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Normality preserving operations for
Cantor series expansions and associated

fractals. II

Dylan Airey, Bill Mance and Joseph Vandehey

Abstract. We investigate how nonzero rational multiplication and ra-
tional addition affect normality with respect to Q-Cantor series expan-
sions. In particular, we show that there exists a Q such that the set of
real numbers which are Q-normal but not Q-distribution normal, and
which still have this property when multiplied and added by rational
numbers has full Hausdorff dimension. Moreover, we give such a num-
ber that is explicit in the sense that it is computable.
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1. Introduction

We say that a real number x is normal in base b if for every block B
consisting of k base b digits, we have that

(1) lim
n→∞

Nn(B, x)

n
=

1

bk
,
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where Nn(B, x) denotes the number of times the block B occurs in the base
b expansion of x within the first n digits after the decimal point. A real
number x is simply normal in base b if (1) holds for blocks B of length 1. In
essence, this says that a number x is normal if each block of digits appears
with the expected frequency if the digits of x were chosen at random. We
let N(b) denote the set of points normal in base b. While it is known that
N(b) has full measure, it is not known if

√
2, π, or e or any other commonly

used mathematical constant is normal in any base. We have some explicit
examples of normal numbers, but generally they are numbers constructed
to be normal, such as Champernowne’s constant [10], which is formed by
concatenating the positive integers in succession. (In base 10, this is given
by 0.12345678910111213 . . . .)

Given the difficulty of proving that a given number, such as π, is normal,
a lot of research has focused on understanding properties of the set N(b) as a
whole. Let f be a function from R to R. We say that f preserves b-normality
if f(N(b)) ⊆ N(b). We can make a similar definition for both normality and
functions that preserve normality for many other systems, such as continued
fraction expansions, β-expansions, the Lüroth series expansion, etc. (See,
for example, [19].)

Some b-normality preserving functions naturally arise in H. Furstenberg’s
work on disjointness in ergodic theory [15]. These functions, known as se-
lection rules, form numbers by taking subsequences of the base b digits of
another number. V. N. Agafonov [1], T. Kamae [17], T. Kamae and B. Weiss
[18], and W. Merkle and J. Reimann [23] studied b-normality preserving se-
lection rules.

In this paper, we will be more interested in the simple functions of mul-
tiplication and addition. For a real number r, define real functions πr and
σr by πr(x) = rx and σr(x) = r + x. In 1949, D. D. Wall proved in his
Ph.D. thesis [33] that for nonzero rational r the functions πr and σr are b-
normality preserving for all b. These results were also independently proven
by K. T. Chang in 1976 [11]. D. D. Wall’s method relies on the well known
characterization that a real number x is normal in base b if and only if the
sequence (bnx) is uniformly distributed mod 1, a result that he also proved
in his Ph.D. thesis.

D. Doty, J. H. Lutz, and S. Nandakumar took a substantially different
approach from D. D. Wall and strengthened his result. They proved in [12]
that for every real number x and every nonzero rational number r the b-ary
expansions of x, πr(x), and σr(x) all have the same finite-state dimension and
the same finite-state strong dimension. It follows that πr and σr preserve
b-normality. It should be noted that their proof uses different methods
from those used by D. D. Wall and is unlikely to be proven using similar
machinery.

C. Aistleitner generalized D. D. Wall’s result on σr. Suppose that q is a
rational number and that the digits of the b-ary expansion of z are nonzero
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on a set of indices of density zero. In [4] he proved that the function σqz is
b-normality preserving. It was shown in [2] that C. Aistleitner’s result does
not generalize to at least one notion of normality for some of the Cantor
series expansions, which we will be investigating in this paper.

There are still many open questions relating to the functions πr and σr.
For example, M. Mendés France asked in [22] if the function πr preserves
simple normality with respect to the regular continued fraction for every
nonzero rational r. The third author proved in [32] that for any nonzero
rational r, both πr and σr (and indeed any nontrivial integer fractional linear
transformation) preserve normality with respect to the regular continued
fraction expansion, which still leaves Mendés France’s question unanswered.
The authors are unaware of any theorems that state that either πr or σr
preserve any other form of normality.

