New York Journal of Mathematics

New York J. Math. 21 (2015) 1179-1245.

C^{*}-algebras associated with textile dynamical systems

Kengo Matsumoto

Abstract

A C^{*}-symbolic dynamical system $(\mathcal{A}, \rho, \Sigma)$ is a finite family $\left\{\rho_{\alpha}\right\}_{\alpha \in \Sigma}$ of endomorphisms of a C^{*}-algebra \mathcal{A} with some conditions. It yields a C^{*}-algebra \mathcal{O}_{ρ} from an associated Hilbert C^{*}-bimodule. In this paper, we will extend the notion of C^{*}-symbolic dynamical system to C^{*}-textile dynamical system $\left(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa\right)$ which consists of two C^{*}-symbolic dynamical systems $\left(\mathcal{A}, \rho, \Sigma^{\rho}\right)$ and $\left(\mathcal{A}, \eta, \Sigma^{\eta}\right)$ with certain commutation relations κ between their endomorphisms $\left\{\rho_{\alpha}\right\}_{\alpha \in \Sigma^{\rho}}$ and $\left\{\eta_{a}\right\}_{a \in \Sigma^{\eta}} . C^{*}$-textile dynamical systems yield two-dimensional subshifts and C^{*}-algebras $\mathcal{O}_{\rho, \eta}^{\kappa}$. We will study their structure of the algebras $\mathcal{O}_{\rho, \eta}^{\kappa}$ and present its K-theory formulae.

Contents

1. Introduction1180
2. λ-graph systems, C^{*}-symbolic dynamical systems and their C^{*}-algebras 1183
3. $\quad C^{*}$-textile dynamical systems and two-dimensional subshifts 1186
4. C^{*}-textile dynamical systems and their C^{*}-algebras 1190
5. Condition (I) for C^{*}-textile dynamical systems 1195
6. Concrete realization 1204
7. K-Theory machinery 1208
8. K-Theory formulae 1217
9. Examples 1234
9.1. LR-textile λ-graph systems 1234
9.2. Tensor products 1240
10. Concluding remark 1242
References 1242

Received April, 4, 2012.
2010 Mathematics Subject Classification. Primary 46L35, 37B10; Secondary 46L55, 37B10.

Key words and phrases. C^{*}-algebra, symbolic dynamics, subshift, K-group, tiling.
This work was supported by JSPS KAKENHI Grant Numbers 20540215, 23540237 and 15K04896.

1. Introduction

In [24], the author has introduced a notion of λ-graph system as presentations of subshifts. The λ-graph systems are labeled Bratteli diagram with shift transformation. They yield C^{*}-algebras so that its K-theory groups are related to topological conjugacy invariants of the underlying symbolic dynamical systems. The class of these C^{*}-algebras include the Cuntz-Krieger algebras. He has extended the notion of λ-graph system to C^{*}-symbolic dynamical system, which is a generalization of both a λ-graph system and an automorphism of a unital C^{*}-algebra. It is a finite family $\left\{\rho_{\alpha}\right\}_{\alpha \in \Sigma}$ of endomorphisms of a unital C^{*}-algebra \mathcal{A} such that $\rho_{\alpha}\left(Z_{\mathcal{A}}\right) \subset Z_{\mathcal{A}}, \alpha \in \Sigma$ and $\sum_{\alpha \in \Sigma} \rho_{\alpha}(1) \geq 1$ where $Z_{\mathcal{A}}$ denotes the center of \mathcal{A}. A finite labeled graph \mathcal{G} gives rise to a C^{*}-symbolic dynamical system $\left(\mathcal{A}_{\mathcal{G}}, \rho^{\mathcal{G}}, \Sigma\right)$ such that $\mathcal{A}=\mathbb{C}^{N}$ for some $N \in \mathbb{N}$. A λ-graph system \mathfrak{L} is a generalization of a finite labeled graph and yields a C^{*}-symbolic dynamical system $\left(\mathcal{A}_{\mathfrak{L}}, \rho^{\mathfrak{L}}, \Sigma\right)$ such that $\mathcal{A}_{\mathfrak{L}}$ is $C\left(\Omega_{\mathfrak{L}}\right)$ for some compact Hausdorff space $\Omega_{\mathfrak{L}}$ with $\operatorname{dim} \Omega_{\mathfrak{L}}=0$. It also yields a C^{*}-algebra $\mathcal{O}_{\mathfrak{L}}$. A C^{*}-symbolic dynamical system $(\mathcal{A}, \rho, \Sigma)$ provides a subshift Λ_{ρ} over Σ and a Hilbert C^{*}-bimodule $\mathcal{H}_{\mathcal{A}}^{\rho}$ over \mathcal{A}. The C^{*}-algebra \mathcal{O}_{ρ} for $(\mathcal{A}, \rho, \Sigma)$ may be realized as a Cuntz-Pimsner algebra from the Hilbert C^{*}-bimodule $\mathcal{H}_{\mathcal{A}}^{\rho}$ ([27], cf. [15], [39]). We call the algebra \mathcal{O}_{ρ} the C^{*}-symbolic crossed product of \mathcal{A} by the subshift Λ_{ρ}. If $\mathcal{A}=C(X)$ with $\operatorname{dim} X=0$, there exists a λ-graph system \mathfrak{L} such that the subshift Λ_{ρ} is the subshift $\Lambda_{\mathfrak{L}}$ presented by \mathfrak{L} and the C^{*}-algebra \mathcal{O}_{ρ} is the C^{*}-algebra $\mathcal{O}_{\mathfrak{L}}$ associated with \mathfrak{L}. If in particular, $\mathcal{A}=\mathbb{C}^{N}$, the subshift Λ_{ρ} is a sofic shift and \mathcal{O}_{ρ} is a Cuntz-Krieger algebra. If $\Sigma=\{\alpha\}$ an automorphism α of a unital C^{*}-algebra \mathcal{A}, the C^{*}-algebra \mathcal{O}_{ρ} is the ordinary crossed product $\mathcal{A} \times{ }_{\alpha} \mathbb{Z}$.
G. Robertson-T. Steger [43] have initiated a certain study of higher dimensional analogue of Cuntz-Krieger algebras from the view point of tiling systems of 2-dimensional plane. After their work, A. Kumjian-D. Pask [19] have generalized their construction to introduce the notion of higher rank graphs and its C^{*}-algebras. The C^{*}-algebras constructed from higher rank graphs are called the higher rank graph C^{*}-algebras. Since then, there have been many studies on these C^{*}-algebras by many authors (cf. [1], [9], [10], [11], [13], [16], [19], [36], [42], [43], etc.).
M. Nasu in [34] has introduced the notion of textile system which is useful in analyzing automorphisms and endomorphisms of topological Markov shifts. A textile system also gives rise to a two-dimensional tiling called Wang tiling. Among textile systems, LR textile systems have specific properties that consist of two commuting symbolic matrices. In [28], the author has extended the notion of textile systems to λ-graph systems and has defined a notion of textile systems on λ-graph systems, which are called textile λ-graph systems for short. C^{*}-algebras associated to textile systems have been initiated by V. Deaconu ([9]).

In this paper, we will extend the notion of C^{*}-symbolic dynamical system to C^{*}-textile dynamical system which is a higher dimensional analogue of C^{*}-symbolic dynamical system. The C^{*}-textile dynamical system $\left(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa\right)$ consists of two C^{*}-symbolic dynamical systems $\left(\mathcal{A}, \rho, \Sigma^{\rho}\right)$ and $\left(\mathcal{A}, \eta, \Sigma^{\eta}\right)$ with the following commutation relations between ρ and η through κ. Set

$$
\begin{aligned}
& \Sigma^{\rho \eta}=\left\{(\alpha, b) \in \Sigma^{\rho} \times \Sigma^{\eta} \mid \eta_{b} \circ \rho_{\alpha} \neq 0\right\} \\
& \Sigma^{\eta \rho}=\left\{(a, \beta) \in \Sigma^{\eta} \times \Sigma^{\rho} \mid \rho_{\beta} \circ \eta_{a} \neq 0\right\}
\end{aligned}
$$

We require that there exists a bijection $\kappa: \Sigma^{\rho \eta} \longrightarrow \Sigma^{\eta \rho}$, which we fix and call a specification. Then the required commutation relations are

$$
\begin{equation*}
\eta_{b} \circ \rho_{\alpha}=\rho_{\beta} \circ \eta_{a} \quad \text { if } \kappa(\alpha, b)=(a, \beta) \tag{1.1}
\end{equation*}
$$

A C^{*}-textile dynamical system provides a two-dimensional subshifts and a C^{*}-algebra $\mathcal{O}_{\rho, \eta}^{\kappa}$. The C^{*}-algebra $\mathcal{O}_{\rho, \eta}^{\kappa}$ is defined to be the universal C^{*} algebra $C^{*}\left(x, S_{\alpha}, T_{a} ; x \in \mathcal{A}, \alpha \in \Sigma^{\rho}, a \in \Sigma^{\eta}\right)$ generated by $x \in \mathcal{A}$ and two families of partial isometries $S_{\alpha}, \alpha \in \Sigma^{\rho}, T_{a}, a \in \Sigma^{\eta}$ subject to the following relations called $(\rho, \eta ; \kappa)$:

$$
\begin{array}{rc}
\sum_{\beta \in \Sigma^{\rho}} S_{\beta} S_{\beta}^{*}=1, \quad x S_{\alpha} S_{\alpha}^{*}=S_{\alpha} S_{\alpha}^{*} x, & S_{\alpha}^{*} x S_{\alpha}=\rho_{\alpha}(x) \\
\sum_{b \in \Sigma^{\eta}} T_{b} T_{b}^{*}=1, \quad x T_{a} T_{a}^{*}=T_{a} T_{a}^{*} x, \quad T_{a}^{*} x T_{a}=\eta_{a}(x) \\
S_{\alpha} T_{b}=T_{a} S_{\beta} \quad \text { if } \quad \kappa(\alpha, b)=(a, \beta) \tag{1.4}
\end{array}
$$

for all $x \in \mathcal{A}$ and $\alpha \in \Sigma^{\rho}, a \in \Sigma^{\eta}$.
In Section 3, we will construct a tiling system in the plane from a C^{*} textile dynamical system. The resulting tiling system is a two-dimensional subshift. In Section 4, we will study some basic properties of the C^{*} algebra $\mathcal{O}_{\rho, \eta}^{\kappa}$. In Section 5, we will introduce a condition called (I) on $\left(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa\right)$ which will be studied as a generalization of the condition (I) on C^{*}-symbolic dynamical system [26] (cf. [8], [25]). In Section 6, we will realize the C^{*}-algebra $\mathcal{O}_{\rho, \eta}^{\kappa}$ as a Cuntz-Pimsner algebra associated with a certain Hilbert C^{*}-bimodule in a concrete way. We will have the following theorem.

Theorem 1.1. Let $\left(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa\right)$ be a C^{*}-textile dynamical system satisfying condition (I). Then the C^{*}-algebra $\mathcal{O}_{\rho, \eta}^{\kappa}$ is a unique concrete C^{*} algebra subject to the relations $(\rho, \eta ; \kappa)$. If $\left(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa\right)$ is irreducible, $\mathcal{O}_{\rho, \eta}^{\kappa}$ is simple.

A C^{*}-textile dynamical system $\left(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa\right)$ is said to form square if the C^{*}-subalgebra of \mathcal{A} generated by the projections $\rho_{\alpha}(1), \alpha \in \Sigma^{\rho}$ and the C^{*}-subalgebra of \mathcal{A} generated by the projections $\eta_{a}(1), a \in \Sigma^{\eta}$ coincide. It is said to have trivial K_{1} if $K_{1}(\mathcal{A})=\{0\}$. In Section 7 and Section 8, we
will restrict our interest to the C^{*}-textile dynamical systems forming square to prove the following K-theory formulae:

Theorem 1.2. Suppose that $\left(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa\right)$ forms square and has trivial K_{1}. Then there exist short exact sequences for $K_{0}\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)$ and $K_{1}\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)$ such that

$$
\begin{aligned}
0 & \longrightarrow K_{0}(\mathcal{A}) /\left(\left(\mathrm{id}-\lambda_{\eta}\right) K_{0}(\mathcal{A})+\left(\mathrm{id}-\lambda_{\rho}\right) K_{0}(\mathcal{A})\right) \\
& \longrightarrow K_{0}\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right) \\
& \longrightarrow \operatorname{Ker}\left(\mathrm{id}-\lambda_{\eta}\right) \cap \operatorname{Ker}\left(\mathrm{id}-\lambda_{\rho}\right) \text { in } K_{0}(\mathcal{A}) \longrightarrow 0
\end{aligned}
$$

and

$$
\begin{aligned}
0 & \longrightarrow\left(\operatorname{Ker}\left(\operatorname{id}-\lambda_{\eta}\right) \text { in } K_{0}(\mathcal{A})\right) /\left(\operatorname{id}-\lambda_{\rho}\right)\left(\operatorname{Ker}\left(\mathrm{id}-\lambda_{\eta}\right) \text { in } K_{0}(\mathcal{A})\right) \\
& \longrightarrow K_{1}\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right) \\
& \longrightarrow \operatorname{Ker}\left(\mathrm{id}-\bar{\lambda}_{\rho}\right) \text { in }\left(K_{0}(\mathcal{A}) /\left(\mathrm{id}-\lambda_{\eta}\right) K_{0}(\mathcal{A})\right) \longrightarrow 0
\end{aligned}
$$

where the endomorphisms $\lambda_{\rho}, \lambda_{\eta}: K_{0}(\mathcal{A}) \longrightarrow K_{0}(\mathcal{A})$ are defined by

$$
\begin{aligned}
& \lambda_{\rho}([p])=\sum_{\alpha \in \Sigma^{\rho}}\left[\rho_{\alpha}(p)\right] \in K_{0}(\mathcal{A}) \text { for }[p] \in K_{0}(\mathcal{A}), \\
& \lambda_{\eta}([p])=\sum_{a \in \Sigma^{\eta}}\left[\eta_{a}(p)\right] \in K_{0}(\mathcal{A}) \text { for }[p] \in K_{0}(\mathcal{A})
\end{aligned}
$$

and $\bar{\lambda}_{\rho}$ denotes an endomorphism on $K_{0}(\mathcal{A}) /\left(1-\lambda_{\eta}\right) K_{0}(\mathcal{A})$ induced by λ_{ρ}.
Let A, B be mutually commuting $N \times N$ matrices with entries in nonnegative integers. Let $G_{A}=\left(V_{A}, E_{A}\right), G_{B}=\left(V_{B}, E_{B}\right)$ be directed graphs with common vertex set $V_{A}=V_{B}$, whose transition matrices are A, B respectively. Let $\mathcal{M}_{A}, \mathcal{M}_{B}$ denote symbolic matrices for G_{A}, G_{B} whose components consist of formal sums of the directed edges of G_{A}, G_{B} respectively. Let $\Sigma^{A B}, \Sigma^{B A}$ be the sets of the pairs of the concatenated directed edges in $E_{A} \times E_{B}, E_{B} \times E_{A}$ respectively. By the condition $A B=B A$, one may take a bijection $\kappa: \Sigma^{A B} \longrightarrow \Sigma^{B A}$ which gives rise to a specified equivalence $\mathcal{M}_{A} \mathcal{M}_{B} \stackrel{\kappa}{\cong} \mathcal{M}_{B} \mathcal{M}_{A}$. We then have a C^{*}-textile dynamical system written as $\left(\mathcal{A}, \rho^{A}, \rho^{B}, \Sigma^{A}, \Sigma^{B}, \kappa\right)$. The associated C^{*}-algebra is denoted by $\mathcal{O}_{A, B}^{\kappa}$. The C^{*}-algebra $\mathcal{O}_{A, B}^{\kappa}$ is realized as a 2 -graph C^{*}-algebra constructed by Kumjian-Pask ([19]). It is also seen in Deaconu's paper [9]. We will see the following proposition in Section 9.

Proposition 1.3. Keep the above situations. There exist short exact sequences for $K_{0}\left(\mathcal{O}_{A, B}^{\kappa}\right)$ and $K_{1}\left(\mathcal{O}_{A, B}^{\kappa}\right)$ such that

$$
\begin{aligned}
0 & \longrightarrow \mathbb{Z}^{N} /\left((1-A) \mathbb{Z}^{N}+(1-B) \mathbb{Z}^{N}\right) \\
& \longrightarrow K_{0}\left(\mathcal{O}_{A, B}^{\kappa}\right) \\
& \longrightarrow \operatorname{Ker}(1-A) \cap \operatorname{Ker}(1-B) \text { in } \mathbb{Z}^{N} \longrightarrow 0
\end{aligned}
$$

and

$$
\begin{aligned}
0 & \longrightarrow\left(\operatorname{Ker}(1-B) \text { in } \mathbb{Z}^{N}\right) /(1-A)\left(\operatorname{Ker}(1-B) \text { in } \mathbb{Z}^{N}\right) \\
& \longrightarrow K_{1}\left(\mathcal{O}_{A, B}^{\kappa}\right) \\
& \longrightarrow \operatorname{Ker}(1-\bar{A}) \text { in }\left(\mathbb{Z}^{N} /(1-B) \mathbb{Z}^{N}\right) \longrightarrow 0,
\end{aligned}
$$

where \bar{A} is an endomorphism on the abelian group $\mathbb{Z}^{N} /(1-B) \mathbb{Z}^{N}$ induced by the matrix A.

Throughout the paper, we will denote by \mathbb{Z}_{+}the set of nonnegative integers and by \mathbb{N} the set of positive integers.

This paper is a revised version of the paper: arXiv:1106.5092v1.

2. λ-graph systems, C^{*}-symbolic dynamical systems and their C^{*}-algebras

In this section, we will briefly review λ-graph systems and C^{*}-symbolic dynamical systems. Throughout the section, Σ denotes a finite set with its discrete topology, that is called an alphabet. Each element of Σ is called a symbol. Let $\Sigma^{\mathbb{Z}}$ be the infinite product space $\prod_{i \in \mathbb{Z}} \Sigma_{i}$, where $\Sigma_{i}=\Sigma$, endowed with the product topology. The transformation σ on $\Sigma^{\mathbb{Z}}$ given by $\sigma\left(\left(x_{i}\right)_{i \in \mathbb{Z}}\right)=\left(x_{i+1}\right)_{i \in \mathbb{Z}}$ is called the full shift over Σ. Let Λ be a shift invariant closed subset of $\Sigma^{\mathbb{Z}}$ i.e. $\sigma(\Lambda)=\Lambda$. The topological dynamical system $\left(\Lambda,\left.\sigma\right|_{\Lambda}\right)$ is called a two-sided subshift, written as Λ for brevity. A word $\mu=\left(\mu_{1}, \ldots, \mu_{k}\right)$ of Σ is said to be admissible for Λ if there exists $\left(x_{i}\right)_{i \in \mathbb{Z}} \in \Lambda$ such that $\mu_{1}=x_{1}, \ldots, \mu_{k}=x_{k}$. Let us denote by $|\mu|$ the length k of μ. Let $B_{k}(\Lambda)$ be the set of admissible words of Λ with length k. The union $\cup_{k=0}^{\infty} B_{k}(\Lambda)$ is denoted by $B_{*}(\Lambda)$ where $B_{0}(\Lambda)$ denotes the empty word. For two words $\mu=\left(\mu_{1}, \ldots, \mu_{k}\right), \nu=\left(\nu_{1}, \ldots, \nu_{n}\right)$, we write a new word $\mu \nu=\left(\mu_{1}, \ldots, \mu_{k}, \nu_{1}, \ldots, \nu_{n}\right)$.

There is a class of subshifts called sofic shifts, that are presented by finite labeled graphs ([14], [17], [18]). λ-graph systems are generalization of finite labeled graphs. Any subshift is presented by a λ-graph system. Let

$$
\mathfrak{L}=(V, E, \lambda, \iota)
$$

be a λ-graph system over Σ with vertex set $V=\cup_{l \in \mathbb{Z}_{+}} V_{l}$ and edge set $E=$ $\cup_{l \in \mathbb{Z}_{+}} E_{l, l+1}$ that is labeled with symbols in Σ by a map $\lambda: E \rightarrow \Sigma$, and that is supplied with surjective maps $\iota\left(=\iota_{l, l+1}\right): V_{l+1} \rightarrow V_{l}$ for $l \in \mathbb{Z}_{+}$. Here the vertex sets $V_{l}, l \in \mathbb{Z}_{+}$and the edge sets $E_{l, l+1}, l \in \mathbb{Z}_{+}$are finite disjoint sets for each $l \in \mathbb{Z}_{+}$. An edge e in $E_{l, l+1}$ has its source vertex $s(e)$ in V_{l} and its terminal vertex $t(e)$ in V_{l+1} respectively. Every vertex in V has a successor and every vertex in V_{l} for $l \in \mathbb{N}$ has a predecessor. It is then required that for vertices $u \in V_{l-1}$ and $v \in V_{l+1}$, there exists a bijective correspondence between the set of edges $e \in E_{l, l+1}$ such that $t(e)=v, \iota(s(e))=u$ and the set of edges $f \in E_{l-1, l}$ such that $s(f)=u, t(f)=\iota(v)$, preserving their labels ([24]). We assume that \mathfrak{L} is left-resolving, which means that $t(e) \neq t(f)$
whenever $\lambda(e)=\lambda(f)$ for $e, f \in E_{l, l+1}$. Let us denote by $\left\{v_{1}^{l}, \ldots, v_{m(l)}^{l}\right\}$ the vertex set V_{l} at level l. For $i=1,2, \ldots, m(l), j=1,2, \ldots, m(l+1), \alpha \in \Sigma$ we put

$$
\begin{aligned}
A_{l, l+1}(i, \alpha, j) & = \begin{cases}1 & \text { if } s(e)=v_{i}^{l}, \lambda(e)=\alpha, t(e)=v_{j}^{l+1} \text { for some } e \in E_{l, l+1}, \\
0 & \text { otherwise },\end{cases} \\
I_{l, l+1}(i, j) & = \begin{cases}1 & \text { if } \iota_{l, l+1}\left(v_{j}^{l+1}\right)=v_{i}^{l} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

The C^{*}-algebra $\mathcal{O}_{\mathfrak{L}}$ associated with \mathfrak{L} is the universal C^{*}-algebra generated by partial isometries $S_{\alpha}, \alpha \in \Sigma$ and projections $E_{i}^{l}, i=1,2, \ldots, m(l), l \in \mathbb{Z}_{+}$ subject to the following operator relations called (\mathfrak{L}) :

$$
\begin{gather*}
\sum_{\beta \in \Sigma} S_{\beta} S_{\beta}^{*}=1 \tag{2.1}\\
\sum_{i=1}^{m(l)} E_{i}^{l}=1, \quad E_{i}^{l}=\sum_{j=1}^{m(l+1)} I_{l, l+1}(i, j) E_{j}^{l+1} \tag{2.2}\\
S_{\alpha} S_{\alpha}^{*} E_{i}^{l}=E_{i}^{l} S_{\alpha} S_{\alpha}^{*} \tag{2.3}\\
S_{\alpha}^{*} E_{i}^{l} S_{\alpha}=\sum_{j=1}^{m(l+1)} A_{l, l+1}(i, \alpha, j) E_{j}^{l+1} \tag{2.4}
\end{gather*}
$$

for $i=1,2, \ldots, m(l), l \in \mathbb{Z}_{+}, \alpha \in \Sigma$. If \mathfrak{L} satisfies λ-condition (I) and is λ-irreducible, the C^{*}-algebra $\mathcal{O}_{\mathfrak{L}}$ is simple and purely infinite ([25], [26]).

Let $\mathcal{A}_{\mathfrak{L}, l}$ be the C^{*}-subalgebra of $\mathcal{O}_{\mathfrak{L}}$ generated by the projections $E_{i}^{l}, i=$ $1, \ldots, m(l)$. We denote by $\mathcal{A}_{\mathfrak{L}}$ the C^{*}-subalgebra of $\mathcal{O}_{\mathfrak{L}}$ generated by all the projections $E_{i}^{l}, i=1, \ldots, m(l), l \in \mathbb{Z}_{+}$. As $\mathcal{A}_{\mathfrak{L}, l} \subset \mathcal{A}_{\mathfrak{L}, l+1}$ and $\cup_{l \in \mathbb{Z}_{+}} \mathcal{A}_{\mathfrak{L}, l}$ is dense in \mathcal{A}, the algebra $\mathcal{A}_{\mathfrak{L}}$ is a commutative AF-algebra. For $\alpha \in \Sigma$, put

$$
\rho_{\alpha}^{\mathfrak{L}}(X)=S_{\alpha}^{*} X S_{\alpha} \quad \text { for } \quad X \in \mathcal{A}_{\mathfrak{L}}
$$

Then $\left\{\rho_{\alpha}^{\mathfrak{L}}\right\}_{\alpha \in \Sigma}$ yields a family of $*$-endomorphisms of $\mathcal{A}_{\mathfrak{L}}$ such that $\rho_{\alpha}^{\mathfrak{L}}(1) \neq$ $0, \sum_{\alpha \in \Sigma} \rho_{\alpha}^{\mathfrak{L}}(1) \geq 1$ and for any nonzero $x \in \mathcal{A}_{\mathfrak{L}}, \rho_{\alpha}^{\mathfrak{L}}(x) \neq 0$ for some $\alpha \in \Sigma$.

The situations above are generalized to C^{*}-symbolic dynamical systems as follows. Let \mathcal{A} be a unital C^{*}-algebra. In what follows, an endomorphism of \mathcal{A} means a $*$-endomorphism of \mathcal{A} that does not necessarily preserve the unit $1_{\mathcal{A}}$ of \mathcal{A}. The unit $1_{\mathcal{A}}$ is denoted by 1 unless we specify. Denote by $Z_{\mathcal{A}}$ the center of \mathcal{A}. Let $\rho_{\alpha}, \alpha \in \Sigma$ be a finite family of endomorphisms of \mathcal{A} indexed by symbols of a finite set Σ. We assume that $\rho_{\alpha}\left(Z_{\mathcal{A}}\right) \subset Z_{\mathcal{A}}, \alpha \in \Sigma$. The family $\rho_{\alpha}, \alpha \in \Sigma$ of endomorphisms of \mathcal{A} is said to be essential if $\rho_{\alpha}(1) \neq 0$ for all $\alpha \in \Sigma$ and $\sum_{\alpha} \rho_{\alpha}(1) \geq 1$. It is said to be faithful if for any nonzero $x \in \mathcal{A}$ there exists a symbol $\alpha \in \Sigma$ such that $\rho_{\alpha}(x) \neq 0$.

Definition 2.1 (cf. [27]). A C^{*}-symbolic dynamical system is a triplet $(\mathcal{A}, \rho, \Sigma)$ consisting of a unital C^{*}-algebra \mathcal{A} and an essential and faithful finite family $\left\{\rho_{\alpha}\right\}_{\alpha \in \Sigma}$ of endomorphisms of \mathcal{A}.

As in the above discussion, we have a C^{*}-symbolic dynamical system $\left(\mathcal{A}_{\mathfrak{L}}, \rho^{\mathfrak{L}}, \Sigma\right)$ from a λ-graph system \mathfrak{L}. In [27], [29], [30], we have defined a C^{*}-symbolic dynamical system in a less restrictive way than the above definition. Instead of the above condition $\sum_{\alpha \in \Sigma} \rho_{\alpha}(1) \geq 1$ with $\rho_{\alpha}\left(Z_{\mathcal{A}}\right) \subset$ $Z_{\mathcal{A}}, \alpha \in \Sigma$, we have used the condition in the papers that the closed ideal generated by $\rho_{\alpha}(1), \alpha \in \Sigma$ coincides with \mathcal{A}. All of the examples appeared in the papers [27], [29], [30] satisfy the condition $\sum_{\alpha \in \Sigma} \rho_{\alpha}(1) \geq 1$ with $\rho_{\alpha}\left(Z_{\mathcal{A}}\right) \subset Z_{\mathcal{A}}, \alpha \in \Sigma$, and all discussions in the papers well work under the above new definition.

A C^{*}-symbolic dynamical system $(\mathcal{A}, \rho, \Sigma)$ yields a subshift Λ_{ρ} over Σ such that a word $\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ of Σ is admissible for Λ_{ρ} if and only if

$$
\left(\rho_{\alpha_{k}} \circ \cdots \circ \rho_{\alpha_{1}}\right)(1) \neq 0
$$

([27, Proposition 2.1]). We say that a subshift Λ acts on a C^{*}-algebra \mathcal{A} if there exists a C^{*}-symbolic dynamical system $(\mathcal{A}, \rho, \Sigma)$ such that the associated subshift Λ_{ρ} is Λ.

The C^{*}-algebra \mathcal{O}_{ρ} associated with a C^{*}-symbolic dynamical system

$$
(\mathcal{A}, \rho, \Sigma)
$$

has been originally constructed in [27] as a C^{*}-algebra by using the Pimsner's general construction of C^{*}-algebras from Hilbert C^{*}-bimodules [39] (cf. [15] etc.). It is realized as the universal C^{*}-algebra $C^{*}\left(x, S_{\alpha} ; x \in \mathcal{A}, \alpha \in \Sigma\right)$ generated by $x \in \mathcal{A}$ and partial isometries $S_{\alpha}, \alpha \in \Sigma$ subject to the following relations called (ρ):

$$
\sum_{\beta \in \Sigma} S_{\beta} S_{\beta}^{*}=1, \quad x S_{\alpha} S_{\alpha}^{*}=S_{\alpha} S_{\alpha}^{*} x, \quad S_{\alpha}^{*} x S_{\alpha}=\rho_{\alpha}(x)
$$

for all $x \in \mathcal{A}$ and $\alpha \in \Sigma$. The C^{*}-algebra \mathcal{O}_{ρ} is a generalization of the C^{*}-algebra $\mathcal{O}_{\mathfrak{L}}$ associated with the λ-graph system \mathfrak{L}.

