end{aligned}
$$

Hence, $\phi_{T}^{-1}\left(s_{\tau}\right)=S_{\tau}$ for $\tau \in T \Lambda$. This implies that $\left\{S_{\tau}: \tau \in T \Lambda\right\}$ is a Cuntz-Krieger $T \Lambda$-family, and then $\phi_{T}^{-1}=\pi_{S}$.

Remark 4.3. Proposition 3.5 says that $T \Lambda$ is always aperiodic, and hence the Cuntz-Krieger uniqueness theorem always applies to $T \Lambda$. This helps explain why no hypothesis on Λ is required in the uniqueness theorem of [9, Theorem 8.1]. Indeed, we could have deduced that theorem by applying the Cuntz-Krieger uniqueness theorem to $T \Lambda$. With our current proof of Theorem 4.1, this argument would be circular, since we used [9, Theorem 8.1] in the proof of Theorem 4.1. However, we could prove Corollary 4.2 directly by showing that $\left\{S_{\tau}: \tau \in T \Lambda\right\}$ is a Cuntz-Krieger $T \Lambda$-family in $T C^{*}(\Lambda)$, hence gives a homomorphism $\pi_{S}: C^{*}(T \Lambda) \rightarrow T C^{*}(\Lambda)$, and using the Cuntz-Krieger uniqueness theorem to see that π_{S} is injective. Then we could deduce [9, Theorem 8.1] from Corollary 4.2, and this would be a legitimate proof. We worked out the details of this approach, but it seemed to require an extensive cases argument, and hence became substantially more complicated.

References

[1] Farthing, Cynthia; Muhly, Paul S.; Yeend, Trent. Higher-rank graph C^{*} algebras: an inverse semigroup and groupoid approach. Semigroup Forum 71 (2005), no. 2, 159-187. MR2184052 (2006h:46052), Zbl 1099.46036, arXiv:math/0409505, doi: 10.1007/s00233-005-0512-2.
[2] Fowler, Neal J.; Laca, Marcelo; Raeburn, Iain. The C^{*}-algebras of infinite graphs. Proc. Amer. Math. Soc. 128 (2000), no. 8, 2319-2327. MR1670363 (2000k:46079), Zbl 0956.46035, doi: 10.1090/S0002-9939-99-05378-2.
[3] Fowler, Neal J.; Raeburn, Iain. The Toeplitz algebra of a Hilbert bimodule. Indiana Univ. Math. J. 48 (1999), no. 1, 155-181. MR1722197 (2001b:46093), Zbl 0938.47052, arXiv:math/9806093, doi: 10.1512/iumj.1999.48.1639.
[4] Hazlewood, Robert; Raeburn, Iain; Sims, Aidan; Webster, Samuel B. G. Remarks on some fundamental results about higher-rank graphs and their C^{*}-algebras. Proc. Edinb. Math. Soc. 56 (2013), no. 2, 575-597. MR3056660, Zbl 1264.05064, arXiv:1110.2269, doi: 10.1017/S0013091512000338.
[5] Kumjian, Alex; Pask, David. Higher rank graph C^{*}-algebras. New York J. Math. 6 (2000), 1-20. MR1745529 (2001b:46102), Zbl 0946.46044, arXiv:math/0007029.
[6] Lewin, Peter; Sims, Aidan. Aperiodicity and cofinality for finitely aligned higher-rank graphs. Math. Proc. Cambridge Philos. Soc. 149 (2010), no. 2, 333-350. MR2670219 (2012b:46106), Zbl 1213.46047, arXiv:0905.0735, doi: 10.1017/S0305004110000034.
[7] Muhly, Paul S.; Tomforde, Mark. Adding tails to C^{*}-correspondences. Doc. Math. 9 (2004), 79-106. MR2054981 (2005a:46117), Zbl 1049.46045, arXiv:math/0212277.
[8] Raeburn, Iain. Graph Algebras. CBMS Regional Conference Series in Math., 103. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2005. vi+113 pp. ISBN: 0-8218-3660-9. MR2135030 (2005k:46141), Zbl 1079.46002.
[9] Raeburn, Iain; Sims, Aidan. Product systems of graphs and the Toeplitz algebras of higher-rank graphs. J. Operator Theory 53 (2005), no. 2, 399-429. MR2153156 (2006d:46073), Zbl 1093.46032, arXiv:math/0305371.
[10] Raeburn, Iain; Sims, Aidan; Yeend, Trent. Higher-rank graphs and their C^{*} algebras. Proc. Edinb. Math. Soc. 46 (2003), no. 1, 99-115. MR1961175 (2004f:46068), Zbl 1031.46061, arXiv:math/0107222, doi: 10.1017/S0013091501000645.
[11] Raeburn, Iain; Sims, Aidan; Yeend, Trent. The C^{*}-algebras of finitely aligned higher-rank graphs. J. Funct. Anal. 213 (2004), no. 1, 206-240. MR2069786 (2005e:46103), Zbl 1063.46041, arXiv:math/0305370, doi: 10.1016/j.jfa.2003.10.014.
[12] Robertson, David I.; Sims, Aidan. Simplicity of C^{*}-algebras associated to higherrank graphs. Bull. London Math. Soc. 39 (2007), no. 2, 337-344. MR2323468 (2008g:46099), Zbl 1125.46045, arXiv:math/0602120, doi: 10.1112/blms/bdm006.
[13] Robertson, David; Sims, Aidan. Simplicity of C^{*}-algebras associated to row-finite locally convex higher-rank graphs. Israel J. Math. 172 (2009), 171-192. MR2534246 (2010f:46104), Zbl 1189.46047, arXiv:0708.0245, doi: 10.1007/s11856-009-0070-5.
[14] Shotwell, Jacob. Simplicity of finitely-aligned k-graph C^{*}-algebras. J. Operator Theory 67 (2012), no. 2, 335-347. MR2928319, Zbl 1265.46086, arXiv:0810.4567.
[15] Sims, Aidan. The co-universal C^{*}-algebra of a row-finite graph. New York J. Math. 16 (2010), 507-524. MR2740588 (2011j:46093), Zbl 1234.46044, arXiv:0809.2333.
[16] Webster, Samuel B. G. The path space of a higher-rank graph. Studia Math. 204 (2011), no. 2, 155-185. MR2805537 (2012e:46119), Zbl 1235.46049, arXiv:1102.1229, doi: 10.4064/sm204-2-4.
(Yosafat E. P. Pangalela) Department of Mathematics and Statistics, University of Otago, PO Box 56, Dunedin 9054, New Zealand
yosafat.pangalela@maths.otago.ac.nz
This paper is available via http://nyjm.albany.edu/j/2016/22-13.html.

[^0]: Received April 29, 2015.
 2010 Mathematics Subject Classification. Primary 46L05.
 Key words and phrases. Cuntz-Krieger algebra, Toeplitz algebra, higher-rank graph, the Cuntz-Krieger uniqueness theorem, the uniqueness theorem for Toeplitz algebras.

 This research is part of the author's Ph.D. thesis, supervised by Professor Iain Raeburn and Dr. Lisa Orloff Clark.