In this paper we will be interested in the function τr,s = σs ◦ πr for
r ∈ Q\{0} and s ∈ Q, and how this function preserves certain notions
of normality of Q-Cantor series expansions, namely Q-normality and Q-
distribution normality. (We will provide definitions for all these terms in
Section 2.) Unlike in the other systems mentioned above, normality and
distribution normality for Q-Cantor series expansions need not be equiva-
lent. In [5], it was shown that the set of numbers that are Q-normal but
not Q-distribution normal is nonempty for some basic sequences Q, but no
indication was given to the size of this set.

In Theorem 2.4, we show a much stronger result: there exists a basic
sequence Q and a real number x such that τr,s(x) is always Q-normal and
always not Q-distribution normal for every r ∈ Q\{0} and s ∈ Q; in fact,
the set of x with this property is big in the sense that it has full Haus-
dorff dimension. In other words, the set of x which not only have these
peculiar normality properties, but preserve these properties under rational
addition and multiplication, is a reasonably large set. Related questions for
the Cantor series expansions are studied in [2].

Another question that has come into greater interest in the study of nor-
mal numbers lately is the question of how explicit a normal number con-
struction is: it is one thing to exhibit a number and another to exhibit a
number in a simple way. So we bring in definitions from recursion theory.
A real number x is computable if there exists b ∈ N with b ≥ 2 and a Turing
machine f which given n outputs the nth digit of x in base b. A sequence
of real numbers (xn) is computable if there exists a Turing machine f such

that on input m,n the output f(m,n) satifies f(m,n)−1
m < xn <

f(m,n)−1
m .

M. W. Sierpiński gave an example of an absolutely normal number1 that
is not computable in [28]. The authors feel that examples such as M. W.
Sierpiński’s are not fully explicit since they are not computable real numbers,
unlike Champernowne’s number. A. M. Turing gave the first example of a

1A number is said to be absolutely normal if it is normal to every base b ≥ 2.
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computable absolutely normal number in an unpublished manuscript. This
paper may be found in his collected works [30]. See [6] by V. Becher, S.
Figueira, and R. Picchi for further discussion. In Theorem 2.5 we give a basic
sequence Q and real number x, with x in the set discussed in Theorem 2.4,
that are fully explicit in the sense that they are computable as a sequence
of integers and a real number, respectively.

Throughout this paper we will use a number of standard asymptotic no-
tations. By f(x) = O(g(x)) we mean that there exists some real number
C > 0 such that |f(x)| ≤ C|g(x)|. By f(x) � g(x), we mean f(x) = O(g(x))
and g(x) = O(f(x)). By f(x) = o(g(x)), we mean that f(x)/g(x) → 0 as
x→∞.

Acknowledgements. We would like to thank Samuel Roth for posing the
problem that led to Theorem 2.4 and Theorem 2.5 to the second author at
the 2012 RTG conference: Logic, Dynamics and Their Interactions, with a
Celebration of the Work of Dan Mauldin in Denton, Texas. He asked if it is
true that nx ∈ N(Q) for all natural numbers n implies that x ∈ DN(Q).

2. Cantor series expansions

The study of normal numbers and other statistical properties of real num-
bers with respect to large classes of Cantor series expansions was first done
by P. Erdős and A. Rényi in [13] and [14] and by A. Rényi in [24], [25], and
[26] and by P. Turán in [29].

The Q-Cantor series expansions, first studied by G. Cantor in [9], are a
natural generalization of the b-ary expansions.2 Let Nk := Z ∩ [k,∞). If
Q ∈ NN

2 , then we say that Q is a basic sequence. Given a basic sequence
Q = (qn)∞n=1, the Q-Cantor series expansion of a real number x is the
(unique)3 expansion of the form

(2) x = E0 +
∞∑
j=1

Ej
q1q2 · · · qj

where E0 = bxc and Ej is in {0, 1, . . . , qj − 1} for n ≥ 1 with Ej 6= qj − 1
infinitely often. We abbreviate (2) with the notation x = E0.E1E2E3 · · ·
w.r.t. Q.