A C^{*}-symbolic dynamical system $(\mathcal{A}, \rho, \Sigma)$ is said to be free if there exists a unital increasing sequence $\mathcal{A}_{0} \subset \mathcal{A}_{1} \subset \cdots \subset \mathcal{A}$ of C^{*}-subalgebras of \mathcal{A} such that:
(1) $\rho_{\alpha}\left(\mathcal{A}_{l}\right) \subset \mathcal{A}_{l+1}$ for all $l \in \mathbb{Z}_{+}$and $\alpha \in \Sigma$.
(2) $\cup_{l \in \mathbb{Z}_{+}} \mathcal{A}_{l}$ is dense in \mathcal{A}.
(3) For $j \leq l$ there exists a projection $q \in \mathcal{D}_{\rho} \cap \mathcal{A}_{l}{ }^{\prime}$ such that:
(i) $q x \neq 0$ for $0 \neq x \in \mathcal{A}_{l}$,
(ii) $\phi_{\rho}^{n}(q) q=0$ for all $n=1,2, \ldots, j$,
where \mathcal{D}_{ρ} is the C^{*}-subalgebra of \mathcal{O}_{ρ} generated by elements

$$
S_{\mu_{1}} \cdots S_{\mu_{k}} x S_{\mu_{k}}^{*} \cdots S_{\mu_{1}}^{*}
$$

for $\left(\mu_{1}, \ldots, \mu_{k}\right) \in B_{*}\left(\Lambda_{\rho}\right)$ and $x \in \mathcal{A}$, and

$$
\phi_{\rho}(X)=\sum_{\alpha \in \Sigma} S_{\alpha} X S_{\alpha}^{*}, \quad X \in \mathcal{D}_{\rho}
$$

The freeness has been called condition (I) in [30]. If in particular, one may take the above subalgebras $\mathcal{A}_{l} \subset \mathcal{A}, l=0,1,2, \ldots$ to be of finite dimensional, then $(\mathcal{A}, \rho, \Sigma)$ is said to be $A F$-free. $(\mathcal{A}, \rho, \Sigma)$ is said to be irreducible if there is no nontrivial ideal of \mathcal{A} invariant under the positive operator λ_{ρ} on \mathcal{A} defined by $\lambda_{\rho}(x)=\sum_{\alpha \in \Sigma} \rho_{\alpha}(x), x \in \mathcal{A}$. It has been proved that if $(\mathcal{A}, \rho, \Sigma)$ is free and irreducible, then the C^{*}-algebra \mathcal{O}_{ρ} is simple ([30]).

3. C^{*}-textile dynamical systems and two-dimensional subshifts

Let Σ be a finite set. The two-dimensional full shift over Σ is defined to be

$$
\Sigma^{\mathbb{Z}^{2}}=\left\{\left(x_{i, j}\right)_{(i, j) \in \mathbb{Z}^{2}} \mid x_{i, j} \in \Sigma\right\}
$$

An element $x \in \Sigma^{\mathbb{Z}^{2}}$ is regarded as a function $x: \mathbb{Z}^{2} \longrightarrow \Sigma$ which is called a configuration on \mathbb{Z}^{2}. For $x \in \Sigma^{\mathbb{Z}^{2}}$ and $F \subset \mathbb{Z}^{2}$, let x_{F} denote the restriction of x to F. For a vector $m=\left(m_{1}, m_{2}\right) \in \mathbb{Z}^{2}$, let $\sigma^{m}: \Sigma^{\mathbb{Z}^{2}} \longrightarrow \Sigma^{\mathbb{Z}^{2}}$ be the translation along vector m defined by

$$
\sigma^{m}\left(\left(x_{i, j}\right)_{(i, j) \in \mathbb{Z}^{2}}\right)=\left(x_{i+m_{1}, j+m_{2}}\right)_{(i, j) \in \mathbb{Z}^{2}}
$$

A subset $X \subset \Sigma^{\mathbb{Z}^{2}}$ is said to be translation invariant if $\sigma^{m}(X)=X$ for all $m \in \mathbb{Z}^{2}$. It is obvious to see that a subset $X \subset \Sigma^{\mathbb{Z}^{2}}$ is translation invariant if ond only if X is invariant only both horizontally and vertically, that is, $\sigma^{(1,0)}(X)=X$ and $\sigma^{(0,1)}(X)=X$. For $k \in \mathbb{Z}_{+}$, put

$$
[-k, k]^{2}=\left\{(i, j) \in \mathbb{Z}^{2} \mid-k \leq i, j \leq k\right\}=[-k, k] \times[-k, k]
$$

A metric d on $\Sigma^{\mathbb{Z}^{2}}$ is defined by for $x, y \in \Sigma^{\mathbb{Z}^{2}}$ with $x \neq y$

$$
d(x, y)=\frac{1}{2^{k}} \quad \text { if } \quad x_{(0,0)}=y_{(0,0)}
$$

where $k=\max \left\{k \in \mathbb{Z}_{+} \mid x_{[-k, k]^{2}}=y_{[-k, k]^{2}}\right\}$. If $x_{(0,0)} \neq y_{(0,0)}$, put $k=-1$ on the above definition. If $x=y$, we set $d(x, y)=0$. A two-dimensional subshift X is defined to be a closed, translation invariant subset of $\Sigma^{\mathbb{Z}^{2}}$ (cf. [21, p.467]). A finite subset $F \subset \mathbb{Z}^{2}$ is said to be a shape. A pattern f on a shape F is a function $f: F \longrightarrow \Sigma$. For a list \mathfrak{F} of patterns, put

$$
X_{\mathfrak{F}}=\left\{\left(x_{i, j}\right)_{(i, j) \in \mathbb{Z}^{2}}\left|\sigma^{m}(x)\right|_{F} \notin \mathfrak{F} \text { for all } m \in \mathbb{Z}^{2} \text { and } F \subset \mathbb{Z}^{2}\right\}
$$

It is well-known that a subset $X \subset \Sigma^{\mathbb{Z}^{2}}$ is a two-dimensional subshift if and only if there exists a list \mathfrak{F} of patterns such that $X=X_{\mathfrak{F}}$.

We will define a certain property of two-dimensional subshift as follows:

Definition 3.1. A two-dimensional subshift X is said to have the diagonal property if for $\left(x_{i, j}\right)_{(i, j) \in \mathbb{Z}^{2}},\left(y_{i, j}\right)_{(i, j) \in \mathbb{Z}^{2}} \in X$, the conditions

$$
x_{i, j}=y_{i, j}, \quad x_{i+1, j-1}=y_{i+1, j-1}
$$

imply

$$
x_{i, j-1}=y_{i, j-1}, \quad x_{i+1, j}=y_{i+1, j} .
$$

A two-dimensional subshift having the diagonal property is called a textile dynamical system.

Lemma 3.2. If a two dimensional subshift X has the diagonal property, then for $x \in X$ and $(i, j) \in \mathbb{Z}^{2}$, the configuration x is determined by the diagonal line $\left(x_{i+n, j-n}\right)_{n \in \mathbb{Z}}$ through (i, j).

Proof. By the diagonal property, the sequence $\left(x_{i+n, j-n}\right)_{n \in \mathbb{Z}}$ determines both the sequences $\left(x_{i+1+n, j-n}\right)_{n \in \mathbb{Z}}$ and $\left(x_{i-1+n, j-n}\right)_{n \in \mathbb{Z}}$. Repeating this way, the sequence $\left(x_{i+n, j-n}\right)_{n \in \mathbb{Z}}$ determines the whole configuration x.

Let $\left(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa\right)$ be a C^{*}-textile dynamical system. It consists of two C^{*}-symbolic dynamical systems $\left(\mathcal{A}, \rho, \Sigma^{\rho}\right)$ and $\left(\mathcal{A}, \eta, \Sigma^{\eta}\right)$ with common unital C^{*}-algebra \mathcal{A} and commutation relations between their endomorphisms $\rho_{\alpha}, \alpha \in \Sigma^{\rho}, \eta_{a}, a \in \Sigma^{\eta}$ through a bijection κ between the following sets $\Sigma^{\rho \eta}$ and $\Sigma^{\eta \rho}$, where

$$
\begin{aligned}
& \Sigma^{\rho \eta}=\left\{(\alpha, b) \in \Sigma^{\rho} \times \Sigma^{\eta} \mid \eta_{b} \circ \rho_{\alpha} \neq 0\right\}, \\
& \Sigma^{\eta \rho}=\left\{(a, \beta) \in \Sigma^{\eta} \times \Sigma^{\rho} \mid \rho_{\beta} \circ \eta_{a} \neq 0\right\} .
\end{aligned}
$$

The given bijection $\kappa: \Sigma^{\rho \eta} \longrightarrow \Sigma^{\eta \rho}$ is called a specification. The required commutation relations are

$$
\begin{equation*}
\eta_{b} \circ \rho_{\alpha}=\rho_{\beta} \circ \eta_{a} \quad \text { if } \kappa(\alpha, b)=(a, \beta) . \tag{3.1}
\end{equation*}
$$

A C^{*}-textile dynamical system will yield a two-dimensional subshift $X_{\rho, \eta}^{\kappa}$. We set

$$
\Sigma_{\kappa}=\left\{\omega=(\alpha, b, a, \beta) \in \Sigma^{\rho} \times \Sigma^{\eta} \times \Sigma^{\eta} \times \Sigma^{\rho} \mid \kappa(\alpha, b)=(a, \beta)\right\} .
$$

For $\omega=(\alpha, b, a, \beta)$, since $\eta_{b} \circ \rho_{\alpha}=\rho_{\beta} \circ \eta_{a}$ as endomorphisms on \mathcal{A}, one may identify the quadruplet (α, b, a, β) with the endomorphism $\eta_{b} \circ \rho_{\alpha}\left(=\rho_{\beta} \circ \eta_{a}\right)$ on \mathcal{A} which we will denote by simply ω. Define maps $t(=t o p), b(=$ bottom $)$: $\Sigma_{\kappa} \longrightarrow \Sigma^{\rho}$ and $l(=$ left $), r(=$ right $): \Sigma_{\kappa} \longrightarrow \Sigma^{\rho}$ by setting

$$
\begin{aligned}
t(\omega)=\alpha, \quad b(\omega)= & \beta, \quad l(\omega)=a, \quad r(\omega)=b . \\
& \cdot \xrightarrow{\alpha=t(\omega)} \cdot \\
a=l(\omega) & \downarrow \\
& \cdot \underset{\beta=b(\omega)}{ } \cdot
\end{aligned}
$$

A configuration $\left(\omega_{i, j}\right)_{(i, j) \in \mathbb{Z}^{2}} \in \Sigma_{\kappa}^{\mathbb{Z}^{2}}$ is said to be paved if the conditions

$$
\begin{array}{ll}
t\left(\omega_{i, j}\right)=b\left(\omega_{i, j+1}\right), & r\left(\omega_{i, j}\right)=l\left(\omega_{i+1, j}\right), \\
l\left(\omega_{i, j}\right)=r\left(\omega_{i-1, j}\right), & b\left(\omega_{i, j}\right)=t\left(\omega_{i, j-1}\right)
\end{array}
$$

hold for all $(i, j) \in \mathbb{Z}^{2}$. We set

$$
\begin{aligned}
& X_{\rho, \eta}^{\kappa}=\left\{\left(\omega_{i, j}\right)_{(i, j) \in \mathbb{Z}^{2}} \in \Sigma_{\kappa}^{\mathbb{Z}^{2}} \mid\left(\omega_{i, j}\right)_{(i, j) \in \mathbb{Z}^{2}}\right. \text { is paved and } \\
& \omega_{i+n, j-n} \circ \omega_{i+n-1, j-n+1} \circ \cdots \circ \omega_{i+1, j-1} \circ \omega_{i, j} \neq 0 \\
& \left.\quad \text { for all }(i, j) \in \mathbb{Z}^{2}, n \in \mathbb{N}\right\},
\end{aligned}
$$

where $\omega_{i+n, j-n} \circ \omega_{i+n-1, j-n+1} \circ \cdots \circ \omega_{i+1, j-1} \circ \omega_{i, j}$ is the compositions as endomorphisms on \mathcal{A}.
Lemma 3.3. Suppose that a configuration $\left(\omega_{i, j}\right)_{(i, j) \in \mathbb{Z}^{2}} \in \Sigma_{\kappa}^{\mathbb{Z}^{2}}$ is paved. Then $\left(\omega_{i, j}\right)_{(i, j) \in \mathbb{Z}^{2}} \in X_{\rho, \eta}^{\kappa}$ if and only if
$\rho_{b\left(\omega_{i+n, j-m}\right)} \circ \cdots \circ \rho_{b\left(\omega_{i+1, j-m}\right)} \circ \rho_{b\left(\omega_{i, j-m}\right)} \circ \eta_{l\left(\omega_{i, j-m}\right)} \circ \cdots \eta_{l\left(\omega_{i, j-1}\right)} \circ \eta_{l\left(\omega_{i, j}\right)} \neq 0$
for all $(i, j) \in \mathbb{Z}^{2}, n, m \in \mathbb{Z}_{+}$.

$$
\begin{aligned}
& l\left(\omega_{i, j}\right) \downarrow \\
& l\left(\omega_{i, j-1}\right) \downarrow \\
& \text {. } \\
& \vdots \\
& l\left(\omega_{i, j-m}\right) \downarrow \\
& \cdot \xrightarrow[b\left(\omega_{i, j-m}\right)]{ } \cdot \overrightarrow{b\left(\omega_{i+1, j-m}\right)} \cdots \overrightarrow{b\left(\omega_{i+n, j-m}\right)} \text {. }
\end{aligned}
$$

Proof. Suppose that $\left(\omega_{i, j}\right)_{(i, j) \in \mathbb{Z}^{2}} \in X_{\rho, \eta}^{\kappa}$. For $(i, j) \in \mathbb{Z}^{2}, n, m \in \mathbb{Z}_{+}$, we may assume that $m \geq n$. Since

$$
\begin{aligned}
0 \neq & \omega_{i+m, j-m} \circ \cdots \circ \omega_{i+n+1, j-m} \circ \omega_{i+n, j-m} \circ \cdots \circ \omega_{i, j-m} \\
& \circ \cdots \circ \omega_{i+1, j-1} \circ \omega_{i, j} \\
= & \omega_{i+m, j-m} \circ \cdots \circ \omega_{i+n+1, j-m} \circ \rho_{b\left(\omega_{i+n, j-m}\right)} \circ \cdots \circ \rho_{b\left(\omega_{i+1, j-m}\right)} \circ \rho_{b\left(\omega_{i, j-m}\right)} \\
& \circ \eta_{l\left(\omega_{i, j-m}\right)} \cdots \circ \eta_{l\left(\omega_{i, j-m}\right)} \circ \cdots \circ \eta_{l\left(\omega_{i, j-1}\right)} \circ \eta_{l\left(\omega_{i, j}\right)},
\end{aligned}
$$

one has

$$
\rho_{b\left(\omega_{i+n, j-m}\right)} \circ \cdots \circ \rho_{b\left(\omega_{i+1, j-m}\right)} \circ \rho_{b\left(\omega_{i, j-m}\right)} \circ \eta_{l\left(\omega_{i, j-m}\right)} \circ \cdots \eta_{l\left(\omega_{i, j-1}\right)} \circ \eta_{l\left(\omega_{i, j}\right)} \neq 0 .
$$

The converse implication is clear by the equality:

$$
\begin{aligned}
& \omega_{i+n, j-n} \circ \cdots \circ \omega_{i, j-n} \circ \cdots \circ \omega_{i, j-1} \circ \omega_{i, j} \\
& \quad=\rho_{b\left(\omega_{i+n, j-n}\right)} \circ \cdots \circ \rho_{b\left(\omega_{i, j-n}\right)} \circ \eta_{l\left(\omega_{i, j-n}\right)} \cdots \circ \eta_{l\left(\omega_{i, j-1}\right)} \circ \eta_{l\left(\omega_{i, j}\right)}
\end{aligned}
$$

Proposition 3.4. $X_{\rho, \eta}^{\kappa}$ is a two-dimensional subshift having diagonal property, that is, $X_{\rho, \eta}^{\kappa}$ is a textile dynamical system.

Proof. It is easy to see that the set

$$
E=\left\{\left(\omega_{i, j}\right)_{(i, j) \in \mathbb{Z}^{2}} \in \Sigma_{\kappa}^{\mathbb{Z}^{2}} \mid\left(\omega_{i, j}\right)_{(i, j) \in \mathbb{Z}^{2}} \text { is paved }\right\}
$$

is closed, because its complement is open in $\Sigma_{\kappa}^{\mathbb{Z}^{2}}$. The following set

$$
\begin{aligned}
U=\left\{\left(\omega_{i, j}\right)_{(i, j) \in \mathbb{Z}^{2}}\right. & \in \Sigma_{\kappa}^{\mathbb{Z}^{2}} \mid \omega_{k+n, l-n} \circ \omega_{k+n-1, l-n+1} \\
& \left.\circ \cdots \circ \omega_{k+1, l-1} \circ \omega_{k, l}=0 \text { for some }(k, l) \in \mathbb{Z}^{2}, n \in \mathbb{N}\right\}
\end{aligned}
$$

is open in $\Sigma_{\kappa}^{\mathbb{Z}^{2}}$. As the equality $X_{\rho, \eta}^{\kappa}=E \cap U^{c}$ holds, the set $X_{\rho, \eta}^{\kappa}$ is closed. It is also obvious that $X_{\rho, \eta}^{\kappa}$ is translation invariant so that $X_{\rho, \eta}^{\kappa}$ is a twodimensional subshift. It is easy to see that $X_{\rho, \eta}^{\kappa}$ has diagonal property.

We call $X_{\rho, \eta}^{\kappa}$ the textile dynamical system associated with

$$
\left(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa\right) .
$$

Let us now define a (one-dimensional) subshift $X_{\delta^{\kappa}}$ over Σ_{κ}, which consists of diagonal sequences of $X_{\rho, \eta}^{\kappa}$ as follows:

$$
X_{\delta^{\kappa}}=\left\{\left(\omega_{n,-n}\right)_{n \in \mathbb{Z}} \in \Sigma_{\kappa}^{\mathbb{Z}} \mid\left(\omega_{i, j}\right)_{(i, j) \in \mathbb{Z}^{2}} \in X_{\rho, \eta}^{\kappa}\right\} .
$$

By Lemma 3.2, an element $\left(\omega_{n,-n}\right)_{n \in \mathbb{Z}}$ of $X_{\delta^{\kappa}}$ may be extended to

$$
\left(\omega_{i, j}\right)_{(i, j) \in \mathbb{Z}^{2}} \in X_{\rho, \eta}^{\kappa}
$$

in a unique way. Hence the one-dimensional subshift $X_{\delta^{\kappa}}$ determines the two-dimensional subshift $X_{\rho, \eta}^{\kappa}$. Therefore we have:

Lemma 3.5. The two-dimensional subshift $X_{\rho, \eta}^{\kappa}$ is not empty if and only if the one-dimensional subshift $X_{\delta^{\kappa}}$ is not empty.

For $\left(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa\right)$, we will have a C^{*}-symbolic dynamical system $\left(\mathcal{A}, \delta^{\kappa}, \Sigma_{\kappa}\right)$ in Section 4. It presents the subshift $X_{\delta^{\kappa}}$. Since a subshift presented by a C^{*}-symbolic dynamical system is always not empty, one sees

Proposition 3.6. The two-dimensional subshift $X_{\rho, \eta}^{\kappa}$ is not empty.

4. C^{*}-textile dynamical systems and their C^{*}-algebras

The C^{*}-algebra $\mathcal{O}_{\rho, \eta}^{\kappa}$ is defined to be the universal C^{*}-algebra

$$
C^{*}\left(x, S_{\alpha}, T_{a} ; x \in \mathcal{A}, \alpha \in \Sigma^{\rho}, a \in \Sigma^{\eta}\right)
$$

generated by $x \in \mathcal{A}$ and partial isometries $S_{\alpha}, \alpha \in \Sigma^{\rho}, T_{a}, a \in \Sigma^{\eta}$ subject to the following relations called $(\rho, \eta ; \kappa)$:

$$
\begin{gather*}
\sum_{\beta \in \Sigma^{\rho}} S_{\beta} S_{\beta}^{*}=1, \quad x S_{\alpha} S_{\alpha}^{*}=S_{\alpha} S_{\alpha}^{*} x, \quad S_{\alpha}^{*} x S_{\alpha}=\rho_{\alpha}(x) \tag{4.1}\\
\sum_{b \in \Sigma^{\eta}} T_{b} T_{b}^{*}=1, \quad x T_{a} T_{a}^{*}=T_{a} T_{a}^{*} x, \quad T_{a}^{*} x T_{a}=\eta_{a}(x) \tag{4.2}\\
S_{\alpha} T_{b}=T_{a} S_{\beta} \quad \text { if } \quad \kappa(\alpha, b)=(a, \beta) \tag{4.3}
\end{gather*}
$$

for all $x \in \mathcal{A}$ and $\alpha \in \Sigma^{\rho}, a \in \Sigma^{\eta}$. We will study the algebra $\mathcal{O}_{\rho, \eta}^{\kappa}$. For $(\alpha, b, a, \beta) \in \Sigma^{\rho} \times \Sigma^{\eta} \times \Sigma^{\eta} \times \Sigma^{\rho}$, we set

$$
\begin{aligned}
R B(\alpha, a) & =\left\{(b, \beta) \in \Sigma^{\eta} \times \Sigma^{\rho} \mid \kappa(\alpha, b)=(a, \beta)\right\} \\
R(\alpha, a, \beta) & =\left\{b \in \Sigma^{\eta} \mid \kappa(\alpha, b)=(a, \beta)\right\} \\
R(\alpha, a) & =\bigcup_{\beta \in \Sigma^{\rho}} R(\alpha, a, \beta) .
\end{aligned}
$$

Lemma 4.1. For $\alpha \in \Sigma^{\rho}, a \in \Sigma^{\eta}$, one has $T_{a}^{*} S_{\alpha} \neq 0$ if and only if $R B(\alpha, a) \neq \emptyset$.
Proof. Suppose that $T_{a}^{*} S_{\alpha} \neq 0$. As $T_{a}^{*} S_{\alpha}=\sum_{b^{\prime} \in \Sigma^{\eta}} T_{a}^{*} S_{\alpha} T_{b^{\prime}} T_{b^{\prime}}^{*}$, there exists $b^{\prime} \in \Sigma^{\eta}$ such that $T_{a}^{*} S_{\alpha} T_{b^{\prime}} \neq 0$. Hence $\eta_{b^{\prime}} \circ \rho_{\alpha} \neq 0$ so that $\left(\alpha, b^{\prime}\right) \in \Sigma^{\rho \eta}$. Then one may find $\left(a^{\prime}, \beta^{\prime}\right) \in \Sigma^{\rho}$ such that $\kappa\left(\alpha, b^{\prime}\right)=\left(a^{\prime}, \beta^{\prime}\right)$ and hence $S_{\alpha} T_{b^{\prime}}=T_{a^{\prime}} S_{\beta^{\prime}}$. Since $0 \neq T_{a}^{*} S_{\alpha} T_{b^{\prime}}=T_{a}^{*} T_{a^{\prime}} S_{\beta^{\prime}}$, one sees that $a=a^{\prime}$ so that $\left(b^{\prime}, \beta^{\prime}\right) \in R B(\alpha, a)$.

Suppose next that $\kappa(\alpha, b)=(a, \beta)$ for some $(b, \beta) \in \Sigma^{\eta} \times \Sigma^{\rho}$. Since $\eta_{b} \circ \rho_{\alpha}=\rho_{\beta} \circ \eta_{a} \neq 0$, one has $0 \neq S_{\alpha} T_{b}=T_{a} S_{\beta}$. It follows that

$$
S_{\beta}^{*} T_{a}^{*} S_{\alpha} T_{b}=\left(T_{a} S_{\beta}\right)^{*} T_{a} S_{\beta}
$$

so that $T_{a}^{*} S_{\alpha} \neq 0$.
Lemma 4.2. For $\alpha \in \Sigma^{\rho}, a \in \Sigma^{\eta}$, we have

$$
\begin{equation*}
T_{a}^{*} S_{\alpha}=\sum_{(b, \beta) \in R B(\alpha, a)} S_{\beta} \eta_{b}\left(\rho_{\alpha}(1)\right) T_{b}^{*} \tag{4.4}
\end{equation*}
$$

and hence

$$
\begin{equation*}
S_{\alpha}^{*} T_{a}=\sum_{(b, \beta) \in R B(\alpha, a)} T_{b} \rho_{\beta}\left(\eta_{a}(1)\right) S_{\beta}^{*} \tag{4.5}
\end{equation*}
$$

Proof. We may assume that $T_{a}^{*} S_{\alpha} \neq 0$. One has

$$
T_{a}^{*} S_{\alpha}=\sum_{b^{\prime} \in \Sigma^{\eta}} T_{a}^{*} S_{\alpha} T_{b^{\prime}} T_{b^{\prime}}^{*}
$$

For $b^{\prime} \in \Sigma^{\eta}$ with $\left(\alpha, b^{\prime}\right) \in \Sigma^{\rho \eta}$, take $\left(a^{\prime}, \beta^{\prime}\right) \in \Sigma^{\eta \rho}$ such that $\kappa\left(\alpha, b^{\prime}\right)=\left(a^{\prime}, \beta^{\prime}\right)$ so that

$$
T_{a}^{*} S_{\alpha} T_{b^{\prime}} T_{b^{\prime}}^{*}=T_{a}^{*} T_{a^{\prime}} S_{\beta^{\prime}} T_{b^{\prime}}^{*}
$$

Hence $T_{a}^{*} S_{\alpha} T_{b^{\prime}} T_{b^{\prime}}^{*} \neq 0$ implies $a=a^{\prime}$. Since $T_{a}^{*} T_{a}=\eta_{a}(1)$ which commutes with $S_{\beta^{\prime}} S_{\beta^{\prime}}^{*}$, we have

$$
T_{a}^{*} T_{a} S_{\beta^{\prime}} T_{b^{\prime}}^{*}=S_{\beta^{\prime}} S_{\beta^{\prime}}^{*} T_{a}^{*} T_{a} S_{\beta^{\prime}} T_{b^{\prime}}^{*}=S_{\beta^{\prime}} \rho_{\beta^{\prime}}\left(\eta_{a}(1)\right) T_{b^{\prime}}^{*}=S_{\beta^{\prime}} \eta_{b^{\prime}}\left(\rho_{\alpha}(1)\right) T_{b^{\prime}}^{*}
$$

It follows that

$$
T_{a}^{*} S_{\alpha}=\sum_{\left(b^{\prime}, \beta^{\prime}\right) \in R B(\alpha, a)} T_{a}^{*} T_{a} S_{\beta^{\prime}} T_{b^{\prime}}^{*}=\sum_{\left(b^{\prime}, \beta^{\prime}\right) \in R B(\alpha, a)} S_{\beta^{\prime}} \eta_{b^{\prime}}\left(\rho_{\alpha}(1)\right) T_{b^{\prime}}^{*}
$$

Hence we have:

Lemma 4.3. For $\alpha \in \Sigma^{\rho}, a \in \Sigma^{\eta}$, we have

$$
T_{a} T_{a}^{*} S_{\alpha} S_{\alpha}^{*}=\sum_{b \in R(\alpha, a)} S_{\alpha} T_{b} T_{b}^{*} S_{\alpha}^{*}
$$

Hence $T_{a} T_{a}^{*}$ commutes with $S_{\alpha} S_{\alpha}^{*}$.

Proof. By (4.4), we have

$$
\begin{aligned}
T_{a} T_{a}^{*} S_{\alpha} S_{\alpha}^{*} & =\sum_{(b, \beta) \in R B(\alpha, a)} T_{a} S_{\beta} \eta_{b}\left(\rho_{\alpha}(1)\right) T_{b}^{*} S_{\alpha}^{*} \\
& =\sum_{b \in R(\alpha, a)} S_{\alpha} T_{b} \eta_{b}\left(\rho_{\alpha}(1)\right) T_{b}^{*} S_{\alpha}^{*} \\
& =\sum_{b \in R(\alpha, a)} S_{\alpha} \rho_{\alpha}(1) T_{b} T_{b}^{*} S_{\alpha}^{*} \\
& =\sum_{b \in R(\alpha, a)} S_{\alpha} T_{b} T_{b}^{*} S_{\alpha}^{*} .
\end{aligned}
$$

Recall that $Z_{\mathcal{A}}$ denotes the center of \mathcal{A} which consists of elements of \mathcal{A} commuting with all elements of \mathcal{A}.

Lemma 4.4. For $\alpha \in \Sigma^{\rho}, a \in \Sigma^{\eta}$ and $x, y \in Z_{\mathcal{A}}$, $T_{a} y T_{a}^{*}$ commutes with $S_{\alpha} x S_{\alpha}^{*}$.

