
New York Journal of Mathematics
New York J. Math. 21 (2015) 181–190.

On the smallest Salem series in Fq((X
−1))

M. Hbaib, F. Mahjoub and F. Taktak

Abstract. The paper arose from the fact that the smallest element of
the set of Salem numbers is not known. Indeed, it is not even known
whether this set has a smallest element.

The aim of this paper is to prove that the minimal polynomial of the
smallest Salem series of degree n in the field of formal power series over
a finite field is given by P (Y ) = Y n −XY n−1 − Y + X − 1, where we
suppose that 1 is the least element of the finite field F∗

q (as a finite total

ordered set). Consequently, we are led to deduce that Fq((X−1)) has no
smallest Salem series. Moreover, we will prove that the root of P (Y ) of
degree n = 2s + 1 in F2m((X−1)) is well approximable.
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1. Introduction

A Pisot number (resp. Salem number) is a real algebraic integer α > 1
all of whose other conjugates have modulus strictly less than 1 (resp. a real
algebraic integer α > 1, whose other conjugates have modulus at most 1,
with at least one having modulus exactly 1).

The study of Pisot and Salem numbers unexpectedly or exceptionally has
appeared in a number of quite different branches of mathematics. Much is
known about Pisot numbers, and there are many known ways to construct
them. However, little is known about Salem numbers and their difficult
construction. There are still many open questions about Salem numbers,
including determining the infimum of the set.

Pisot numbers have a long history, being studied as early as 1912 by
Thue [13]. Salem first became interested in Pisot numbers because of their
property that they can be used to generate almost integers. Indeed, higher
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powers of a Pisot number give better and better integer approximations.
This property stems from the fact that for each n, the sum of nth powers
of an algebraic integer x and its conjugates is exactly an integer, following
from an application of Newton’s identities. When x is a Pisot number, the
nth powers of the other conjugates tend to 0 as n tends to infinity. Since the
sum is an integer, the distance from xn to the nearest integer tends to 0 at
an exponential rate. For example, the root ϕ of P (X) = X2−X − 1, called

the golden ratio (ϕ = 1+
√
5

2 ) is a Pisot number, and ϕ21 = 24476.0000409
[10].

The set of all Pisot numbers is denoted S. Since Pisot numbers are
algebraic, the set S is countable. Salem proved that this set is closed [10].
The closedness of S implies that it has a minimal element. Siegel [11] proved
that this minimal element is the positive root of the equation:

X3 −X − 1 = 0

called the plastic constant, which is approximately

1.324717957244746025960908854 . . .

[12] and is isolated in S.
The set of Salem numbers is denoted T . It is intimately related to S. It

has been proved in an older result of Salem [9] that S is contained in the set
T ′ of the limit points of T .

The methods used in the study of Pisot numbers cannot be applied to
Salem numbers, mainly, due to the fact that Salem numbers are reciprocal
algebraic integers. The smallest known Salem number is x0 = 1.1762 . . . of
degree 10 known as Lehmer’s number, its minimal polynomial is the Lehmer
polynomial:

P (X) = X10 +X9 −X7 −X6 −X5 −X4 −X3 +X + 1.

The smallest element of T is unknown [3]. In fact, it is not even known if
the set T has a smallest element or is bounded from below by a number
1 + δ, where δ is a positive constant. Some algebraic relations between the
conjugates of Pisot and Salem numbers have been studied in ([5],[8]).

In the field of formal power series over a finite field Fq, the study of Pisot
series is easier than in the real case, thanks to the theorem of Bateman
and Duquette [1]. In [4], Chandoul, Jellali and Mkaouar have obtained the
smallest Pisot series (SPS) of algebraic degree n in Fq((X−1)) denoted wn.
They have proved that its minimal polynomial is given by

P (Y ) = Y n − αXY n−1 − αn,
where α is the least element of the set Fq \{0}. Then, they have shown that
the sequence of SPS of degree n decreases and converges to αX. Finally,
they have obtained the continued fraction expansion of wn.

In the present paper, we plan to prove that there is no smallest Salem
element in the field of Laurent series in characteristic p. We also give the
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smallest Salem element of algebraic degree n and we prove that for n = 2s+1
the smallest Salem element is well approximable in F2m((X−1)).

