New York Journal of Mathematics

New York J. Math. 21 (2015) 1269-1282.

On Φ-Mori modules

Ahmad Yousefian Darani and Mahdi Rahmatinia

$$
\begin{aligned}
& \text { Abstract. In this paper we introduce the concept of Mori module. } \\
& \text { An } R \text {-module } M \text { is said to be a Mori module if it satisfies the ascending } \\
& \text { chain conditon on divisorial submodules. Then we introduce a new class } \\
& \text { of modules which is closely related to the class of Mori modules. Let } R \\
& \text { be a commutative ring with identity and set } \\
& \qquad \mathbb{H}=\{M \mid M \text { is an } R \text {-module and } \\
& \qquad \text { Nil }(M) \text { is a divided prime submodule of } M\} . \\
& \text { For an } R \text {-module } M \in \mathbb{H} \text {, set } \\
& \qquad T=(R \backslash Z(M)) \cap(R \backslash Z(R)), \\
& \qquad T(M)=T^{-1}(M), \\
& \qquad P:=\left[\operatorname{Nil}(M):_{R} M\right] .
\end{aligned}
$$

In this case the mapping $\Phi: \mathfrak{T}(M) \longrightarrow M_{P}$ given by $\Phi(x / s)=x / s$ is an R-module homomorphism. The restriction of Φ to M is also an R-module homomorphism from M in to M_{P} given by $\Phi(m / 1)=m / 1$ for every $m \in M$. A nonnil submodule N of M is Φ-divisorial if $\Phi(N)$ is divisorial submodule of $\Phi(M)$. An R-module $M \in \mathbb{H}$ is called Φ Mori module if it satisfies the ascending chain condition on Φ-divisorial submodules. This paper is devoted to study the properties of Φ-Mori modules.

Contents

1. Introduction 1269
2. Mori modules 1272
3. ϕ-Mori modules 1274

References 1280

1. Introduction

We assume throughout this paper all rings are commmutative with $1 \neq 0$ and all modules are unitary. Let R be a ring with identity and $\operatorname{Nil}(R)$ be the set of nilpotent elements of R. Recall from [Dobb76] and [Bada99-b], that a prime ideal P of R is called a divided prime ideal if $P \subset(x)$ for

[^0]every $x \in R \backslash P$; thus a divided prime ideal is comparable to every ideal of R. Badawi in [Bada99-a], [Bada00], [Bada99-b], [Bada01], [Bada02] and [Bada03] investigated the class of rings
\[

$$
\begin{aligned}
& \mathcal{H}=\{R \mid R \text { is a commutative ring with } 1 \neq 0 \text { and } \\
& \qquad \operatorname{Nil}(R) \text { is a divided prime ideal of } R\} .
\end{aligned}
$$
\]

Anderson and Badawi in [AB04] and [AB05] generalized the concept of Prüfer, Dedekind, Krull and Bezout domain to context of rings that are in the class \mathcal{H}. Also, Lucas and Badawi in [BadaL06] generalized the concept of Mori domains to the context of rings that are in the class \mathcal{H}. Let R be a ring, $Z(R)$ the set of zero divisors of R and $S=R \backslash Z(R)$. Then $T(R):=S^{-1} R$ denoted the total quotient ring of R. We start by recalling some background material. A nonzero divisor of a ring R is called a regular element and an ideal of R is said to be regular if it contains a regular element. An ideal I of a ring R is said to be a nonnil ideal if $I \nsubseteq \operatorname{Nil}(R)$. If I is a nonnil ideal of $R \in \mathcal{H}$, then $\operatorname{Nil}(R) \subset I$. In particular, it holds if I is a regular ideal of a ring $R \in \mathcal{H}$. Recall from [AB04] that for a ring $R \in \mathcal{H}$, the map $\phi: T(R) \longrightarrow R_{\mathrm{Nil}(R)}$ given by $\phi(a / b)=a / b$, for $a \in R$ and $b \in R \backslash Z(R)$, is a ring homomorphism from $T(R)$ into $R_{\mathrm{Nil}(R)}$ and ϕ restricted to R is also a ring homomorphism from R into $R_{\mathrm{Nil}(R)}$ given by $\phi(x)=x / 1$ for every $x \in R$.

For a nonzero ideal I of R let $I^{-1}=\{x \in T(R): x I \subseteq R\}$ and let $I_{\nu}=\left(I^{-1}\right)^{-1}$. It is obvious that $I I^{-1} \subseteq R$. An ideal I of R is called invertible, if $I I^{-1}=R$ and also I is called divisorial ideal if $I_{\nu}=I . I$ is said to be a divisorial ideal of finite type if $I=J_{\nu}$ for some finitely generated ideal J of R. A Mori domain is an integral domain that satisfies the ascending chain condition on divisorial ideals. Lucas in [Luc02], generalized the concept of Mori domains to the context of commutative rings with zero divisors. According to [Luc02] a ring is called a Mori ring if it satisfies a.c.c on divisorial regular ideals. Let $R \in \mathcal{H}$. Then a nonnil ideal I of R is called ϕ-invertible if $\phi(I)$ is an invertible ideal of $\phi(R)$. A nonnil ideal I is ϕ-divisorial if $\phi(I)$ is a divisorial ideal of $\phi(R)$ [BadaL06]. Recall from [BadaL06] that R is called ϕ-Mori ring if it satisfies a.c.c on ϕ-divisorial ideals.

Let R be a ring and M be an R-module. Then M is a multiplication R-module if every submodule N of M has the form $I M$ for some ideal I of R. If M be a multiplication R-module and N a submodule of M, then $N=I M$ for some ideal I of R. Hence $I \subseteq\left(N:_{R} M\right)$ and so $N=I M \subseteq$ $\left(N:_{R} M\right) M \subseteq N$. Therefore $N=\left(N:_{R} M\right) M$ [Bar81]. Let M be a multiplication R-module, $N=I M$ and $L=J M$ be submodules of M for ideals I and J of R. Then, the product of N and L is denoted by $N . L$ or $N L$ and is defined by $I J M$ [Ame03]. An R-module M is called a cancellation module if $I M=J M$ for two ideals I and J of R implies $I=J$ [Ali08-a]. By [Smi88, Corollary 1 to Theorem 9], finitely generated faithful multiplication modules are cancellation modules. It follows that if M is a finitely generated
faithful multiplication R-module, then $\left(I N:_{R} M\right)=I\left(N:_{R} M\right)$ for all ideals I of R and all submodules N of M. If R is an integral domain and M a faithful multiplication R-module, then M is a finitely generated R-module [ES98]. Let M be an R-module and set

$$
\begin{aligned}
T & =\{t \in S: \text { for all } m \in M, t m=0 \text { implies } m=0\} \\
& =(R \backslash Z(M)) \cap(R \backslash Z(R)) .
\end{aligned}
$$