Proof. By (4.4), we have

$$
\begin{aligned}
T_{a} y T_{a}^{*} S_{\alpha} x S_{\alpha}^{*} & =T_{a} y \sum_{(b, \beta) \in R B(\alpha, a)} S_{\beta} \eta_{b}\left(\rho_{\alpha}(1)\right) T_{b}^{*} x S_{\alpha}^{*} \\
& =\sum_{(b, \beta) \in R B(\alpha, a)} T_{a} S_{\beta} S_{\beta}^{*} y S_{\beta} \eta_{b}\left(\rho_{\alpha}(1)\right) T_{b}^{*} x T_{b} T_{b}^{*} S_{\alpha}^{*} \\
& =\sum_{(b, \beta) \in R B(\alpha, a)} S_{\alpha} T_{b} \rho_{\beta}(y) \eta_{b}\left(\rho_{\alpha}(1)\right) \eta_{b}(x) S_{\beta}^{*} T_{a}^{*} \\
& =\sum_{(b, \beta) \in R B(\alpha, a)} S_{\alpha} T_{b} \eta_{b}(x) \eta_{b}\left(\rho_{\alpha}(1)\right) \rho_{\beta}(y) S_{\beta}^{*} T_{a}^{*} \\
& =\sum_{(b, \beta) \in R B(\alpha, a)} S_{\alpha} x \rho_{\alpha}(1) T_{b} S_{\beta}^{*} y T_{a}^{*} \\
& =\sum_{(b, \beta) \in R B(\alpha, a)} S_{\alpha} x S_{\alpha}^{*} S_{\alpha} T_{b} S_{\beta}^{*} T_{a}^{*} T_{a} y T_{a}^{*} \\
& =\sum_{b \in R(\alpha, a)} S_{\alpha} x \cdot S_{\alpha}^{*} S_{\alpha} T_{b} T_{b}^{*} S_{\alpha}^{*} T_{a} \cdot y T_{a}^{*} .
\end{aligned}
$$

Now if $\left(\alpha, b^{\prime}\right) \notin \Sigma^{\rho, \eta}$, then $S_{\alpha} T_{b^{\prime}}=0$. Hence

$$
\sum_{b \in R(\alpha, a)} S_{\alpha}^{*} S_{\alpha} T_{b} T_{b}^{*} S_{\alpha}^{*} T_{a}=\sum_{b \in \Sigma^{\eta}} S_{\alpha}^{*} S_{\alpha} T_{b} T_{b}^{*} S_{\alpha}^{*} T_{a}=S_{\alpha}^{*} T_{a}
$$

Therefore we have

$$
T_{a} y T_{a}^{*} S_{\alpha} x S_{\alpha}^{*}=S_{\alpha} x S_{\alpha}^{*} T_{a} y T_{a}^{*}
$$

For words $\mu=\left(\mu_{1}, \ldots, \mu_{j}\right) \in B_{j}\left(\Lambda_{\rho}\right), \zeta=\left(\zeta_{1}, \ldots, \zeta_{k}\right) \in B_{k}\left(\Lambda_{\eta}\right)$, we set

$$
S_{\mu}=S_{\mu_{1}} \cdots S_{\mu_{j}}, \quad T_{\zeta}=T_{\zeta_{1}} \cdots T_{\zeta_{k}}
$$

For a subset F of $\mathcal{O}_{\rho, \eta}^{\kappa}$, denote by $C^{*}(F)$ the C^{*}-subalgebra of $\mathcal{O}_{\rho, \eta}^{\kappa}$ generated by the elements of F. We define C^{*}-subalgebras $\mathcal{D}_{\rho, \eta}, \mathcal{D}_{j, k}$ of $\mathcal{O}_{\rho, \eta}^{\kappa}$ by

$$
\begin{aligned}
& \mathcal{D}_{\rho, \eta}=C^{*}\left(S_{\mu} T_{\zeta} x T_{\zeta}^{*} S_{\mu}^{*}: \mu \in B_{*}\left(\Lambda_{\rho}\right), \zeta \in B_{*}\left(\Lambda_{\eta}\right), x \in \mathcal{A}\right), \\
& \mathcal{D}_{j, k}=C^{*}\left(S_{\mu} T_{\zeta} x T_{\zeta}^{*} S_{\mu}^{*}: \mu \in B_{j}\left(\Lambda_{\rho}\right), \zeta \in B_{k}\left(\Lambda_{\eta}\right), x \in \mathcal{A}\right) \quad \text { for } j, k \in \mathbb{Z}_{+}
\end{aligned}
$$

By the commutation relation (4.3), one sees that

$$
\mathcal{D}_{j, k}=C^{*}\left(T_{\xi} S_{\nu} x S_{\nu}^{*} T_{\xi}^{*}: \nu \in B_{j}\left(\Lambda_{\rho}\right), \xi \in B_{k}\left(\Lambda_{\eta}\right), x \in \mathcal{A}\right)
$$

The identities

$$
\begin{aligned}
S_{\mu} T_{\zeta} x T_{\zeta}^{*} S_{\mu}^{*} & =\sum_{a \in \Sigma^{\eta}} S_{\mu} T_{\zeta a} \eta_{a}(x) T_{\zeta a}^{*} S_{\mu}^{*}, \\
T_{\xi} S_{\nu} x S_{\nu}^{*} T_{\xi}^{*} & =\sum_{\alpha \in \Sigma^{\rho}} T_{\xi} S_{\nu \alpha} \rho_{\alpha}(x) S_{\nu \alpha}^{*} T_{\xi}^{*}
\end{aligned}
$$

for $x \in \mathcal{A}$ and $\mu, \nu \in B_{j}\left(\Lambda_{\rho}\right), \zeta, \xi \in B_{k}\left(\Lambda_{\eta}\right)$ yield the embeddings

$$
\mathcal{D}_{j, k} \hookrightarrow \mathcal{D}_{j, k+1}, \quad \mathcal{D}_{j, k} \hookrightarrow \mathcal{D}_{j+1, k}
$$

respectively such that $\cup_{j, k \in \mathbb{Z}_{+}} \mathcal{D}_{j, k}$ is dense in $\mathcal{D}_{\rho, \eta}$.
Proposition 4.5. If \mathcal{A} is commutative, so is $\mathcal{D}_{\rho, \eta}$.
Proof. The preceding lemma tells us that $\mathcal{D}_{1,1}$ is commutative. Suppose that the algebra $\mathcal{D}_{j, k}$ is commutative for fixed $j, k \in \mathbb{N}$. We will show that the both algebras $\mathcal{D}_{j+1, k}$ and $\mathcal{D}_{j, k+1}$ are commutative. The algebra $\mathcal{D}_{j+1, k}$ consists of the linear span of elements of the form:

$$
S_{\alpha} x S_{\alpha}^{*} \quad \text { for } x \in \mathcal{D}_{j, k}, \alpha \in \Sigma^{\rho} .
$$

For $x, y \in \mathcal{D}_{j, k}, \alpha, \beta \in \Sigma^{\rho}$, we will show that $S_{\alpha} x S_{\alpha}^{*}$ commutes with both $S_{\beta} y S_{\beta}^{*}$ and y. If $\alpha=\beta$, it is easy to see that $S_{\alpha} x S_{\alpha}^{*}$ commutes with $S_{\alpha} y S_{\alpha}^{*}$, because $\rho_{\alpha}(1) \in \mathcal{A} \subset \mathcal{D}_{j, k}$. If $\alpha \neq \beta$, both $S_{\alpha} x S_{\alpha}^{*} S_{\beta} y S_{\beta}^{*}$ and $S_{\beta} y S_{\beta}^{*} S_{\alpha} x S_{\alpha}^{*}$ are zeros. Since $S_{\alpha}^{*} y S_{\alpha} \in \mathcal{D}_{j-1, k} \subset \mathcal{D}_{j, k}$, one sees $S_{\alpha}^{*} y S_{\alpha}$ commutes with x. One also sees that $S_{\alpha} S_{\alpha}^{*} \in \mathcal{D}_{j, k}$ commutes with y. It follows that

$$
S_{\alpha} x S_{\alpha}^{*} y=S_{\alpha} x S_{\alpha}^{*} y S_{\alpha} S_{\alpha}^{*}=S_{\alpha} S_{\alpha}^{*} y S_{\alpha} x S_{\alpha}^{*}=y S_{\alpha} x S_{\alpha}^{*}
$$

Hence the algebra $\mathcal{D}_{j+1, k}$ is commutative, and similarly so is $\mathcal{D}_{j, k+1}$. By induction, the algebras $\mathcal{D}_{j, k}$ are all commutative for all $j, k \in \mathbb{N}$. Since $\cup_{j, k \in \mathbb{N}} \mathcal{D}_{j, k}$ is dense in $\mathcal{D}_{\rho, \eta}, \mathcal{D}_{\rho, \eta}$ is commutative.

Proposition 4.6. Let $\mathcal{O}_{\rho, \eta}^{a l g}$ be the dense *-subalgebra of $\mathcal{O}_{\rho, \eta}^{\kappa}$ algebraically generated by elements $x \in \mathcal{A}, S_{\alpha}, \alpha \in \Sigma^{\rho}$ and $T_{a}, a \in \Sigma^{\eta}$. Then each element of $\mathcal{O}_{\rho, \eta}^{\text {alg }}$ is a finite linear combination of elements of the form:

$$
\begin{equation*}
S_{\mu} T_{\zeta} x T_{\xi}^{*} S_{\nu}^{*} \quad \text { for } x \in \mathcal{A}, \mu, \nu \in B_{*}\left(\Lambda_{\rho}\right), \zeta, \xi \in B_{*}\left(\Lambda_{\eta}\right) . \tag{4.6}
\end{equation*}
$$

Proof. For $\alpha, \beta \in \Sigma^{\rho}, a, b \in \Sigma^{\eta}$ and $x \in \mathcal{A}$, we have

$$
\begin{aligned}
S_{\alpha}^{*} S_{\beta} & = \begin{cases}\rho_{\alpha}(1) \in \mathcal{A} & \text { if } \alpha=\beta, \\
0 & \text { otherwise },\end{cases} & T_{a}^{*} T_{b} & = \begin{cases}\eta_{a}(1) \in \mathcal{A} & \text { if } a=b, \\
0 & \text { otherwise },\end{cases} \\
S_{\alpha}^{*} T_{a} & =\sum_{(b, \beta) \in R B(\alpha, a)} T_{b} \rho_{\beta}\left(\eta_{a}(1)\right) S_{\beta}^{*}, & T_{a}^{*} S_{\alpha} & =\sum_{(b, \beta) \in R B(\alpha, a)} S_{\beta} \eta_{b}\left(\rho_{\alpha}(1)\right) T_{b}^{*}, \\
S_{\alpha}^{*} x & =\rho_{\alpha}(x) S_{\alpha}, & T_{a}^{*} x & =\eta_{a}(x) T_{a}^{*} .
\end{aligned}
$$

And also

$$
S_{\beta}^{*} T_{a}^{*}= \begin{cases}T_{b}^{*} S_{\alpha}^{*} & \text { if }(a, \beta) \in \Sigma^{\eta \rho} \text { and }(a, \beta)=\kappa(\alpha, b), \\ 0 & \text { if }(a, \beta) \notin \Sigma^{\eta \rho} .\end{cases}
$$

Therefore we conclude that any element of $\mathcal{O}_{\rho, \eta}^{a l g}$ is a finite linear combination of elements of the form of (4.6).

Similarly we have:
Proposition 4.7. Each element of $\mathcal{O}_{\rho, \eta}^{a l g}$ is a finite linear combination of elements of the form:

$$
\begin{equation*}
T_{\zeta} S_{\mu} x S_{\nu}^{*} T_{\xi}^{*} \quad \text { for } x \in \mathcal{A}, \mu, \nu \in B_{*}\left(\Lambda_{\rho}\right), \zeta, \xi \in B_{*}\left(\Lambda_{\eta}\right) . \tag{4.7}
\end{equation*}
$$

In the rest of this section, we will have a C^{*}-symbolic dynamical system $\left(\mathcal{A}, \delta^{\kappa}, \Sigma_{\kappa}\right)$ from $\left(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa\right)$, which presents the one-dimensional subshift $X_{\delta^{\kappa}}$ described in the previous section. For $\left(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa\right)$, define an endomorphism δ_{ω}^{κ} on \mathcal{A} for $\omega \in \Sigma_{\kappa}$ by setting

$$
\delta_{\omega}^{\kappa}(x)=\eta_{b}\left(\rho_{\alpha}(x)\right)\left(=\rho_{\beta}\left(\eta_{a}(x)\right)\right), \quad x \in \mathcal{A}, \quad \omega=(\alpha, b, a, \beta) \in \Sigma_{\kappa} .
$$

Lemma 4.8. $\left(\mathcal{A}, \delta^{\kappa}, \Sigma_{\kappa}\right)$ is a C^{*}-symbolic dynamical system that presents $X_{\delta^{\kappa}}$.
Proof. We will show that δ^{κ} is essential and faithful. Now both C^{*}-symbolic dynamical systems $\left(\mathcal{A}, \eta, \Sigma^{\eta}\right)$ and $\left(\mathcal{A}, \rho, \Sigma^{\eta}\right)$ are essential. Since $\rho_{\alpha}\left(Z_{\mathcal{A}}\right) \subset$ $Z_{\mathcal{A}}$ and $\eta_{a}\left(Z_{\mathcal{A}}\right) \subset Z_{\mathcal{A}}$, it is clear that $\delta_{\omega}^{\kappa}\left(Z_{\mathcal{A}}\right) \subset Z_{\mathcal{A}}$. By the inequalities

$$
\sum_{\omega \in \Sigma_{\kappa}} \delta_{\omega}^{\kappa}(1)=\sum_{b \in \Sigma^{\eta}} \sum_{\alpha \in \Sigma^{\rho}} \eta_{b}\left(\rho_{\alpha}(1)\right) \geq \sum_{b \in \Sigma^{\eta}} \eta_{b}(1) \geq 1
$$

$\left\{\delta^{\kappa}\right\}_{\omega \in \Sigma_{\kappa}}$ is essential. For any nonzero $x \in \mathcal{A}$, there exists $\alpha \in \Sigma^{\rho}$ such that $\rho_{\alpha}(x) \neq 0$ and there exists $b \in \Sigma^{\eta}$ such that $\eta_{b}\left(\rho_{\alpha}(x)\right) \neq 0$. Hence δ^{κ} is faithful so that $\left(\mathcal{A}, \delta^{\kappa}, \Sigma_{\kappa}\right)$ is a C^{*}-symbolic dynamical system. It is obvious that the subshift presented by $\left(\mathcal{A}, \delta^{\kappa}, \Sigma_{\kappa}\right)$ is $X_{\delta^{k}}$.

Put

$$
\widehat{X}_{\rho, \eta}^{\kappa}=\left\{\left(\omega_{i,-j}\right)_{(i, j) \in \mathbb{N}^{2}} \in \Sigma_{\kappa}^{\mathbb{N}^{2}} \mid\left(\omega_{i, j}\right)_{(i, j) \in \mathbb{Z}^{2}} \in X_{\rho, \eta}^{\kappa}\right\}
$$

and

$$
\widehat{X}_{\delta^{\kappa}}=\left\{\left(\omega_{n,-n}\right)_{n \in \mathbb{N}} \in \Sigma_{\kappa}^{\mathbb{N}} \mid\left(\omega_{i, j}\right)_{(i, j) \in \mathbb{N}^{2}} \in \widehat{X}_{\rho, \eta}^{\kappa}\right\}
$$

The latter set $\widehat{X}_{\delta^{\kappa}}$ is the right one-sided subshift for $X_{\delta^{\kappa}}$.
Lemma 4.9. A configuration $\left(\omega_{i,-j}\right)_{(i, j) \in \mathbb{N}^{2}} \in \widehat{X}_{\rho, \eta}^{\kappa}$ extends to a whole configuration $\left(\omega_{i, j}\right)_{(i, j) \in \mathbb{Z}^{2}} \in X_{\rho, \eta}^{\kappa}$.
Proof. For $\left(\omega_{i,-j}\right)_{(i, j) \in \mathbb{N}^{2}} \in \widehat{X}_{\rho, \eta}^{\kappa}$, put $x_{i}=\omega_{i,-i}, i \in \mathbb{N}$ so that $x=\left(x_{i}\right)_{i \in \mathbb{N}} \in$ $\widehat{X}_{\delta^{\kappa}}$. Since $\widehat{X}_{\delta^{\kappa}}$ is a one-sided subshift, there exists an extension $\tilde{x} \in X_{\delta^{\kappa}}$ to two-sided sequence such that $\tilde{x}_{i}=x_{i}$ for $i \in \mathbb{N}$. By the diagonal property, \tilde{x} determines a whole configuration $\tilde{\omega}$ to \mathbb{Z}^{2} such that $\tilde{\omega} \in X_{\delta, \eta}^{\kappa}$ and $\left(\tilde{\omega}_{i,-i}\right)_{i \in \mathbb{N}}=$ \tilde{x}. Hence $\tilde{\omega}_{i,-j}=\omega_{i,-j}$ for all $i, j \in \mathbb{N}$.

Let $\mathfrak{D}_{\rho, \eta}$ be the C^{*}-subalgebra of $\mathcal{D}_{\rho, \eta}$ defined by

$$
\begin{aligned}
\mathfrak{D}_{\rho, \eta} & =C^{*}\left(S_{\mu} T_{\zeta} T_{\zeta}^{*} S_{\mu}^{*}: \mu \in B_{*}\left(\Lambda_{\rho}\right), \zeta \in B_{*}\left(\Lambda_{\eta}\right)\right) \\
& =C^{*}\left(T_{\xi} S_{\nu} S_{\nu}^{*} T_{\xi}^{*}: \nu \in B_{*}\left(\Lambda_{\rho}\right), \xi \in B_{*}\left(\Lambda_{\eta}\right)\right)
\end{aligned}
$$

which is a commutative C^{*}-subalgebra of $\mathcal{D}_{\rho, \eta}$. Put for $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in$ $B_{*}\left(\Lambda_{\rho}\right), \zeta=\left(\zeta_{1}, \cdots, \zeta_{m}\right) \in B_{*}\left(\Lambda_{\eta}\right)$ the cylinder set

$$
\begin{aligned}
& U_{\mu, \zeta}=\left\{\left(\omega_{i,-j}\right)_{(i, j) \in \mathbb{N}^{2}} \in \widehat{X}_{\rho, \eta}^{\kappa} \mid\right. \\
&\left.t\left(\omega_{i,-1}\right)=\mu_{i}, i=1, \ldots, n, r\left(\omega_{n,-j}\right)=\zeta_{j}, j=1, \ldots, m\right\}
\end{aligned}
$$

The following lemma is direct.

Lemma 4.10. $\mathfrak{D}_{\rho, \eta}$ is isomorphic to $C\left(\widehat{X}_{\rho, \eta}^{\kappa}\right)$ through the correspondence such that $S_{\mu} T_{\zeta} T_{\zeta}^{*} S_{\mu}^{*}$ goes to $\chi_{U_{\mu, \zeta}}$, where $\chi_{U_{\mu, \zeta}}$ is the characteristic function for the cylinder set $U_{\mu, \zeta}$ on $\widehat{X}_{\rho, \eta}^{\kappa}$.

5. Condition (I) for C^{*}-textile dynamical systems

The notion of condition (I) for finite square matrices with entries in $\{0,1\}$ has been introduced in [8]. The condition has been generalized by many authors to corresponding conditions for generalizations of the Cuntz-Krieger algebras (cf. [12], [15], [20], [41], etc.). The condition (I) for C^{*}-symbolic dynamical systems (including λ-graph systems) has been also defined in [29] (cf. [25], [26]). All of these conditions give rise to the uniqueness of the associated C^{*}-algebras subject to some operator relations among certain generating elements.

In this section, we will introduce the notion of condition (I) for C^{*}-textile dynamical systems to prove the uniqueness of the C^{*}-algebras $\mathcal{O}_{\rho, \eta}^{\kappa}$ under the relation $(\rho, \eta ; \kappa)$.

Let $\left(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa\right)$ be a C^{*}-symbolic dynamical system over Σ and $X_{\rho, \eta}^{\kappa}$ the associated two-dimensional subshift. Denote by $\Lambda_{\rho}, \Lambda_{\eta}$ the associated subshifts to the C^{*}-symbolic dynamical systems $\left(\mathcal{A}, \rho, \Sigma^{\rho}\right),\left(\mathcal{A}, \eta, \Sigma^{\eta}\right)$ respectively. For $\mu=\left(\mu_{1}, \ldots, \mu_{j}\right) \in B_{j}\left(\Lambda_{\rho}\right), \zeta=\left(\zeta_{1}, \ldots, \zeta_{k}\right) \in B_{k}\left(\Lambda_{\eta}\right)$, we put $\rho_{\mu}=\rho_{\mu_{j}} \circ \cdots \circ \rho_{\mu_{1}}, \eta_{\zeta}=\eta_{\zeta_{k}} \circ \cdots \circ \eta_{\zeta_{1}}$ respectively. Recall that $|\mu|,|\zeta|$ denotes the lengths j, k respectively. In the algebra $\mathcal{O}_{\rho, \eta}^{\kappa}$, we set the subalgebras

$$
\begin{aligned}
& \mathcal{F}_{\rho, \eta} \\
& =C^{*}\left(S_{\mu} T_{\zeta} x T_{\xi}^{*} S_{\nu}^{*}: \mu, \nu \in B_{*}\left(\Lambda_{\rho}\right), \zeta, \xi \in B_{*}\left(\Lambda_{\eta}\right),|\mu|=|\nu|,|\zeta|=|\xi|, x \in \mathcal{A}\right)
\end{aligned}
$$

and for $j, k \in \mathbb{Z}_{+}$,

$$
\mathcal{F}_{j, k}=C^{*}\left(S_{\mu} T_{\zeta} x T_{\xi}^{*} S_{\nu}^{*}: \mu, \nu \in B_{j}\left(\Lambda_{\rho}\right), \zeta, \xi \in B_{k}\left(\Lambda_{\eta}\right), x \in \mathcal{A}\right)
$$

We notice that

$$
\mathcal{F}_{j, k}=C^{*}\left(T_{\zeta} S_{\mu} x S_{\nu}^{*} T_{\xi}^{*}: \mu, \nu \in B_{j}\left(\Lambda_{\rho}\right), \zeta, \xi \in B_{k}\left(\Lambda_{\eta}\right), x \in \mathcal{A}\right)
$$

The identities

$$
\begin{align*}
& S_{\mu} T_{\zeta} x T_{\xi}^{*} S_{\nu}^{*}=\sum_{a \in \Sigma^{\eta}} S_{\mu} T_{\zeta a} \eta_{a}(x) T_{\xi a}^{*} S_{\nu}^{*} \tag{5.1}\\
& T_{\zeta} S_{\mu} x S_{\nu}^{*} T_{\xi}^{*}=\sum_{\alpha \in \Sigma^{\rho}} T_{\zeta} S_{\mu \alpha} \rho_{\alpha}(x) S_{\nu \alpha}^{*} T_{\xi}^{*} \tag{5.2}
\end{align*}
$$

for $x \in \mathcal{A}$ and $\mu, \nu \in B_{j}\left(\Lambda_{\rho}\right), \zeta, \xi \in B_{k}\left(\Lambda_{\eta}\right)$ yield the embeddings

$$
\begin{equation*}
\iota_{*,+1}: \mathcal{F}_{j, k} \hookrightarrow \mathcal{F}_{j, k+1}, \quad \iota_{+1, *}: \mathcal{F}_{j, k} \hookrightarrow \mathcal{F}_{j+1, k} \tag{5.3}
\end{equation*}
$$

respectively, such that $\cup_{j, k \in \mathbb{Z}_{+}} \mathcal{F}_{j, k}$ is dense in $\mathcal{F}_{\rho, \eta}$.

By the universality of $\mathcal{O}_{\rho, \eta}^{\kappa}$ subject to the relations $(\rho, \eta ; \kappa)$, we may define an action $\theta: \mathbb{T}^{2} \longrightarrow \operatorname{Aut}\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)$ of the two-dimensional torus group

$$
\mathbb{T}^{2}=\left\{(z, w) \in \mathbb{C}^{2}| | z|=|w|=1\}\right.
$$

to $\mathcal{O}_{\rho, \eta}^{\kappa}$ by setting

$$
\theta_{z, w}\left(S_{\alpha}\right)=z S_{\alpha}, \quad \theta_{z, w}\left(T_{a}\right)=w T_{a}, \quad \theta_{z, w}(x)=x
$$

for $\alpha \in \Sigma^{\rho}, a \in \Sigma^{\eta}, x \in \mathcal{A}$ and $z, w \in \mathbb{T}$. We call the action $\theta: \mathbb{T}^{2} \longrightarrow$ $\operatorname{Aut}\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)$ the gauge action of \mathbb{T}^{2} on $\mathcal{O}_{\rho, \eta}^{\kappa}$. The fixed point algebra of $\mathcal{O}_{\rho, \eta}^{\kappa}$ under θ is denoted by $\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\theta}$. Let $\mathcal{E}_{\rho, \eta}: \mathcal{O}_{\rho, \eta}^{\kappa} \longrightarrow\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\theta}$ be the conditional expectation defined by

$$
\mathcal{E}_{\rho, \eta}(X)=\int_{(z, w) \in \mathbb{T}^{2}} \theta_{z, w}(X) d z d w, \quad X \in \mathcal{O}_{\rho, \eta}^{\kappa}
$$

where $d z d w$ means the normalized Haar measure on \mathbb{T}^{2}. The following lemma is routine.

Lemma 5.1. $\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\theta}=\mathcal{F}_{\rho, \eta}$.
Define homomorphisms $\phi_{\rho}, \phi_{\eta}: \mathcal{D}_{\rho, \eta} \longrightarrow \mathcal{D}_{\rho, \eta}$ by setting

$$
\phi_{\rho}(X)=\sum_{\alpha \in \Sigma^{\rho}} S_{\alpha} X S_{\alpha}^{*}, \quad \phi_{\eta}(X)=\sum_{a \in \Sigma^{\eta}} T_{a} X T_{a}^{*}, \quad X \in \mathcal{D}_{\rho, \eta} .
$$

It is easy to see that by (4.3)

$$
\phi_{\rho} \circ \phi_{\eta}=\phi_{\eta} \circ \phi_{\rho} \quad \text { on } \mathcal{D}_{\rho, \eta} .
$$

Definition 5.2. A C^{*}-textile dynamical system $\left(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa\right)$ is said to satisfy condition (I) if there exists a unital increasing sequence

$$
\mathcal{A}_{0} \subset \mathcal{A}_{1} \subset \cdots \subset \mathcal{A}
$$

of C^{*}-subalgebras of \mathcal{A} such that:
(1) $\rho_{\alpha}\left(\mathcal{A}_{l}\right) \subset \mathcal{A}_{l+1}, \eta_{a}\left(\mathcal{A}_{l}\right) \subset \mathcal{A}_{l+1}$ for all $l \in \mathbb{Z}_{+}, \alpha \in \Sigma^{\rho}, a \in \Sigma^{\eta}$.
(2) $\cup_{l \in \mathbb{Z}_{+}} \mathcal{A}_{l}$ is dense in \mathcal{A}.
(3) For $\epsilon>0, j, k, l \in \mathbb{N}$ with $j+k \leq l$ and
$X_{0} \in \mathcal{F}_{j, k}^{l}=C^{*}\left(S_{\mu} T_{\zeta} x T_{\xi}^{*} S_{\nu}^{*}: \mu, \nu \in B_{j}\left(\Lambda_{\rho}\right), \zeta, \xi \in B_{k}\left(\Lambda_{\eta}\right), x \in \mathcal{A}_{l}\right)$,
there exists an element

$$
g \in \mathcal{D}_{\rho, \eta} \cap \mathcal{A}_{l}^{\prime}\left(=\left\{y \in \mathcal{D}_{\rho, \eta} \mid y a=a y \text { for } a \in \mathcal{A}_{l}\right\}\right)
$$

with $0 \leq g \leq 1$ such that:
(i) $\left\|X_{0} \phi_{\rho}^{j} \circ \phi_{\eta}^{k}(g)\right\| \geq\left\|X_{0}\right\|-\epsilon$,
(ii) $\phi_{\rho}^{n}(g) \phi_{\eta}^{m}(g)=\phi_{\rho}^{n}\left(\phi_{\eta}^{m}(g)\right) g=\phi_{\rho}^{n}(g) g=\phi_{\eta}^{m}(g) g=0$ for all $n=$

$$
1,2, \ldots, j, m=1,2, \ldots, k
$$

If in particular, one may take the above subalgebras $\mathcal{A}_{l} \subset \mathcal{A}, l=0,1,2, \ldots$ to be of finite dimensional, then $\left(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa\right)$ is said to satisfy $A F$ condition (I). In this case, $\mathcal{A}=\overline{\mathrm{U}_{l=0}^{\infty} \mathcal{A}_{l}}$ is an AF-algebra.

As the element g above belongs to the diagonal subalgebra $\mathcal{D}_{\rho, \eta}$ of $\mathcal{F}_{\rho, \eta}$, the condition (I) of ($\left.\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa\right)$ is intrinsically determined by itself by virtue of Lemma 5.5 below.

We will also introduce the following condition called free, which will be stronger than condition (I) but easier to confirm than condition (I).

Definition 5.3. A C^{*}-textile dynamical system $\left(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa\right)$ is said to be free if there exists a unital increasing sequence $\mathcal{A}_{0} \subset \mathcal{A}_{1} \subset \cdots \subset \mathcal{A}$ of C^{*}-subalgebras of \mathcal{A} such that:
(1) $\rho_{\alpha}\left(\mathcal{A}_{l}\right) \subset \mathcal{A}_{l+1}, \eta_{a}\left(\mathcal{A}_{l}\right) \subset \mathcal{A}_{l+1}$ for all $l \in \mathbb{Z}_{+}, \alpha \in \Sigma^{\rho}, a \in \Sigma^{\eta}$.
(2) $\cup_{l \in \mathbb{Z}_{+}} \mathcal{A}_{l}$ is dense in \mathcal{A}.
(3) For $j, k, l \in \mathbb{N}$ with $j+k \leq l$ there exists a projection $q \in \mathcal{D}_{\rho, \eta} \cap \mathcal{A}_{l}^{\prime}$ such that:
(i) $q a \neq 0$ for $0 \neq a \in \mathcal{A}_{l}$.
(ii) $\phi_{\rho}^{n}(q) \phi_{\eta}^{m}(q)=\phi_{\rho}^{n}\left(\phi_{\eta}^{m}(q)\right) q=\phi_{\rho}^{n}(q) q=\phi_{\eta}^{m}(q) q=0$ for all $n=$ $1,2, \ldots, j, m=1,2, \ldots, k$.
If in particular, one may take the above subalgebras $\mathcal{A}_{l} \subset \mathcal{A}, l=0,1,2, \ldots$ to be of finite dimensional, then $\left(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa\right)$ is said to be $A F$-free.