A block is an ordered tuple of nonnegative integers, a block of length k is
an ordered k-tuple of nonnegative integers, and block of length k in base b
is an ordered k-tuple of nonnegative integers in {0, 1, . . . , b− 1}.

2G. Cantor’s motivation to study the Cantor series expansions was to extend the well
known proof of the irrationality of the number e =

∑
1/n! to a larger class of numbers.

Results along these lines may be found in the monograph of J. Galambos [16].
3Uniqueness can be proven in the same way as for the b-ary expansions.
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Let

Q(k)
n :=

n∑
j=1

1

qjqj+1 · · · qj+k−1
and TQ,n(x) :=

 n∏
j=1

qj

x (mod 1).

A. Rényi [25] defined a real number x to be normal with respect to Q if for
all blocks B of length 1,

(3) lim
n→∞

NQ
n (B, x)

Q
(1)
n

= 1,

where NQ
n (B, x) is the number of occurences of the block B in the sequence

(Ei)
n
i=1 of the first n digits in the Q-Cantor series expansion of x. Note that

if qn = b for all n and we restrict B to consist of only digits less than b,
then (3) is equivalent to simple normality in base b, but not equivalent to

normality in base b. A basic sequence Q is k-divergent if limn→∞Q
(k)
n =∞

and fully divergent if Q is k-divergent for all k. A basic sequence Q is infinite
in limit if qn →∞.

Definition 2.1. A real number x is Q-normal of order k if for all blocks B
of length k,

lim
n→∞

NQ
n (B, x)

Q
(k)
n

= 1.

We let Nk(Q) be the set of numbers that are Q-normal of order k. The
real number x is Q-normal if x ∈ N(Q) :=

⋂∞
k=1Nk(Q). A real number x is

Q-distribution normal if the sequence (TQ,n(x))∞n=0 is uniformly distributed
mod 1. Let DN(Q) be the set of Q-distribution normal numbers.

It follows from a well known result of H. Weyl [34, 35] that DN(Q) is a
set of full Lebesgue measure for every basic sequence Q. We will need the
following results of the second author [20] later in this paper.

Theorem 2.2. 4 Suppose that Q is infinite in limit. Then Nk(Q) (resp.
N(Q)) is of full measure if and only if Q is k-divergent (resp. fully diver-
gent).

We note the following simple theorem.

Theorem 2.3. Suppose that Q is infinite in limit. Then x = E0.E1E2 . . .
is Q-distribution normal if and only if the sequence (En/qn)∞n=1 is uniformly
distributed modulo 1.

Note that in base b, where qn = b for all n, the corresponding notions of
Q-normality and Q-distribution normality are equivalent. This equivalence
is fundamental in the study of normality in base b.

4Early work in this direction has been done by A. Rényi [25], T. S̆alát [31], and F.
Schweiger [27].
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Another definition of normality, Q-ratio normality, has also been stud-
ied. We do not introduce this notion here as this set contains the set of
Q-normal numbers and all results in this paper that hold for Q-normal
numbers also hold for Q-ratio normal numbers. The complete containment
relation between the sets of these normal numbers and pair-wise intersec-
tions thereof is proven in [21]. The Hausdorff dimensions of difference sets
such as RN(Q) ∩ DN(Q)\N(Q) are computed in [3]. Let Ξ(Q) be the set
of all x ∈ [0, 1) such that τr,s(x) is Q-normal but not Q-distribution normal
for all r ∈ Q\{0} and s ∈ Q, i.e.,

Ξ(Q) = {x ∈ [0, 1) : τr,s(x) ∈ N(Q)\DN(Q) ∀r ∈ Q\{0}, s ∈ Q} .
Our main results of this paper will be the following:

Theorem 2.4. There exists a basic sequence Q such that the Hausdorff
dimension of Ξ(Q) is 1.

Theorem 2.5. There exists a computable basic sequence Q such that Ξ(Q)
contains a computable real number.

