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Estimates for the Bergman kernel and the
multidimensional Suita conjecture

Zbigniew B locki and W lodzimierz Zwonek

Abstract. We study the lower bound for the Bergman kernel in terms
of volume of sublevel sets of the pluricomplex Green function. We show
that it implies a bound in terms of volume of the Azukawa indicatrix
which can be treated as a multidimensional version of the Suita con-
jecture. We also prove that the corresponding upper bound holds for
convex domains and discuss it in bigger detail on some convex complex
ellipsoids.
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1. Introduction and statement of main results

Let Ω be a pseudoconvex domain in Cn. The following lower bound for the
Bergman kernel in terms of the pluricomplex Green function was recently
proved in [6] using methods of the ∂̄-equation: for any t ≤ 0 and w ∈ Ω one
has

(1) KΩ(w) ≥ 1

e−2ntλ({GΩ,w < t})
.

Here

KΩ(w) = sup

{
|f(w)|2 : f ∈ O(Ω),

∫
Ω
|f |2dλ ≤ 1

}
and

GΩ,w = sup{u ∈ PSH−(Ω) : u ≤ log | · −w|+ C near w}.
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The constant in (1) is optimal for every t, for example we have the equality
if Ω is a ball centered at w. The behaviour of the right-hand side of (1) as
t→ −∞ seems of particular interest. For example for n = 1 we easily have

(2) lim
t→−∞

e−2tλ({GΩ,w < t}) =
π

(cΩ(w))2
,

where
cΩ(w) = exp lim

z→w

(
GΩ,w(z)− log |z − w|

)
is the logarithmic capacity of the complement of Ω with respect to w. This
gave another proof in [6] of the Suita conjecture [17]

(3) c2
Ω ≤ πKΩ,

originally shown in [5].
Our first result is a counterpart of (2) in higher dimensions:

Theorem 1. Assume that Ω is a bounded hyperconvex domain in Cn. Then

lim
t→−∞

e−2ntλ({GΩ,w < t}) = λ(IAΩ (w)),

where
IAΩ (w) = {X ∈ Cn : lim

ζ→0

(
GΩ,w(w + ζX)− log |ζ|

)
< 0}

is the Azukawa indicatrix of Ω at w.

It would be interesting to generalize this to a bigger class of domains.
Combining (1) with Theorem 1 and approximating pseudoconvex domains
by hyperconvex ones from inside we obtain the following multidimensional
version of the Suita conjecture:

Theorem 2. For a pseudoconvex domain Ω in Cn and w ∈ Ω we have

(4) KΩ(w) ≥ 1

λ(IAΩ (w))
.

Possible monotonicity of convergence in Theorem 1 is an interesting prob-
lem. We state the following:

Conjecture 1. If Ω is pseudoconvex in Cn then the function

t 7−→ e−2ntλ({GΩ,w < t})
is nondecreasing on (−∞, 0].

We will show the following result:

Theorem 3. Conjecture 1 is true for n = 1.

The main tool will be the isoperimetric inequality. In fact, the proof of
Theorem 3 will show that Conjecture 1 in arbitrary dimension is equivalent
to the following pluricomplex isoperimetric inequality:∫

∂Ω

dσ

|∇GΩ,w|
≥ 2nλ(Ω)
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for bounded strongly pseudoconvex Ω with smooth boundary (by [3] the
left-hand side is then well-defined).

The following conjecture would easily give an affirmative answer to Con-
jecture 1:

Conjecture 2. If Ω is pseudoconvex in Cn then the function

t 7−→ log λ({GΩ,w < t})
is convex on (−∞, 0].

Unfortunately, we do not know if it is true even for n = 1.
In [4] the question was raised whether for n = 1 a reverse inequality to

(3)
KΩ ≤ Cc2Ω

holds for some constant C. We answer it here in the negative:

Proposition 4. Assume that 0 < r < 1 and let Pr = {z ∈ C : r < |z| < 1}.
Then

(5)
KΩ(
√
r)

(cΩ(
√
r))2

≥ −2 log r

π3
.

It is nevertheless still plausible that there is an upper bound for the
Bergman kernel in terms of logarithmic capacity which would give a quan-
titative version of the well-known result of Carleson [8] that for domains
in C whose complement is a polar set the Bergman kernel vanishes. The
opposite implication was also shown in [8] and the quantitative version of
this is given by (3).