Proposition 5.4. If a C^{*}-textile dynamical system $\left(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa\right)$ is free (resp. AF-free), then it satisfies condition (I) (resp. AF-condition (I)).

Proof. Assume that $\left(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa\right)$ is free. Take an increasing sequence $\mathcal{A}_{l}, l \in \mathbb{N}$ of C^{*}-subalgebras of \mathcal{A} satisfying the above conditions (1), (2), (3) of freeness. For $j, k, l \in \mathbb{N}$ with $j+k \leq l$ there exists a projection $q \in \mathcal{D}_{\rho, \eta} \cap \mathcal{A}_{l}{ }^{\prime}$ satisfying the above two conditions (3i) and (3ii). Put

$$
Q_{j, k}^{l}=\phi_{\rho}^{j}\left(\phi_{\eta}^{k}(q)\right) .
$$

For $x \in \mathcal{A}_{l}, \mu, \nu \in B_{j}\left(\Lambda_{\rho}\right), \xi, \zeta \in B_{k}\left(\Lambda_{\eta}\right)$, one has the equality

$$
Q_{j, k}^{l} S_{\mu} T_{\zeta} x T_{\xi}^{*} S_{\nu}^{*}=S_{\mu} T_{\zeta} x T_{\xi}^{*} S_{\nu}^{*}
$$

so that $Q_{j, k}^{l}$ commutes with all of elements of $\mathcal{F}_{j, k}^{l}$. By using the condition (3i) for q one directly sees that $S_{\mu} T_{\zeta} x T_{\xi}^{*} S_{\nu}^{*} \neq 0$ if and only if

$$
Q_{j, k}^{l} S_{\mu} T_{\zeta} x T_{\xi}^{*} S_{\nu}^{*} \neq 0
$$

Hence the map

$$
X \in \mathcal{F}_{j, k}^{l} \longrightarrow X Q_{j, k}^{l} \in \mathcal{F}_{j, k}^{l} Q_{j, k}^{l}
$$

defines a homomorphism, that is proved to be injective by a similar proof to the proof of [30, Proposition 3.7]. Hence we have $\left\|X Q_{j, k}^{l}\right\|=\|X\| \geq\|X\|-\epsilon$ for all $X \in \mathcal{F}_{j, k}^{l}$.

Let \mathcal{B} be a unital C^{*}-algebra. Suppose that there exist an injective *homomorphism $\pi: \mathcal{A} \longrightarrow \mathcal{B}$ preserving their units and two families

$$
s_{\alpha} \in \mathcal{B}, \alpha \in \Sigma^{\rho} \quad \text { and } \quad t_{a} \in \mathcal{B}, a \in \Sigma^{\eta}
$$

of partial isometries satisfying

$$
\begin{aligned}
\sum_{\beta \in \Sigma^{\rho}} s_{\beta} s_{\beta}^{*}=1, \quad \pi(x) s_{\alpha} s_{\alpha}^{*}=s_{\alpha} s_{\alpha}^{*} \pi(x), \quad s_{\alpha}^{*} \pi(x) s_{\alpha}=\pi\left(\rho_{\alpha}(x)\right), \\
\sum_{b \in \Sigma^{\eta}} t_{b} t_{b}^{*}=1, \quad \pi(x) t_{a} t_{a}^{*}=t_{a} t_{a}^{*} \pi(x), \quad t_{a}^{*} \pi(x) t_{a}=\pi\left(\eta_{a}(x)\right) \\
s_{\alpha} t_{b}=t_{a} s_{\beta} \quad \text { if } \quad \kappa(\alpha, b)=(a, \beta)
\end{aligned}
$$

for all $x \in \mathcal{A}$ and $\alpha \in \Sigma^{\rho}, a \in \Sigma^{\eta}$. Put $\widetilde{\mathcal{A}}=\pi(\mathcal{A})$ and

$$
\tilde{\rho}_{\alpha}(\pi(x))=\pi\left(\rho_{\alpha}(x)\right), \quad \tilde{\eta}_{a}(\pi(x))=\pi\left(\eta_{a}(x)\right), \quad x \in \mathcal{A} .
$$

It is easy to see that $\left(\tilde{\mathcal{A}}, \tilde{\rho}, \tilde{\eta}, \Sigma^{\rho}, \Sigma^{\eta}, \kappa\right)$ is a C^{*}-textile dynamical system such that the presented textile dynamical system $X_{\tilde{\rho}, \tilde{\eta}}^{\kappa}$ is the same as the one $X_{\rho, \eta}^{\kappa}$ presented by $\left(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa\right)$. Let $\mathcal{O}_{\pi, s, t}$ be the C^{*}-subalgebra of \mathcal{B} generated by $\pi(x)$ and s_{α}, t_{a} for $x \in \mathcal{A}, \alpha \in \Sigma^{\rho}, a \in \Sigma^{\eta}$. Let $\mathcal{F}_{\pi, s, t}$ be the C^{*}-subalgebra of $\mathcal{O}_{\pi, s, t}$ generated by $s_{\mu} t_{\zeta} \pi(x) t_{\xi}^{*} s_{\nu}^{*}$ for $x \in \mathcal{A}$ and $\mu, \nu \in B_{*}\left(\Lambda_{\rho}\right), \zeta, \xi \in B_{*}\left(\Lambda_{\eta}\right)$ with $|\mu|=|\nu|,|\zeta|=|\xi|$. By the universality of the algebra $\mathcal{O}_{\rho, \eta}^{\kappa}$, the correspondence

$$
x \in \mathcal{A} \longrightarrow \pi(x) \in \widetilde{A}, \quad S_{\alpha} \longrightarrow s_{\alpha}, \quad \alpha \in \Sigma^{\rho}, \quad T_{a} \longrightarrow t_{a}, \quad a \in \Sigma^{\eta}
$$

extends to a surjective $*$-homomorphism $\tilde{\pi}: \mathcal{O}_{\rho, \eta}^{\kappa} \longrightarrow \mathcal{O}_{\pi, s, t}$.
Lemma 5.5. The restriction of $\tilde{\pi}$ to the subalgebra $\mathcal{F}_{\rho, \eta}$ is a*-isomorphism from $\mathcal{F}_{\rho, \eta}$ to $\mathcal{F}_{\pi, s, t}$. Hence if $\left(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa\right)$ satisfies condition (I) (resp. is free), ($\left.\widetilde{\mathcal{A}}, \tilde{\rho}, \tilde{\eta}, \Sigma^{\rho}, \Sigma^{\eta}, \kappa\right)$ satisfies condition (I) (resp. is free).
Proof. It suffices to show that $\tilde{\pi}$ is injective on $\mathcal{F}_{j, k}$ for all $j, k \in \mathbb{Z}$. Suppose

$$
\sum_{\mu, \nu \in B_{j}\left(\Lambda_{\rho}\right), \zeta, \xi \in B_{k}\left(\Lambda_{\eta}\right)} s_{\mu} t_{\zeta} \pi\left(x_{\mu, \zeta, \zeta, \nu}\right) t_{\xi}^{*} s_{\nu}^{*}=0
$$

with $x_{\mu, \zeta, \xi, \nu} \in \mathcal{A}$. For $\mu^{\prime}, \nu^{\prime} \in B_{j}\left(\Lambda_{\rho}\right), \zeta^{\prime}, \xi^{\prime} \in B_{k}\left(\Lambda_{\eta}\right)$, one has

$$
\begin{aligned}
& \pi\left(\eta_{\zeta^{\prime}}\left(\rho_{\mu^{\prime}}(1)\right) x_{\mu^{\prime}, \zeta^{\prime}, \xi^{\prime}, \nu^{\prime}} \eta_{\xi^{\prime}}\left(\rho_{\nu^{\prime}}(1)\right)\right) \\
& =t_{\zeta^{\prime}}^{*} s_{\mu^{\prime}}^{*}\left(\sum_{\mu, \nu \in B_{j}\left(\Lambda_{\rho}\right), \zeta, \xi \in B_{k}\left(\Lambda_{\eta}\right)} s_{\mu} t_{\zeta} \pi\left(x_{\mu, \zeta, \xi, \nu}\right) t_{\xi}^{*} s_{\nu}^{*}\right) s_{\nu^{\prime}} t_{\xi^{\prime}}=0
\end{aligned}
$$

As $\pi: \mathcal{A} \longrightarrow \mathcal{B}$ is injective, one sees

$$
\eta_{\zeta^{\prime}}\left(\rho_{\mu^{\prime}}(1)\right) x_{\mu^{\prime}, \zeta^{\prime}, \xi^{\prime}, \nu^{\prime}} \eta_{\xi^{\prime}}\left(\rho_{\nu^{\prime}}(1)\right)=0
$$

so that

$$
S_{\mu^{\prime}} T_{\zeta^{\prime}} x_{\mu^{\prime}, \zeta^{\prime}, \xi^{\prime}, \nu^{\prime}} T_{\xi^{\prime}}^{*} S_{\nu^{\prime}}^{*}=0
$$

Hence we have

$$
\sum_{\mu, \nu \in B_{j}\left(\Lambda_{\rho}\right), \zeta, \xi \in B_{k}\left(\Lambda_{\eta}\right)} S_{\mu} T_{\zeta} x_{\mu, \zeta, \xi, \nu} T_{\xi}^{*} S_{\nu}^{*}=0
$$

Therefore $\tilde{\pi}$ is injective on $\mathcal{F}_{j, k}$.

We henceforth assume that $\left(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa\right)$ satisfies condition (I) defined above. Take a unital increasing sequence $\left\{\mathcal{A}_{l}\right\}_{l \in \mathbb{Z}_{+}}$of C^{*}-subalgebras of \mathcal{A} as in the definition of condition (I). Recall that the algebra $\mathcal{F}_{j, k}^{l}$ for $j, k \leq l$ is defined by

$$
\mathcal{F}_{j, k}^{l}=C^{*}\left(S_{\mu} T_{\zeta} x T_{\xi}^{*} S_{\nu}^{*}: \mu, \nu \in B_{j}\left(\Lambda_{\rho}\right), \zeta, \xi \in B_{k}\left(\Lambda_{\eta}\right), x \in \mathcal{A}_{l}\right)
$$

There exists an inclusion relation $\mathcal{F}_{j, k}^{l} \subset \mathcal{F}_{j^{\prime}, k^{\prime}}^{l^{\prime}}$ for $j \leq j^{\prime}, k \leq k^{\prime}$ and $l \leq l^{\prime}$ through the identities (5.1), (5.2). Let $\mathcal{P}_{\pi, s, t}$ be the $*$-subalgebra of $\mathcal{O}_{\pi, s, t}$ algebraically generated by $\pi(x), s_{\alpha}, t_{a}$ for $x \in \mathcal{A}_{l}, l \in \mathbb{Z}_{+}, \alpha \in \Sigma^{\rho}, a \in \Sigma^{\eta}$.

Lemma 5.6. Any element $x \in \mathcal{P}_{\pi, s, t}$ can be expressed in a unique way as

$$
\begin{aligned}
x= & \sum_{|\nu|,|\xi| \geq 1} x_{-\xi,-\nu} t_{\xi}^{*} s_{\nu}^{*}+\sum_{|\zeta|,|\nu| \geq 1} t_{\zeta} x_{\zeta,-\nu} s_{\nu}^{*}+\sum_{|\mu|,|\xi| \geq 1} s_{\mu} x_{\mu,-\xi} t_{\xi}^{*} \\
& +\sum_{|\mu|, \zeta \mid \geq 1} s_{\mu} t_{\zeta} x_{\mu, \zeta}+\sum_{|\xi| \geq 1} x_{-\xi} t_{\xi}^{*}+\sum_{|\nu| \geq 1} x_{-\nu} s_{\nu}^{*} \\
& +\sum_{|\mu| \geq 1} s_{\mu} x_{\mu}+\sum_{|\zeta| \geq 1} t_{\zeta} x_{\zeta}+x_{0}
\end{aligned}
$$

where the above summations Σ are all finite sums and the elements

$$
x_{-\xi,-\nu}, x_{\zeta,-\nu}, x_{\mu,-\xi}, x_{\mu, \zeta}, x_{-\xi}, x_{-\nu}, x_{\mu}, x_{\zeta}, x_{0}
$$

for $\mu, \nu \in B_{*}\left(\Lambda_{\rho}\right), \zeta, \xi \in B_{*}\left(\Lambda_{\eta}\right)$ all belong to the dense subalgebra

$$
\mathcal{P}_{\pi, s, t} \cap \mathcal{F}_{\pi, s, t}
$$

which satisfy

$$
\begin{aligned}
x_{-\xi,-\nu} & =x_{-\xi,-\nu} \eta_{\xi}\left(\rho_{\nu}(1)\right), & x_{\zeta,-\nu} & =\eta_{\zeta}(1) x_{\zeta,-\nu} \rho_{\nu}(1), \\
x_{\mu,-\xi} & =\rho_{\mu}(1) x_{\mu,-\xi} \eta_{\xi}(1), & x_{\mu, \zeta} & =\eta_{\zeta}\left(\rho_{\mu}(1)\right) x_{\mu, \zeta}, \\
x_{-\xi} & =x_{-\xi} \eta_{\xi}(1), & x_{-\nu} & =x_{-\nu} \rho_{\nu}(1), \\
x_{\mu} & =\rho_{\mu}(1) x_{\mu}, & x_{\zeta} & =\eta_{\zeta}(1) x_{\zeta} .
\end{aligned}
$$

Proof. Put

$$
\begin{aligned}
x_{-\xi,-\nu} & =\mathcal{E}_{\rho, \eta}\left(x s_{\nu} t_{\xi}\right), & x_{\zeta,-\nu} & =\mathcal{E}_{\rho, \eta}\left(t_{\zeta}^{*} x s_{\nu}\right), \\
x_{\mu,-\xi} & =\mathcal{E}_{\rho, \eta}\left(s_{\mu}^{*} x x_{\xi}\right), & x_{\mu, \zeta} & =\mathcal{E}_{\rho, \eta}\left(t_{\zeta}^{*} s_{\mu}^{*} x\right), \\
x_{-\xi} & =\mathcal{E}_{\rho, \eta}\left(x t_{\xi}\right), & x_{-\nu} & =\mathcal{E}_{\rho, \eta}\left(x s_{\nu}\right), \\
x_{\mu} & =\mathcal{E}_{\rho, \eta}\left(s_{\mu}^{*} x\right), & x_{\zeta} & =\mathcal{E}_{\rho, \eta}\left(t_{\zeta}^{*} x\right), \\
x_{0} & =\mathcal{E}_{\rho, \eta}(x) . & &
\end{aligned}
$$

Then we have the desired expression of x. The elements

$$
x_{-\xi,-\nu}, x_{\zeta,-\nu}, x_{\mu,-\xi}, x_{\mu, \zeta}, x_{-\xi}, x_{-\nu}, x_{\mu}, x_{\zeta}, x_{0}
$$

for $\mu, \nu \in B_{*}\left(\Lambda_{\rho}\right), \zeta, \xi \in B_{*}\left(\Lambda_{\eta}\right)$ are automatically determined by the above formulae so that the expression is unique.

Lemma 5.7. For $h \in \mathcal{D}_{\rho, \eta} \cap \mathcal{A}_{l}^{\prime}$ and $j, k \in \mathbb{Z}$ with $j+k \leq l$, put

$$
h^{j, k}=\phi_{\rho}^{j} \circ \phi_{\eta}^{k}(h) .
$$

Then we have
(i) $h^{j, k} s_{\mu}=s_{\mu} h^{j-|\mu|, k}$ for $\mu \in B_{*}\left(\Lambda_{\rho}\right)$ with $|\mu| \leq j$.
(ii) $h^{j, k} t_{\zeta}=t_{\zeta} h^{j, k-|\zeta|}$ for $\zeta \in B_{*}\left(\Lambda_{\eta}\right)$ with $|\zeta| \leq k$.
(iii) $h^{j, k}$ commutes with any element of $\mathcal{F}_{j, k}^{l}$.

Proof. (i) It follows that for $\mu \in B_{*}\left(\Lambda_{\rho}\right)$ with $|\mu| \leq j$

$$
h^{j, k} s_{\mu}=\sum_{\left|\mu^{\prime}\right|=|\mu|} s_{\mu^{\prime}} \phi_{\rho}^{j-|\mu|}\left(\phi_{\eta}^{k}(h)\right) s_{\mu^{\prime}}^{*} s_{\mu}=s_{\mu} \phi_{\rho}^{j-|\mu|}\left(\phi_{\eta}^{k}(h)\right) s_{\mu^{*}}^{*} s_{\mu} .
$$

Since $h \in \mathcal{A}_{l}^{\prime}$ and $\mathcal{A}_{j+k} \subset \mathcal{A}_{l}$, one has

$$
\begin{aligned}
\phi_{\rho}^{j-|\mu|}\left(\phi_{\eta}^{k}(h)\right) s_{\mu}^{*} s_{\mu} & =\sum_{\nu \in B_{j-|\mu|}\left(\Lambda_{\rho}\right)} \sum_{\xi \in B_{k}\left(\Lambda_{\eta}\right)} s_{\nu} t_{\xi} h t_{\xi}^{*} s_{\nu}^{*} s_{\mu}^{*} s_{\mu} \\
& =\sum_{\nu \in B_{j-|\mu|}\left(\Lambda_{\rho}\right)} \sum_{\xi \in B_{k}\left(\Lambda_{\eta}\right)} s_{\nu} t_{\xi} h t_{\xi}^{*} s_{\nu}^{*} s_{\mu}^{*} s_{\mu} s_{\nu} t_{\xi} t_{\xi}^{*} s_{\nu}^{*} \\
& =\sum_{\nu \in B_{j-|\mu|}\left(\Lambda_{\rho}\right)} \sum_{\xi \in B_{k}\left(\Lambda_{\eta}\right)} s_{\nu} t_{\xi} \eta_{\xi}\left(\rho_{\mu \nu}(1)\right) h t_{\xi}^{*} s_{\nu}^{*} \\
& =\sum_{\nu \in B_{j-|\mu|}\left(\Lambda_{\rho}\right)} \sum_{\xi \in B_{k}\left(\Lambda_{\eta}\right)} s_{\nu} \rho_{\mu \nu}(1) t_{\xi} h t_{\xi}^{*} s_{\nu}^{*} \\
& =s_{\mu}^{*} s_{\mu} \phi_{\rho}^{j-|\mu|}\left(\phi_{\eta}^{k}(h)\right)=s_{\mu}^{*} s_{\mu} h^{j-|\mu|, k}
\end{aligned}
$$

so that $h^{j, k} s_{\mu}=s_{\mu} h^{j-|\mu|, k}$.
(ii) Similarly we have $h^{j, k} t_{\zeta}=t_{\zeta} h^{j, k-|\zeta|}$ for $\zeta \in B_{*}\left(\Lambda_{\eta}\right)$ with $|\zeta| \leq k$.
(iii) For $x \in \mathcal{A}_{l}, \mu, \nu \in B_{j}\left(\Lambda_{\rho}\right), \zeta, \xi \in B_{k}\left(\Lambda_{\eta}\right)$, we have

$$
h^{j, k} s_{\mu} t_{\zeta}=s_{\mu} h^{0, k} t_{\zeta}=s_{\mu} t_{\zeta} h^{0,0}=s_{\mu} t_{\zeta} h .
$$

It follows that

$$
h^{j, k} s_{\mu} t_{\zeta} x t_{\xi}^{*} s_{\nu}^{*}=s_{\mu} t_{\zeta} h x t_{\xi}^{*} s_{\nu}^{*}=s_{\mu} t_{\zeta} x h t_{\xi}^{*} s_{\nu}^{*}=s_{\mu} t_{\zeta} x t_{\xi}^{*} s_{\nu}^{*} h^{j, k}
$$

Hence $h^{j, k}$ commutes with any element of $\mathcal{F}_{j, k}^{l}$.
Lemma 5.8. Assume that ($\left.\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa\right)$ satisfies condition (I). For $x \in \mathcal{P}_{\pi, s, t}$, let $x_{0}=\mathcal{E}_{\rho, \eta}(x)$ as in Lemma 5.6. Then we have

$$
\left\|x_{0}\right\| \leq\|x\| .
$$

Proof. We may assume that the elements for $x \in \mathcal{P}_{\pi, s, t}$

$$
x_{-\xi,-\nu}, x_{\zeta,-\nu}, x_{\mu,-\xi}, x_{\mu, \zeta}, x_{-\xi}, x_{-\nu}, x_{\mu}, x_{\zeta}, x_{0}
$$

in Lemma 5.6 belong to $\tilde{\pi}\left(\mathcal{F}_{j_{1}, k_{1}}^{l_{1}}\right)$ for some j_{1}, k_{1}, l_{1} and $\mu, \nu \in \cup_{n=0}^{j_{0}} B_{n}\left(\Lambda_{\rho}\right)$, $\zeta, \xi \in \cup_{n=0}^{k_{0}} B_{n}\left(\Lambda_{\eta}\right)$ for some j_{0}, k_{0}. Take $j, k, l \in \mathbb{Z}_{+}$such as

$$
j \geq j_{0}+j_{1}, \quad k \geq k_{0}+k_{1}, \quad l \geq \max \left\{j+k, l_{1}\right\}
$$

By Lemma 5.5, ($\left.\widetilde{\mathcal{A}}, \tilde{\rho}, \tilde{\eta}, \Sigma^{\rho}, \Sigma^{\eta}, \kappa\right)$ satisfies condition (I). For any $\epsilon>0$, the numbers j, k, l, and the element $x_{0} \in \tilde{\pi}\left(\mathcal{F}_{j_{1}, k_{1}}^{l_{1}}\right)$, one may find

$$
g \in \tilde{\pi}\left(\mathcal{D}_{\rho, \eta}\right) \cap \pi\left(\mathcal{A}_{l}\right)^{\prime}
$$

with $0 \leq g \leq 1$ such that:
(i) $\left\|x_{0} \phi_{\rho}^{j} \circ \phi_{\eta}^{k}(g)\right\| \geq\left\|x_{0}\right\|-\epsilon$.
(ii) $\phi_{\rho}^{n}(g) \phi_{\eta}^{m}(g)=\phi_{\rho}^{n}\left(\phi_{\eta}^{m}(g)\right) g=\phi_{\rho}^{n}(g) g=\phi_{\eta}^{m}(g) g=0$ for all $n=$ $1,2, \ldots, j, m=1,2, \ldots, k$.
Put $h=g^{\frac{1}{2}}$ and $h^{j, k}=\phi_{\rho}^{j} \circ \phi_{\eta}^{k}(h)$. It follows that $\|x\| \geq\left\|h^{j, k} x h^{j, k}\right\|$ and

$$
\left\|h^{j, k} x h^{j, k}\right\|=\|(1)+(2)+(3)+(4)+(5)+(6)\|
$$

where the summands are given by
(6) $\quad h^{j, k} x_{0} h^{j, k}$.

For (1), as $x_{-\xi,-\nu} \in \tilde{\pi}\left(\mathcal{F}_{j_{1}, k_{1}}^{l_{1}}\right) \subset \tilde{\pi}\left(\mathcal{F}_{j, k}^{l}\right)$, one sees that $x_{-\xi,-\nu}$ commutes with $h^{j, k}$. Hence we have

$$
h^{j, k} x_{-\xi,-\nu} t_{\xi}^{*} s_{\nu}^{*} h^{j, k}=x_{-\xi,-\nu} h^{j, k} t_{\xi}^{*} s_{\nu}^{*} h^{j, k}=x_{-\xi,-\nu} h^{j, k} h^{j-|\nu|, k-|\xi|} t_{\xi}^{*} s_{\nu}^{*}
$$

and

$$
\begin{aligned}
h^{j, k} h^{j-|\nu|, k-|\xi|}\left(h^{j, k} h^{j-|\nu|, k-|\xi|}\right)^{*} & =\phi_{\rho}^{j}\left(\phi_{\eta}^{k}(g)\right) \cdot \phi_{\rho}^{j-|\nu|}\left(\phi_{\eta}^{k-|\xi|}(g)\right) \\
& =\phi_{\rho}^{j-|\nu|} \circ \phi_{\eta}^{k-|\xi|}\left(\phi_{\eta}^{|\xi|}\left(\phi_{\rho}^{|\nu|}(g) g\right)\right)=0
\end{aligned}
$$

so that

$$
h^{j, k} x_{-\xi,-\nu} t_{\xi}^{*} s_{\nu}^{*} h^{j, k}=0 .
$$

For (2), as $x_{\xi,-\nu} \in \tilde{\pi}\left(\mathcal{F}_{j_{1}, k_{1}}^{l_{1}}\right) \subset \tilde{\pi}\left(\mathcal{F}_{j, k-|\xi|}^{l} \mid\right.$, one sees that $x_{\xi,-\nu}$ commutes with $h^{j, k-|\xi|}$. Hence we have

$$
h^{j, k} t_{\xi} x_{\xi,-\nu} s_{\nu}^{*} h^{j, k}=t_{\xi} h^{j, k-|\xi|} x_{\xi,-\nu} h^{j-|\nu|, k} s_{\nu}^{*}=t_{\xi} x_{\xi,-\nu} h^{j, k-|\xi|} h^{j-|\nu|, k} s_{\nu}^{*}
$$

and

$$
\begin{aligned}
h^{j, k-|\xi|} h^{j-|\nu|, k}\left(h^{j, k-|\xi|} h^{j-|\nu|, k}\right)^{*} & =\phi_{\rho}^{j}\left(\phi_{\eta}^{k-|\zeta|}(g)\right) \cdot \phi_{\rho}^{j-|\nu|}\left(\phi_{\eta}^{k}(g)\right) \\
& =\phi_{\rho}^{j-|\nu|} \circ \phi_{\eta}^{k-|\zeta|}\left(\phi_{\rho}^{|\nu|}(g) \phi_{\eta}^{|\zeta|}(g)\right)=0
\end{aligned}
$$

so that

$$
h^{j, k} t_{\xi} x_{\xi,-\nu} s_{\nu}^{*} h^{j, k}=0 .
$$

For (3), as $x_{\mu,-\xi} \in \tilde{\pi}\left(\mathcal{F}_{j_{1}, k_{1}}^{l_{1}}\right) \subset \tilde{\pi}\left(\mathcal{F}_{j-|\mu|, k}^{l}\right)$, one sees that $x_{\mu,-\xi}$ commutes with $h^{j-|\mu|, k}$. Hence we have

$$
h^{j, k} s_{\mu} x_{\mu,-\xi} t_{\xi}^{*} h^{j, k}=s_{\mu} h^{j-|\mu|, k} x_{\mu,-\xi} h^{j, k-|\xi|} t_{\xi}^{*}=s_{\mu} x_{\mu,-\xi} h^{j-|\mu|, k} h^{j, k-|\xi|} t_{\xi}^{*}
$$

and

$$
\begin{aligned}
h^{j-|\mu|, k} h^{j, k-|\xi|}\left(h^{j-|\mu|, k} h^{j, k-|\xi|}\right)^{*} & =\phi_{\rho}^{j-|\mu|}\left(\phi_{\eta}^{k}(g)\right) \cdot \phi_{\rho}^{j}\left(\phi_{\eta}^{k-|\xi|}(g)\right) \\
& =\phi_{\rho}^{j-|\mu|} \circ \phi_{\eta}^{k-|\xi|}\left(\phi_{\eta}^{|\xi|}(g) \phi_{\rho}^{|\mu|}(g)\right)=0
\end{aligned}
$$

so that

$$
h^{j, k} s_{\mu} x_{\mu,-\xi} t_{\xi}^{*} h^{j, k}=0 .
$$

For (4), as $x_{\mu, \zeta} \in \tilde{\pi}\left(\mathcal{F}_{j_{1}, k_{1}}^{l_{1}}\right) \subset \tilde{\pi}\left(\mathcal{F}_{j-|\mu|, k-|\zeta|}^{l}\right)$, one sees that $x_{\mu, \zeta}$ commutes with $h^{j-|\mu|, k-|\zeta|}$. Hence we have

$$
h^{j, k} s_{\mu} t_{\zeta} x_{\mu, \zeta} h^{j, k}=s_{\mu} t_{\zeta} h^{j-|\mu|, k-|\zeta|} x_{\mu, \zeta} h^{j, k}=s_{\mu} t_{\zeta} x_{\mu, \zeta} h^{j-|\mu|, k-|\zeta|} h^{j, k}
$$

and

$$
\begin{aligned}
h^{j-|\mu|, k-|\zeta|} h^{j, k}\left(h^{j-|\mu|, k-|\zeta|} h^{j, k}\right)^{*} & =\phi_{\rho}^{j-|\mu|}\left(\phi_{\eta}^{k-|\zeta|}(g)\right) \cdot \phi_{\rho}^{j}\left(\phi_{\eta}^{k}(g)\right) \\
& =\phi_{\rho}^{j-|\mu|} \circ \phi_{\eta}^{k-|\zeta|}\left(g \phi_{\rho}^{|\mu|}\left(\phi_{\eta}^{|\zeta|}(g)\right)\right)=0
\end{aligned}
$$

so that

$$
h^{j, k} s_{\mu} t_{\zeta} x_{\mu, \zeta} h^{j, k}=0 .
$$

For (5), as $x_{-\xi}$ commutes with $h^{j, k}$, we have

$$
h^{j, k} x_{-\xi} \xi_{\xi}^{*} h^{j, k}=x_{-\xi} h^{j, k} h^{j, k-|\xi|} t_{\xi}^{*}
$$

and

$$
\begin{aligned}
h^{j, k} h^{j, k-|\xi|}\left(h^{j, k} h^{j, k-|\xi|}\right)^{*} & =\phi_{\rho}^{j}\left(\phi_{\eta}^{k \mid}(g)\right) \cdot \phi_{\rho}^{j}\left(\phi_{\eta}^{k-|\xi|}(g)\right) \\
& =\phi_{\rho}^{j} \circ \phi_{\eta}^{k-|\xi|}\left(\phi_{\eta}^{|\xi|}(g) g\right)=0
\end{aligned}
$$

so that

$$
h^{j, k} x_{-\xi} t_{\xi}^{*} h^{j, k}=0 .
$$

We similarly see that

$$
h^{j, k} x_{-\nu} s_{\nu}^{*} h^{j, k}=h^{j, k} s_{\mu} x_{\mu} h^{j, k}=h^{j, k} t_{\zeta} x_{\zeta} h^{j, k}=0 .
$$

Therefore we have

$$
\|x\| \geq\left\|h^{j, k} x_{0} h^{j, k}\right\|=\left\|x_{0}\left(h^{j, k}\right)^{2}\right\|=\left\|x_{0} \phi_{\rho}^{j} \circ \phi_{\eta}^{k}(g)\right\| \geq\left\|x_{0}\right\|-\epsilon .
$$

By a similar argument to [8, 2.8 Proposition], one sees:

Corollary 5.9. Assume ($\left.\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa\right)$ satisfies condition (I). There exists a conditional expectation $\mathcal{E}_{\pi, s, t}: \mathcal{O}_{\pi, s, t} \longrightarrow \mathcal{F}_{\pi, s, t}$ such that

$$
\mathcal{E}_{\pi, s, t} \circ \tilde{\pi}=\tilde{\pi} \circ \mathcal{E}_{\rho, \eta}
$$

Therefore we have
Proposition 5.10. Assume that $\left(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa\right)$ satisfies condition (I). The $*$-homomorphism $\tilde{\pi}: \mathcal{O}_{\rho, \eta}^{\kappa} \longrightarrow \mathcal{O}_{\pi, s, t}$ defined by
$\tilde{\pi}(x)=\pi(x), \quad x \in \mathcal{A}, \quad \tilde{\pi}\left(S_{\alpha}\right)=s_{\alpha}, \quad \alpha \in \Sigma^{\rho}, \quad \tilde{\pi}\left(T_{a}\right)=t_{a}, \quad a \in \Sigma^{\eta}$ becomes a surjective $*$-isomorphism, and hence the C^{*}-algebras $\mathcal{O}_{\rho, \eta}^{\kappa}$ and $\mathcal{O}_{\pi, s, t}$ are canonically $*$-isomorphic through $\tilde{\pi}$.