3. The digits of τr,s(x)

In order to prove the main results of this paper, we will want to understand
how the digits of τr,s(x) differ from the digits of x, when x takes a specific
form. We begin with some lemmas based on elementary calculations.

Lemma 3.1. If x = p/q is a rational number with p ∈ Z, q ∈ N and
q | q1q2 . . . qN for some N ∈ N, then x has a finite Q-Cantor series expansion
of the form

x = E0 +

N∑
j=1

Ej
q1q2 . . . qj

.

Alternately if x is a real number in the interval [0, 1/q1q2 . . . qN ), then x has
a Q-Cantor series expansion of the following form,

x =

∞∑
j=N+1

Ej
q1q2 . . . qj

so that Ej = 0 for n ≤ N .

This allows us to prove a number of additional lemmas rather trivially.

Lemma 3.2. Suppose that x = E0.E1E2 · · · w.r.t. Q. If s = p/q is rational
with p ∈ Z, q ∈ N and q | q1q2 . . . qN for some N ∈ N, then σs(x) has a
Q-Cantor series expansion of the form

σs(x) = E′0 +

N∑
j=1

E′j
q1q2 . . . qj

+

∞∑
j=N+1

Ej
q1q2 . . . qj

so that σs(x) and x differ only in their first N+1 digits, including the zeroth
digit.



NORMALITY PRESERVING OPERATIONS. II 1317

Corollary 3.3. Suppose that Q has the property that for every integer n
there exists an integer m such that n|qm. Then for any rational number s,
the Q-Cantor series expansion of x and of σs(x) differ on at most finitely
many digits.

Lemma 3.4. Suppose that x has a finite Q-Cantor series expansion of the
form

x =
M∑

j=N+1

Ej
q1q2 . . . qj

.

We write

E = EN+1qN+2qN+3 . . . qM

+ EN+2qN+3qN+4 . . . qM + · · ·+ EM−1qM + EM

q = qN+1qN+2 . . . qM

so that

x =
E

q1q2 . . . qNq
.

Suppose r is a nonzero rational number. If rE is an integer and rE < q,
then πr(x) has a finite Q-Cantor series expansion of the form

πr(x) =
M∑

j=N+1

E′j
q1q2 . . . qj

.

4. Results on Hausdorff dimension

Given basic sequences α = (αi) and β = (βi), sequences of nonnegative
integers s = (si), t = (ti), υ = (υi), and F = (Fi), and a sequence of sets
I = (Ii) such that Ii ⊆ {0, 1, · · · , βi − 1}, define the set Θ(α, β, s, t, υ, F, I)
as follows. Let Q = Q(α, β, s, t, υ) = (qn) be the following basic sequence:

(4)
[
[α1]

s1 [β1]
t1
]υ1 [[α2]

s2 [β2]
t2
]υ2 [[α3]

s3 [β3]
t3
]υ3 · · · .

Define the function

i(n) = max

m :

m−1∑
j=1

υj(sj + tj) < n

 .

Set

Φα(i, c, d) =

i−1∑
j=1

υjsj + csi + d

where 0 ≤ c < υi and 0 ≤ d < si and let the functions iα(n), cα(n), and
dα(n) be such that Φ−1α (n) = (iα(n), cα(n), dα(n)). Note this is possible
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since Φα is a bijection from U =
{

(i, c, d) ∈ N3 : 0 ≤ c < υi, 0 ≤ d < si
}

to
N. Define the function

G(n) =

iα(n)−1∑
j=1

υj(sj + tj) + cα(n)
(
siα(n) + tiα(n)

)
+ dα(n).

We consider the condition on n

(5)

n− i(n)−1∑
j=1

υj(sj + tj)

 mod (si(n) + ti(n))

 ≥ si(n).
Define the sets

V (n) =


Ii(n) if condition (5) holds

{FG(n)} otherwise

.

That is, we choose digits from Ii(n) in positions corresponding to the bases
obtained from the sequence β and choose a specific digit from F for the
bases obtained from the sequence α. Set

Θ(α, β, s, t, υ, F, I) = {x = 0.E1E2 · · · w.r.t. Q : En ∈ V (n)} .