There is however a class of domains for which the upper bound does hold:
a domain Ω ⊂ Cn is called C-convex if its intersection with every complex
affine line is connected and simply connected (or empty).

Theorem 5. For a C-convex domain Ω in Cn and w ∈ Ω one has

KΩ(w) ≤ Cn

λ(IAΩ (w))

with C = 16. If Ω is convex then the estimate holds with C = 4 and if it is
in addition symmetric with respect to w then we can take C = 16/π2.

By Theorems 2 and 5 for C-convex domains the function

FΩ(w) :=
(
KΩ(w)λ(IAΩ (w))

)1/n
defined for w ∈ Ω with KΩ(w) > 0, satisfies

(6) 1 ≤ FΩ ≤ 16.

One can easily check that FΩ is biholomorphically invariant. If Ω is pseudo-
convex and balanced with respect to w (that is w+z ∈ Ω implies w+ζz ∈ Ω
for ζ ∈ ∆̄, where ∆ is the unit disk) then FΩ(w) = 1. In fact a symmetrized
bidisk

G2 = {(ζ1 + ζ2, ζ1ζ2) : ζ1, ζ2 ∈ ∆},
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is an example of a C-convex domain (see [15]) with FΩ 6≡ 1. By [9] we have
KG2(0) = 2/π2 and by [1]

IAG2
(0) = {X ∈ C2 : |X1|+ 2|X2| < 2}.

Therefore λ(IAG2
(0)) = 2π2/3 and FG2(0) = 2/

√
3 = 1.15470 . . .

Especially interesting is the class of convex domains. It is well-known
that then the closure of the Azukawa indicatrix is equal to the Kobayashi
indicatrix

IKΩ (w) = {ϕ′(0) : ϕ ∈ O(∆,Ω), ϕ(0) = w}.
This follows from Lempert’s results [14], see [12]. For such domains the
inequality FΩ ≥ 1 was proved in [6] and seems very accurate. It is in
fact much more difficult than for C-convex domains to compute an example
where one does not have equality. This can be done for some convex complex
ellipsoids:

Theorem 6. For n ≥ 2 and m ≥ 1/2 define

(7) Ω = {z ∈ Cn : |z1|+ |z2|2m + · · ·+ |zn|2m < 1}.

Then for w = (b, 0, . . . , 0), where 0 < b < 1, one has

(8) KΩ(w)λ(IKΩ (w)) = 1 + (1− b)a (1 + b)a − (1− b)a − 2ab

2ab(1 + b)a
,

where a = (n− 1)/m+ 2.

For example, Theorem 6 gives the following graphs of FΩ(b, 0, . . . , 0) for
m = 1/2 and 2 ≤ n ≤ 6 1:

0.2 0.4 0.6 0.8 1.0

1.001

1.002

1.003

1.004

One can check numerically that the highest value of FΩ(b, 0, . . . , 0) is at-
tained for m = 1/2, n = 3 at b = 0.163501 . . . , and is equal to 1.004178 . . .

1Figures were done using Mathematica.
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Using [2] one can compute numerically FΩ(b, 0) for the ellipsoid

Ω = {z ∈ C2 : |z1|2m + |z2|2 < 1},
where m ≥ 1/2. This has an advantage compared to the ellipsoid given by
(7) because using holomorphic automorphisms we can easily show that all
values of FΩ are attained at (b, 0), where 0 ≤ b < 1. Here is the graph of
FΩ(b, 0) for m equal to 1/2, 2, 8, 32, and 128:

0.0 0.2 0.4 0.6 0.8 1.0

1.002

1.004

1.006

1.008

1.010

One can compute that the maximum converges to 1.010182 . . . as m→∞.
This is the highest value of FΩ for convex Ω we have been able to obtain so
far. It would be interesting to find an optimal upper bound for FΩ when Ω
is convex, how close to 1 it really is. We suspect that it is attained for the
ellipsoid

{z ∈ Cn : |z1|+ · · ·+ |zn| < 1}
at a point of the form w = (b, . . . , b).

Conjecture 3. Let Ω be convex and w ∈ Ω be such that KΩ(w) > 0. Then
FΩ(w) = 1 if and only if there exists a balanced domain Ω′ (not necessarily
convex) and a biholomorphic mapping H : Ω→ Ω′ such that H(w) = 0.