Then T is a multiplicatively closed subset of R with $T \subseteq S$, and if M is torsion-free then $T=S$. In particular, $T=S$ if M is a faithful multiplication R-module [ES98, Lemma 4.1]. Let N be a nonzero submodule of M. Then we write $N^{-1}=\left(M:_{R_{T}} N\right)=\left\{x \in R_{T}: x N \subseteq M\right\}$ and $N_{\nu}=\left(N^{-1}\right)^{-1}$. Then N^{-1} is an R-submodule of $R_{T}, R \subseteq N^{-1}$ and $N N^{-1} \subseteq M$. We say that N is invertible in M if $N N^{-1}=M$. Clearly $0 \neq M$ is invertible in M. Following [Ali08-a], a submodule N of M is called a divisorial submodule of M in case $N=N_{\nu} M$. We say that N is a divisorial submodule of finite type if $N=L_{\nu} M$ for some finitely generated submodule L of M. Let R be a ring and M a finitely genetated faithful multiplication R-module. Let N be a submodule of M, then it is obviously that, N is a divisorial submodule of finite type if and only if $\left[N:_{R} M\right]$ is a divisorial ideal of finite type. If M is a finitely generated faithful multiplication R-module, then $N_{\nu}=\left(N:_{R} M\right)$. Consequently, $M_{\nu}=R$. Let M be a finitely generated faithful multiplication R-module, N a submodule of M and I an ideal of R. Then N is a divisorial submodule of M if and only if $\left(N:_{R} M\right)$ is a divisorial ideal of R. Also I is divisorial ideal of R if and only if $I M$ is a divisorial submodule of M [Ali09-a]. If N is an invertible submodule of a faithful multiplication module M over an integral domain R, then $\left(N:_{R} M\right)$ is invertible and hence is a divisorial ideal of R. So N is a divisorial submodule of M [Ali09-a]. If R is an integral domain, M a faithful multiplication R-module and N a nonzero submodule of M, then $N_{\nu}=\left(N:_{R} M\right)_{\nu}$ [Ali09-a, Lemma 1]. We say that a submodule N of M is a radical submodule of M if $N=\sqrt{N}$, where $\sqrt{N}=\sqrt{\left(N:_{R} M\right)} M$.

Let M be an R-module. An element $r \in R$ is said to be zero divisor on M if $r m=0$ for some $0 \neq m \in M$. The set of zero divisors of M is denoted by $Z_{R}(M)$ (briefly, $Z(M)$). It is easy to see that $Z(M)$ is not necessarily an ideal of R, but it has the property that if $a, b \in R$ with $a b \in Z(M)$, then either $a \in Z(M)$ or $b \in Z(M)$. A submodule N of M is called a nilpotent submodule if $\left[N:_{R} M\right]^{n} N=0$ for some positive integer n. An element $m \in M$ is said to be nilpotent if $R m$ is a nilpotent submodule of M [Ali08-b]. We let $\operatorname{Nil}(M)$ to denote the set of all nilpotent elements of M; then $\operatorname{Nil}(M)$ is a submodule of M provided that M is a faithful module, and if in addition M is multiplication, then $\operatorname{Nil}(M)=\operatorname{Nil}(R) M=\bigcap P$, where the intersection runs over all prime submodules of M, [Ali08-b, Theorem 6]. If M contains no nonzero nilpotent elements, then M is called a reduced R-module. A submodule N of M is said to be a nonnil submodule if $N \nsubseteq \operatorname{Nil}(M)$. Recall
that a submodule N of M is prime if whenever $r m \in N$ for some $r \in R$ and $m \in M$, then either $m \in N$ or $r M \subseteq N$. If N is a prime submodule of M, then $p:=\left[N:_{R} M\right]$ is a prime ideal of R. In this case we say that N is a p-prime submodule of M. Let N be a submodule of multiplication R-module M, then N is a prime submodule of M if and only if $\left[N:_{R} M\right]$ is a prime ideal of R if and only if $N=p M$ for some prime ideal p of R with $\left[0:_{R} M\right] \subseteq p,[E S 98$, Corollary 2.11]. Recall from [Ali09-b] that a prime submodule P of M is called a divided prime submodule if $P \subset R m$ for every $m \in M \backslash P$; thus a divided prime submodule is comparable to every submodule of M.

Now assume that $T^{-1}(M)=\mathfrak{T}(M)$. Set

$$
\begin{aligned}
& \mathbb{H}=\{M \mid M \text { is an } R \text {-module and } \\
& \qquad \operatorname{Nil}(M) \text { is a divided prime submodule of } M\} .
\end{aligned}
$$

For an R-module $M \in \mathbb{H}, \operatorname{Nil}(M)$ is a prime submodule of M. So

$$
P:=\left[\operatorname{Nil}(M):_{R} M\right]
$$

is a prime ideal of R. If M is an R-module and $\operatorname{Nil}(M)$ is a proper submodule of M, then $\left[\operatorname{Nil}(M):_{R} M\right] \subseteq Z(R)$. Consequently,

$$
R \backslash Z(R) \subseteq R \backslash\left[\operatorname{Nil}(M):_{R} M\right] .
$$

In particular, $T \subseteq R \backslash\left[\operatorname{Nil}(M):_{R} M\right]$ [Yous]. Recall from [Yous] that we can define a mapping $\Phi: \mathfrak{T}(M) \longrightarrow M_{P}$ given by $\Phi(x / s)=x / s$ which is clearly an R-module homomorphism. The restriction of Φ to M is also an R-module homomorphism from M in to M_{P} given by $\Phi(m / 1)=m / 1$ for every $m \in M$. A nonnil submodule N of M is said to be Φ-invertible if $\Phi(N)$ is an invertible submodule of $\Phi(M)$ [MY]. An R-module M is called a Nonnil-Noetherian module if every nonnil submodule of M is finitely genetated [Yous]. In this paper, we define concept of a Mori module and obtain some properties of this module. Then we introduce a generalization of ϕ-Mori rings.

2. Mori modules

Definition 2.1. Let R be a ring and M be an R-module. Then M is said to be a Mori module if it satisfies on divisorial submodules.