We will need the following lemma from [3].

Lemma 4.1. Suppose that basic sequences α = (αi) and β = (βi), se-
quences of nonzero integers s = (si), t = (ti), υ = (υi), and F = (Fi), and a
sequence of sets I = (In) such that In ⊆ {0, 1, · · · , βn − 1} are given where
limn→∞ |In| =∞ and

lim
n→∞

sn logαn∑n−1
j=1 υjtj log βj

= lim
n→∞

sn logαn
tn log βn

= 0.

Then dimH (Θ(α, β, s, t, υ, F, I)) = limn→∞
log |In|
log βn

provided this limit exists.

5. Lemmas on (ε, k)-normal sequences

Given integers b ≥ 2, n ≥ 1, k ≥ 1, let pb(n, k) denote the number of
blocks of length n in base b containing exactly k copies of a given digit. (By
symmetry it does not matter which digit we are interested in.)

Lemma 5.1 (Lemma 4.7 in [8]). Let b ≥ 2 and n ≥ b15 be integers. For

every real number ε with n−1/3 ≤ ε ≤ 1, we have∑
−n≤j≤−dεne

pb(bn, n+ j) +
∑

dεne≤j≤(b−1)n

pb(bn, n+ j) ≤ 214bbne−ε
2n/(10b).
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Lemma 5.2. Let b ≥ 2 and n ≥ b16 be integers. For every real number ε
with dn/be−1/3 ≤ bε/2 ≤ 1, we have ∑

j>(b−1+ε)n

+
∑

j<(b−1−ε)n

 pb(n, j) ≤ 214bn+be−ε
2n/40.

Proof. Note that pb(n, j) is increasing as a function of n, therefore ∑
j>(b−1+ε)n

+
∑

j<(b−1−ε)n

 pb(n, j) ≤

 ∑
j>(b−1+ε)n

+
∑

j<(b−1−ε)n

 pb(bdn/be, j).

Now let ε′ = bε/2 and note that⌈n
b

⌉
+
⌈
ε′
⌈n
b

⌉⌉
≤ n

b
+ ε′

n

b
+ 3

= (b−1 + ε)n+
(

3− nε

2

)
≤ (b−1 + ε)n.

Likewise one can show that⌈n
b

⌉
−
⌈
ε′
⌈n
b

⌉⌉
≥ (b−1 − ε)n.

As a result, we have that ∑
j>(b−1+ε)n

+
∑

j<(b−1−ε)n

 pb(bdn/be, j)

≤
∑

j≤−dε′dn/bee

pb(bdn/be, dn/be+ j) +
∑

dε′dn/bee≤j

pb(bdn/be, dn/be+ j).

We now can apply Lemma 5.1 to see that ∑
j>(b−1+ε)n

+
∑

j<(b−1−ε)n

 pb(n, j) ≤ 214bbdn/bee−ε
′2dn/be/(10b)

≤ 214bn+be−ε
2n/40,

as desired. �

We will say a block B of length n in base b is (ε, k)-normal (with respect
to b), if the total number of occurrences in B of any subblock of length k
in base b is between (b−k − ε)n and (b−k + ε)n. Let Bb(n, ε, k) denote the
number of blocks of length n that are not (ε, k)-normal with respect to b.
Note that Lemma 5.2 gives a bound on Bb(n, ε, 1), when multiplied by b to
account for all the different possibilities for the “given digit.” The following
lemma will give a bound on Bb(n, ε, k).
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Lemma 5.3. Suppose b ≥ 2, k ≥ 1, n ≥ k(b16k + 1) are integers. For every

real number ε with (n/2kb)−1/3 ≤ bkε/2 ≤ 1 we have

Bb(n, ε, k) ≤ 216kbn+k(1+b
k)e−ε

2n/(80k).

Proof. Let us begin by considering an arbitrary block B = [d1, d2, . . . , dn]
of n digits in base b. Suppose that n = n′k+ r for some r ∈ {0, 1 . . . , k− 1}.