It was recently shown in [10] that the equality holds in (3) if and only if
Ω is biholomorphic to ∆ \K for some closed polar subset K, this was also
conjectured by Suita in [17].

The paper is organized as follows: in Section 2 we show Theorems 1 and
3. Upper bounds for the Bergman kernel are discussed in Section 3, we
prove Proposition 4 and Theorem 5 there. Finally, in Section 4 the case of
convex complex ellipsoids is treated.

2. Sublevel sets of the Green function

Proof of Theorem 1. Without loss of generality we may assume that w =
0. Write G := GΩ,0 and for t ≤ 0 set

It := e−t{G < t}.
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We can find R > 0 such that Ω ⊂ B(0, R). Then log(|z|/R) ≤ G and
It ⊂ B(0, R). In our case by [18] the function

A(X) = lim
ζ→0

(
G(ζX)− log |ζ|

)
is continuous on Cn and lim is equal to lim. Therefore

A(X) = lim
t→−∞

(
G(etX)− t

)
and by the Lebesgue bounded convergence theorem

lim
t→−∞

λ(It) = λ({A < 0}). �

Proof of Theorem 3. Set

f(t) := log λ({G < t})− 2t,

where G = GΩ,w. It is enough to show that if t is a regular value of G then
f ′(t) ≥ 0. We have

f ′(t) =

d

dt
λ({G < t})

λ({G < t})
− 2.

The co-area formula gives

λ({G < t}) =

∫ t

−∞

∫
{G=s}

dσ

|∇G|
ds

and therefore
d

dt
λ({G < t}) =

∫
{G=t}

dσ

|∇G|
.

By the Cauchy-Schwarz inequality

d

dt
λ({G < t}) ≥ (σ({G = t}))2∫

{G=t}
|∇G|dσ

=
(σ({G = t}))2

2π
.

The isoperimetric inequality gives

(σ({G = t}))2 ≥ 4πλ({G < t})

and we obtain f ′(t) ≥ 0. �

3. Upper bound for the Bergman kernel

We first show that the reverse estimate to (4) is not true in general.

Proof of Proposition 4. Since zj , j ∈ Z, is an orthogonal system in
H2(Pr) and

||zj ||2 =


π

j + 1

(
1− r2j+2

)
, j 6= −1,

−2π log r, j = −1,
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we have

KPr(w) =
1

π|w|2

 1

−2 log r
+
∑
j∈Z

j|w|2j

1− r2j


and

(9) KPr(
√
r) ≥ 1

−2πr log r
.

To estimate cPr from above consider the mapping

p(ζ) = exp

(
log r

πi
Log

(
i
1 + ζ

1− ζ

))
, ζ ∈ ∆,

where Log is the principal branch of the logarithm defined on C \ (−∞, 0].
We have p(0) =

√
r and p′(0) = −2i

√
r log r/π. Also

GPr(p(ζ),
√
r) ≤ log |ζ|

and therefore

cPr(
√
r) ≤ 1

|p′(0)|
=

π

−2
√
r log r

.

Combining this with (9) we get (5). �

Next, we show the reverse inequality to (4) for C-convex domains.

Proof of Theorem 5. Write I = IAΩ (w). We may assume that w = 0. We
claim that it is enough to show that

(10) I ⊂
√
C Ω.

Indeed, since I is balanced we would then have

KΩ(0) ≤ KI/
√
C(0) =

1

λ(I/
√
C)

=
Cn

λ(I)
.

The proof of (10) will be similar to the proof of Proposition 1 in [16]. Choose
X ∈ I and by L denote the complex line generated by X. Let a be a
point from L ∩ ∂Ω with the smallest distance to the origin. We can find a
hyperplane H in Cn such that H ∩ Ω = ∅ (cf. [11], Theorem 4.6.8). Let
D be the set of those ζ ∈ C such that ζX belongs to the projection of Ω
on L along H. Then D is a simply connected domain (cf. [11], Proposition
4.6.7). Let ϕ be a biholomorphic mapping ∆→ D such that ϕ(0) = 0. We
then have

0 > lim
(
GΩ,0(ζX)− log |ζ|

)
≥ lim

(
GD,0(ζ)− log |ζ|

)
= − log |ϕ′(0)|.