The paper is organized as follows. In Section 2, we introduce the field
Fq((X−1)) and we present some important results which characterize Pisot
and Salem elements. In Section 3, we characterize for each n ≥ 3 the
smallest Salem element of algebraic degree n, which leads us to deduce that
Fq((X−1)) does not have a smallest Salem element. In Section 4 we prove
that for n = 2s + 1 the smallest Salem element is well approximable in
F2m((X−1)).

2. Field of power series

For p a prime and q a power of p, let Fq be a field with q elements of
characteristic p, Fq[X] the set of polynomials with coefficients in Fq and
Fq(X) its field of fractions. The set Fq((X−1)) of Laurent series over Fq is
defined as follows

Fq((X−1)) =
{
f =

∑
i≥n0

fiX
−i : n0 ∈ Z and fi ∈ Fq

}
.

Let f =
∑
fiX

−i be any formal power series, we denote its polynomial part
by [f ] and by {f} its fractional part. We remark that f = [f ] + {f}. If
f 6= 0, then the polynomial degree of f is γ(f) = sup{−i : fi 6= 0}, the
degree of the highest-degree nonzero monomial in f , and γ(0) = −∞. Note
that if [f ] 6= 0 then γ(f) is the degree of the polynomial [f ]. Thus, we define

|f | = qγ(f). Note that |.| is a nonarchimedean absolute value over Fq((X−1)).
It is clear that, for all P ∈ Fq[X], |P | = qdegP and, for all Q ∈ Fq[X], such

that Q 6= 0, |PQ | = qdegP−degQ. We know that Fq((X−1)) is complete and

locally compact with respect to the metric defined by this absolute value. We
denote by Fq((X−1)) an algebraic closure of Fq((X−1)). We note that the

absolute value has a unique extension to Fq((X−1)). Abusing the notation
a little, we will use the same symbol |.| for the two absolute values.

Following [4], we introduce a lexicographic order ≺ on Fq((X−1)). Let Fq
be a finite field equipped with a total order ≺, with 0 ≺ 1 and 1 ≺ a for
all a ∈ Fq\{0, 1}. Then the lexicographic order on Fq((X−1)) is defined as
follows. Let

f =
+∞∑
i=n

fiX
−i and g =

+∞∑
i=m

giX
−i.

If deg f < deg g then f ≺ g and if we have deg f = deg g then f ≺ g if
fn ≺ gm or fn = gm, . . . , fn+j = gm+j , fn+j+1 ≺ gm+j+1 for some j ∈ N∗.

Proposition 2.1 ([14]). Let K be a complete field with respect to a non-
archimedean absolute value |.| and L/K (K ⊂ L) be an algebraic extension of

degree m. Then |.| has a unique extension to L defined by |a| = m

√
|NL/K(a)|

and L is complete with respect to this extension.



184 M. HBAIB, F. MAHJOUB AND F. TAKTAK

We apply Proposition 2.1 to algebraic extensions of Fq((X−1)). Since
Fq[X] ⊂ Fq((X−1)), every algebraic element over Fq[X] can be evaluated.
However, since Fq((X−1)) is not algebraically closed, such an element is not
necessarily expressed as a power series. For a full characterization of the
algebraic closure of Fq[X], we refer to Kedlaya [7].

Definition 2.1. Let

(†) f(X,Y ) = A0 +A1Y + · · ·+AmY
m ∈ Fq[X,Y ], Ai ∈ Fq[X],

be irreducible of Fq[X,Y ]. To each monomial AiY
i 6= 0, we assign the point

(i,deg(Ai)) ∈ Z2. For Ai = 0, we ignore the corresponding point (i,−∞).
If we consider the upper convex hull of the set of points

{(0,deg(A0)), . . . , (m,deg(Am))},
we obtain the so-called upper Newton polygon of f(X,Y ) with respect to Y .
The polygon is a sequence of line segments E1, E2, . . . , Et with monotone
decreasing slopes.

Proposition 2.2 ([14]). Let f(X,Y ) ∈ Fq[X,Y ] ⊂ Fq((Y −1))[X] be of the
form (†). Since Fq((Y −1)) is complete with respect to |.|, there is a unique
extension of |.| to the splitting field L of f(X,Y ) over K = Fq((Y −1)).