Let Di = dib
k−1 + di+1b

k−2 + · · · + di+k−1 for 1 ≤ i ≤ n − k + 1. Note
that Di ∈ {0, 1, . . . , bk − 1}, and these Di correspond to grouping k base-b
digits into a single base-bk digit.

For 1 ≤ j ≤ k, let Bj = [Dj , Dj+k, Dj+2k, . . . , Dj+(n′−1)k] if j ≤ r+ 1 and
Bj = [Dj , Dj+k, Dj+2k, . . . , Dj+(n′−2)k] otherwise.

By the pigeon-hole principle, if B is not (ε, k)-normal with respect to b,
then some Bj is not (ε, 1)-normal with respect to bk. Thus, the total number
of blocks B which are not (ε, k)-normal with respect to b is at most a sum
over j of the number of blocks Bj which are not (ε, 1)-normal with respect

to bk, times either br or bk+r to account for all possibilities of those digits of
B which are not contained in Bj .

We can apply Lemma 5.2 here provided

bkε

2
≥
⌈
bn/kc − 1

b

⌉−1/3
,

but this is clear since the right-hand side here is smaller than (n/2kb)−1/3.
Thus, by Lemma 5.2 and the fact that n′ = bn/kc ≥ n/2k, we have

Bb(n, ε, k) ≤ (r + 1)br214(bk)n
′+bk+1e−ε

2n′/40

+ (k − r − 1)bk+r214(bk)(n
′+bk)e−ε

2(n′−1)/40

≤ k214bk(n
′+1+bk)+re−ε

2n′/40(1 + eε
2/40)

≤ 216kbn+k(1+b
k)e−ε

2n/(80k),

as desired. �

6. Proof of Theorem 2.4

Given i ≥ 2, consider the following definitions. We let ni = iblog ic, εi =

n
−1/4
i . With these definitions, we have by Lemma 5.3 that the number of

(εi, k)-normal blocks of ni digits in base i is bounded by inie−n
1/5
i , provided

that i is sufficiently large compared to k. When i = 1, we shall let ni = 0.
Given a block B = [d1, d2, . . . , dni ] of ni digits in base i, let

B = d1i
n−1 + d2i

n−2 + · · ·+ dn

be the naturally associated integer. Let Li denote the set of all such blocks
B such that i!B < ini and i!|B. Note that Li always contains the block
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[0, 0, . . . , 0]. We denote the size of Li by `i, and note that `i � ini/(i!)2 for
sufficiently large i. We will let

Li = i!

⌈
ni+1`i+1

ni`i

⌉
.

In the construction given in Section 4, let αi = i, βi = (i!)2, si = ti = ni,
and vi = Li`i, with Q given by (4). We shall also let

Ii =
{

1, 2, . . . ,
⌊
β
1−log(i)−1

i

⌋}
∩
(⌊√

i
⌋
!
)
Z.

With this definition, we have that log |Ii|/ log βi tends to 1 and that, as i
grows, all elements of Ii become arbitrarily small compared to βi and are
eventually divisible by any fixed integer. Since n1 = 0, the smallest base in
Q constructed this way is 2, so that Q really is a basic sequence.

With these definitions (and any appropriate choice of sequence (F )), it is
easy to check that all such points satisfy the conditions of Theorem 4.1, so
that dimH (Θ(α, β, s, t, υ, F, I)) = 1. It therefore suffices to show that for
some proper selection of F , we have Θ(α, β, s, t, υ, F, I) ⊂ Ξ(Q). To make
this selection of F , let

Xi =
[
[i]ni [(i!)2]ni

]`i ,
so that we could alternately write Q as

(6) Q = [X2]
L2 [X3]

L3 [X4]
L4 · · · .

We shall then choose the digits of F in such a way so that the digits corre-
sponding to the jth occurence of the bases [i]ni in each copy of Xi are the
jth string from Li (when ordered lexicographically).