Proof. The map $\tilde{\pi}: \mathcal{F}_{\rho, \eta} \rightarrow \mathcal{F}_{\pi, s, t}$ is $*$-isomorphic and satisfies $\mathcal{E}_{\pi, s, t} \circ \tilde{\pi}=$ $\tilde{\pi} \circ \mathcal{E}_{\rho, \eta}$. Since $\mathcal{E}_{\rho, \eta}: \mathcal{O}_{\rho, \eta}^{\kappa} \longrightarrow \mathcal{F}_{\rho, \eta}$ is faithful, a routine argument shows that the $*$-homomorphism $\tilde{\pi}: \mathcal{O}_{\rho, \eta}^{\kappa} \longrightarrow \mathcal{O}_{\pi, s, t}$ is actually a $*$-isomorphism.

Hence the following uniqueness of the C^{*}-algebra $\mathcal{O}_{\rho, \eta}^{\kappa}$ holds.
Theorem 5.11. Assume that $\left(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa\right)$ satisfies condition (I). The C^{*}-algebra $\mathcal{O}_{\rho, \eta}^{\kappa}$ is the unique C^{*}-algebra subject to the relation $(\rho, \eta ; \kappa)$. This means that if there exist a unital C^{*}-algebra \mathcal{B}, an injective $*$-homomorphism $\pi: \mathcal{A} \longrightarrow \mathcal{B}$ and two families of partial isometries $s_{\alpha}, \alpha \in \Sigma^{\rho}, t_{a}, a \in \Sigma^{\eta}$ satisfying the following relations :

$$
\begin{gathered}
\sum_{\beta \in \Sigma^{\rho}} s_{\beta} s_{\beta}^{*}=1, \quad \pi(x) s_{\alpha} s_{\alpha}^{*}=s_{\alpha} s_{\alpha}^{*} \pi(x), \quad s_{\alpha}^{*} \pi(x) s_{\alpha}=\pi\left(\rho_{\alpha}(x)\right), \\
\sum_{b \in \Sigma^{\eta}} t_{b} t_{b}^{*}=1, \quad \pi(x) t_{a} t_{a}^{*}=t_{a} t_{a}^{*} \pi(x), \quad t_{a}^{*} \pi(x) t_{a}=\pi\left(\eta_{a}(x)\right) \\
s_{\alpha} t_{b}=t_{a} s_{\beta} \quad \text { if } \quad \kappa(\alpha, b)=(a, \beta)
\end{gathered}
$$

for $(\alpha, b) \in \Sigma^{\rho \eta},(a, \beta) \in \Sigma^{\eta \rho}$ and $x \in \mathcal{A}, \alpha \in \Sigma^{\rho}, a \in \Sigma^{\eta}$, then the correspondence

$$
x \in \mathcal{A} \longrightarrow \pi(x) \in \mathcal{B}, \quad S_{\alpha} \longrightarrow s_{\alpha} \in \mathcal{B}, \quad T_{a} \longrightarrow t_{a} \in \mathcal{B}
$$

extends to $a *$-isomorphism $\tilde{\pi}$ from $\mathcal{O}_{\rho, \eta}^{\kappa}$ onto the C^{*}-subalgebra $\mathcal{O}_{\pi, s, t}$ of \mathcal{B} generated by $\pi(x), x \in \mathcal{A}$ and $s_{\alpha}, \alpha \in \Sigma, t_{a}, a \in \Sigma^{\eta}$.

For a C^{*}-textile dynamical system $\left(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa\right)$, let $\lambda_{\rho, \eta}: \mathcal{A} \rightarrow \mathcal{A}$ be the positive map on \mathcal{A} defined by

$$
\lambda_{\rho, \eta}(x)=\sum_{\alpha \in \Sigma^{\rho}, a \in \Sigma^{\eta}} \eta_{a} \circ \rho_{\alpha}(x), \quad x \in \mathcal{A} .
$$

Then $\left(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa\right)$ is said to be irreducible if there exists no nontrivial ideal of \mathcal{A} invariant under $\lambda_{\rho, \eta}$.
Corollary 5.12. If ($\left.\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa\right)$ satisfies condition (I) and is irreducible, the C^{*}-algebra $\mathcal{O}_{\rho, \eta}^{\kappa}$ is simple.

Proof. Assume that there exists a nontrivial ideal \mathcal{I} of $\mathcal{O}_{\rho, \eta}^{\kappa}$. Now suppose that $\mathcal{I} \cap \mathcal{A}=\{0\}$. As $S_{\alpha}^{*} S_{\alpha}=\rho_{\alpha}(1), T_{a}^{*} T_{a}=\eta_{a}(1) \in \mathcal{A}$, one knows that $S_{\alpha}, T_{a} \notin \mathcal{I}$ for all $\alpha \in \Sigma^{\rho}, a \in \Sigma^{\eta}$. By the above theorem, the quotient map $q: \mathcal{O}_{\rho, \eta}^{\kappa} \longrightarrow \mathcal{O}_{\rho, \eta}^{\kappa} / \mathcal{I}$ must be injective so that \mathcal{I} is trivial. Hence one sees that $\mathcal{I} \cap \mathcal{A} \neq\{0\}$ and it is invariant under $\lambda_{\rho, \eta}$.

6. Concrete realization

In this section we will realize the C^{*}-algebra $\mathcal{O}_{\rho, \eta}^{\kappa}$ for $\left(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa\right)$ in a concrete way as a C^{*}-algebra constructed from a Hilbert C^{*}-bimodule. For $\gamma_{i} \in \Sigma^{\rho} \cup \Sigma^{\eta}$, put

$$
\xi_{\gamma_{i}}= \begin{cases}\rho_{\gamma_{i}} & \text { if } \gamma_{i} \in \Sigma^{\rho}, \\ \eta_{\gamma_{i}} & \text { if } \gamma_{i} \in \Sigma^{\eta}\end{cases}
$$

A finite sequence of labels $\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{k}\right) \in\left(\Sigma^{\rho} \cup \Sigma^{\eta}\right)^{k}$ is said to be concatenated labeled path if $\xi_{\gamma_{k}} \circ \cdots \circ \xi_{\gamma_{2}} \circ \xi_{\gamma_{1}}(1) \neq 0$. For $m, n \in \mathbb{Z}_{+}$, let $L_{(n, m)}$ be the set of concatenated labeled paths $\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{m+n}\right)$ such that symbols in Σ^{ρ} appear in $\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{m+n}\right) n$-times and symbols in Σ^{η} appear in $\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{m+n}\right) m$-times. We define a relation in $L_{(n, m)}$ for $i=$ $1,2, \ldots, n+m-1$. We write

$$
\begin{aligned}
& \left(\gamma_{1}, \ldots, \gamma_{i-1}, \gamma_{i}, \gamma_{i+1}, \gamma_{i+2}, \ldots, \gamma_{m+n}\right) \\
& \quad \underset{i}{\approx}\left(\gamma_{1}, \ldots, \gamma_{i-1}, \gamma_{i}^{\prime}, \gamma_{i+1}^{\prime}, \gamma_{i+2}, \ldots, \gamma_{m+n}\right)
\end{aligned}
$$

if one of the following two conditions holds:
(1) $\left(\gamma_{i}, \gamma_{i+1}\right) \in \Sigma^{\rho \eta},\left(\gamma_{i}^{\prime}, \gamma_{i+1}^{\prime}\right) \in \Sigma^{\eta \rho}$ and $\kappa\left(\gamma_{i}, \gamma_{i+1}\right)=\left(\gamma_{i}^{\prime}, \gamma_{i+1}^{\prime}\right)$,
(2) $\left(\gamma_{i}, \gamma_{i+1}\right) \in \Sigma^{\eta \rho},\left(\gamma_{i}^{\prime}, \gamma_{i+1}^{\prime}\right) \in \Sigma^{\rho \eta}$ and $\kappa\left(\gamma_{i}^{\prime}, \gamma_{i+1}^{\prime}\right)=\left(\gamma_{i}, \gamma_{i+1}\right)$.

Denote by \approx the equivalence relation in $L_{(n, m)}$ generated by the relations $\underset{i}{ }, i=1,2, \ldots, n+m-1$. Let $\mathfrak{T}_{(n, m)}=L_{(n, m)} / \approx$ be the set of equivalence classes of $L_{(n, m)}$ under \approx. Denote by $[\gamma] \in \mathfrak{T}_{(n, m)}$ the equivalence class of $\gamma \in L_{(n, m)}$. Put the vectors $e=(1,0), f=(0,-1)$ in \mathbb{R}^{2}. Consider the set of all paths consisting of sequences of vectors e, f starting at the point $(-n, m) \in \mathbb{R}^{2}$ for $n, m \in \mathbb{Z}_{+}$and ending at the origin. Such a path consists of $n e$-vectors and $m f$-vectors. Let $\mathfrak{P}_{(n, m)}$ be the set of all such paths from $(-n, m)$ to the origin. We consider the correspondence

$$
\rho_{\alpha} \longrightarrow e \quad\left(\alpha \in \Sigma^{\rho}\right), \quad \eta_{a} \longrightarrow f \quad\left(a \in \Sigma^{\eta}\right),
$$

denoted by π. It extends a surjective map from $L_{(n, m)}$ to $\mathfrak{P}_{(n, m)}$ in a natural way. For a concatenated labeled path $\gamma=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n+m}\right) \in L_{(n, m)}$, put the projection in \mathcal{A}

$$
P_{\gamma}=\left(\xi_{\gamma_{n+m}} \circ \cdots \circ \xi_{\gamma_{2}} \circ \xi_{\gamma_{1}}\right)(1) .
$$

We note that $P_{\gamma} \neq 0$ for all $\gamma \in L_{(n, m)}$.

Lemma 6.1. For $\gamma, \gamma^{\prime} \in L_{(n, m)}$, if $\gamma \approx \gamma^{\prime}$, we have $P_{\gamma}=P_{\gamma^{\prime}}$. Hence the projection $P_{[\gamma]}$ for $[\gamma] \in \mathfrak{T}_{(n, m)}$ is well-defined.
Proof. If $\kappa(\alpha, b)=(a, \beta)$, one has $\eta_{b} \circ \rho_{\alpha}(1)=\rho_{\beta} \circ \eta_{a}(1) \neq 0$. Hence the assertion is obvious.

Denote by $\left|\mathfrak{T}_{(n, m)}\right|$ the cardinal number of the finite set $\mathfrak{T}_{(n, m)}$. Let $e_{t}, t \in$ $\mathfrak{T}_{(n, m)}$ be the standard complete orthonormal basis of $\mathbb{C}^{\left|\mathfrak{T}_{(n, m)}\right|}$. Define

$$
\begin{aligned}
H_{(n, m)} & =\sum_{t \in \mathfrak{T}_{(n, m)}}{ }^{\oplus} \mathbb{C} e_{t} \otimes P_{t} \mathcal{A} \\
& \left(=\sum_{t \in \mathfrak{F}_{(n, m)}}{ }^{\oplus} \operatorname{Span}\left\{c e_{t} \otimes P_{t} x \mid c \in \mathbb{C}, x \in \mathcal{A}\right\}\right)
\end{aligned}
$$

the direct sum of $\mathbb{C} e_{t} \otimes P_{t} \mathcal{A}$ over $t \in \mathfrak{T}_{(n, m)} . H_{(n, m)}$ has a structure of C^{*}-bimodule over \mathcal{A} by setting

$$
\begin{aligned}
\left(e_{t} \otimes P_{t} x\right) y & :=e_{t} \otimes P_{t} x y, \\
\phi(y)\left(e_{t} \otimes P_{t} x\right) & :=e_{t} \otimes \xi_{\gamma}(y) x\left(=e_{t} \otimes P_{t} \xi_{\gamma}(y) x\right) \quad \text { for } x, y \in \mathcal{A}
\end{aligned}
$$

where $t=[\gamma]$ for $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n+m}\right)$ and $\xi_{\gamma}(y)=\left(\xi_{\gamma_{n+m}} \circ \cdots \circ \xi_{\gamma_{2}} \circ \xi_{\gamma_{1}}\right)(y)$. Define an \mathcal{A}-valued inner product on $H_{(n, m)}$ by setting

$$
\left\langle e_{t} \otimes P_{t} x \mid e_{s} \otimes P_{s} y\right\rangle:= \begin{cases}x^{*} P_{t} y & \text { if } t=s \\ 0 & \text { otherwise }\end{cases}
$$

for $t, s \in \mathfrak{T}_{(n, m)}$ and $x, y \in \mathcal{A}$. Then $H_{(n, m)}$ becomes a Hilbert C^{*}-bimodule over \mathcal{A}. Put $H_{(0,0)}=\mathcal{A}$. Denote by F_{κ} the Hilbert C^{*}-bimodule over \mathcal{A} defined by the direct sum:

$$
F_{\kappa}=\sum_{(n, m) \in \mathbb{Z}_{+}^{2}}{ }^{\oplus} H_{(n, m)} .
$$

For $\alpha \in \Sigma^{\rho}, a \in \Sigma^{\eta}$, the creation operators s_{α}, t_{a} on F_{κ} :

$$
s_{\alpha}: H_{(n, m)} \longrightarrow H_{(n+1, m)}, \quad t_{a}: H_{(n, m)} \longrightarrow H_{(n, m+1)}
$$

are defined by

$$
\begin{aligned}
& s_{\alpha} x=e_{[\alpha]} \otimes P_{[\alpha]} x, \\
& s_{\alpha}\left(e_{[\gamma]} \otimes P_{[\gamma]} x\right)= \begin{cases}e_{[\alpha \gamma]} \otimes P_{[\alpha \gamma]} x & \text { if } x \gamma \in L_{(0,0)}(=\mathcal{A}), \\
0 & \text { otherwise },\end{cases} \\
& t_{a} x=e_{[a]} \otimes P_{[a]} x, \\
& \text { for } x \in H_{(0,0)}(=\mathcal{A}),
\end{aligned}, \begin{array}{ll}
e_{[a \gamma]} \otimes P_{[a \gamma]} x & \text { if } a \gamma \in L_{(n, m+1)}, \\
0 & \text { otherwise } .
\end{array}
$$

For $y \in \mathcal{A}$ an operator $i_{F_{\kappa}}(y)$ on F_{κ} :

$$
i_{F_{\kappa}}(y): H_{(n, m)} \longrightarrow H_{(n, m)}
$$

is defined by

$$
\begin{aligned}
i_{F_{\kappa}}(y) x & =y x \quad \text { for } x \in H_{(0,0)}(=\mathcal{A}) \\
i_{F_{\kappa}}(y)\left(e_{[\gamma]} \otimes P_{[\gamma]} x\right) & =\phi(y)\left(e_{[\gamma]} \otimes P_{[\gamma]} x\right)\left(=e_{[\gamma]} \otimes \xi_{\gamma}(y) x\right)
\end{aligned}
$$

Define the Cuntz-Toeplitz C^{*}-algebra for $\left(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa\right)$ by

$$
\mathcal{T}_{\rho, \eta}^{\kappa}=C^{*}\left(s_{\alpha}, t_{a}, i_{F_{\kappa}}(y) \mid \alpha \in \Sigma^{\rho}, a \in \Sigma^{\eta}, y \in \mathcal{A}\right)
$$

as the C^{*}-algebra on F_{κ} generated by $s_{\alpha}, t_{a}, i_{F_{\kappa}}(y)$ for $\alpha \in \Sigma^{\rho}, a \in \Sigma^{\eta}, y \in \mathcal{A}$.
Lemma 6.2. For $\alpha \in \Sigma^{\rho}, a \in \Sigma^{\eta}$, we have
(i) $s_{\alpha}^{*}\left(e_{[\gamma]} \otimes P_{[\gamma]} x\right)= \begin{cases}\phi\left(\rho_{\alpha}(1)\right)\left(e_{\left[\gamma^{\prime}\right]} \otimes P_{\left[\gamma^{\prime}\right]} x\right) & \text { if } \gamma \approx \alpha \gamma^{\prime}, \\ 0 & \text { otherwise } .\end{cases}$
(ii) $t_{a}^{*}\left(e_{[\gamma]} \otimes P_{[\gamma]} x\right)=\left\{\begin{array}{lr}\phi\left(\eta_{a}(1)\right)\left(e_{\left[\gamma^{\prime}\right]} \otimes P_{\left[\gamma^{\prime}\right]} x\right) & \text { if } \gamma \approx a \gamma^{\prime}, \\ 0 & \text { otherwise. }\end{array}\right.$

Proof. (i) For $\gamma \in L_{(n, m)}, \gamma^{\prime} \in L_{(n-1, m)}$ and $\alpha \in \Sigma^{\rho}$, we have

$$
\begin{aligned}
\left\langle s_{\alpha}^{*}\left(e_{[\gamma]} \otimes P_{[\gamma]} x\right) \mid e_{\left[\gamma^{\prime}\right]} \otimes P_{\left[\gamma^{\prime}\right]} x^{\prime}\right\rangle & =\left\langle e_{[\gamma]} \otimes P_{[\gamma]} x \mid e_{\left[\alpha \gamma^{\prime}\right]} \otimes P_{\left[\alpha \gamma^{\prime}\right]} x^{\prime}\right\rangle \\
& = \begin{cases}x^{*} P_{\left[\alpha \gamma^{\prime}\right]} x & \text { if } \gamma \approx \alpha \gamma^{\prime} \\
0 & \text { otherwise } .\end{cases}
\end{aligned}
$$

On the other hand,

$$
\phi\left(\rho_{\alpha}(1)\right)\left(e_{\left[\gamma^{\prime}\right]} \otimes P_{\left[\gamma^{\prime}\right]} x\right)=e_{\left[\gamma^{\prime}\right]} \otimes P_{\left[\alpha \gamma^{\prime}\right]} P_{\gamma^{\prime}} x=e_{\left[\gamma^{\prime}\right]} \otimes P_{\left[\alpha \gamma^{\prime}\right]} x
$$

so that

$$
\left\langle\phi\left(\rho_{\alpha}(1)\right)\left(e_{\left[\gamma^{\prime}\right]} \otimes P_{\left[\gamma^{\prime}\right]} x\right) \mid e_{\left[\gamma^{\prime}\right]} \otimes P_{\left[\gamma^{\prime}\right]} x^{\prime}\right\rangle=x^{*} P_{\left[\alpha \gamma^{\prime}\right]} x^{\prime}
$$

Hence we obtain the desired equality. Similarly we see (ii).
The following lemma is straightforward.
Lemma 6.3. For $\alpha \in \Sigma^{\rho}, a \in \Sigma^{\eta}$ and $\gamma \in L_{(n, m)}, x \in \mathcal{A}$, we have:

$$
s_{\alpha} s_{\alpha}^{*}\left(e_{[\gamma]} \otimes P_{[\gamma]} x\right)= \begin{cases}\left.e_{[\gamma]} \otimes P_{[\gamma]} x\right) & \text { if } \gamma \approx \alpha \gamma^{\prime} \text { for some } \gamma^{\prime} \in L_{(n-1, m)} \tag{i}\\ 0 & \text { otherwise }\end{cases}
$$

(ii)

$$
t_{a} t_{a}^{*}\left(e_{[\gamma]} \otimes P_{[\gamma]} x\right)= \begin{cases}\left.e_{[\gamma]} \otimes P_{[\gamma]} x\right) & \text { if } \gamma \approx \text { a } \gamma^{\prime} \text { for some } \gamma^{\prime} \in L_{(n, m-1)} \\ 0 & \text { otherwise }\end{cases}
$$

Hence we see:

Lemma 6.4.

(i) $1-\sum_{\alpha \in \Sigma^{\rho}} s_{\alpha} s_{\alpha}^{*}=$ the projection onto the subspace spanned by the vectors $e_{[\gamma]} \otimes P_{[\gamma]} x$ for $\gamma \in \cup_{m=0}^{\infty} L_{(0, m)}, x \in \mathcal{A}$.
(ii) $1-\sum_{a \in \Sigma^{\eta}} t_{a} t_{a}^{*}=$ the projection onto the subspace spanned by the vectors $e_{[\gamma]} \otimes P_{[\gamma]} x$ for $\gamma \in \cup_{n=0}^{\infty} L_{(n, 0)}, x \in \mathcal{A}$.
Lemma 6.5. For $\alpha \in \Sigma^{\rho}, a \in \Sigma^{\eta}$ and $x \in \mathcal{A}$, we have:
(i) $s_{\alpha}^{*} x s_{\alpha}=\phi\left(\rho_{\alpha}(x)\right)$ and in particular $s_{\alpha}^{*} s_{\alpha}=\phi\left(\rho_{\alpha}(1)\right)$.
(ii) $t_{a}^{*} x t_{a}=\phi\left(\eta_{a}(x)\right)$ and in particular $t_{a}^{*} t_{a}=\phi\left(\eta_{a}(1)\right)$.

Proof. (i) It follows that for $\gamma \in L(n, m)$ with $\alpha \gamma \in L(n+1, m)$ and $y \in \mathcal{A}$,

$$
\begin{aligned}
s_{\alpha}^{*} x s_{\alpha}\left(e_{[\gamma]} \otimes P_{[\gamma]} y\right) & =s_{\alpha}^{*}\left(e_{[\alpha \gamma]} \otimes P_{[\alpha \gamma]} y \xi_{\alpha \gamma}(x)\right) \\
& =e_{[\gamma]} \otimes P_{[\gamma]} y \xi_{\gamma}\left(\rho_{\alpha}(x)\right) \\
& =\phi\left(\rho_{\alpha}(x)\right)\left(e_{[\gamma]} \otimes P_{[\gamma]} y\right)
\end{aligned}
$$

If $\alpha \gamma \notin L(n+1, m)$, we have

$$
s_{\alpha}\left(e_{[\gamma]} \otimes P_{[\gamma]} y\right)=0, \quad \phi\left(\rho_{\alpha}(x)\right)\left(e_{[\gamma]} \otimes P_{[\gamma]} y\right)=0
$$

Hence we see that $s_{\alpha}^{*} x s_{\alpha}=\phi\left(\rho_{\alpha}(x)\right)$. Similarly we see (ii).
Lemma 6.6. For $\alpha, \beta \in \Sigma^{\rho}, a, b \in \Sigma^{\eta}$ we have:

$$
\begin{equation*}
s_{\alpha} t_{b}=t_{a} s_{\beta} \quad \text { if } \kappa(\alpha, b)=(a, \beta) \tag{6.1}
\end{equation*}
$$

Proof. For $\gamma \in L_{(n, m)}$ with $\alpha b \gamma, a \beta \gamma \in L_{(n+1, m+1)}$ and $x \in \mathcal{A}$, we have

$$
\begin{aligned}
s_{\alpha} t_{b}\left(e_{[\gamma]} \otimes P_{[\gamma]} x\right) & \left.=e_{[\alpha b \gamma]} \otimes P_{[\alpha b \gamma]} y\right) \\
t_{a} s_{\beta}\left(e_{[\gamma]} \otimes P_{[\gamma]} x\right) & =\left(e_{[a \beta \gamma]} \otimes P_{[a \beta \gamma]} x\right)
\end{aligned}
$$

Since $\kappa(\alpha, b)=(a, \beta)$, the condition $\alpha b \gamma \in L_{(n+1, m+1)}$ is equivalent to the condition $a \beta \gamma \in L_{(n+1, m+1)}$. We then have $[\alpha b \gamma]=[a \beta \gamma]$ and $P_{[\alpha b \gamma]}=$ $P_{[a \beta \gamma]}$.

Let $\mathcal{I}_{\rho, \eta}^{\kappa}$ be the ideal of $\mathcal{T}_{\rho, \eta}^{\kappa}$ generated by the two projections:

$$
1-\sum_{\alpha \in \Sigma^{\rho}} s_{\alpha} s_{\alpha}^{*} \quad \text { and } \quad 1-\sum_{a \in \Sigma^{\eta}} t_{a} t_{a}^{*}
$$

Let $\widehat{\mathcal{O}}_{\rho, \eta}^{\kappa}$ be the quotient C^{*}-algebra

$$
\widehat{\mathcal{O}}_{\rho, \eta}^{\kappa}=\mathcal{T}_{\rho, \eta}^{\kappa} / \mathcal{I}_{\rho, \eta}^{\kappa}
$$

Let $\pi_{\rho, \eta}: \mathcal{T}_{\rho, \eta}^{\kappa} \longrightarrow \widehat{\mathcal{O}}_{\rho, \eta}^{\kappa}$ be the quotient map. Put

$$
\widehat{S}_{\alpha}=\pi_{\rho, \eta}\left(s_{\alpha}\right), \quad \widehat{T}_{a}=\pi_{\rho, \eta}\left(t_{a}\right), \quad \hat{i}(x)=\pi_{\rho, \eta}\left(i_{\left(F_{\kappa}\right)}\right)(x)
$$

for $\alpha \in \Sigma^{\rho}, a \in \Sigma^{\eta}$ and $x \in \mathcal{A}$. By the above discussions, the following relations hold:

$$
\begin{gathered}
\sum_{\beta \in \Sigma^{\rho}} \widehat{S}_{\beta} \widehat{S}_{\beta}^{*}=1, \quad \hat{i}(x) \widehat{S}_{\alpha} \widehat{S}_{\alpha}^{*}=\widehat{S}_{\alpha} \widehat{S}_{\alpha}^{*} \hat{i}(x), \quad \widehat{S}_{\alpha}^{*} \hat{i}(x) \widehat{S}_{\alpha}=\hat{i}\left(\rho_{\alpha}(x)\right), \\
\sum_{b \in \Sigma^{\eta}} \widehat{T}_{b} \widehat{T}_{b}^{*}=1, \quad \hat{i}(x) \widehat{T}_{a} \widehat{T}_{a}^{*}=\widehat{T}_{a} \widehat{T}_{a}^{*} \hat{i}(x), \quad \widehat{T}_{a}^{*} \hat{i}(x) \widehat{T}_{a}=\hat{i}\left(\eta_{a}(x)\right) \\
\widehat{S}_{\alpha} \widehat{T}_{b}=\widehat{T}_{a} \widehat{S}_{\beta} \quad \text { if } \kappa(\alpha, b)=(a, \beta)
\end{gathered}
$$

for all $x \in \mathcal{A}$ and $\alpha \in \Sigma^{\rho}, a \in \Sigma^{\eta}$.
For $(z, w) \in \mathbb{T}^{2}$, the correspondence

$$
e_{[\gamma]} \otimes P_{[\gamma]} x \in H_{(n, m)} \longrightarrow z^{n} w^{m} e_{[\gamma]} \otimes P_{[\gamma]} x \in H_{(n, m)}
$$

yields a unitary representation of \mathbb{T}^{2} on $H_{(n, m)}$, which extends to F_{κ}, denoted by $u_{(z, w)}$. Since

$$
u_{(z, w)} \mathcal{T}_{\rho, \eta}^{\kappa} u_{(z, w)}^{*}=\mathcal{T}_{\rho, \eta}^{\kappa}, \quad u_{(z, w)} \mathcal{I}_{\rho, \eta}^{\kappa} u_{(z, w)}^{*}=\mathcal{I}_{\rho, \eta}^{\kappa}
$$

The map

$$
X \in \mathcal{T}_{\rho, \eta}^{\kappa} \longrightarrow u_{(z, w)} X u_{(z, w)}^{*} \in \mathcal{T}_{\rho, \eta}^{\kappa}
$$

yields an action of \mathbb{T}^{2} on the C^{*}-algebra $\widehat{\mathcal{O}}_{\rho, \eta}^{\kappa}$, which we denote by $\widehat{\theta}$. Similarly to the action θ on $\mathcal{O}_{\rho, \eta}^{\kappa}$, we may define the conditional expectation $\widehat{\mathcal{E}}_{\rho, \eta}$ from $\widehat{\mathcal{O}}_{\rho, \eta}^{\kappa}$ to the fixed point algebra $\left(\widehat{\mathcal{O}}_{\rho, \eta}^{\kappa}\right)^{\widehat{\theta}}$ by taking the integration of the function $\widehat{\theta}_{(z, w)}(X)$ over $(z, w) \in \mathbb{T}^{2}$ for $X \in \widehat{\mathcal{O}}_{\rho, \eta}^{\kappa}$. Then as in the proof of Proposition 5.10, one may prove the following theorem.
Theorem 6.7. The algebra $\widehat{\mathcal{O}}_{\rho, \eta}^{\kappa}$ is canonically $*$-isomorphic to the C^{*} algebra $\mathcal{O}_{\rho, \eta}^{\kappa}$ through the correspondences:

$$
S_{\alpha} \longrightarrow \widehat{S}_{\alpha}, \quad T_{a} \longrightarrow \widehat{T}_{a}, \quad x \longrightarrow \hat{i}(x)
$$

for $\alpha \in \Sigma^{\rho}, a \in \Sigma^{\eta}$ and $x \in \mathcal{A}$.