By the Koebe quarter theorem |ϕ′(0)| ≤ 4r, where r is the distance from
the origin to ∂D. Since r = |a|/|X|, we obtain |X| < 4|a|. This gives (10)
for C-convex domains with C = 16. If Ω is convex then so is D and we
may assume that it is a half-plane. Then |ϕ′(0)| ≤ 2r and we get (10) with
C = 4. Finally, if Ω is symmetric then we may assume that D is a strip
centered at the origin and we get |ϕ′(0)| ≤ 4r/π. �
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4. Complex ellipsoids

We first recall a general formula from [13] (it is in fact a consequence of
Lempert’s theory [14]) for geodesics in convex complex ellipsoids

E(p) = {z ∈ Cn : |z1|2p1 + · · ·+ |zn|2pn < 1},
where p = (p1, . . . , pn), pj ≥ 1/2. For A ⊂ {1, . . . , n} holomorphic mappings
ϕ : ∆→ E(p) of the form

(11) ϕj(ζ) =


aj
ζ − αj
1− ᾱjζ

(
1− ᾱjζ
1− ᾱ0ζ

)1/pj

, j ∈ A,

aj

(
1− ᾱjζ
1− ᾱ0ζ

)1/pj

, j /∈ A,

where aj ∈ C∗, αj ∈ ∆ for j ∈ A, αj ∈ ∆̄ for j /∈ A,

α0 = |a1|2p1α1 + · · ·+ |an|2pnαn,
and

1 + |α0|2 = |a1|2p1(1 + |α1|2) + · · ·+ |an|2pn(1 + |αn|2),

form the set of almost all geodesics in Ω (possible exceptions form a lower-
dimensional set). A component ϕj has a zero in ∆ if and only if j ∈ A. We
have

ϕj(0) =

{
−ajαj , j ∈ A,
aj , j /∈ A,

and

ϕ′j(0) =


aj

(
1 +

( 1

pj
− 1
)
|αj |2 −

αjᾱ0

pj

)
, j ∈ A,

aj
ᾱ0 − ᾱj
pj

, j /∈ A.

For w ∈ E(p) the set of vectors ϕ′(0) where ϕ(0) = w forms a subset of
∂IKE(p)(w) of a full measure.

Now assume that w = (b, 0, . . . , 0). There are two possibilities: either
A = {1, . . . , n} or A = {2, . . . , n}. Since ϕ(0) = w, it follows that α2 =
· · · = αn = 0, hence α0 = |a1|2p1α1 and

(12) 1 + |a1|4p1 |α1|2 = |a1|2p1(1 + |α1|2) + |a2|2p2 + · · ·+ |an|2pn .
Moreover, {

a1α1 = −b, 1 ∈ A,
a1 = b, 1 /∈ A.

We will get vectors X = ϕ′(0) from ∂IKE(p)(w), where

(13) X1 =


− b

α1

(
1 +

( 1

p1
− 1
)
|α1|2 −

b2p1 |α1|2−2p1

p1

)
, 1 ∈ A,

−ᾱ1
b(1− b)
p1

, 1 /∈ A,
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and Xj = aj , j = 2, . . . , n. By (12) the parameters are related by

|a2|2p2 + · · ·+ |an|2pn =

{
(1− b2p1 |α1|−2p1)(1− b2p1 |α1|2−2p1), 1 ∈ A,
(1− b2p1)(1− b2p1 |α1|2), 1 /∈ A.

If now p1 = 1/2 as in Theorem 6 then by (13)

|α1| =


2b2 + |X1| −

√
(2b2 + |X1|)2 − 4b2

2b
, 1 ∈ A,

|X1|
2b(1− b)

, 1 /∈ A.

After simple transformation we will obtain the following result:

Theorem 7. Assume that p1 = 1/2, pj ≥ 1/2 for j ≥ 2, and 0 < b < 1.
Then

IKE(p)((b, 0, . . . , 0)) = {X ∈ Cn : |X2|2p2 + · · ·+ |Xn|2pn ≤ γ(|X1|)},
where

γ(r) =

1− b− r2

4b(1− b)
, r ≤ 2b(1− b),

1− b2 − r, r > 2b(1− b).