It is clear that, if M is a Noetherian R-module, then M is a Mori R module.

Theorem 2.2. Let R be an integral domain and M a faithful multiplication R-module. Then M is a Mori module if and only if R is a Mori domain.

Proof. Let M be a Mori module and $\left\{I_{m}\right\}$ be an ascending chain of divisorial ideals of R. Then $\left\{\left(I_{m}\right) M\right\}$ is an ascending chain of divisorial submodules of M. Thus there exists an integer $n \geq 1$ such that $\left(I_{n}\right) M=\left(I_{m}\right) M$ for each $m \geq n$. Hence $\left[\left(I_{n}\right) M:_{R} M\right]=\left[\left(I_{m}\right) M:_{R} M\right]$ and so $I_{n}=I_{m}$ for each $m \geq n$. Therefore R is a Mori domain.

Conversely, let R be a Mori ring and $\left\{N_{m}\right\}$ be an ascending chain of divisorial submodules of M. Thus $\left\{\left[N_{m}:_{R} M\right]\right\}$ is an ascending chain of divisorial ideals of R. Then there exists an integer $n \geq 1$ such that $\left[N_{n}:_{R}\right.$ $M]=\left[N_{m}:_{R} M\right]$ for each $m \geq n$. Hence $\left[N_{n}:_{R} M\right] M=\left[N_{m}:_{R} M\right] M$ and so $N_{n}=N_{m}$. Therefore M is a Mori module.
Theorem 2.3. Let R be an integral domain and M a faithful multiplication R-module. Then M is a Mori module if and only if for every strictly descending chain of divisorial submodule $\left\{N_{m}\right\}$ of $M, \bigcap N_{m}=(0)$.
Proof. Let M is a Mori module and $\left\{N_{m}\right\}$ is a strictly descending chain of divisorial submodule of M. Then, by Theorem $2.2, R$ is a Mori domain and $\left\{\left[N_{m}:_{R} M\right]\right\}$ is a strictly descending chain of divisorial ideals of R. So, by [Raill75, Theorem A.O], $\cap\left[N_{m}: R M\right]=(0)$. Therefore

$$
\cap N_{m}=\bigcap\left(\left[N_{m}:_{R} M\right]\right) M=(0) .
$$

Conversely, let $\left\{N_{m}\right\}$ be a strictly descending chain of divisorial submodule of M such that $\bigcap N_{m}=(0)$. Then $\left\{\left[N_{m}:_{R} M\right]\right\}$ is a strictly descending chain of divisorial ideals of R such that $\bigcap\left[N_{m}:_{R} M\right]=(0)$. Hence, by [Raill75, Theorem A.O], R is a Mori domain and therefore by Theorem 2.2, M is a Mori module.
Corollary 2.4. Let R be an integral domain and M a faithful multiplication R-module. If M is a Mori module, then every divisorial submodule of M is contained in only a finite number of maximal divisorial submodules.
Proof. Let M be a Mori module and N a divisorial submodule of M. Then by Theorem $2.2, R$ is a Mori domain and $\left[N:_{R} M\right]$ is a divisorial submodule of R. So, by [BG87], $\left[N:_{R} M\right]$ is contained in only a finite number of maximal divisorial ideals. Since M is faithful multiplication module, N is contained in only a finite number of maximal divisorial submodules of M.

Note that if N is a divisorial submodule of R-module M, then N_{S} is a divisorial submodule of R_{S}-module M_{S} for each multiplicatively closed subset of R, because $N=N_{\nu} M$ and therefore $N_{S}=\left(N_{\nu} M\right)_{S}=\left(N_{\nu}\right)_{S} M_{S}$.
Theorem 2.5. Let M be an Mori R-module. Then M_{S} is a Mori R_{S}-module for each multiplicatively closed subset of R.
Proof. Let $\left\{\mathcal{N}_{m}\right\}$ be an ascending chain of divisorial submodules of M_{S}. Then $\left\{\mathcal{N}_{m}^{c}\right\}$ is an ascending chain of divisorial submodules of M. Thus there exits an integer $n \geq 1$ such that $\mathcal{N}_{n}^{c}=\mathcal{N}_{m}^{c}$ for each $m \geq n$. Therefore $\mathcal{N}_{n}=\mathcal{N}_{n}^{c e}=\mathcal{N}_{m}^{c e}=\mathcal{N}_{m}$ for each $m \geq n$. So M_{S} is a Mori module.
Definition 2.6. A submodule N of M is said to be strong if $N N^{-1}=N$. N is strongly divisorial if it is both strong and divisorial.

Lemma 2.7. Let R be an integral domain an M be a faithful multiplication R-module. Let I be an ideal of R and N ba a submodule of M. Then:
(1) N is strong (strong divisorial) submodule if and only if $\left[N:_{R} M\right]$ is strong (strong divisorial) ideal.
(2) I is strong (strong divisorial) ideal if and only if IM is strong (strong divisorial) submodule.

Proof. It is obvious by [Ali09-a, Lemma 1].
Proposition 2.8. Let R be an integral domain and M a faithful multiplication R-module. Let M be a Mori module and P be a prome submodule of M with $\operatorname{ht}(P)=1$. Then P is a divisorial submodule of M. If $\mathrm{ht}(P) \geq 2$, then either $P^{-1}=R$ or P_{ν} is a strong divisorial submodule of M.

Proof. Let M be a Mori module and P be a prome submodule of M with $\operatorname{ht}(P)=1$. Then, by Theorem 2.2, R is a Mori domain and $\left[P:_{R} M\right]$ is a prime ideal of R such that $\operatorname{ht}\left(\left[P:_{R} M\right]\right)=1$. Therefore, by [Querr71, Proposition 1], $\left[P:_{R} M\right]$ is a divisorial ideal of R and so N is a divisorial submodule of M. If $\operatorname{ht}(P) \geq 2$, then $\operatorname{ht}\left(\left[P:_{R} M\right]\right) \geq 2$. So, by [BG87], $\left[P:_{R} M\right]^{-1}=R$ or $\left[P:_{R} M\right]_{\nu}$ is a strong divisorial ideal of R. Therefore, by [Ali09-a, Lemma 1], $P^{-1}=R$ or P_{ν} is a strong divisorial submodule of M.

Theorem 2.9. Let R be an integral domain and M a faithful multiplication R-module. Then M is a Mori module if and only if for each nonzero submodule N of M, there is a finitely generated submodule $L \subset N$ such that $N^{-1}=L^{-1}$, equivalently, $N_{\nu}=L_{\nu}$.