Let 1 ≤ r < r + s ≤ m. We define E to be the line joining the points
(r, deg(Ar)) and (r + s, deg(Ar+s)), which has slope

k =
deg(Ar+s)− deg(Ar)

s
.

Then f(X,Y ) as a polynomial in Y has s roots α1,. . . , αs with |α1| = · · · =
|αs| = q−k.

Corollary 2.3. There are no roots in Fq((X−1)) with absolute value > 1 of
the polynomial

H(Y ) = AnY
n +An−1Y

n−1 + · · ·+A0,

where |An| = sup
0≤i≤n

|Ai|.

Corollary 2.4. Let P (Y ) = AnY
n+An−1Y

n−1 + · · ·+A0 with Ai ∈ Fq[X],
An = 1, A0 6= 0 and |An−1| > |Ai|, for all i 6= n− 1. Then, P has only one

root f ∈ Fq((X−1)) satisfying |f | > 1. Moreover, [f ] = −[An−1

An
].

Proof. The first part follow easily from Proposition 2.2. For the second

part, we use the fact that (−An−1

An
) is the sum of the roots of the polynomial

P .
A Salem element f ∈ Fq((X−1)) is an algebraic integer over Fq[X] such

that |f | > 1, whose remaining conjugates in Fq(X) have an absolute value
no greater than 1, and at least one has absolute value exactly 1. In 1962,
Bateman and Duquette [1] introduced and characterized Pisot and Salem
elements in the field of Laurent series.
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Theorem 2.2. An element f in Fq((X−1)) is a Pisot element if and only if
its minimal polynomial can be written as P (Y ) = Y s+As−1Y

s−1 + · · ·+A0,
Ai ∈ Fq[X] for i = 0, . . . , s− 1 with |As−1| > |Ai| for i = 0, . . . , s− 2.

Theorem 2.3. An element f in Fq((X−1)) is a Salem element if and only if
its minimal polynomial can be written as P (Y ) = Y s+As−1Y

s−1 + · · ·+A0,
Ai ∈ Fq[X] for i = 0, . . . , s− 1 with |As−1| = supi 6=s−1 |Ai|.

3. Smallest Salem element in Fq((X
−1))

In the following results and without loss of generality, we suppose that 1 is
the least element of F∗q and by the algebraic degree of an algebraic element

of Fq((X−1)) we mean the degree of its minimal polynomial over Fq(X).
Our main result is the following theorem.

Theorem 3.1. Let n ≥ 3. Then the equation

(1) Y n −XY n−1 − Y +X − 1 = 0

has a unique root wn in Fq((X−1)) of degree ≥ 1. Moreover, wn is the
smallest Salem series of algebraic degree n in Fq((X−1)).

The following lemma is a direct consequence of Lemma 3 in [6].

Lemma 3.2. Let f and g ∈ Fq((X−1)) be two Salem elements of algebraic
degree n and d such that f 6= g. Then

|f − g| ≥ 1

H(f)d|g|n−2

with H(f) the height of f defined by H(f) = sup1≤i≤n |Ai|, where

P (Y ) = AnY
n +An−1Y

n−1 + · · ·+A0 ∈ Fq[X,Y ]

is the minimal polynomial of f .

Lemma 3.3. Let w be a Salem series in Fq((X−1)) of algebraic degree n ≥ 3
such that [w] = X. Then we have

w −X � 1

Xn−1 and w −X − 1

Xn−1 �
1

X2(n−1) .

Proof. The minimal polynomial of w is necessarily of the form

P0(Y ) = Y n + (α−X)Y n−1 +An−2Y
n−2 + · · ·+A1Y +A0 ∈ Fq[X,Y ]

with α ∈ Fq, An = 1, An−1 = α−X, A0 6= 0 and

(?) sup(|An−2|, |An−3|, . . . , |A0|) = |X| > 1.
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Since [w] = X so w = X + 1
g with |g| > 1. By replacing w by (X + 1

g ), we
get(

X +
1

g

)n
+ (α−X)

(
X +

1

g

)n−1
+An−2

(
X +

1

g

)n−2
+ · · ·+A1

(
X +

1

g

)
+A0 = 0.