Proof of Theorem 6. Denoting

ω = λ({z ∈ Cn−1 : |z1|2m + · · ·+ |zn−1|2m < 1}
we will get from Theorem 7

λ(IKΩ ((b, 0, . . . , 0))) = 2πω

∫ 1−b2

0
r(γ(r))(n−1)/mdr(14)

= 2πω(1− b)a (1− b)a + 2ab

a(a− 1)
.

It remains to compute the Bergman kernel. By the deflation method from
[7] we obtain

KΩ((b, 0, . . . , 0)) =
λ(E(1/2,m/(n− 1)))

λ(Ω)
KE(1/2,m/(n−1))((b, 0)).

By Example 12.1.13 in [12] (see also formula (9) in [7])

KE(1/2,1/p)((b, 0)) =
p+ 1

4π2b

(
(1− b)−p−2 − (1 + b)−p−2

)
.

We also have λ(E(1/2, 1/p) = 2π2/((p+1)(p+2)) and λ(Ω) = 2πω/(a(a−1)).
It follows that

KΩ((b, 0, . . . , 0)) =
a− 1

4πωb

(
(1− b)−a − (1 + b)−a

)
and combining this with (14) gives (8). �

Added in proof. Professor J. E. Fornaess found an example (already in
dimension one) showing that Conjecture 2 does not hold.



160 ZBIGNIEW B LOCKI AND W LODZIMIERZ ZWONEK

References

[1] Agler, J.; Young, N. J. A Schwarz lemma for the symmetrized bidisc. Bull.
London Math. Soc. 33 (2001), no. 2, 175–186. MR1815421 (2002e:30026), Zbl
1030.32011, doi: 10.1112/blms/33.2.175.

[2] Blank, Brian E.; Fan, Da Shan; Klein, David; Krantz, Steven G.; Ma,
Daowei; Pang, Myung–Yull. The Kobayashi metric of a complex ellipsoid in C2.
Experiment. Math. 1 (1992), no. 1, 47–55. MR1181086 (93h:32032), Zbl 0783.32012.

[3] B locki, Zbigniew. The C1,1 regularity of the pluricomplex Green function. Michi-
gan Math. J. 47 (2000), no. 2, 211–215. MR1793621 (2001k:32057), Zbl 0989.32008,
doi: 10.1307/mmj/1030132530.

[4] B locki, Zbigniew. Some estimates for the Bergman kernel and metric in terms
of logarithmic capacity. Nagoya Math. J. 185 (2007), 143–150. MR2301462
(2008e:30010), Zbl 1127.30006.

[5] B locki, Zbigniew. Suita conjecture and the Ohsawa–Takegoshi extension the-
orem. Invent. Math. 193 (2013), no. 1, 149–158. MR3069114, Zbl 1282.32014,
doi: 10.1007/s00222-012-0423-2.

[6] B locki, Zbigniew. A lower bound for the Bergman kernel and the Bourgain–
Milman inequality. Geometric Aspects of Functional Analysis, Israel Seminar
(GAFA), 2011-2013, 53–63, Lecture Notes in Math., 2116. Springer, New York,
2014. doi: 10.1007/978-3-319-09477-9 4.

[7] Boas, Harold P.; Fu, Siqi; Straube, Emil J. The Bergman kernel function:
explicit formulas and zeroes. Proc. Amer. Math. Soc. 127 (1999), no. 3, 805–811.
MR1469401 (99f:32037), Zbl 0919.32013, arXiv:math/9706202, doi: 10.1090/S0002-
9939-99-04570-0.

[8] Carleson, Lennart. Selected problems on exceptional sets. Van Nostrand Math-
ematical Studies, 13. D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-
London, 1967. v+151 pp. MR0225986 (37 #1576), Zbl 0189.10903.

[9] Edigarian, Armen; Zwonek, W lodzimierz. Geometry of the symmetrized poly-
disc. Arch. Math. (Basal) 84 (2005), no. 4, 364–374. MR2135687 (2006b:32020), Zbl
1068.32012, arXiv:math/0402033, doi: 10.1007/s00013-004-1183-z.

[10] Guan, Qi’an; Zhou, Ziangyu. A solution of an L2 extension problem with op-
timal estimate and applications. Ann. of Math. 181 (2015), no. 3, 1139–1208.
arXiv:1310.7169v4, doi: 10.4007/annals.2015.181.3.6.

[11] Hörmander, Lars. Notions of convexity. Progress in Mathematics, 127. Birkhäuser
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