Proof. Let M be a Mori module and N be a nonzero submodule of M. Then, by Theorem $2.2, R$ is a Mori domain and $\left[N:_{R} M\right]$ is a nonzero ideal of R. Thus, by [Querr71, Theorem 1], there is a finitely generated ideal $J \subset\left[N:_{R} M\right]:=I$ such that $J^{-1}=I^{-1}$. Hence there is a finitely generated submodule $L:=J M \subset I M=N$ such that $N^{-1}=L^{-1}$ by [Ali09-a, Lemma $1]$.

Conversely, if for each nonzero submodule N of M, there is a finitely generated submodule $L \subset N$ such that $N^{-1}=L^{-1}$, then for each nonzero ideal $\left[N:_{R} M\right]$ of R, there is a finitely generated ideal $\left[L:_{R} M\right] \subset\left[N:_{R} M\right]$ such that $\left[\begin{array}{ll}N & :_{R} \\ M\end{array}\right]^{-1}=\left[\begin{array}{ll}L:_{R} & M\end{array}\right]^{-1}$ by [Ali09-a, Lemma 1]. Thus, by [Querr71, Theorem 1], R is a Mori domain and so by Theorem $2.2, M$ is a Mori module.

Corollary 2.10. Let R be an integral domain and M a faithful multiplication R-module. If M is a Mori module, then every divisorial submodule of M is a divisorial submodule of finite type.

3. ϕ-Mori modules

In this section, we define the concept of Φ-Mori module and give some results of this class of modules.

Definition 3.1. Let R be a ring and $M \in \mathbb{H}$ be an R-module. A nonnil submodule N of M is said to be a Φ-divisorial if $\Phi(N)$ is divisorial submodule of $\Phi(M)$. Also, N is called a Φ-divisorial of finite type of M if $\Phi(N)$ is a divisorial submodule of finite type of $\Phi(M)$.

Definition 3.2. Let R be a ring and $M \in \mathbb{H}$ be an R-module. Then M is said to be a Φ-Mori module if it satisfies the ascending chain condition on Φ-divisorial submodules.

Lemma 3.3. Let $M \in \mathbb{H}$ be an R-module and N, L be nonnil submodules of M. Then $N=L$ if and only if $\Phi(N)=\Phi(L)$.

Proof. It is clear that $N=L$ follows $\Phi(N)=\Phi(L)$. Conversely, since $\operatorname{Nil}(M)$ is a divided prime submodule of M and neither N nor L is contained in $\operatorname{Nil}(M)$, both poperly contain $\operatorname{Nil}(M)$. Thus both contain $\operatorname{Ker}(\Phi)$, by [MY, Proposition 2.1]. The result follows from standard module theory.

Proposition 3.4 ([MY, Proposition 2.2]). Let R be a ring and M a finitely generated faithful multiplication R-module with $M \in \mathbb{H}$. Then:
(1) $\operatorname{Nil}\left(M_{P}\right)=\Phi(\operatorname{Nil}(M))=\operatorname{Nil}(\Phi(M))$.
(2) $\operatorname{Nil}(\mathfrak{T}(M))=\operatorname{Nil}(M)$.
(3) $\Phi(M) \in \mathbb{H}$.

Theorem 3.5. Let $M \in \mathbb{H}$. Then M is a Φ-Mori module if and only if $\Phi(M)$ is a Mori module.

Proof. Each submodule of $\Phi(M)$ is the image of a unique nonnil submodule of M and $\Phi(N)$ is a submodule of $\Phi(M)$ for each nonnil submodule N of M. Morover, by definition, if $L=\Phi(N)$, then L is a divisorial submodule of $\Phi(M)$ if and only if N is a Φ-divisorial submodule of M. Thus a chain of Φ-divisorial submodules of M stabilizes if and only if the corresponding chain of divisorial submodules of $\Phi(M)$ stabilizes. It follows that M is a Φ-Mori module if and only if $\Phi(M)$ is a Mori module.

It is worthwhile to note that if R is a commutative ring and $M \in \mathbb{H}$ is an R module, then $\frac{N}{\operatorname{Nii}(M)}$ is a divisorial submodule of $\frac{M}{\operatorname{Nil}(M)}$ if and only if $\frac{\Phi(N)}{\operatorname{Nil}(\Phi(M))}$ is a divisorial submodule of $\frac{\Phi(M)}{\operatorname{Nii}(\Phi(M))}$. For if $\frac{\Phi(N)}{\operatorname{Nil}(\Phi(M))}$ is not divisorial, then $\frac{\Phi(N)}{\operatorname{Nil}(\Phi(M))} \neq \frac{\left.\Phi(N)_{\nu}\right)}{\operatorname{Nil}(\Phi(M))} \frac{\Phi(M)}{\operatorname{Nil}(\Phi(M))}$. So $\Phi(N) \neq \Phi(N)_{\nu} \Phi(M)=\Phi\left(N_{\nu} M\right)$. Thus, by Lemma 3.3, $N \neq N_{\nu} M$. Therefore,

$$
\frac{N}{\operatorname{Nil}(M)} \neq \frac{N_{\nu} M}{\operatorname{Nil}(M)}=\left(\frac{N}{\operatorname{Nil}(M)}\right)_{\nu} \frac{M}{\operatorname{Nil}(M)},
$$

which is a contradiction.
Lemma 3.6. Let $M \in \mathbb{H}$. For each nonnil submodule N of M, N is Φ divisorial if and only if $\frac{N}{\operatorname{Nil}(M)}$ is a divisorial submodule of $\frac{M}{\operatorname{Nil}(M)}$. Moreover, $\Phi(N)$ is invertible if and only if $\frac{N}{\operatorname{Nil}(M)}$ is invertible.