7. K-Theory machinery

Let us denote by \mathcal{K} the C^{*}-algebra of compact operators on a separable infinite dimensional Hilbert space. For a C^{*}-algebra \mathcal{B}, we denote by $M(\mathcal{B})$ its multiplier algebra. In this section, we will study K-theory groups $K_{*}\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)$ for the C^{*}-algebra $\mathcal{O}_{\rho, \eta}^{\kappa}$. We fix a C^{*}-textile dynamical system $\left(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa\right)$. We define two actions

$$
\hat{\rho}: \mathbb{T} \longrightarrow \operatorname{Aut}\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right), \quad \hat{\eta}: \mathbb{T} \longrightarrow \operatorname{Aut}\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)
$$

of the circle group $\mathbb{T}=\{z \in \mathbb{C}| | z \mid=1\}$ to $\mathcal{O}_{\rho, \eta}^{\kappa}$ by setting

$$
\hat{\rho}_{z}=\theta_{(z, 1)}, \quad \hat{\eta}_{w}=\theta_{(1, w)}, \quad z, w \in \mathbb{T}
$$

They satisfy

$$
\hat{\rho}_{z} \circ \hat{\eta}_{w}=\hat{\eta}_{w} \circ \hat{\rho}_{z}=\theta_{(z, w)}, \quad z, w \in \mathbb{T} .
$$

Set the fixed point algebras

$$
\begin{aligned}
& \left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}}=\left\{x \in \mathcal{O}_{\rho, \eta}^{\kappa} \mid \hat{\rho}_{z}(x)=x \text { for all } z \in \mathbb{T}\right\} \\
& \left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\eta}}=\left\{x \in \mathcal{O}_{\rho, \eta}^{\kappa} \mid \hat{\eta}_{w}(x)=x \text { for all } w \in \mathbb{T}\right\}
\end{aligned}
$$

For $x \in\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}}$, define the $\mathcal{O}_{\rho, \eta}^{\kappa}$-valued constant function

$$
\widehat{x} \in L^{1}\left(\mathbb{T}, \mathcal{O}_{\rho, \eta}^{\kappa}\right) \subset \mathcal{O}_{\rho, \eta}^{\kappa} \times_{\hat{\rho}} \mathbb{T}
$$

from \mathbb{T} by setting $\widehat{x}(z)=x, z \in \mathbb{T}$. Put $p_{0}=\widehat{1}$. By [45], the algebra $\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}}$ is canonically isomorphic to $p_{0}\left(\mathcal{O}_{\rho, \eta}^{\kappa} \times \hat{\rho} \mathbb{T}\right) p_{0}$ through the map

$$
j_{\rho}: x \in\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}} \longrightarrow \widehat{x} \in p_{0}\left(\mathcal{O}_{\rho, \eta}^{\kappa} \times \hat{\rho} \mathbb{T}\right) p_{0}
$$

which induces an isomorphism

$$
\begin{equation*}
j_{\rho_{*}}: K_{i}\left(\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}}\right) \longrightarrow K_{i}\left(p_{0}\left(\mathcal{O}_{\rho, \eta}^{\kappa} \times_{\hat{\rho}} \mathbb{T}\right) p_{0}\right), \quad i=0,1 \tag{7.1}
\end{equation*}
$$

on their K-groups. By a similar manner to the proofs given in [23, Section 4], one may prove the following lemma.

Lemma 7.1.

(i) There exists an isometry

$$
v \in M\left(\left(\mathcal{O}_{\rho, \eta}^{\kappa} \times_{\hat{\rho}} \mathbb{T}\right) \otimes \mathcal{K}\right)
$$

such that $v v^{*}=p_{0} \otimes 1, v^{*} v=1$.
(ii) $\mathcal{O}_{\rho, \eta}^{\kappa} \times{ }_{\hat{\rho}} \mathbb{T}$ is stably isomorphic to $\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}}$, and similarly $\mathcal{O}_{\rho, \eta}^{\kappa} \times_{\hat{\eta}} \mathbb{T}$ is stably isomorphic to $\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\eta}}$.
(iii) The inclusion $\iota_{\hat{\rho}}: p_{0}\left(\mathcal{O}_{\rho, \eta}^{\kappa} \times{ }_{\hat{\rho}} \mathbb{T}\right) p_{0} \hookrightarrow \mathcal{O}_{\rho, \eta}^{\kappa} \times{ }_{\hat{\rho}} \mathbb{T}$ induces an isomorphism

$$
\iota_{\hat{\rho} *}: K_{i}\left(p_{0}\left(\mathcal{O}_{\rho, \eta}^{\kappa} \times_{\hat{\rho}} \mathbb{T}\right) p_{0}\right) \cong K_{i}\left(\mathcal{O}_{\rho, \eta}^{\kappa} \times \hat{\rho} \mathbb{T}\right), \quad i=0,1
$$

on their K-groups.
Thanks to the lemma above, the isomorphism

$$
\operatorname{Ad}\left(v^{*}\right): x \in p_{0}\left(\mathcal{O}_{\rho, \eta}^{\kappa} \times_{\hat{\rho}} \mathbb{T}\right) p_{0} \otimes \mathcal{K} \longrightarrow v^{*} x v \in\left(\mathcal{O}_{\rho, \eta}^{\kappa} \times_{\hat{\rho}} \mathbb{T}\right) \otimes \mathcal{K}
$$

induces isomorphisms

$$
\begin{equation*}
\operatorname{Ad}\left(v^{*}\right)_{*}: K_{i}\left(p_{0}\left(\mathcal{O}_{\rho, \eta}^{\kappa} \times_{\hat{\rho}} \mathbb{T}\right) p_{0}\right) \longrightarrow K_{i}\left(\mathcal{O}_{\rho, \eta}^{\kappa} \times{ }_{\hat{\rho}} \mathbb{T}\right), \quad i=0,1 . \tag{7.2}
\end{equation*}
$$

Let $\hat{\hat{\rho}}$ be the automorphism on $\mathcal{O}_{\rho, \eta}^{\kappa} \times \hat{\rho} \mathbb{T}$ for the positive generator of \mathbb{Z} for the dual action of $\hat{\rho}$. By (7.1) and (7.2), we may define an isomorphism

$$
\beta_{\rho, i}=j_{\rho *}^{-1} \circ \operatorname{Ad}\left(v^{*}\right)_{*}^{-1} \circ \hat{\hat{\rho}}_{*} \circ \operatorname{Ad}\left(v^{*}\right)_{*} \circ j_{\rho *}: K_{i}\left(\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}}\right) \longrightarrow K_{i}\left(\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}}\right)
$$

for $i=0,1$, so that the diagram is commutative:

By [39] (cf. [15]), one has the six term exact sequence of K-theory:

Since $\left(\mathcal{O}_{\rho, \eta}^{\kappa} \times{ }_{\hat{\rho}} \mathbb{T}\right) \times_{\hat{\rho}} \mathbb{Z} \cong \mathcal{O}_{\rho, \eta}^{\kappa} \otimes \mathcal{K}$ and $K_{i}\left(\mathcal{O}_{\rho, \eta}^{\kappa} \times_{\hat{\rho}} \mathbb{T}\right) \cong K_{i}\left(\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}}\right)$, one has:
Lemma 7.2. The following six term exact sequence of K-theory holds:

Hence there exist short exact sequences for $i=0,1$:

$$
\begin{aligned}
0 & \longrightarrow \operatorname{Coker}\left(\mathrm{id}-\beta_{\rho, i}\right) \text { in } K_{i}\left(\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}}\right) \\
& \longrightarrow K_{i}\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right) \\
& \longrightarrow \operatorname{Ker}\left(\mathrm{id}-\beta_{\rho, i+1}\right) \text { in } K_{i+1}\left(\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}}\right) \\
& \longrightarrow 0 .
\end{aligned}
$$

In the rest of this section, we will study the groups

$$
\operatorname{Coker}\left(\mathrm{id}-\beta_{\rho, i}\right) \text { in } K_{i}\left(\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}}\right), \quad \operatorname{Ker}\left(\mathrm{id}-\beta_{\rho, i+1}\right) \text { in } K_{i+1}\left(\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}}\right)
$$

The action $\hat{\eta}$ acts on the subalgebra $\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}}$, which we still denote by $\hat{\eta}$. Then the fixed point algebra $\left(\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}}\right)^{\hat{\eta}}$ of $\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}}$ under $\hat{\eta}$ coincides with $\mathcal{F}_{\rho, \eta}$. The above discussions for the action $\hat{\rho}: \mathbb{T} \longrightarrow \mathcal{O}_{\rho, \eta}^{\kappa}$ works for the action $\hat{\eta}: \mathbb{T} \longrightarrow\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}}$ as in the following way. For $y \in\left(\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}}\right)^{\hat{\eta}}$, define the constant function $\widehat{y} \in L^{1}\left(\mathbb{T},\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}}\right) \subset\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}} \times_{\hat{\eta}} \mathbb{T}$ by setting $\widehat{y}(w)=$ $y, w \in \mathbb{T}$. Putting $q_{0}=\widehat{1}$, the algebra $\left(\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}}\right)^{\hat{\eta}}$ is canonically isomorphic to $q_{0}\left(\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}} \times_{\hat{\eta}} \mathbb{T}\right) q_{0}$ through the map

$$
j_{\eta}^{\rho}: y \in\left(\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}}\right)^{\hat{\eta}} \longrightarrow \hat{y} \in q_{0}\left(\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}} \times_{\hat{\eta}} \mathbb{T}\right) q_{0}
$$

which induces an isomorphism

$$
j_{\eta *}^{\rho}: K_{i}\left(\left(\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}}\right)^{\hat{\eta}}\right) \longrightarrow K_{i}\left(q_{0}\left(\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}} \times_{\hat{\eta}} \mathbb{T}\right) q_{0}\right), \quad i=0,1
$$

on their K-groups. Similarly to Lemma 7.1, we have:

Lemma 7.3.

(i) There exists an isometry

$$
u \in M\left(\left(\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}} \times_{\hat{\eta}} \mathbb{T}\right) \otimes \mathcal{K}\right)
$$

such that $u u^{*}=q_{0} \otimes 1, u^{*} u=1$.
(ii) $\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}} \times_{\hat{\eta}} \mathbb{T}$ is stably isomorphic to $\left(\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}}\right)^{\hat{\eta}}$.
(iii) The inclusion

$$
\iota_{\hat{\eta}}^{\hat{\rho}}: q_{0}\left(\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}} \times_{\hat{\eta}} \mathbb{T}\right) q_{0}\left(=\left(\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}}\right)^{\hat{\eta}}=\mathcal{F}_{\rho, \eta}\right) \hookrightarrow\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}} \times_{\hat{\eta}} \mathbb{T}
$$

induces an isomorphism

$$
\iota_{\hat{\eta}_{*}^{*}}^{\hat{\beta}}: K_{i}\left(q_{0}\left(\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}} \times_{\hat{\eta}} \mathbb{T}\right) q_{0}\right) \cong K_{i}\left(\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}} \times_{\hat{\eta}} \mathbb{T}\right), \quad i=0,1
$$

on their K-groups.
The isomorphism

$$
\operatorname{Ad}\left(u^{*}\right): y \in q_{0}\left(\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}} \times_{\hat{\eta}} \mathbb{T}\right) q_{0} \longrightarrow u^{*} y u \in\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}} \times_{\hat{\eta}} \mathbb{T}
$$

induces isomorphisms

$$
\operatorname{Ad}\left(u^{*}\right)_{*}: K_{i}\left(q_{0}\left(\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}} \times_{\hat{\eta}} \mathbb{T}\right) q_{0}\right) \cong K_{i}\left(\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}} \times_{\hat{\eta}} \mathbb{T}\right), \quad i=0,1
$$

Let $\hat{\hat{\eta}}_{\rho}$ be the automorphism on $\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}} \times_{\hat{\eta}} \mathbb{T}$ for the positive generator of \mathbb{Z} for the dual action of $\hat{\eta}$. Define an isomorphism

$$
\gamma_{\eta, i}=j_{\eta *}^{\rho-1} \circ \operatorname{Ad}\left(u^{*}\right)_{*}^{-1} \circ \hat{\eta}_{\rho *} \circ \operatorname{Ad}\left(u^{*}\right)_{*} \circ j_{\eta *}^{\rho}: K_{i}\left(\mathcal{F}_{\rho, \eta}\right) \longrightarrow K_{i}\left(\mathcal{F}_{\rho, \eta}\right), \quad i=0,1
$$ such that the diagram is commutative for $i=0,1$:

We similarly define an endomorphism $\gamma_{\rho, i}: K_{i}\left(\mathcal{F}_{\rho, \eta}\right) \longrightarrow K_{i}\left(\mathcal{F}_{\rho, \eta}\right)$ by exchanging the rôles of ρ and η.

Under the equality $\left(\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}}\right)^{\hat{\eta}}=\mathcal{F}_{\rho, \eta}$, we have the following lemma which is similar to Lemma 7.2

Lemma 7.4. The following six term exact sequence of K-theory holds:

In particular, if $K_{1}\left(\mathcal{F}_{\rho, \eta}\right)=0$, we have

$$
\begin{aligned}
& K_{0}\left(\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}}\right)=\operatorname{Coker}\left(\mathrm{id}-\gamma_{\eta, 0}\right) \quad \text { in } K_{0}\left(\mathcal{F}_{\rho, \eta}\right), \\
& K_{1}\left(\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}}\right)=\operatorname{Ker}\left(\operatorname{id}-\gamma_{\eta, 0}\right) \quad \text { in } K_{0}\left(\mathcal{F}_{\rho, \eta}\right)
\end{aligned}
$$

Denote by $M_{n}(\mathcal{B})$ the $n \times n$ matrix algebra over a C^{*}-algebra \mathcal{B}, which is identified with the tensor product $\mathcal{B} \otimes M_{n}(\mathbb{C})$. The following lemmas hold.

Lemma 7.5. For a projection $q \in M_{n}\left(\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\rho}\right)$ and a partial isometry $S \in$ $\mathcal{O}_{\rho, \eta}^{\kappa}$ such that

$$
\hat{\rho}_{z}(S)=z S \quad \text { for } z \in \mathbb{T}, \quad q\left(S S^{*} \otimes 1_{n}\right)=\left(S S^{*} \otimes 1_{n}\right) q
$$

we have

$$
\beta_{\rho, 0}^{-1}\left(\left[\left(S S^{*} \otimes 1_{n}\right) q\right]\right)=\left[\left(S^{*} \otimes 1_{n}\right) q\left(S \otimes 1_{n}\right)\right] \quad \text { in } K_{0}\left(\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}}\right) .
$$

Proof. As q commutes with $S S^{*} \otimes 1_{n}, p=\left(S^{*} \otimes 1_{n}\right) q\left(S \otimes 1_{n}\right)$ is a projection in $\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}}$. Since $p \leq S^{*} S \otimes 1_{n}$, By a similar argument to the proof of [23, Lemma 4.5], one sees that $\beta_{\rho, 0}([p])=\left[\left(S \otimes 1_{n}\right) p\left(S^{*} \otimes 1_{n}\right)\right]$ in $K_{0}\left(\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}}\right)$.

Lemma 7.6.

(i) For a projection $q \in M_{n}\left(\mathcal{F}_{\rho, \eta}\right)$ and a partial isometry $T \in\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}}$ such that

$$
\hat{\eta}_{w}(T)=w T \quad \text { for } w \in \mathbb{T}, \quad q\left(T T^{*} \otimes 1_{n}\right)=\left(T T^{*} \otimes 1_{n}\right) q,
$$

we have

$$
\gamma_{\eta, 0}^{-1}\left[\left(\left(T T^{*} \otimes 1_{n}\right) q\right]\right)=\left[\left(T^{*} \otimes 1_{n}\right) q\left(T \otimes 1_{n}\right)\right] \quad \text { in } K_{0}\left(\mathcal{F}_{\rho, \eta}\right)
$$

(ii) For a projection $q \in M_{n}\left(\mathcal{F}_{\rho, \eta}\right)$ and a partial isometry $S \in\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\eta}}$ such that

$$
\hat{\rho}_{z}(S)=z S \quad \text { for } z \in \mathbb{T}, \quad q\left(S S^{*} \otimes 1_{n}\right)=\left(S S^{*} \otimes 1_{n}\right) q
$$

we have

$$
\gamma_{\rho, 0}^{-1}\left(\left[\left(S S^{*} \otimes 1_{n}\right) q\right]\right)=\left[\left(S^{*} \otimes 1_{n}\right) q\left(S \otimes 1_{n}\right)\right] \quad \text { in } K_{0}\left(\mathcal{F}_{\rho, \eta}\right) .
$$

Hence we have
Lemma 7.7. The diagram

is commutative.

Proof. By [35, Proposition 3.3], the map $\iota_{*}: K_{0}\left(\mathcal{F}_{\rho, \eta}\right) \longrightarrow K_{0}\left(\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}}\right)$ is induced by the natural inclusion $\mathcal{F}_{\rho, \eta}\left(=\left(\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}}\right)^{\eta}\right) \hookrightarrow\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}}$. For an element $[q] \in K_{0}\left(\mathcal{F}_{\rho, \eta}\right)$ one may assume that $q \in M_{n}\left(\mathcal{F}_{\rho, \eta}\right)$ for some $n \in \mathbb{N}$ so that one has

$$
\begin{aligned}
\gamma_{\rho, 0}^{-1}([q]) & =\sum_{\alpha \in \Sigma^{\rho}}\left[\left(S_{\alpha} S_{\alpha}^{*} \otimes 1_{n}\right) q\right] \\
& =\sum_{\alpha \in \Sigma^{\rho}}\left[\left(S_{\alpha}^{*} \otimes 1_{n}\right) q\left(S_{\alpha} \otimes 1_{n}\right)\right] \\
& =\sum_{\alpha \in \Sigma^{\rho}} \beta_{\rho, 0}^{-1}\left(\left[q\left(S_{\alpha} S_{\alpha}^{*} \otimes 1_{n}\right)\right]\right)=\beta_{\rho, 0}^{-1}([q])
\end{aligned}
$$

so that $\left.\beta_{\rho, 0}\right|_{K_{0}\left(\mathcal{F}_{\rho, \eta}\right)}=\gamma_{\rho, 0}$.
In the rest of this section, we assume that $K_{1}\left(\mathcal{F}_{\rho, \eta}\right)=0$. The following lemma is crucial in our further discussions.

Lemma 7.8. In the six term exact sequence in Lemma 7.4 with $K_{1}\left(\mathcal{F}_{\rho, \eta}\right)=$ 0 , we have the following commutative diagrams:

Proof. It is well-known that δ-map is functorial (see [48, Theorem 7.2.5], [4, p. 266 (LX)]). Hence the diagram of the upper square

is commutative. Since $\gamma_{\rho, 0} \circ \gamma_{\eta, 0}=\gamma_{\eta, 0} \circ \gamma_{\rho, 0}$, the diagram of the middle square

$$
\begin{align*}
& K_{0}\left(\mathcal{F}_{\rho, \eta}\right) \xrightarrow{\text { id }-\gamma_{\rho, 0}} K_{0}\left(\mathcal{F}_{\rho, \eta}\right) \tag{7.4}\\
& \quad \downarrow^{\text {id }-\gamma_{\eta, 0}} \quad \downarrow^{\text {id }-\gamma_{\eta, 0}} \\
& K_{0}\left(\mathcal{F}_{\rho, \eta}\right) \xrightarrow{\text { id }-\gamma_{\rho, 0}} \\
& K_{0}\left(\mathcal{F}_{\rho, \eta}\right)
\end{align*}
$$

is commutative. The commutativity of the lower square comes from the preceding lemma.

We will describe the K-groups $K_{*}\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)$ in terms of the kernels and cokernels of the homomorphisms id $-\gamma_{\rho, 0}$ and id $-\gamma_{\eta, 0}$ on $K_{0}\left(\mathcal{F}_{\rho, \eta}\right)$. Recall that there exist two short exact sequences by Lemma 7.2:

$$
\begin{aligned}
& 0 \longrightarrow \operatorname{Coker}\left(\mathrm{id}-\beta_{\rho, 0}\right) \text { in } K_{0}\left(\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}}\right) \\
& \longrightarrow K_{0}\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right) \\
& \longrightarrow \operatorname{Ker}\left(\mathrm{id}-\beta_{\rho, 1}\right) \text { in } K_{1}\left(\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}}\right) \\
& \longrightarrow 0
\end{aligned}
$$

and

$$
\begin{aligned}
0 & \longrightarrow \operatorname{Coker}\left(\mathrm{id}-\beta_{\rho, 1}\right) \text { in } K_{1}\left(\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}}\right) \\
& \longrightarrow K_{1}\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right) \\
& \longrightarrow \operatorname{Ker}\left(\mathrm{id}-\beta_{\rho, 0}\right) \text { in } K_{0}\left(\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}}\right) \\
& \longrightarrow 0 .
\end{aligned}
$$

As $\gamma_{\eta, 0} \circ \gamma_{\rho, 0}=\gamma_{\rho, 0} \circ \gamma_{\eta, 0}$ on $K_{0}\left(\mathcal{F}_{\rho, \eta}\right)$, the homomorphisms $\gamma_{\rho, 0}$ and $\gamma_{\eta, 0}$ naturally act on $\operatorname{Coker}\left(\mathrm{id}-\gamma_{\eta, 0}\right)=K_{0}\left(\mathcal{F}_{\rho, \eta}\right) /\left(\mathrm{id}-\gamma_{\eta, 0}\right) K_{0}\left(\mathcal{F}_{\rho, \eta}\right)$ and $\operatorname{Coker}\left(\mathrm{id}-\gamma_{\rho, 0}\right)=K_{0}\left(\mathcal{F}_{\rho, \eta}\right) /\left(\operatorname{id}-\gamma_{\rho, 0}\right) K_{0}\left(\mathcal{F}_{\rho, \eta}\right)$ as endomorphisms respectively, which we denote by $\bar{\gamma}_{\rho, 0}$ and $\bar{\gamma}_{\eta, 0}$ respectively.

Lemma 7.9.

(i) For $K_{0}\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)$, we have

$$
\begin{aligned}
& \operatorname{Coker}\left(\mathrm{id}-\beta_{\rho, 0}\right) \text { in } K_{0}\left(\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}}\right) \\
& \cong \operatorname{Coker}\left(\mathrm{id}-\bar{\gamma}_{\rho, 0}\right) \text { in } K_{0}\left(\mathcal{F}_{\rho, \eta}\right) /\left(\operatorname{id}-\gamma_{\eta, 0}\right) K_{0}\left(\mathcal{F}_{\rho, \eta}\right) \\
& \cong K_{0}\left(\mathcal{F}_{\rho, \eta}\right) /\left(\left(\mathrm{id}-\gamma_{\rho, 0}\right) K_{0}\left(\mathcal{F}_{\rho, \eta}\right)+\left(\mathrm{id}-\gamma_{\eta, 0}\right) K_{0}\left(\mathcal{F}_{\rho, \eta}\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \operatorname{Ker}\left(\mathrm{id}-\beta_{\rho, 1}\right) \text { in } K_{1}\left(\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}}\right) \\
& \cong \operatorname{Ker}\left(\mathrm{id}-\gamma_{\rho, 0}\right) \text { in }\left(\operatorname{Ker}\left(\operatorname{id}-\gamma_{\eta, 0}\right) \text { in } K_{0}\left(\mathcal{F}_{\rho, \eta}\right)\right) \\
& \cong \operatorname{Ker}\left(\mathrm{id}-\gamma_{\rho, 0}\right) \cap \operatorname{Ker}\left(\mathrm{id}-\gamma_{\eta, 0}\right) \text { in } K_{0}\left(\mathcal{F}_{\rho, \eta}\right) .
\end{aligned}
$$

(ii) For $K_{1}\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)$, we have
$\operatorname{Coker}\left(\mathrm{id}-\beta_{\rho, 1}\right)$ in $K_{1}\left(\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}}\right)$

$$
\begin{aligned}
& \cong\left(\operatorname{Ker}\left(\mathrm{id}-\gamma_{\eta, 0}\right) \text { in } K_{0}\left(\mathcal{F}_{\rho, \eta}\right)\right) /\left(\mathrm{id}-\gamma_{\rho, 0}\right)\left(\operatorname{Ker}\left(\mathrm{id}-\gamma_{\eta, 0}\right) \text { in } K_{0}\left(\mathcal{F}_{\rho, \eta}\right)\right) \\
& \quad \text { and }
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Ker}\left(\operatorname{id}-\beta_{\rho, 0}\right) \text { in } K_{0}\left(\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}}\right) \\
& \cong \operatorname{Ker}\left(\operatorname{id}-\bar{\gamma}_{\rho, 0}\right) \text { in }\left(K_{0}\left(\mathcal{F}_{\rho, \eta}\right) /\left(\operatorname{id}-\gamma_{\eta, 0}\right) K_{0}\left(\mathcal{F}_{\rho, \eta}\right)\right) .
\end{aligned}
$$

Proof. (i) We will first prove the assertions for the group

$$
\operatorname{Coker}\left(\operatorname{id}-\beta_{\rho, 0}\right) \text { in } K_{0}\left(\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}}\right)
$$

In the diagram (7.3), the exactness of the vertical arrows implies that ι_{*} is surjective so that

$$
K_{0}\left(\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}}\right) \cong \iota_{*}\left(K_{0}\left(\mathcal{F}_{\rho, \eta}\right)\right) \cong K_{0}\left(\mathcal{F}_{\rho, \eta}\right) / \operatorname{Ker}\left(\mathrm{id}-\gamma_{\eta, 0}\right) \text { in } K_{0}\left(\mathcal{F}_{\rho, \eta}\right) .
$$

By the commutativity in the lower square in the diagram (7.3), one has

$$
\begin{aligned}
& \operatorname{Coker}\left(\mathrm{id}-\beta_{\rho, 0}\right) \text { in } K_{0}\left(\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}}\right) \\
& \cong \operatorname{Coker}\left(\mathrm{id}-\bar{\gamma}_{\rho, 0}\right) \text { in }\left(\operatorname{Coker}\left(\mathrm{id}-\gamma_{\eta, 0}\right) \text { in } K_{0}\left(\mathcal{F}_{\rho, \eta}\right) .\right)
\end{aligned}
$$

The latter group will be proved to be isomorphic to the group

$$
\left.K_{0}\left(\mathcal{F}_{\rho, \eta}\right) /\left(\left(\mathrm{id}-\gamma_{\eta, 0}\right) K_{0}\left(\mathcal{F}_{\rho, \eta}\right)\right)+\left(\mathrm{id}-\gamma_{\rho, 0}\right) K_{0}\left(\mathcal{F}_{\rho, \eta}\right)\right) .
$$

Put $H_{\rho, \eta}=\left(\mathrm{id}-\gamma_{\eta, 0}\right) K_{0}\left(\mathcal{F}_{\rho, \eta}\right)+\left(\mathrm{id}-\gamma_{\rho, 0}\right) K_{0}\left(\mathcal{F}_{\rho, \eta}\right)$ the subgroup of $K_{0}\left(\mathcal{F}_{\rho, \eta}\right)$ generated by (id $\left.-\gamma_{\eta, 0}\right) K_{0}\left(\mathcal{F}_{\rho, \eta}\right)$ and (id $\left.-\gamma_{\rho, 0}\right) K_{0}\left(\mathcal{F}_{\rho, \eta}\right)$. Set the quotient maps

$$
\begin{aligned}
& K_{0}\left(\mathcal{F}_{\rho, \eta}\right) \xrightarrow{q_{\eta}} \quad K_{0}\left(\mathcal{F}_{\rho, \eta}\right) /\left(\mathrm{id}-\gamma_{\eta, 0}\right) K_{0}\left(\mathcal{F}_{\rho, \eta}\right) \\
& \xrightarrow{q_{\left(\mathrm{id}-\gamma_{\rho, 0)}\right.}} \operatorname{Coker}\left(\mathrm{id}-\bar{\gamma}_{\rho, 0}\right) \text { in } K_{0}\left(\mathcal{F}_{\rho, \eta}\right) /\left(\mathrm{id}-\gamma_{\eta, 0}\right) K_{0}\left(\mathcal{F}_{\rho, \eta}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\Phi=q_{\left(\mathrm{id}-\gamma_{\rho, 0}\right)} \circ q_{\eta} & : K_{0}\left(\mathcal{F}_{\rho, \eta}\right) \\
& \longrightarrow \operatorname{Coker}\left(\mathrm{id}-\bar{\gamma}_{\rho, 0}\right) \text { in } K_{0}\left(\mathcal{F}_{\rho, \eta}\right) /\left(\mathrm{id}-\gamma_{\eta, 0}\right) K_{0}\left(\mathcal{F}_{\rho, \eta}\right) .
\end{aligned}
$$

It suffices to show the equality $\operatorname{Ker}(\Phi)=H_{\rho, \eta}$. As $\left(\mathrm{id}-\gamma_{\rho, 0}\right)$ commutes with (id $-\gamma_{\eta, 0}$), one has

$$
\left(\mathrm{id}-\gamma_{\eta, 0}\right) K_{0}\left(\mathcal{F}_{\rho, \eta}\right) \subset \operatorname{Ker}(\Phi), \quad\left(\mathrm{id}-\gamma_{\rho, 0}\right) K_{0}\left(\mathcal{F}_{\rho, \eta}\right) \subset \operatorname{Ker}(\Phi)
$$

Hence we have $H_{\rho, \eta} \subset \operatorname{Ker}(\Phi)$. On the other hand, for $g \in \operatorname{Ker}(\Phi)$, we have $g \in\left(\mathrm{id}-\bar{\gamma}_{\rho, 0}\right)\left(K_{0}\left(\mathcal{F}_{\rho, \eta}\right) /\left(\mathrm{id}-\gamma_{\eta, 0}\right) K_{0}\left(\mathcal{F}_{\rho, \eta}\right)\right)$ so that $g=\left(\mathrm{id}-\gamma_{\rho, 0}\right)[h]$ for some $[h] \in K_{0}\left(\mathcal{F}_{\rho, \eta}\right) /\left(\mathrm{id}-\gamma_{\eta, 0}\right) K_{0}\left(\mathcal{F}_{\rho, \eta}\right)$. Hence

$$
g=\left(\mathrm{id}-\gamma_{\rho, 0}\right) h+\left(\mathrm{id}-\gamma_{\rho, 0}\right)\left(\mathrm{id}-\gamma_{\eta, 0}\right) K_{0}\left(\mathcal{F}_{\rho, \eta}\right)
$$

so that $g \in H_{\rho, \eta}$. Hence we have $\operatorname{Ker}(\Phi) \subset H_{\rho, \eta}$ and $\operatorname{Ker}(\Phi)=H_{\rho, \eta}$.