Thus, it follows directly from this expression that we can prove that g sat-
isfies the following equation:

(∗) gnBn + gn−1Bn−1 + · · ·+ g2B2 + gB1 +B0 = 0,

where

Bk =
n∑

j=n−k

(
j

n− k

)
AjX

j+k−n =
k∑
j=0

(
j + n− k
n− k

)
Aj+n−kX

j .

If α 6= 0, then both Bn and Bn−1 have degree n−1. Since degBk ≤ k+ 1
from (?) we have |Bn| = sup

0≤i≤n−1
|Bi|. Hence by Lemma 2.3 there is no root

of (∗) with absolute value > 1. So necessarily α = 0. In this case

(∗∗)

{
Bn = An−2X

n−2 +An−3X
n−3 + · · ·+A1X +A0,

Bn−1 = Xn−1 +An−2(n− 2)Xn−3 + · · ·+A1 = Xn−1 +Hn−2.

Remark that Bk has degree at most k+ 1, as the Ai are of degree at most 1.
Also that Bn−2 has degree at most n−2, using An = 1. These two facts give
that deg(Bn−1) > deg(Bi) for i 6= n − 1. By Lemma 2.4, there is a unique

root of (∗) denoted g with |g| > 1 and [g] = −[Bn−1

Bn
] so deg(g) ≤ n− 1, and

then w −X � 1

Xn−1 .

Now let us prove that w−X − 1

Xn−1 �
1

X2(n−1) . We separate two cases:

Case 1. deg(g) = n−1. From the Newton polygon of (∗) deg(Bn−1) = n−1

and deg(Bn) = 0. To prove that w − X − 1

Xn−1 �
1

X2(n−1) , it suffices to

prove that [g] 6= Xn−1.
We suppose that [g] = Xn−1. Then Bn−1 = Xn−1 and Bn = 1 which

gives Hn−2 = 0 and B′n =
dBn
dX

= 0. However,

B′n = Hn−2 +A′n−2X
n−2 + · · ·+A′1X +A′0,

where (Ai)
′ ∈ Fq for all 0 ≤ i ≤ n − 2, then, as degAi = 1, A′i = 0 for all

0 ≤ i ≤ n− 2. Hence |Ai| ≤ 1 for 0 ≤ i ≤ n− 2, contradicting (?).

Case 2. deg(g) < n− 1. Here w −X − 1

Xn−1 �
1

Xn−1 �
1

X2(n−1) . �
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Proof of Theorem 3.1. By Proposition 2.2, the equation

Y n −XY n−1 − Y +X − 1 = 0

has a unique root wn in Fq((X−1)) with |wn| > 1 and the other roots of
absolute value equal to 1. So wn is a Salem series. Moreover, wn = X + 1

g

where [g] = Xn−1 − 1 (by (∗∗)), which implies that

(2) wn = X +
1

Xn−1 +
1

X2(n−1) + · · ·

We suppose that the algebraic degree of wn is s < n. Then by Lemma 3.3 we

have wn−X � 1
Xs−1 , which is absurd because wn−X =

1

Xn−1 +· · · ≺ 1

Xs−1 .

Now we suppose that wn is not the smallest Salem element of degree n.
Then there exists another Salem element w′n of algebraic degree n such that
w′n ≺ wn. By combining (2) and Lemma 3.3 we obtain that

w′n = X +
1

Xn−1 +
1

X2(n−1) + · · · ,

so that |wn − w′n| <
1

|X|2(n−1)
, which contradicts Lemma 3.2. �

Corollary 3.4. There is no smallest Salem series in Fq((X−1)).

Proof. Let wn be the unique root in Fq((X−1)) of (1). So wn+1 ≺ wn and

lim
n→+∞

{wn} = 0. �

4. Diophantine approximation of wn in F2m((X−1))

In this section we will prove that the smallest Salem element of degree n
in F2m((X−1)) is well approximable for infinitely n ≥ 2. In order to measure
the quality of rational approximation, we introduce the following notation
and definition.

Let us consider the set Mq = {f ∈ Fq((X−1)) : |f | < 1} and consider the
transformation

T : Mq −→Mq, f 7−→
{

1

f

}
.