Proof. Let N is Φ-divisorial submodule of M. Then $\Phi(N)$ is divisorial and so $\Phi(N)=\Phi(N)_{\nu} \Phi(M)$. Thus $\frac{\Phi(N)}{\operatorname{Nil}(\Phi(M))}=\frac{\Phi(N)_{\nu}}{\operatorname{Ni}(\Phi(M))} \frac{\Phi(M)}{\operatorname{Nil}(\Phi(M))}$. Therefore $\frac{\Phi(N)}{\operatorname{Nil}(\Phi(M))}$ is a divisorial submodule of $\frac{\Phi(M)}{\operatorname{Nil}(\Phi(M))}$. Thus $\frac{N}{\operatorname{Nil}(M)}$ is a divisorial submodule of $\frac{M}{\operatorname{Nil}(M)}$. Conversely, is same.
Theorem 3.7. Let $M \in \mathbb{H}$. Then M is a Φ-Mori module if and only if $\frac{M}{\mathrm{Nil}(M)}$ is a Mori module.
Proof. Suppose that M is a Φ-Mori module. Let $\left\{\frac{N_{m}}{\operatorname{Nil}(M)}\right\}$ be an ascending chain of divisorial submodules of $\frac{M}{\operatorname{Nil}(M)}$ where each N_{m} is a nonnil submodule of M. Hence $\left\{\Phi\left(N_{m}\right)\right\}$ is an ascending chain of divisorial submodules of $\Phi(M)$, by Lemma 3.6. Thus there exists an integer $n \geq 1$ such that $\Phi\left(N_{n}\right)=\Phi\left(N_{m}\right)$ for each $m \geq n$ and so $N_{n}=N_{m}$ by Lemma 3.3. It follows that $\frac{N_{n}}{\operatorname{Nil}(M)}=\frac{N_{m}}{\operatorname{Nil}(M)}$ as well.

Conversely, suppose that $\frac{M}{\operatorname{Nil}(M)}$ isa Mori module. Let $\left\{N_{m}\right\}$ be an ascending chain of nonnil Φ-divisorial submodules of M. Thus, by Lemma 3.6, $\left\{\frac{N_{m}}{\operatorname{Nil}(M)}\right\}$ is an ascending chain of divisorial submodules of $\frac{M}{\operatorname{Nil}(M)}$. Hence there exists an integer $n \geq 1$ such that $\frac{N_{n}}{\operatorname{Nil}(M)}=\frac{N_{m}}{\operatorname{Nil}(M)}$ for each $m \geq n$. As above, we have $N_{n}=N_{m}$ for each $m \geq n$. So M is a Φ-Mori module.

Theorem 3.8. Let R be a ring and M be a finitely generated faithful multiplication R-module. The following statements are equivalent:
(1) If $R \in \mathcal{H}$ is a ϕ-Mori ring, then M is a Φ-Mori module.
(2) If $M \in \mathbb{H}$ is a Φ-Mori module, then R is a ϕ-Mori ring.

Proof. Since $\operatorname{Nil}(R) \subseteq \operatorname{Ann}\left(\frac{M}{\operatorname{Nil}(R) M}\right)=\operatorname{Ann}\left(\frac{M}{\operatorname{Nil}(M)}\right)$, we have:
$(1) \Rightarrow(2)$ Let $R \in \mathcal{H}$. Then, by [Yous, Proposition 3], $M \in \mathbb{H}$. If R is a ϕ-Mori ring, then by [BadaL06, Theorem 2.5], $\frac{R}{\operatorname{Nil}(R)}$ is a Mori domain. So, by Theorem 2.2, $\frac{M}{\operatorname{Nil}(M)}$ is a Mori module. Therefore, by Theorem 3.7, M is a Φ-Mori module.
$(2) \Rightarrow(1)$ Let $M \in \mathbb{H}$. Then, by [Yous, Proposition 3], $R \in \mathcal{H}$. If M is a Φ-Mori module, then by Theorem 3.7, $\frac{M}{\mathrm{Nil}(M)}$ is a Mori module. So, by Theorem 2.2, $\frac{R}{\operatorname{Nil}(R)}$ is a Mori domain. Therefore, by [BadaL06, Theorem 2.5], R is a ϕ-Mori ring.

Theorem 3.9 ([MY, Lemma 2.6]). Let R be a ring and M a finitely generated faithful multiplication R-module with $M \in \mathbb{H}$. Then $\frac{M}{\operatorname{Nil}(M)}$ is isomorphic to $\frac{\Phi(M)}{\operatorname{Nil}(\Phi(M))}$ as R-module.
Corollary 3.10. Let R be a ring and M a finitely generated faithful multiplication R-module with $M \in \mathbb{H}$. Then M is a Φ-Mori module if and only if $\frac{\Phi(M)}{\operatorname{Nil}(\Phi(M))}$ is a Mori module.

Lemma 3.11. Let R be a ring and M a finitely generated faithful multiplication R-module with $M \in \mathbb{H}$. Suppose that a nonnil submodule N of M is a divisorial submodule of M. Then $\Phi(N)$ is a divisorial submodule of $\Phi(M)$, i.e., N is a Φ-divisorial submodule of M.

Proof. We must show that $\Phi(N)=\Phi(N)_{\nu} \Phi(M)$. Since

$$
\left[\Phi(N):_{R} \Phi(M)\right] \subseteq\left[\Phi(N):_{R} \Phi(M)\right]_{\nu},
$$

$\left[\Phi(N):_{R} \Phi(M)\right] \Phi(M) \subseteq\left[\Phi(N):_{R} \Phi(M)\right]_{\nu} \Phi(M)$. Hence

$$
\Phi(N) \subseteq \Phi(N)_{\nu} \Phi(M)
$$

by [Ali09-a, Lemma 1]. Now, let $y \in \Phi(N)_{\nu} \Phi(M)$. Then $y=\sum a_{i} m_{i}$ where $a_{i} \in \Phi(N)_{\nu}$ and $m_{i}=\Phi\left(m_{i}\right) \in \Phi(M)$. Since $\Phi(N)_{\nu} \subseteq R, a_{i} \in R$. If $x \in N^{-1}$ then $\Phi(x) \in \Phi(N)^{-1}=\left[\Phi(M):_{R} \Phi(N)\right]$. Therefore

$$
\begin{aligned}
y \Phi(x) & =\left(\sum a_{i} m_{i}\right) \Phi(x)=\left(\sum a_{i} \Phi\left(m_{i}\right)\right) \Phi(x)=\sum a_{i} \Phi\left(m_{i} x\right) \\
& =\sum \Phi\left(a_{i} m_{i} x\right)=\Phi\left(\sum a_{i} m_{i} x\right) .
\end{aligned}
$$

Since $\Phi(N)_{\nu} \Phi(N)^{-1} \subseteq \Phi(M), y \Phi(x)=\Phi\left(\sum a_{i} m_{i} x\right) \in \Phi(M)$. Hence $\left(\sum a_{i} m_{i}\right) x \in M$. Since N is a divisorial submodule and $x \in N^{-1}$ is arbitrary, $\sum a_{i} m_{i} \in N$. Thus $\Phi\left(\sum a_{i} m_{i}\right)=\sum \Phi\left(a_{i} m_{i}\right)=\sum a_{i} \Phi\left(m_{i}\right) \in \Phi(N)$. Therefore $y=\sum a_{i} m_{i} \in \Phi(N)$ as well.