We will second prove the assertions for the group

$$
\operatorname{Ker}\left(\mathrm{id}-\beta_{\rho, 1}\right) \text { in } K_{1}\left(\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}}\right) .
$$

In the diagram (7.3), the exactness of the vertical arrows implies that δ is injective and $\operatorname{Im}(\delta)=\operatorname{Ker}\left(\mathrm{id}-\gamma_{\eta, 0}\right)$ so that we have

$$
\begin{equation*}
K_{1}\left(\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}}\right) \cong \operatorname{Ker}\left(\mathrm{id}-\gamma_{\eta, 0}\right) \text { in } K_{0}\left(\mathcal{F}_{\rho, \eta}\right) . \tag{7.5}
\end{equation*}
$$

By the commutativity in the upper square in the diagram (7.3), one has $\operatorname{Ker}\left(\mathrm{id}-\beta_{\rho, 1}\right)$ in $K_{1}\left(\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)^{\hat{\rho}}\right) \cong \operatorname{Ker}\left(\mathrm{id}-\gamma_{\rho, 0}\right)$ in $\left(\operatorname{Ker}\left(\mathrm{id}-\gamma_{\eta, 0}\right)\right.$ in $\left.K_{0}\left(\mathcal{F}_{\rho, \eta}\right)\right)$.

Since $\gamma_{\eta, 0}$ commutes with $\gamma_{\rho, 0}$ in $K_{0}\left(\mathcal{F}_{\rho, \eta}\right)$, we have

$$
\begin{aligned}
& \operatorname{Ker}\left(\mathrm{id}-\gamma_{\rho, 0}\right) \text { in }\left(\operatorname{Ker}\left(\mathrm{id}-\gamma_{\eta, 0}\right) \text { in } K_{0}\left(\mathcal{F}_{\rho, \eta}\right)\right) \\
& \cong \operatorname{Ker}\left(\mathrm{id}-\gamma_{\rho, 0}\right) \cap \operatorname{Ker}\left(\mathrm{id}-\gamma_{\eta, 0}\right) \text { in } K_{0}\left(\mathcal{F}_{\rho, \eta}\right) .
\end{aligned}
$$

(ii) The assertions are similarly shown as in (i).

Therefore we have:
Theorem 7.10. Assume that $K_{1}\left(\mathcal{F}_{\rho, \eta}\right)=0$. There exist short exact sequences:

$$
\begin{aligned}
0 & \longrightarrow K_{0}\left(\mathcal{F}_{\rho, \eta}\right) /\left(\left(\mathrm{id}-\gamma_{\rho, 0}\right) K_{0}\left(\mathcal{F}_{\rho, \eta}\right)+\left(\mathrm{id}-\gamma_{\eta, 0}\right) K_{0}\left(\mathcal{F}_{\rho, \eta}\right)\right) \\
& \longrightarrow K_{0}\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right) \\
& \longrightarrow \operatorname{Ker}\left(\mathrm{id}-\gamma_{\rho, 0}\right) \cap \operatorname{Ker}\left(\mathrm{id}-\gamma_{\eta, 0}\right) \text { in } K_{0}\left(\mathcal{F}_{\rho, \eta}\right) \\
& \longrightarrow 0
\end{aligned}
$$

and

$$
\begin{aligned}
0 & \longrightarrow\left(\operatorname{Ker}\left(\mathrm{id}-\gamma_{\eta, 0}\right) \text { in } K_{0}\left(\mathcal{F}_{\rho, \eta}\right)\right) /\left(\operatorname{id}-\gamma_{\rho, 0}\right)\left(\operatorname{Ker}\left(\mathrm{id}-\gamma_{\eta, 0}\right) \text { in } K_{0}\left(\mathcal{F}_{\rho, \eta}\right)\right) \\
& \longrightarrow K_{1}\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right) \\
& \longrightarrow \operatorname{Ker}\left(\operatorname{id}-\bar{\gamma}_{\rho, 0}\right) \text { in }\left(K_{0}\left(\mathcal{F}_{\rho, \eta}\right) /\left(\operatorname{id}-\gamma_{\eta, 0}\right) K_{0}\left(\mathcal{F}_{\rho, \eta}\right)\right) \\
& \longrightarrow 0 .
\end{aligned}
$$

We may describe the above formulae as follows.
Corollary 7.11. Suppose $K_{1}\left(\mathcal{F}_{\rho, \eta}\right)=0$. There exist short exact sequences:

$$
\begin{aligned}
0 & \longrightarrow \operatorname{Coker}\left(\mathrm{id}-\bar{\gamma}_{\rho, 0}\right) \text { in }\left(\operatorname{Coker}\left(\mathrm{id}-\gamma_{\eta, 0}\right) \text { in } K_{0}\left(\mathcal{F}_{\rho, \eta}\right)\right) \\
& \longrightarrow K_{0}\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right) \\
& \longrightarrow \operatorname{Ker}\left(\mathrm{id}-\gamma_{\rho, 0}\right) \text { in }\left(\operatorname{Ker}\left(\mathrm{id}-\gamma_{\eta, 0}\right) \text { in } K_{0}\left(\mathcal{F}_{\rho, \eta}\right)\right) \\
& \longrightarrow 0
\end{aligned}
$$

and

$$
\begin{aligned}
0 & \longrightarrow \operatorname{Coker}\left(\mathrm{id}-\gamma_{\rho, 0}\right) \text { in }\left(\left(\operatorname{Ker}\left(\mathrm{id}-\gamma_{\eta, 0}\right) \text { in } K_{0}\left(\mathcal{F}_{\rho, \eta}\right)\right)\right. \\
& \longrightarrow K_{1}\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right) \\
& \longrightarrow \operatorname{Ker}\left(\mathrm{id}-\bar{\gamma}_{\rho, 0}\right) \text { in }\left(\operatorname{Coker}\left(\mathrm{id}-\gamma_{\eta, 0}\right) \text { in } K_{0}\left(\mathcal{F}_{\rho, \eta}\right)\right) \\
& \longrightarrow 0 .
\end{aligned}
$$

8. K-Theory formulae

In this section, we will present more useful formulae to compute the Kgroups $K_{i}\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)$ under a certain additional assumption on $\left(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa\right)$. The additional condition on $\left(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa\right)$ is the following:
Definition 8.1. A C^{*}-textile dynamical system $\left(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa\right)$ is said to form square if the C^{*}-subalgebra $C^{*}\left(\rho_{\alpha}(1): \alpha \in \Sigma^{\rho}\right)$ of \mathcal{A} generated by the projections $\rho_{\alpha}(1), \alpha \in \Sigma^{\rho}$ coincides with the C^{*}-subalgebra $C^{*}\left(\eta_{a}(1)\right.$: $\left.a \in \Sigma^{\eta}\right)$ of \mathcal{A} generated by the projections $\eta_{a}(1), a \in \Sigma^{\eta}$.
Lemma 8.2. Assume that $\left(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa\right)$ forms square. Put for $l \in \mathbb{Z}_{+}$

$$
\mathcal{A}_{l}^{\rho}=C^{*}\left(\rho_{\mu}(1): \mu \in B_{l}\left(\Lambda_{\rho}\right)\right), \quad \mathcal{A}_{l}^{\eta}=C^{*}\left(\eta_{\xi}(1): \xi \in B_{l}\left(\Lambda_{\eta}\right)\right) .
$$

Then $\mathcal{A}_{l}^{\rho}=\mathcal{A}_{l}^{\eta}$.
Proof. By the assumption, we have $\mathcal{A}_{1}^{\rho}=\mathcal{A}_{1}^{\eta}$. Hence the desired equality for $l=1$ holds. Suppose that the equalities hold for all $l \leq k$ for some $k \in \mathbb{N}$. For $\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{k}, \mu_{k+1}\right) \in B_{k+1}\left(\Lambda_{\rho}\right)$ we have $\rho_{\mu}(1)=\rho_{\mu_{k+1}}\left(\rho_{\mu_{1} \mu_{2} \cdots \mu_{k}}(1)\right)$ so that $\rho_{\mu}(1) \in \rho_{\mu_{k+1}}\left(\mathcal{A}_{k}^{\rho}\right)$. By the commutation relation (3.1), one sees that

$$
\rho_{\mu_{k+1}}\left(\mathcal{A}_{k}^{\rho}\right) \subset C^{*}\left(\eta_{\xi}\left(\rho_{\alpha}(1)\right): \xi \in B_{k}\left(\Lambda_{\eta}\right), \alpha \in \Sigma^{\rho}\right) .
$$

Since $C^{*}\left(\rho_{\alpha}(1): \alpha \in \Sigma^{\rho}\right)=C^{*}\left(\eta_{a}(1): a \in \Sigma^{\eta}\right)$, the algebra $C^{*}\left(\eta_{\xi}\left(\rho_{\alpha}(1)\right)\right.$: $\left.\xi \in B_{k}\left(\Lambda_{\eta}\right), \alpha \in \Sigma^{\rho}\right)$ is contained in \mathcal{A}_{k+1}^{η} so that $\rho_{\mu_{k+1}}\left(\mathcal{A}_{k}^{\eta}\right) \subset \mathcal{A}_{k+1}^{\eta}$. This implies $\rho_{\mu}(1) \in \mathcal{A}_{k+1}^{\eta}$ so that $\mathcal{A}_{k+1}^{\rho} \subset \mathcal{A}_{k+1}^{\eta}$ and hence $\mathcal{A}_{k+1}^{\rho}=\mathcal{A}_{k+1}^{\eta}$.

Therefore we have
Lemma 8.3. Assume that $\left(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa\right)$ forms square. Put for $j, k \in$ \mathbb{Z}_{+}

$$
\begin{aligned}
\mathcal{A}_{j, k} & =C^{*}\left(\rho_{\mu}\left(\eta_{\zeta}(1)\right): \mu \in B_{j}\left(\Lambda_{\rho}\right), \zeta \in B_{k}\left(\Lambda_{\eta}\right)\right) \\
& \left(=C^{*}\left(\eta_{\xi}\left(\rho_{\nu}(1)\right): \xi \in B_{k}\left(\Lambda_{\eta}\right), \nu \in B_{j}\left(\Lambda_{\rho}\right)\right)\right) .
\end{aligned}
$$

Then $\mathcal{A}_{j, k}$ is commutative and of finite dimensional such that

$$
\mathcal{A}_{j, k}=\mathcal{A}_{j+k}^{\rho}\left(=\mathcal{A}_{j+k}^{\eta}\right) .
$$

Hence $\mathcal{A}_{j, k}=\mathcal{A}_{j^{\prime}, k^{\prime}}$ if $j+k=j^{\prime}+k^{\prime}$.
Proof. Since $\eta_{\zeta}(1) \in Z_{\mathcal{A}}$ and $\rho_{\mu}\left(Z_{\mathcal{A}}\right) \subset Z_{\mathcal{A}}$, the algebra $\mathcal{A}_{j, k}$ belongs to the center $Z_{\mathcal{A}}$ of \mathcal{A}. By the preceding lemma, we have

$$
\mathcal{A}_{j, k}=C^{*}\left(\rho_{\mu}\left(\rho_{\nu}(1)\right): \mu \in B_{j}\left(\Lambda_{\rho}\right), \nu \in B_{k}\left(\Lambda_{\rho}\right)\right)=\mathcal{A}_{j+k}^{\rho} .
$$

For $j, k \in \mathbb{Z}_{+}$, put $l=j+k$. We denote by \mathcal{A}_{l} the commutative finite dimensional algebra $\mathcal{A}_{j, k}$. Put $m(l)=\operatorname{dim} \mathcal{A}_{l}$. Take the finite sequence of minimal projections $E_{i}^{l}, i=1,2, \ldots, m(l)$ in \mathcal{A}_{l} such that $\sum_{i=1}^{m(l)} E_{i}^{l}=1$ and hence $\mathcal{A}_{l}=\oplus_{i=1}^{m(l)} \mathbb{C} E_{i}^{l}$. Since $\rho_{\alpha}\left(\mathcal{A}_{l}\right) \subset \mathcal{A}_{l+1}$, there exists $A_{l, l+1}^{\rho}(i, \alpha, n)$, which takes 0 or 1 , such that

$$
\rho_{\alpha}\left(E_{i}^{l}\right)=\sum_{n=1}^{m(l+1)} A_{l, l+1}^{\rho}(i, \alpha, n) E_{n}^{l+1}, \quad \alpha \in \Sigma^{\rho}, i=1, \ldots, m(l) .
$$

Similarly, there exists $A_{l, l+1}^{\eta}(i, a, n)$, which takes 0 or 1 , such that

$$
\eta_{a}\left(E_{i}^{l}\right)=\sum_{n=1}^{m(l+1)} A_{l, l+1}^{\eta}(i, a, n) E_{n}^{l+1}, \quad a \in \Sigma^{\eta}, i=1, \ldots, m(l) .
$$

Set for $i=1, \ldots, m(l)$

$$
\begin{aligned}
\mathcal{F}_{j, k}(i) & =C^{*}\left(S_{\mu} T_{\zeta} E_{i}^{l} x E_{i}^{l} T_{\xi}^{*} S_{\nu}^{*} \mid \mu, \nu \in B_{j}\left(\Lambda_{\rho}\right), \zeta, \xi \in B_{k}\left(\Lambda_{\eta}\right), x \in \mathcal{A}\right), \\
& =C^{*}\left(T_{\zeta} S_{\mu} E_{i}^{l} x E_{i}^{l} S_{\nu}^{*} T_{\xi}^{*} \mid \mu, \nu \in B_{j}\left(\Lambda_{\rho}\right), \zeta, \xi \in B_{k}\left(\Lambda_{\eta}\right), x \in \mathcal{A}\right) .
\end{aligned}
$$

Let $N_{j, k}(i)$ be the cardinal number of the finite set

$$
\left\{(\mu, \zeta) \in B_{j}\left(\Lambda_{\rho}\right) \times B_{k}\left(\Lambda_{\eta}\right) \mid \rho_{\mu}\left(\eta_{\zeta}(1)\right) \geq E_{i}^{l}\right\}
$$

Since E_{i}^{l} is a central projection in \mathcal{A}, we have
Lemma 8.4. For $j, k \in \mathbb{Z}_{+}$, put $l=j+k$. Then we have:
(i) $\mathcal{F}_{j, k}(i)$ is isomorphic to the matrix algebra

$$
M_{N_{j, k}(i)}\left(E_{i}^{l} \mathcal{A} E_{i}^{l}\right)\left(=M_{N_{j, k}(i)}(\mathbb{C}) \otimes E_{i}^{l} \mathcal{A} E_{i}^{l}\right)
$$

over $E_{i}^{l} \mathcal{A} E_{i}^{l}$ for $i=1, \ldots, m(l)$.
(ii) $\mathcal{F}_{j, k}=\mathcal{F}_{j, k}(1) \oplus \cdots \oplus \mathcal{F}_{j, k}(m(l))$.

Proof. (i) For $(\mu, \zeta) \in B_{j}\left(\Lambda_{\rho}\right) \times B_{k}\left(\Lambda_{\eta}\right)$ with $S_{\mu} T_{\zeta} E_{i}^{l} \neq 0$, one has

$$
\eta_{\zeta}\left(\rho_{\mu}(1)\right) E_{i}^{l} \neq 0
$$

so that $\eta_{\zeta}\left(\rho_{\mu}(1)\right) \geq E_{i}^{l}$. Hence $\left(S_{\mu} T_{\zeta} E_{i}^{l}\right)^{*} S_{\mu} T_{\zeta} E_{i}^{l}=E_{i}^{l}$. One sees that the set

$$
\left\{S_{\mu} T_{\zeta} E_{i}^{l} \mid(\mu, \zeta) \in B_{j}\left(\Lambda_{\rho}\right) \times B_{k}\left(\Lambda_{\eta}\right) ; S_{\mu} T_{\zeta} E_{i}^{l} \neq 0\right\}
$$

consist of partial isometries which give rise to matrix units of $\mathcal{F}_{j, k}(i)$ such that $\mathcal{F}_{j, k}(i)$ is isomorphic to $M_{N_{j, k}(i)}\left(E_{i}^{l} \mathcal{A} E_{i}^{l}\right)$.
(ii) Since $\mathcal{A}=E_{1}^{l} \mathcal{A} E_{1}^{l} \oplus \cdots \oplus E_{m(l)}^{l} \mathcal{A} E_{m(l)}^{l}$, the assertion is easy.

Define homomorphisms $\lambda_{\rho}, \lambda_{\eta}: K_{0}(\mathcal{A}) \longrightarrow K_{0}(\mathcal{A})$ by setting

$$
\lambda_{\rho}([p])=\sum_{\alpha \in \Sigma^{\rho}}\left[\left(\rho_{\alpha} \otimes 1_{n}\right)(p)\right], \quad \lambda_{\eta}([p])=\sum_{a \in \Sigma^{\eta}}\left[\left(\eta_{a} \otimes 1_{n}\right)(p)\right]
$$

for a projection $p \in M_{n}(\mathcal{A})$ for some $n \in \mathbb{N}$. Recall that the identities (5.1), (5.2) give rise to the embeddings (5.3), which induce homomorphisms

$$
K_{0}\left(\mathcal{F}_{j, k}\right) \longrightarrow K_{0}\left(\mathcal{F}_{j, k+1}\right), \quad K_{0}\left(\mathcal{F}_{j, k}\right) \longrightarrow K_{0}\left(\mathcal{F}_{j+1, k}\right) .
$$

We still denote them by $\iota_{*,+1}, \iota_{+1, *}$ respectively.
Lemma 8.5. Assume that $\left(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa\right)$ forms square. There exists an isomorphism

$$
\Phi_{j, k}: K_{0}\left(\mathcal{F}_{j, k}\right) \longrightarrow K_{0}(\mathcal{A})
$$

such that the following diagrams are commutative:
(i)

$$
\begin{array}{lll}
K_{0}\left(\mathcal{F}_{j, k}\right) & \xrightarrow{\iota_{+1, *}} K_{0}\left(\mathcal{F}_{j+1, k}\right) \\
\Phi_{j, k} \downarrow & & \Phi_{j+1, k} \downarrow \\
K_{0}(\mathcal{A}) & \xrightarrow{\lambda_{\rho}} & K_{0}(\mathcal{A})
\end{array}
$$

(ii)

$$
\begin{array}{lll}
K_{0}\left(\mathcal{F}_{j, k}\right) & \xrightarrow{\iota_{*,+1}} & K_{0}\left(\mathcal{F}_{j, k+1}\right) \\
\Phi_{j, k} \downarrow & & \Phi_{j, k+1} \downarrow \\
K_{0}(\mathcal{A}) & \xrightarrow{\lambda_{\eta}} & K_{0}(\mathcal{A}) .
\end{array}
$$

Proof. Put for $i=1,2, \ldots, m(l)$

$$
P_{i}=\sum_{\mu \in B_{j}\left(\Lambda_{\rho}\right), \zeta \in B_{k}\left(\Lambda_{\eta}\right)} S_{\mu} T_{\zeta} E_{i}^{l} T_{\zeta}^{*} S_{\mu}^{*} .
$$

Then P_{i} is a central projection in $\mathcal{F}_{j, k}$ such that $\sum_{i=1}^{m(l)} P_{i}=1$. For $X \in \mathcal{F}_{j, k}$, one has $P_{i} X P_{i} \in \mathcal{F}_{j, k}(i)$ such that

$$
X=\sum_{i=1}^{m(l)} P_{i} X P_{i} \in \bigoplus_{i=1}^{m(l)} \mathcal{F}_{j, k}(i) .
$$

Define an isomorphism

$$
\varphi_{j, k}: X \in \mathcal{F}_{j, k} \longrightarrow \sum_{i=1}^{m(l)} P_{i} X P_{i} \in \bigoplus_{i=1}^{m(l)} \mathcal{F}_{j, k}(i)
$$

which induces an isomorphism on their K-groups

$$
\varphi_{j, k *}: K_{0}\left(\mathcal{F}_{j, k}\right) \longrightarrow \bigoplus_{i=1}^{m(l)} K_{0}\left(\mathcal{F}_{j, k}(i)\right) .
$$

Take and fix $\nu(i), \mu(i) \in B_{j}\left(\Lambda_{\rho}\right)$ and $\zeta(i), \xi(i) \in B_{k}\left(\Lambda_{\eta}\right)$ such that

$$
\begin{equation*}
T_{\xi(i)} S_{\nu(i)}=S_{\mu(i)} T_{\zeta(i)} \quad \text { and } \quad T_{\xi(i)} S_{\nu(i)} E_{i}^{l} \neq 0 \tag{8.1}
\end{equation*}
$$

Hence $S_{\nu(i)}^{*} T_{\xi(i)}^{*} T_{\xi(i)} S_{\nu(i)} \geq E_{i}^{l}$. Since $\mathcal{F}_{j, k}(i)$ is isomorphic to

$$
M_{N_{j, k(i)}}(\mathbb{C}) \otimes E_{i}^{l} \mathcal{A} E_{i}^{l}
$$

the embedding

$$
\iota_{j, k}(i): x \in E_{i}^{l} \mathcal{A} E_{i}^{l} \longrightarrow T_{\xi(i)} S_{\nu(i)} x S_{\nu(i)}^{*} T_{\xi(i)}^{*} \in \mathcal{F}_{j, k}(i)
$$

induces an isomorphism on their K-groups

$$
\iota_{j, k}(i)_{*}: K_{0}\left(E_{i}^{l} \mathcal{A} E_{i}^{l}\right) \longrightarrow K_{0}\left(\mathcal{F}_{j, k}(i)\right)
$$

Put

$$
\psi_{j, k}=\bigoplus_{i=1}^{m(l)} \iota_{j, k}(i): \bigoplus_{i=1}^{m(l)} E_{i}^{l} \mathcal{A} E_{i}^{l} \longrightarrow \bigoplus_{i=1}^{m(l)} \mathcal{F}_{j, k}(i)
$$

and hence we have an isomorphism

$$
\psi_{j, k *}=\bigoplus_{i=1}^{m(l)} \iota_{j, k}(i)_{*}: \bigoplus_{i=1}^{m(l)} K_{0}\left(E_{i}^{l} \mathcal{A} E_{i}^{l}\right) \longrightarrow \bigoplus_{i=1}^{m(l)} K_{0}\left(\mathcal{F}_{j, k}(i)\right)
$$

Since $K_{0}(\mathcal{A})=\bigoplus_{i=1}^{m(l)} K_{0}\left(E_{i}^{l} \mathcal{A} E_{i}^{l}\right)$, we have an isomorphism

$$
\Phi_{j, k}=\psi_{j, k *}^{-1} \circ \varphi_{j, k *}: K_{0}\left(\mathcal{F}_{j, k}\right) \xrightarrow{\varphi_{j, k *}} \bigoplus_{i=1}^{m(l)} K_{0}\left(\mathcal{F}_{j, k}(i)\right) \xrightarrow{\psi_{j, k *}-1} K_{0}(\mathcal{A})
$$

(i) It suffices to show the following diagram

$$
\begin{array}{ccc}
K_{0}\left(\mathcal{F}_{j, k}\right) & \stackrel{\iota_{+1, *}}{ } & K_{0}\left(\mathcal{F}_{j+1, k}\right) \\
\bigoplus_{j, k *}^{m(l)} \downarrow & & \varphi_{j+1, k *} \downarrow \\
K_{0}\left(\mathcal{F}_{j, k}(i)\right) & & \bigoplus_{i=1}^{m(l)} K_{0}\left(\mathcal{F}_{j+1, k}(i)\right) \\
\psi_{j, k *} \uparrow & & \psi_{j+1, k *} \uparrow \\
K_{0}(\mathcal{A}) & \xrightarrow{\lambda_{\rho}} & K_{0}(\mathcal{A})
\end{array}
$$

is commutative. For $x=\sum_{i=1}^{m(l)} E_{i}^{l} x E_{i}^{l} \in \mathcal{A}$, we have

$$
\psi_{j, k}(x)=\sum_{i=1}^{m(l)} T_{\xi(i)} S_{\nu(i)} E_{i}^{l} x E_{i}^{l} S_{\nu(i)}^{*} T_{\xi(i)}^{*}=\sum_{i=1}^{m(l)} S_{\mu(i)} T_{\zeta(i)} E_{i}^{l} x E_{i}^{l} T_{\zeta(i)}^{*} S_{\mu(i)}^{*}
$$

Since $P_{i} T_{\xi(i)} S_{\nu(i)} E_{i}^{l} x E_{i}^{l} S_{\nu(i)}^{*} T_{\xi(i)}^{*} P_{i}=T_{\xi(i)} S_{\nu(i)} E_{i}^{l} x E_{i}^{l} S_{\nu(i)}^{*} T_{\xi(i)}^{*}$, we have

$$
\varphi_{j, k}^{-1} \circ \psi_{j, k}(x)=\sum_{i=1}^{m(l)} T_{\xi(i)} S_{\nu(i)} E_{i}^{l} x E_{i}^{l} S_{\nu(i)}^{*} T_{\xi(i)}^{*}
$$

so that

$$
\iota_{+1, *} \circ \varphi_{j, k}^{-1} \circ \psi_{j, k}(x)=\sum_{\alpha \in \Sigma^{\rho}} \sum_{i=1}^{m(l)} T_{\xi(i)} S_{\nu(i) \alpha} \rho_{\alpha}\left(E_{i}^{l} x E_{i}^{l}\right) S_{\nu(i) \alpha}^{*} T_{\xi(i)}^{*}
$$

Since

$$
S_{\nu(i) \alpha} \rho_{\alpha}\left(E_{i}^{l} x E_{i}^{l}\right) S_{\nu(i) \alpha}^{*}=\sum_{n=1}^{m(l+1)} A_{l, l+1}^{\rho}(i, \alpha, n) S_{\nu(i) \alpha} E_{n}^{l+1} \rho_{\alpha}(x) E_{n}^{l+1} S_{\nu(i) \alpha}^{*}
$$

and $A_{l, l+1}^{\rho}(i, \alpha, n) S_{\nu(i) \alpha} E_{n}^{l+1}=S_{\nu(i) \alpha} E_{n}^{l+1}$, we have

$$
\sum_{\alpha \in \Sigma^{\rho}} S_{\nu(i) \alpha} \rho_{\alpha}\left(E_{i}^{l} x E_{i}^{l}\right) S_{\nu(i) \alpha}^{*}=\sum_{n=1}^{m(l+1)} \sum_{\alpha \in \Sigma^{\rho}} S_{\nu(i) \alpha} E_{n}^{l+1} \rho_{\alpha}(x) E_{n}^{l+1} S_{\nu(i) \alpha}^{*}
$$

so that

$$
\iota_{+1, *} \circ \varphi_{j, k}^{-1} \circ \psi_{j, k}(x)=\sum_{\alpha \in \Sigma^{\rho}} \sum_{i=1}^{m(l)} \sum_{n=1}^{m(l+1)} T_{\xi(i)} S_{\nu(i) \alpha} E_{n}^{l+1} \rho_{\alpha}(x) E_{n}^{l+1} S_{\nu(i) \alpha}^{*} T_{\xi(i)}^{*} .
$$

On the other hand,

$$
\begin{aligned}
\psi_{j, k}\left(\lambda_{\rho}(x)\right) & =\psi_{j, k}\left(\sum_{n=1}^{m(l+1)} \sum_{\alpha \in \Sigma^{\rho}} E_{n}^{l+1} \rho_{\alpha}(x) E_{n}^{l+1}\right) \\
& =\sum_{\alpha \in \Sigma^{\rho}} \sum_{i=1}^{m(l)} \sum_{n=1}^{m(l+1)} T_{\xi(i)} S_{\nu(i) \alpha} E_{n}^{l+1} \rho_{\alpha}(x) E_{n}^{l+1} S_{\nu(i) \alpha}^{*} T_{\xi(i)}^{*}
\end{aligned}
$$

Therefore we have

$$
\iota_{+1, *} \circ \varphi_{j, k}^{-1} \circ \psi_{j, k}(x)=\psi_{j, k}\left(\lambda_{\rho}(x)\right) .
$$

(ii) is symmetric to (i).