For any f ∈ Fq((X−1)) we define a polynomial sequence (an)n≥0 by

a0 = [f ] and, for n ≥ 1, an =

[
1

Tn−1(f − [f ])

]
.

We easily check that

f = a0 +
1

a1 +
1

a2 +
1

. . .

.
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This expression is called the continued fraction expansion of f and it will
be simply denoted by f = [a0, a1, a2, . . . ]. The sequence (ai)i≥0 is called the
sequence of partial quotients of f .

We study the approximation of the elements of Fq((X−1)) by the elements
of Fq(X). In particular, we consider this approximation for the elements of
Fq((X−1)) that are algebraic over Fq(X). Let f = [a0, a1, a2, . . . ] be an
irrational element of Fq((X−1)), so that infinitely many ai are nonzero. For
all real numbers µ, we define

B(f, µ) = lim inf
|Q|−→∞

|Q|µ|Qf − P |,

where P and Q run over polynomials in Fq[X] with Q 6= 0. The approxima-
tion exponent of f is defined by

ν(f) = sup{µ ∈ R : B(f, µ) <∞}.

A simple calculation proves that

ν(f) = 1 + lim sup

 deg ak+1∑
1≤i≤k

deg ai

 .

Using this quantity we can define the following classification. If f ∈
Fq((X−1)), we say that:

• f is badly approximable if ν(f) = 1 and B(f, 1) > 0. This is equiv-
alent to saying that the partial quotients in the continued fraction
expansion for a are bounded.
• f is normally approximable if ν(f) = 1 and B(f, 1) = 0.
• f is well approximable if ν(f) > 1.

We now restrict attention to the case q = 2m. Our main result in this
section is given by the following theorem.

Theorem 4.1. Let n = 2s+1 with s ≥ 1. Then the smallest Salem element
of degree n in F2m((X−1)) denoted ws is well approximable.

Before giving the proof of this theorem, we recall the folowing lemma.

Lemma 4.2 ([2]). Let f = [a0, a1, a2, a3, . . . ] in F2m((X−1)). Then:

(1) f−1 = [0, a0, a1, a2, . . . ], if a0 6= 0, 1.
(2) f2

n
=
[
a2

n

0 , a
2n
1 , a

2n
2 , . . .

]
, for n ≥ 1.

Proof of Theorem 4.1. For n = 2s+1 and Y = ws, Equation (1) becomes
in characteristic 2:

w2n+1
s +Xw2n

s + ws +X + 1 = 0.

Then (w2n
s + 1)(ws +X) = 1. We have ws 6= X, then w2n

s + 1 =
1

ws +X
.
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Let ws = [a0, a1, a2, . . . , an, . . . ]. By Lemma 4.2, w2n
s =

[
a2

n

0 , a
2n
1 , a

2n
2 , . . .

]
and

1

w2n
s + 1

=
[
0, a2

n

0 + 1, a2
n

1 , a
2n

2 , . . .
]
. Then

ws +X = [a0 +X, a1, a2, . . . ]

= [0, a2
n

0 + 1, a2
n

1 , a
2n

2 , . . . ].

This implies that a0 = X, a1 = a2
n

0 + 1 = X2n + 1 and, for i ≥ 2,

ai = a2
n

i−1 = X2in + 1,

by an easy induction. So deg(ai) = 2in

ν(ws) = 1 + lim
k→∞

sup

 deg ak+1∑
1≤i≤k

deg ai


= 1 + lim

k→∞
sup

(
2n(k+1)

2n + 22n + · · ·+ 2kn

)
= 2n > 1. �
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[10] Salem, Raphaël. Algebraic numbers and Fourier analysis. D. C. Heath and Co.,
Boston, Mass. 1963. x+68 pp. MR0157941 (28 #1169), Zbl 0126.07802.

[11] Siegel, Carl Ludwig. Algebraic integers whose conjugates lie in the unit cir-
cle. Duke Math. J. 11 (1944), 597–602. MR0010579 (6,39b), Zbl 0063.07005,
doi: 10.1215/S0012-7094-44-01152-X.

[12] Smyth, C. J. On the product of the conjugates outside the unit circle of an algebraic
number. Bull. London Math. Soc. 3 (1971), 169–175. MR0289451 (44 #6641), Zbl
0235.12003, doi: 10.1112/blms/3.2.169.
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