Theorem 3.12. Let R be a ring and M a finitely generated faithful multiplication R-module with $M \in \mathbb{H}$. If M is a Φ-Mori module, then M satiesfies the A.C.C on nonnil divisorial submodules of M. In particular M is a Mori module.

Proof. Let N_{m} be an ascending chain of nonnil divisorial submodules of M. Hence, by Lemma 3.11, $\Phi\left(N_{m}\right)$ is an ascending chain of divisorial submodules of $\Phi(M)$. Since $\Phi(M)$ is a Mori module by Theorem 3.5, there exists an integer $n \geq 1$ such that $\Phi\left(N_{n}\right)=\Phi\left(N_{m}\right)$ for each $m \geq n$. Thus $N_{n}=N_{m}$ by Lemma 3.3. The "In particular" statement is now clear.
Theorem 3.13. Let $M \in \mathbb{H}$ be a Φ-Noetherian module. Then M is a Φ-Mori module.

Proof. It is clear by [Yous, Theorem 10].
Theorem 3.14. Let R be a ring and M a finitely generated faithful multiplication R-module with $M \in \mathbb{H}$. Let M be a Φ-Mori module and N be a Φ-divisorial submodule of M. Then N contains a power of its radical.

Proof. Let M be a Φ-Mori module. Then, by Theorem 3.7, $\frac{M}{\operatorname{Nil}(M)}$ is a Mori module and so R is a Mori domain. Since N is a Φ-divisorial submodule of M, then $\frac{N}{\operatorname{Nil}(M)}$ is a divisorial submodule of $\frac{M}{\operatorname{Nil}(M)}$ by Lemma 3.6. Hence $\left[\frac{N}{\operatorname{Nil}(M)}: R \frac{M}{\operatorname{Nil}(M)}\right]$ is a divisorial ideal of R and therefore contains a power of
its radical by [Raill75, Theorem 5]. In other words, there exists an positive integer n such that

$$
\left(\sqrt{\left[\frac{N}{\operatorname{Nil}(M)}: R \frac{M}{\operatorname{Nil}(M)}\right]}\right)^{n} \subseteq\left[\frac{N}{\operatorname{Nil}(M)}: R \frac{M}{\operatorname{Nil}(M)}\right]
$$

Hence $\left(\sqrt{\frac{N}{\operatorname{Nil}(M)}}\right)^{n} \subseteq \frac{N}{\operatorname{Nil}(M)}$. Since $\operatorname{Nil}(M)$ is divided, N contains a power of its radical.

We will extend concepts of definition 2.6 to the module in \mathbb{H}.
Definition 3.15. Let $M \in \mathbb{H}$ and N be a nonnil submodule of M. Then N is Φ-strong if $\Phi(N)$ is strong, i.e., $\Phi(N) \Phi(N)^{-1}=\Phi(N)$. Also, N is strongly Φ-divisorial if N is both Φ-strong and Φ-divisorial.

Obviously, N is Φ-strong (or strongly Φ-divisorial) if and only if $\Phi(N)$ is strong (or strongly divisorial).
Lemma 3.16. Let $M \in \mathbb{H}$ be a Φ-Mori module and N be a nonnil submodule of M. Then the following hold:
(1) N is a Φ-strong submodule of M if and only if $\frac{N}{\operatorname{Nil}(M)}$ is a strong submodule of $\frac{M}{\operatorname{Nil}(M)}$.
(2) N is strongly Φ-divisorial if and only if $\frac{N}{\operatorname{Nil}(M)}$ is a strongly divisorial submodule of $\frac{M}{\operatorname{Nil}(M)}$.
Proof. (1) N is a Φ-strong if and only if $\Phi(N)$ is strong if and only if $\Phi(N) \Phi(N)^{-1}=\Phi(N)$ if and only if $\frac{\Phi(N)}{\operatorname{Nil}(\Phi(M))} \frac{\Phi(N)^{-1}}{\operatorname{Nil}(\Phi(M))}=\frac{\Phi(N)}{\operatorname{Nil}(\Phi(M))}$ if and only if $\frac{\Phi(N)}{\operatorname{Nil}(\Phi(M))}$ is strong if and only if $\frac{N}{\operatorname{Nil}(M)}$ is strong.
(2) N is strongly Φ-divisorial if and only N is both Φ-strong and Φ divisorial if and only if $\Phi(N)$ is both strong and divisorial if and only if $\frac{\Phi(N)}{\operatorname{Nil}(\Phi(M))}$ is both strong and divisorial if and only if $\frac{N}{\operatorname{Nil}(M)}$ is a strongly divisorial.

Set $P:=\left(\operatorname{Nil}(M):_{R} M\right)$. Then P is a prime ideal of R and we have

$$
\left(\frac{M}{\operatorname{Nil}(M)}\right)_{P}=\frac{M_{P}}{\operatorname{Nil}\left(M_{P}\right)}
$$

[MY].
Theorem 3.17. Let $M \in \mathbb{H}$ be a Φ-Mori module. Then M_{P} is a Φ-Mori module.

Proof. Let M be a Φ-Mori module. Then, by Theorem 3.7, $\frac{M}{\operatorname{Nil}(M)}$ is a Mori module. Hence $\left(\frac{M}{\operatorname{Nil}(M)}\right)_{P}=\frac{M_{P}}{\operatorname{Nil}\left(M_{P}\right)}$ is a Mori module by Theorem 2.5. Therefore, by Theorem 3.7, M_{P} is a Φ-Mori module.