With this definition of F in mind, let x be any point in Θ(α, β, s, t, υ, F, I),
r ∈ Q\{0}, and s ∈ Q. We will show that τr,s(x) is Q-normal but not Q-
distribution normal. By the construction of Q and Corollary 3.3, we have
for any rational number s that the Q-Cantor series expansions of τr,s(x) and

πr(x) differ on at most finitely many digits. In addition, we have that B for
B ∈ Li is small compared with ini and is divisible by i!, and each digit of Ii
is small compared with (i!)2 and is divisible by b

√
ic!. Therefore, by Lem-

ma 3.4, we have that for any nonzero rational number r, for all sufficiently
large i the digits of τr,s(x) corresponding to the bases Xi satisfy the following
properties:

• Each block of digits corresponding to an appearance of [i]ni is unique.
• The digits corresponding to each appearance of the base (i!)2 are in

the interval {i+ 1, i+ 2, . . . , βi/i}.
To see that τr,s(x) is not in DN(Q), we make use of Theorem 2.3. We

note that asymptotically half of the bases qn are of the form βi for some
i, and by the previous paragraph, we have that the corresponding digits
En are o(qn). Therefore the sequence (En/qn)∞n=1 is clearly not uniformly
distributed modulo 1.
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To show that τr,s(x) is in N(Q), we make use of the following lemma,
whose proof is elementary.

Lemma 6.1. Let (an)∞n=1 and (bn)∞n=1 be sequences of positive real numbers
such that

∑∞
n=1 bn = ∞. Let (Ni)

∞
i=0 be an increasing sequence of positive

integers with n0 = 1 and define Am =
∑Nm−1

n=Nm−1
an and Bm =

∑Nm−1
n=Nm−1

bn.

Suppose that

lim
m→∞

Am
Bm

= 1 and Bm = o

(
m−1∑
i=1

Bi

)
,

then

lim
n→∞

a1 + a2 + · · ·+ an
b1 + b2 + · · ·+ bn

= 1.

Let us denote the jth appearance of Xi in the bases of Q by Xi,j . In
particular, this will consist of the bases qn where n falls into the following
interval

[Ni,j ,Mi,j ] :=

[(
i−1∑
k=1

2nkvk

)
+ 2(j − 1)`k + 1,

(
i−1∑
k=1

2nkvk

)
+ 2j`k

]
.

Let us write

Q(k)(Xi,j) =

Mi,j∑
n=Ni,j

1

qnqn+1qn+2 · · · qn+k−1

and let N(B, τr,s(x), Xi,j) denote the number of occurrences of the block of
digits B in the Q-Cantor series expansion of τr,s(x) with the first digit of
the block occurring at the nth place, with n ∈ [Ni,j ,Mi,j ].

Comparing these two definitions with the definition of Q-normality in (3),
and using Lemma 6.1, we see that it suffices to show that

(7) N(B, τr,s(x), Xi,j) = Q(k)(Xi,j)(1 + o(1))

as i increases (uniformly for any j ∈ [1, Li]) and that

(8) Q(k)(Xi,j) = o

Li−1∑
j=1

Q(k)(Xi−1,j)


as i increases.

To estimate the size of Q(k)(Xi,j), we note that most of the contribution
comes from the terms when qn = qn+1 = · · · = qn+k−1 = i. There are
precisely `i(ni − k + 1) such terms. If any of the q’s in the denominator
of a term equals (i!)2 (or, possibly (i + 1)!2), then the entire term is at
most i−k+1(i!)−2. And there are precisely `i(ni + k − 1) such summands.
Therefore,

(9) Q(k)(Xi,j) =
`i(ni − k + 1)

ik
+O

(
`i(ni + k − 1)

ik−1(i!)2

)
=
`ini
ik

(1 + o(1))
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where the o(1) is decreasing as i increases and is uniform over j ∈ [1, Li].
From this, we derive

(10)

Li−1∑
j=1

Q(k)(Xi−1,j) = Li−1
`i−1ni−1
(i− 1)k

(1 + o(1))

and therefore (8) derives from comparing (9) and (10) and using the defini-
tion of Li−1.