Theorem 3.18. Let R be a ring and M a finitely generated faithful multiplication R-module with $M \in \mathbb{H}$. Let M be a Φ-Mori module and P be a nonnil prime submodule of M minimal over a nonnil principal submodule N of M. If P is finitely generated, then $h t(P)=1$.
Proof. Let M be a Φ-Mori module. Then, by Theorem 3.7, $\frac{M}{\text { Nil }(M)}$ is a Mori module and so R is a Mori domain. Also, by [MY, Theorem 2.8 and Corollary 2.9], we have $\frac{P}{\operatorname{Nil}(M)}$ is a minimal finitely generated prime submodule of $\frac{M}{\operatorname{Nil}(M)}$ over the principal submodule $\frac{N}{\operatorname{Nil}(M)}$ of $\frac{M}{\operatorname{Nil}(M)}$. Thus $\left[\frac{P}{\operatorname{Nil}(M)}: R \frac{M}{\operatorname{Nil}(M)}\right]$ is a minimal finitely generated prime ideal of R over the principal ideal $\left[\frac{N}{\operatorname{Nil}(M)}:_{R} \frac{M}{\operatorname{Nil}(M)}\right]$ of R. Then, by [BAD87, Theorem 3.4], $\operatorname{ht}\left(\left[\frac{P}{\operatorname{Nil}(M)}: R \frac{M}{\operatorname{Nil}(M)}\right]\right)=1$. Therefore $\operatorname{ht}\left(\frac{P}{\operatorname{Nil}(M)}\right)=1$ and so $\operatorname{ht}(P)=1$.
Proposition 3.19. Let R be an integral domain and M a faithful multiplication R-module with $M \in \mathbb{H}$. Let M be a Φ-Mori R-module and P be a nonnil prime submodule of M such that $\mathrm{ht}(P)=1$. Then P is a Φ divisorial submodule of M. If $\operatorname{ht}(P) \geq 2$, then either $P^{-1}=R$ or P_{ν} is a strong divisorial submodule of M.

Proof. Let M be a Φ-Mori R-module and P be a nonnil prime submodule of M. Then, by Theorem 3.7, $\frac{M}{\operatorname{Nil}(M)}$ is a Mori module and $\frac{P}{\operatorname{Nil}(M)}$ is a prime submoduel of $\frac{M}{\operatorname{Nil}(M)}$ with $\operatorname{ht}\left(\frac{P}{\operatorname{Nil}(M)}\right)=1$. Therefore, by Proposition 2.8, $\frac{P}{\operatorname{Nil}(M)}$ is a divisorial submodule of $\frac{M}{\operatorname{Nil}(M)}$ and so by Theorem 3.6, P is a Φ-divisorial submodule of M. Now, let $\operatorname{ht}(P) \geq 2$. Then $\operatorname{ht}\left(\frac{P}{\operatorname{Nil}(M)}\right) \geq 2$ and so by Proposition 2.8, $\left(\frac{P}{\operatorname{Nil}(M)}\right)^{-1}=R$ or $\left(\frac{P}{\operatorname{Nil}(M)}\right)_{\nu}$ is a strong divisorial submodule of M. Therefore, $P^{-1}=R$ or P_{ν} is a strong divisorial submodule of M.

Theorem 3.20. Let R be a ring and M a finitely generated faithful multiplication R-module with $M \in \mathbb{H}$. Then M is a Φ-Mori module if and only if for each nonnil submodule N of M, there exists a nonnil finitely generated submodule $L \subset N$ such that $\Phi(N)^{-1}=\Phi(L)^{-1}$, equivalently $\Phi(N)_{\nu}=\Phi(L)_{\nu}$.
Proof. Suppose that M is a Φ-Mori module and N be a nonnil submodule of M. Since by Theorem 3.7, $\frac{M}{\operatorname{Nil}(M)}$ is a Mori module and $F:=\frac{N}{\operatorname{Nil}(M)}$ is a nonzero submodule of $\frac{M}{\operatorname{Nil}(M)}$, there exists a finitely generated submodule $L \subset F$ such that $F^{-1}=L^{-1}$. Since $L=\frac{K}{\operatorname{Nil}(M)}$ for some nonnil finitely generated submodule K of M by [MY, Theorem 2.8], and $\mathfrak{T}\left(\frac{M}{\operatorname{Ni}(M)}\right)=$ $\mathfrak{T}\left(\frac{\Phi(M)}{\operatorname{Nil}(\Phi(M))}\right)$, we conclude that $\Phi(N)^{-1}=\Phi(L)^{-1}$.

Conversely, suppose that for each nonnil submodule N of M, there exists a nonnil finitely generated submodule $L \subset N$ such that $\Phi(N)^{-1}=\Phi(L)^{-1}$. Then for each nonzero submodule $F:=\frac{N}{\operatorname{Nil}(M)}$ of $\frac{M}{\operatorname{Nil}(M)}$ there exists a finitely generated submodule $K \subset F$ such that $F^{-1}=K^{-1}$. Hence $\frac{M}{\operatorname{Nil}(M)}$ is a

Mori module by Theorem 2.9. Therefore, by Theorem 3.7, M is a Φ-Mori module.

Corollary 3.21. Let R be a ring and M a finitely generated faithful multiplication R-module with $M \in \mathbb{H}$. If M is a Φ-Mori module, then every Φ-divisorial submodule of M is a Φ-divisorial submodule of finite type.
Proof. Let M be a Φ-Mori module and N be a Φ-divisorial submodule of M. Then, by Theorem 3.5, $\Phi(M)$ is a Mori module and $\Phi(N)$ is a divisorial submodule of $\Phi(M)$. Thus, by Theorem 2.9, there is a finitely generated submodule $\Phi(L) \subseteq \Phi(N)$ such that $\Phi(N)_{\nu}=\Phi(L)_{\nu}$. Since $\Phi(N)$ is divisorial, $\Phi(N)=\Phi(L)_{\nu}$. Therefore N is a Φ-divisorial submodule of finite type.
Theorem 3.22. Let R be a ring and M a finitely generated faithful multiplication R-module with $M \in \mathbb{H}$. Then the following statements are equivalent:
(1) M is a Φ-Mori module.
(2) R is a ϕ-Mori ring.
(3) $\Phi(M)$ is a Mori module.
(4) $\frac{M}{\mathrm{Nil}(M)}$ is a Mori module.
(5) $\frac{\Phi(M)}{\operatorname{Nil}(\Phi(M))}$ is a Mori module.
(6) For each nonnil submodule N of M, there exists a nonnil finitely generated submodule $L \subset N$ such that $\Phi(N)^{-1}=\Phi(L)^{-1}$.
(7) For each nonnil submodule N of M, there exists a nonnil finitely generated submodule $L \subset N$ such that $\Phi(N)_{\nu}=\Phi(L)_{\nu}$.
Acknowledgments. We thank the referees for their careful reading of the whole manuscipt and their helpful suggestions.