To estimate the size of N(B, τr,s(x), Xi,j), let us suppose that i is suffi-
ciently large so that the digits of B are less than i and so that all the digits of
τr,s(x) corresponding to the large bases (i!)2 are at least i in size. Therefore
B will only occur in the digit strings corresponding to the small blocks [i]ni .

We know that there are `i such distinct digit strings and at most inie−n
1/5
i

of them can not be (εi, k)-normal. Therefore, we have

N(B, τr,s(x), Xi,j) =
(
i−k +O(εi)

)
`ini +O

(
nii

nie−n
1/5
i

)
(11)

=
`ini
ik

(1 + o(1)).

As before, the o(1) here is decreasing as i increases.
Comparing (9) and (11) gives (7) and completes the proof.

7. Proof of Theorem 2.5

We shall, in fact, prove the following, more explicit theorem.

Theorem 7.1. The basic sequence Q given in (6) is computable. Let
η = 0.E1E2 · · · w.r.t. Q be the real number from the set Θ(α, β, s, t, υ, F, I)
given in Section 6 such that En = iα(n)! if (5) holds (that is, the digits
corresponding to the bases (i!)2 will be i!). Then η is computable.

Proof. The sequence blog(i)c is computable, so ni = iblog(i)c is a computable
sequence. Lexicographically enumerate all integers in [0, ini − 1]. Check
if each integer B satisfies the conditions i!B < ini and if i!|B. This is
computable because the order relation on integers and divisibility of integers
are computable relations. Now lexicographically enumerate the elements of
Li. The size of Li is a computable function of i since we can lexicographically
enumerate the set, so we have that (li) is a computable sequence. Since (ni)
and (li) are computable sequences, the sequence (Li) is also computable.
Furthermore, (2Lilini) is also a computable sequence.

Thus the sequences (αi), (βi), (si), (ti), and (υi) are all computable se-
quences. We can compute the nth term of Q(α, β, s, t, υ) as follows. First
we will compute the mth base of Xj with the following method for integers
m and j. Determine the residue class of m modulo 2nj . If this residue is
less than nj , return j, otherwise return (j!)2. This procedure gives the mth

base of Xj . Now determine the maximum i such that
∑i

j=1 2Ljljnj < n
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and compute N = n −
∑i

j=1 2Ljljnj . To compute this maximum test∑`
j=1 2Ljljnj < n for integers ` starting at 0. Since the sequence (2Ljljnj)

tends to infinity, there must be some finite bound, so this procedure will
terminate. Finally compute the Nth base of Xi and this will be the n term
of Q(α, β, s, t, υ). Thus this basic sequence is computable.

Now we show the sequence (En) is computable. Given n first compute

(a,K) where a = min{j :
∑j

k=1 2Lklknk < n} and K = n −
∑a

j=1 2Ljljnj .
If the residue class of K modulo 2na is greater than or equal to na, output
a!. Otherwise, compute z = bK/(2na)c and return the K mod nath digit
of the zth element of Li. This procedure computes En. Since both (En)

and (qn) are computable sequences, the real number η =
∑∞

j=1
Ej

q1···qj is

computable. �

8. Further problems

The effect of the rational number s on the set we constructed to prove
Theorem 2.4 was negligible. We specifically constructed Q so that the de-
nominator of s had to divide some qn, so addition by s would never change
more than a finite amount of digits by Corollary 3.3, and thus had no im-
pact on either Q-normality or Q-distribution normality (or the lack thereof).
This suggests the following natural question.

Problem 8.1. If we were to restrict Q so that, say qn is not divisible by 3
for every n, then addition by 1/3 would have to change an infinite number
of digits. Are results similar to those given here possible for such Q?

We also ask

Problem 8.2. Does a version of Theorem 2.4 hold for all Q that are infinite
in limit and fully divergent?

Problem 8.3. There exist some basic sequences Q where the set DN(Q)
does not contain any computable real numbers. See [7]. What assumptions
on Q must we have to guarantee that there are computable real numbers in
Ξ(Q)?
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