References

[Ali08-a] Ali, Majid M. Some remarks on generalized GCD domains. Comm. Algebra 36 (2008), no. 1, 142-164. MR2378375 (2008m:13003), Zbl 1170.13005, doi: 10.1080/00927870701665271.
[Ali08-b] Ali, Majid M. Idempotent and nilpotent submodules of multiplication modules. Comm. Algebra 36 (2008), no. 12, 4620-4642. MR2473351 (2010b:13022), Zbl 1160.13004, doi: 10.1080/00927870802186805.
[Ali09-a] Ali, Majid M. Invertibility of multiplication modules II. New Zealand J. Math. 39 (2009), 45-64. MR2646996 (2011g:13018), Zbl 1239.13018.
[Ali09-b] Ali, Majid M. Invertibility of multiplication modules III. New Zealand J. Math. 39 (2009) 193-213. MR2772409 (2012c:13026), Zbl 1239.13019.
[Ame03] Ameri, Reza. On the prime submodules of multiplication modules. Int. J. Math. Math. Sci. (2003), no. 27, 1715-1724. MR1981026 (2004c:16002), Zbl 1042.16001, doi: 10.1155/S0161171203202180.
[AB04] Anderson, David F.; Badawi, Ayman. On ϕ-Prüfer rings and ϕ-Bezout rings. Houston J. Math. 30 (2004), no. 2, 331-343. MR2084906 (2005e:13030), Zbl 1089.13513.
[AB05] Anderson, David F.; Badawi, Ayman. On ϕ-Dedekind rings and ϕ Krull rings. Houston J. Math. 31 (2005), no. 4, 1007-1022. MR2175419 (2006f:13017), Zbl 1094.13030.
[Bada99-a] Badawi, Ayman. On ϕ-pseudo- valuation rings. Advances in commutative ring theory (Fez, 1997), 101-110, Lecture Notes Pure Appl. Math., 205. Dekker, New York, 1999. MR1767453 (2001g:13050), Zbl 0962.13018.
[Bada99-b] Badawi, Ayman. On divided commutative rings. Comm. Algebra 27 (1999), no. 3, 1465-1474. MR1669131 (2000a:13001), Zbl 0923.13001, doi: 10.1080/00927879908826507.
[Bada00] Badawi, Ayman. On Ф-pseudo-valuation rings. II. Houston J. Math. 26 (2000), no. 3, 473-480. MR1811935 (2001m:13034), Zbl 0972.13004.
[Bada01] Badawi, Ayman. On ϕ-chained rings and ϕ-pseudo-valuation rings. Houston J. Math. 27 (2001), no. 4, 725-736. MR1874667, Zbl 1006.13004.
[Bada02] Badawi, Ayman. On divided rings and ϕ-pseudo-valuation rings. Int. J. Commut. Rings 1 (2002), no. 2, 51-60. Zbl 1058.13012.
[Bada03] Badawi, Ayman. On nonnil-Noetherian rings. Comm. Algebra 31 (2003), no. 4, 1669-1677. MR1972886 (2004g:13013), Zbl 1018.13010, doi: 10.1081/AGB120018502.
[BadaL06] Badawi, Ayman; Lucas, Thomas G. On ϕ-Mori rings. Houston J. Math. 32 (2006), no. 1, 1-32. MR2202350 (2007b:13031), Zbl 1101.13031.
[Bar81] Barnard, George A. Multiplication modules. J. Algebra 71 (1981), no. 1, 174-178. MR0627431 (82k:13008), Zbl 0468.13011, doi:10.1016/0021-8693(81)90112-5.
[BAD87] Barucci, Valentina; Anderson, David F.; Dobbs, David E. Coherent Mori domain and the principal ideal theorem. Comm. Algebra 15 (1987), no. 6, 1119-1156. MR0882945 (88c:13015), Zbl 0622.13007, doi: 10.1080/00927878708823460.
[BG87] Barucci, Valentina; Gabelli, Stefania. How far is a Mori domain from being a Krull domain. J. Pure App. Algebra 45 (1987), no. 2, 101-112. MR0889586 (88j:13025), Zbl 0623.13008, doi: 10.1016/0022-4049(87)90063-6.
[Dobb76] Dobbs, David E. Divided rings and going-down. Pacific J. math. 67 (1976), no. 2, 353-363. MR0424795 (54 \#12753), Zbl 0326.13002, doi: 10.2140/pjm.1976.67.353.
[ES98] El-Bast, Zeinab Abd; Smith, Patrick F. Multiplication modules. Comm. Algebra 16 (1988), no. 4, 755-799. MR932633 (89f:13017), Zbl 0642.13002, doi: 10.1080/00927878808823601.
[Luc02] Lucas, Thomas G. The Mori property in rings with zero divisors. Rings, modules, algebras, and abelian groups, 379-400, Lecture Notes Pure Appl. Math, 236. Dekker, New York, 2004. MR2050726 (2005b:13037), Zbl 1093.13014.
[MY] Motmaen, Shahram; Yousefian Darani, Ahmad. On Φ-Dedekind, ϕ Prüfer and Φ-Bezout modules. Submitted.
[Querr71] Querré, Julien. Sur une propriété des anneaux de Krull. Bull. Sci. Math. (2) 95 (1971), 341-354. MR0299596 (45 \#8644), Zbl 0219.13015.
[Raill75] Raillard, Nicole. Sur les anneaux de Mori. C. R. Acad. Sci. Paris Sér. A-B 280 (1975), no. 23, Ai, A1571-A1573. MR0379482 (52 \#387), Zbl 0307.13010.
[Smi88] Smith, Patrick F. Some remarks on multiplication modules. Arch. Math. (Basel) 50 (1988), no. 3, 223-235. MR0933916 (89f:13019), Zbl 0615.13003, doi: 10.1007/BF01187738.
[Yous] Yousefian Darani, Ahmad. Nonnil-Noetherian modules over a commutative rings. Submitted.
(Ahmad Yousefian Darani) Department of Mathematics and Applications, University of Mohaghegh Ardabili, P. O. Box 179, Ardabil, Iran
yousefian@uma.ac.ir
youseffian@gmail.com
(Mahdi Rahmatinia) Department of Mathematics and Applications, University of Mohaghegh Ardabili, P. O. Box 179, Ardabil, Iran
m.rahmati@uma.ac.ir
mahdi.rahmatinia@gmail.com
This paper is available via http://nyjm.albany.edu/j/2015/21-57.html.

[^0]: Received July 18, 2015.
 2010 Mathematics Subject Classification. 16D10, 16D80.
 Key words and phrases. Mori module; divisorial submodule; Φ-Mori module, Φ divisorial submodule.