Define the abelian groups of the inductive limits:

$$
G_{\rho}=\lim \left\{\lambda_{\rho}: K_{0}(\mathcal{A}) \longrightarrow K_{0}(\mathcal{A})\right\}, \quad G_{\eta}=\lim \left\{\lambda_{\eta}: K_{0}(\mathcal{A}) \longrightarrow K_{0}(\mathcal{A})\right\} .
$$

Put the subalgebras of $\mathcal{F}_{\rho, \eta}$ for $j, k \in \mathbb{Z}_{+}$

$$
\begin{aligned}
\mathcal{F}_{\rho, k} & =C^{*}\left(T_{\zeta} S_{\mu} x S_{\nu}^{*} T_{\xi}^{*}\left|\mu, \nu \in B_{*}\left(\Lambda_{\rho}\right),|\mu|=|\nu|, \zeta, \xi \in B_{k}\left(\Lambda_{\eta}\right), x \in \mathcal{A}\right)\right. \\
& =C^{*}\left(T_{\zeta} y T_{\xi}^{*} \mid \zeta, \xi \in B_{k}\left(\Lambda_{\eta}\right), y \in \mathcal{F}_{\rho}\right) \\
\mathcal{F}_{j, \eta} & =C^{*}\left(S_{\mu} T_{\zeta} x T_{\xi}^{*} S_{\nu}^{*}\left|\mu, \nu \in B_{j}\left(\Lambda_{\rho}\right), \zeta, \xi \in B_{*}\left(\Lambda_{\eta}\right),|\zeta|=|\xi|, x \in \mathcal{A}\right)\right. \\
& =C^{*}\left(S_{\mu} y S_{\nu}^{*} \mid \mu, \nu \in B_{j}\left(\Lambda_{\rho}\right), y \in \mathcal{F}_{\eta}\right) .
\end{aligned}
$$

By the preceding lemma, we have:
Lemma 8.6. For $j, k \in \mathbb{Z}_{+}$, there exist isomorphisms

$$
\Phi_{\rho, k}: K_{0}\left(\mathcal{F}_{\rho, k}\right) \longrightarrow G_{\rho}, \quad \Phi_{j, \eta}: K_{0}\left(\mathcal{F}_{j, \eta}\right) \longrightarrow G_{\eta}
$$

such that the following diagrams are commutative:
(i)

$$
\begin{array}{ccccc}
K_{0}\left(\mathcal{F}_{j, k}\right) \xrightarrow{\iota_{+1, *}} K_{0}\left(\mathcal{F}_{j+1, k}\right) \xrightarrow{\iota_{+1, *}} \cdots \xrightarrow{\iota_{+1, *}} & K_{0}\left(\mathcal{F}_{\rho, k}\right) \\
\Phi_{j, k} \downarrow & \Phi_{j+1, k} \downarrow & & & \\
K_{0}(\mathcal{A}) & \xrightarrow{\lambda_{\rho}} & K_{0}(\mathcal{A}) & \xrightarrow{\lambda_{\rho}} & \cdots \xrightarrow{\lambda_{\rho}} \\
\Phi_{\rho, k} \downarrow
\end{array}
$$

(ii)

Lemma 8.7. If $\xi=\left(\xi_{1}, \ldots, \xi_{k}\right) \in B_{k}\left(\Lambda_{\eta}\right), \nu=\left(\nu_{1}, \ldots, \nu_{j}\right) \in B_{j}\left(\Lambda_{\rho}\right)$ satisfy the condition $\rho_{\nu}\left(\eta_{\xi}(1)\right) \geq E_{i}^{l}$ for some $i=1, \ldots, m(l)$ with $l=j+k$, then $T_{\xi_{1}}^{*} T_{\xi} S_{\nu} E_{i}^{l}=T_{\bar{\xi}} S_{\nu} E_{i}^{l}$ where $\bar{\xi}=\left(\xi_{2}, \ldots, \xi_{k}\right)$.
Proof. Since $T_{\xi_{1}}^{*} T_{\xi}=T_{\xi_{1}}^{*} T_{\xi_{1}} T_{\bar{\xi}} T_{\bar{\xi}}^{*} T_{\bar{\xi}}=T_{\bar{\xi}} T_{\bar{\xi}}^{*} T_{\xi_{1}}^{*} T_{\xi_{1}} T_{\bar{\xi}}=T_{\bar{\xi}} T_{\xi}^{*} T_{\xi}$, we have

$$
T_{\xi_{1}}^{*} T_{\xi} S_{\nu} E_{i}^{l}=T_{\bar{\xi}} S_{\nu} S_{\nu}^{*} T_{\xi}^{*} T_{\xi} S_{\nu} E_{i}^{l}=T_{\bar{\xi}} S_{\nu} \rho_{\nu}\left(\eta_{\xi}(1)\right) E_{i}^{l}=T_{\bar{\xi}} S_{\nu} E_{i}^{l} .
$$

Let us denote by $\gamma_{\rho}, \gamma_{\eta}$ the endomorphisms $\gamma_{\rho, 0}, \gamma_{\eta, 0}$ on $K_{0}\left(\mathcal{F}_{\rho, \eta}\right)$ appeared in Lemma 7.6, respectively.
Lemma 8.8. For $k, j \in \mathbb{Z}_{+}$, we have:
(i) The restriction of γ_{η}^{-1} to $K_{0}\left(\mathcal{F}_{j, k}\right)$ makes the following diagram commutative:

$$
\begin{array}{lll}
K_{0}\left(\mathcal{F}_{j, k}\right) \xrightarrow{\gamma_{\eta}^{-1}} K_{0}\left(\mathcal{F}_{j, k-1}\right) \xrightarrow{\iota_{*,+1}} & K_{0}\left(\mathcal{F}_{j, k}\right) \\
\Phi_{j, k} \downarrow & & \Phi_{j, k} \downarrow \\
K_{0}(\mathcal{A}) & \xrightarrow{\lambda_{\eta}} & K_{0}(\mathcal{A}) .
\end{array}
$$

(ii) The restriction of γ_{ρ}^{-1} to $K_{0}\left(\mathcal{F}_{j, k}\right)$ makes the following diagram commutative:

Proof. (i) Put $l=j+k$. Take a projection $p \in M_{n}(\mathcal{A})$ for some $n \in \mathbb{N}$. Since $\mathcal{A} \otimes M_{n}(\mathbb{C})=\sum_{i=1}^{m(l)} \oplus\left(E_{i}^{l} \otimes 1\right)\left(\mathcal{A} \otimes M_{n}\right)\left(E_{i}^{l} \otimes 1\right)$, by putting $p_{i}^{l}=\left(E_{i}^{l} \otimes 1\right) p\left(E_{i}^{l} \otimes 1\right) \in M_{n}\left(E_{i}^{l} \mathcal{A} E_{i}^{l}\right)$,
we have $p=\sum_{i=1}^{m(l)} p_{i}^{l}$. Take

$$
\xi(i)=\left(\xi_{1}(i), \ldots, \xi_{k}(i)\right) \in B_{k}\left(\Lambda_{\eta}\right), \quad \nu(i)=\left(\nu_{1}(i), \ldots, \nu_{j}(i)\right) \in B_{j}\left(\Lambda_{\rho}\right)
$$

as in (8.1) so that $\rho_{\nu(i)}\left(\eta_{\xi(i)}(1)\right) \geq E_{i}^{l}$ and put $\bar{\xi}(i)=\left(\xi_{2}(i), \ldots, \xi_{k}(i)\right)$ so that $\xi(i)=\xi_{1}(i) \bar{\xi}(i)$. We have

$$
\psi_{j, k *}([p])=\sum_{i=1}^{m(l)} \oplus\left[\left(T_{\xi(i)} S_{\nu(i)} \otimes 1_{n}\right) p_{i}^{l}\left(S_{\nu(i)}^{*} T_{\xi(i)}^{*} \otimes 1_{n}\right)\right] \in \bigoplus_{i=1}^{m(l)} K_{0}\left(\mathcal{F}_{j, k}(i)\right)
$$

As

$$
\left(T_{\xi(i)} S_{\nu(i)} \otimes 1_{n}\right) p_{i}^{l}\left(S_{\nu(i)}^{*} T_{\xi(i)}^{*} \otimes 1_{n}\right) \leq T_{\xi_{1}(i)} T_{\xi_{1}(i)}^{*} \otimes 1_{n}
$$

by the preceding lemma we have

$$
T_{\xi_{1}(i)}^{*} T_{\xi(i)} S_{\nu(i)} E_{i}^{l}=T_{\bar{\xi}(i)} S_{\nu(i)} E_{i}^{l}
$$

so that by Lemma 7.6
$\gamma_{\eta}^{-1}\left(\left[\left(T_{\xi(i)} S_{\nu(i)} \otimes 1_{n}\right) p_{i}^{l}\left(S_{\nu(i)}^{*} T_{\xi(i)}^{*} \otimes 1_{n}\right)\right]=\left[\left(T_{\bar{\xi}(i)} S_{\nu(i)} \otimes 1_{n}\right) p_{i}^{l}\left(S_{\nu(i)}^{*} T_{\bar{\xi}(i)}^{*} \otimes 1_{n}\right)\right]\right.$.
Hence $K_{0}\left(\mathcal{F}_{j, k}\right)$ goes to $K_{0}\left(\mathcal{F}_{j, k-1}\right)$ by the homomorphism γ_{η}^{-1}. Take $\mu(i) \in$ $B_{j}\left(\Lambda_{\rho}\right), \bar{\zeta}(i) \in B_{k-1}\left(\Lambda_{\eta}\right)$ such that $T_{\bar{\xi}(i)} S_{\nu(i)}=S_{\mu(i)} T_{\bar{\zeta}(i)}$ for $i=1, \ldots, m(l)$. The element

$$
\begin{aligned}
& \sum_{i=1}^{m(l)}\left[\left(T_{\bar{\xi}(i)} S_{\nu(i)} \otimes 1_{n}\right) p_{i}^{l}\left(S_{\nu(i)}^{*} T_{\bar{\xi}(i)}^{*} \otimes 1_{n}\right)\right] \\
& =\sum_{i=1}^{m(l)}\left[\left(S_{\mu(i)} T_{\bar{\zeta}(i)} \otimes 1_{n}\right) p_{i}^{l}\left(T_{\bar{\zeta}(i)}^{*} S_{\mu(i)}^{*} \otimes 1_{n}\right)\right] \in K_{0}\left(\mathcal{F}_{j, k-1}\right)
\end{aligned}
$$

goes to

$$
\sum_{i=1}^{m(l)} \sum_{a \in \Sigma^{\eta}}\left[\left(S_{\mu(i)} T_{\bar{\zeta}(i) a} \otimes 1_{n}\right)\left(T_{a}^{*} \otimes 1_{n}\right) p_{i}^{l}\left(T_{a} \otimes 1_{n}\right)\left(T_{\bar{\zeta}(i) a}^{*} S_{\mu(i)}^{*} \otimes 1_{n}\right)\right] \in K_{0}\left(\mathcal{F}_{j, k}\right)
$$

by $\iota_{*,+1}$. The latter one is expressed as
$\sum_{h=1}^{m(l)} \oplus \sum_{i=1}^{m(l)} \sum_{a \in \Sigma^{\eta}}\left[\left(S_{\mu(i)} T_{\bar{\zeta}(i) a} \otimes 1_{n}\right) E_{h}^{l}\left(T_{a}^{*} \otimes 1_{n}\right) p_{i}^{l}\left(T_{a} \otimes 1_{n}\right) E_{h}^{l}\left(T_{\bar{\zeta}(i) a}^{*} S_{\mu(i)}^{*} \otimes 1_{n}\right)\right]$
in $\bigoplus_{h=1}^{m(l)} K_{0}\left(\mathcal{F}_{j, k}(h)\right)$. On the other hand, we have

$$
\begin{aligned}
\lambda_{\eta}([p]) & =\sum_{a \in \Sigma^{\eta}}\left[\left(T_{a}^{*} \otimes 1_{n}\right) p\left(T_{a} \otimes 1_{n}\right)\right] \\
& =\sum_{h=1}^{m(l)} \oplus \sum_{a \in \Sigma^{\eta}}\left[E_{h}^{l}\left(T_{a}^{*} \otimes 1_{n}\right) p\left(T_{a} \otimes 1_{n}\right) E_{h}^{l}\right] \in \bigoplus_{h=1}^{m(l)} K_{0}\left(E_{h}^{l} \mathcal{A} E_{h}^{l}\right)
\end{aligned}
$$

which is expressed as

$$
\begin{aligned}
& \sum_{h=1}^{m(l)} \oplus \sum_{a \in \Sigma^{\eta}}\left[\left(T_{\xi(h)} S_{\nu(h)} E_{h}^{l} \otimes 1_{n}\right)\left(T_{a}^{*} \otimes 1_{n}\right) p\left(T_{a} \otimes 1_{n}\right)\left(E_{h}^{l} S_{\nu(h)}^{*} T_{\xi(h)}^{*} \otimes 1_{n}\right)\right] \\
& =\sum_{h=1}^{m(l)} \oplus \sum_{a \in \Sigma^{\eta}} \sum_{i=1}^{m(l)}\left[\left(T_{\xi(h)} S_{\nu(h)} E_{h}^{l} \otimes 1_{n}\right)\left(T_{a}^{*} \otimes 1_{n}\right)\right. \\
& \left.\quad \cdot p_{i}^{l}\left(T_{a} \otimes 1_{n}\right)\left(E_{h}^{l} S_{\nu(h)}^{*} T_{\xi(h)}^{*} \otimes 1_{n}\right)\right]
\end{aligned}
$$

in $\bigoplus_{h=1}^{m(l)} K_{0}\left(\mathcal{F}_{j, k}(h)\right)$. Take $\mu^{\prime}(h) \in B_{j}\left(\Lambda_{\rho}\right), \zeta^{\prime}(h) \in B_{k}\left(\Lambda_{\eta}\right)$ such that $T_{\xi(h)} S_{\nu(h)}=S_{\mu^{\prime}(h)} T_{\zeta^{\prime}(h)}$ so that the above element is
$\sum_{h=1}^{m(l)} \oplus \sum_{i=1}^{m(l)} \sum_{a \in \Sigma^{\eta}}\left[\left(S_{\mu^{\prime}(h)} T_{\zeta^{\prime}(h)} E_{h}^{l} \otimes 1_{n}\right)\left(T_{a}^{*} \otimes 1_{n}\right) p_{i}^{l}\left(T_{a} \otimes 1_{n}\right)\left(E_{h}^{l} T_{\zeta^{\prime}(h)}^{*} S_{\nu^{\prime}(h)}^{*} \otimes 1_{n}\right)\right]$
in $\bigoplus_{h=1}^{m(l)} K_{0}\left(\mathcal{F}_{j, k}(h)\right)$. Since for $h, i=1, \ldots, m(l), a \in \Sigma^{\eta}$ their classes of the K-groups coincide such as

$$
\begin{aligned}
& {\left[\left(S_{\mu(i)} T_{\bar{\zeta}(i) a} \otimes 1_{n}\right) E_{h}^{l}\left(T_{a}^{*} \otimes 1_{n}\right) p_{i}^{l}\left(T_{a} \otimes 1_{n}\right) E_{h}^{l}\left(T_{\bar{\zeta}(i) a}^{*} S_{\mu(i)}^{*} \otimes 1_{n}\right)\right]} \\
& =\left[\left(S_{\mu^{\prime}(h)} T_{\zeta^{\prime}(h)} E_{h}^{l} \otimes 1_{n}\right)\left(T_{a}^{*} \otimes 1_{n}\right) p_{i}^{l}\left(T_{a} \otimes 1_{n}\right)\left(E_{h}^{l} T_{\zeta^{\prime}(h)}^{*} S_{\nu^{\prime}(h)}^{*} \otimes 1_{n}\right)\right] \\
& \in K_{0}\left(\mathcal{F}_{j, k}(h)\right),
\end{aligned}
$$

the element of (8.2) is equal to the element of (8.3) in $K_{0}\left(\mathcal{F}_{j, k}\right)$. Thus (i) holds.
(ii) is similar to (i).

We note that for $j, k \in \mathbb{Z}_{+}$,

$$
\begin{aligned}
K_{0}\left(\mathcal{F}_{\rho, k}\right) & =\lim _{j}\left\{\iota_{+1, *}: K_{0}\left(\mathcal{F}_{j, k}\right) \longrightarrow K_{0}\left(\mathcal{F}_{j+1, k}\right)\right\}, \\
K_{0}\left(\mathcal{F}_{j, \eta}\right) & =\lim _{k}\left\{\iota_{*,+1}: K_{0}\left(\mathcal{F}_{j, k}\right) \longrightarrow K_{0}\left(\mathcal{F}_{j, k+1}\right)\right\} .
\end{aligned}
$$

The following lemma is direct.
Lemma 8.9. For $k, j \in \mathbb{Z}_{+}$, the following diagrams are commutative:

$$
\begin{array}{rll}
K_{0}\left(\mathcal{F}_{j, k}\right) & \xrightarrow{\gamma_{\eta}^{-1}} & K_{0}\left(\mathcal{F}_{j, k-1}\right) \tag{i}\\
\iota_{+1, *} \downarrow & & \iota_{+1, *} \downarrow \\
K_{0}\left(\mathcal{F}_{j+1, k}\right) \xrightarrow{\gamma_{\eta}^{-1}} & K_{0}\left(\mathcal{F}_{j+1, k-1}\right) .
\end{array}
$$

Hence γ_{η}^{-1} yields a homomorphism from $K_{0}\left(\mathcal{F}_{\rho, k}\right)$ to $K_{0}\left(\mathcal{F}_{\rho, k-1}\right)$.
(ii)

$$
\begin{aligned}
K_{0}\left(\mathcal{F}_{j, k}\right) & \xrightarrow{\gamma_{\rho}^{-1}}
\end{aligned} K_{0}\left(\mathcal{F}_{j-1, k}\right)
$$

Hence γ_{ρ}^{-1} yields a homomorphism from $K_{0}\left(\mathcal{F}_{j, \eta}\right)$ to $K_{0}\left(\mathcal{F}_{j-1, \eta}\right)$.
The homomorphisms

$$
\iota_{+1, *}: K_{0}\left(\mathcal{F}_{j, k}\right) \longrightarrow K_{0}\left(\mathcal{F}_{j+1, k}\right), \quad \iota_{*,+1}: K_{0}\left(\mathcal{F}_{j, k}\right) \longrightarrow K_{0}\left(\mathcal{F}_{j, k+1}\right)
$$

are naturally induce homomorphisms

$$
K_{0}\left(\mathcal{F}_{j, \eta}\right) \longrightarrow K_{0}\left(\mathcal{F}_{j+1, \eta}\right), \quad \iota_{*,+1}: K_{0}\left(\mathcal{F}_{\rho, k}\right) \longrightarrow K_{0}\left(\mathcal{F}_{\rho, k+1}\right)
$$

which we denote by $\iota_{+1, \eta}, \iota_{\rho,+1}$ respectively. They are also induced by the identities (5.1), (5.2) respectively.

Lemma 8.10. For $k, j \in \mathbb{Z}_{+}$, the following diagrams are commutative:

$$
\begin{array}{rll}
K_{0}\left(\mathcal{F}_{\rho, k}\right) & \xrightarrow{\gamma_{\eta}^{-1}} & K_{0}\left(\mathcal{F}_{\rho, k-1}\right) \tag{i}\\
\iota_{\rho,+1} \downarrow & & \iota_{\rho,+1} \downarrow \\
K_{0}\left(\mathcal{F}_{\rho, k+1}\right) & \xrightarrow{\gamma_{\eta}^{-1}} & K_{0}\left(\mathcal{F}_{\rho, k}\right) .
\end{array}
$$

(ii)

$$
\begin{array}{lll}
K_{0}\left(\mathcal{F}_{j, \eta}\right) & \xrightarrow{\gamma_{\rho}^{-1}} & K_{0}\left(\mathcal{F}_{j-1, \eta}\right) \\
\iota_{+1, \eta} \downarrow & & \iota_{+1, \eta} \downarrow \\
K_{0}\left(\mathcal{F}_{j+1, \eta}\right) \xrightarrow{\gamma_{\rho}^{-1}} & K_{0}\left(\mathcal{F}_{j, \eta}\right) .
\end{array}
$$

Proof. (i) As in the proof of Lemma 8.9, one may take an element of $K_{0}\left(\mathcal{F}_{\rho, k}\right)$ as in the following form:

$$
\sum_{i=1}^{m(l)} \oplus\left[\left(T_{\xi(i)} S_{\nu(i)} \otimes 1_{n}\right) p_{i}^{l}\left(S_{\nu(i)}^{*} T_{\xi(i)}^{*} \otimes 1_{n}\right)\right] \in \bigoplus_{i=1}^{m(l)} K_{0}\left(\mathcal{F}_{j, k}(i)\right)
$$

for some projection $p \in M_{n}(\mathcal{A})$ and j, l with $l=j+k$, where

$$
p_{i}^{l}=\left(E_{i}^{l} \otimes 1\right) p\left(E_{i}^{l} \otimes 1\right) \in M_{n}\left(E_{i}^{l} \mathcal{A} E_{i}^{l}\right) .
$$

Let $\xi(i)=\xi_{1}(i) \bar{\xi}(i)$ with $\xi_{1}(i) \in \Sigma^{\eta}, \bar{\xi}(i) \in B_{k-1}\left(\Lambda_{\eta}\right)$. One may assume that $T_{\xi(i)} S_{\nu(i)} \neq 0$ so that $T_{\bar{\xi}(i)} S_{\nu(i)}=S_{\nu(i)^{\prime}} T_{\bar{\xi}(i)^{\prime}}$ for some $\nu(i)^{\prime} \in B_{j}\left(\Lambda_{\rho}\right), \bar{\xi}(i)^{\prime} \in$
$B_{k-1}\left(\Lambda_{\eta}\right)$. As in the proof of Lemma 8.9, one has

$$
\begin{aligned}
& \gamma_{\eta}^{-1}\left(\left[\left(T_{\xi(i)} S_{\nu(i)} \otimes 1_{n}\right) p_{i}^{l}\left(S_{\nu(i)}^{*} T_{\xi(i)}^{*} \otimes 1_{n}\right)\right]\right. \\
& =\left[\left(T_{\bar{\xi}(i)^{\prime}} S_{\nu(i)} \otimes 1_{n}\right) p_{i}^{l}\left(S_{\nu(i)}^{*} T_{\bar{\xi}(i)}^{*} \otimes 1_{n}\right)\right] \\
& =\left[\left(S_{\nu(i)^{\prime}} T_{\bar{\xi}(i)^{\prime}} \otimes 1_{n}\right) p_{i}^{l}\left(S_{\nu(i)^{\prime}}^{*} T_{\bar{\xi}(i)^{\prime}}^{*} \otimes 1_{n}\right)\right] .
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
& \iota_{*,+1} \circ \gamma_{\eta}^{-1}\left(\left[\left(T_{\xi(i)} S_{\nu(i)} \otimes 1_{n}\right) p_{i}^{l}\left(S_{\nu(i)}^{*} T_{\xi(i)}^{*} \otimes 1_{n}\right)\right]\right. \\
& =\iota_{*,+1}\left(\left[S_{\nu(i)^{\prime}} T_{\bar{\xi}(i)^{\prime}} \otimes 1_{n}\right) p_{i}^{l}\left(T_{\bar{\xi}(i)^{*}}^{*} S_{\nu(i)^{\prime}}^{*} \otimes 1_{n}\right]\right) \\
& =\sum_{b \in \Sigma^{\eta}}\left[\left(S_{\nu(i)^{\prime}} T_{\bar{\xi}(i)^{\prime} b} \otimes 1_{n}\right)\left(T_{b}^{*} \otimes 1_{n}\right) p_{i}^{l}\left(T_{b} \otimes 1_{n}\right)\left(T_{\bar{\xi}(i)^{\prime} b}^{*} S_{\nu(i)^{\prime}}^{*} \otimes 1_{n}\right)\right] .
\end{aligned}
$$

On the other hand, the equality $T_{\xi(i)} S_{\nu(i)}=T_{\xi(i)_{1}} S_{\nu(i)^{\prime}} T_{\bar{\xi}(i)^{\prime}}$ implies

$$
\begin{aligned}
& \iota_{*,+1}\left(\left[\left(T_{\xi(i)} S_{\nu(i)} \otimes 1_{n}\right) p_{i}^{l}\left(S_{\nu(i)}^{*} T_{\xi(i)}^{*} \otimes 1_{n}\right)\right]\right. \\
& =\sum_{b \in \Sigma^{\eta}}\left[\left(T_{\xi(i))_{1}} S_{\nu(i)^{\prime}} T_{\bar{\xi}(i)^{\prime} b} \otimes 1_{n}\right)\left(T_{b}^{*} \otimes 1_{n}\right) p_{i}^{l}\left(T_{b} \otimes 1_{n}\right)\left(T_{\bar{\xi}(i)^{\prime} b}^{*} S_{\nu(i)^{\prime}}^{*} T_{\xi(i)_{1}}^{*} \otimes 1_{n}\right)\right]
\end{aligned}
$$

and hence

$$
\begin{aligned}
& \gamma_{\eta}^{-1} \circ \iota_{*,+1}\left(\left[\left(T_{\xi(i)} S_{\nu(i)} \otimes 1_{n}\right) p_{i}^{l}\left(S_{\nu(i)}^{*} T_{\xi(i)}^{*} \otimes 1_{n}\right)\right]\right. \\
& =\sum_{b \in \Sigma^{\eta}} \gamma_{\eta}^{-1}\left(\left[\left(T_{\xi(i)_{1}} S_{\nu(i)^{\prime}} T_{\bar{\xi}(i)^{\prime} b} \otimes 1_{n}\right)\left(T_{b}^{*} \otimes 1_{n}\right)\right.\right. \\
& \left.\left.\quad \cdot p_{i}^{l}\left(T_{b} \otimes 1_{n}\right)\left(T_{\bar{\xi}(i)^{\prime} b}^{*} S_{\nu(i)^{\prime}}^{*} T_{\xi(i)_{1}}^{*} \otimes 1_{n}\right)\right]\right) \\
& =\sum_{b \in \Sigma^{\eta}}\left[\left(S_{\nu(i)^{\prime}} T_{\bar{\xi}(i)^{\prime} b} \otimes 1_{n}\right)\left(T_{b}^{*} \otimes 1_{n}\right) p_{i}^{l}\left(T_{b} \otimes 1_{n}\right)\left(T_{\tilde{\xi}(i)^{\prime} b}^{*} S_{\nu(i)^{\prime}}^{*} \otimes 1_{n}\right)\right]
\end{aligned}
$$

(ii) The proof is completely symmetric to the above proof.

Since the homomorphisms $\lambda_{\rho}, \lambda_{\eta}: K_{0}(\mathcal{A}) \longrightarrow K_{0}(\mathcal{A})$ are mutually commutative, the map λ_{η} induces a homomorphism on the inductive limit $G_{\rho}=\lim \left\{\lambda_{\rho}: K_{0}(\mathcal{A}) \longrightarrow K_{0}(\mathcal{A})\right\}$ and similarly λ_{ρ} does on the inductive limit G_{η}. They are still denoted by $\lambda_{\rho}, \lambda_{\eta}$ respectively.

Lemma 8.11. For $k, j \in \mathbb{Z}_{+}$, the following diagrams are commutative:

$$
\begin{array}{ccc}
K_{0}\left(\mathcal{F}_{\rho, k}\right) \xrightarrow{\gamma_{\eta}^{-1}} K_{0}\left(\mathcal{F}_{\rho, k-1}\right) \xrightarrow{\iota_{\rho,+1}} & K_{0}\left(\mathcal{F}_{\rho, k}\right) \tag{i}\\
\Phi_{\rho, k} \downarrow & & \Phi_{\rho, k} \downarrow \\
G_{\rho} & \xrightarrow{\lambda_{\eta}} & G_{\rho} .
\end{array}
$$

(ii)

$$
\begin{array}{ccc}
K_{0}\left(\mathcal{F}_{j, \eta}\right) & \xrightarrow{\gamma_{\rho}^{-1}} K_{0}\left(\mathcal{F}_{j-1, \eta}\right) \xrightarrow{\iota_{+1, \eta}} K_{0}\left(\mathcal{F}_{j, \eta}\right) \\
\Phi_{j, \eta} \downarrow \\
G_{\eta} & \xrightarrow{\lambda_{\rho}} & \Phi_{j, \eta} \downarrow \\
& & G_{\eta} .
\end{array}
$$

Proof. (i) As in the proof of Lemma 8.8 and Lemma 8.10 one may take an element of $K_{0}\left(\mathcal{F}_{\rho, k}\right)$ as in the following form:

$$
\sum_{i=1}^{m(l)} \oplus\left[\left(T_{\xi(i)} S_{\nu(i)} \otimes 1_{n}\right) p_{i}^{l}\left(S_{\nu(i)}^{*} T_{\xi(i)}^{*} \otimes 1_{n}\right)\right] \in \bigoplus_{i=1}^{m(l)} K_{0}\left(\mathcal{F}_{j, k}(i)\right)
$$

for some projection $p \in M_{n}(\mathcal{A})$ and j, l with $l=j+k$, where

$$
p_{i}^{l}=\left(E_{i}^{l} \otimes 1\right) p\left(E_{i}^{l} \otimes 1\right) .
$$

Keep the notations as in the proof of Lemma 8.8, we have

$$
\begin{aligned}
& \iota_{*,+1} \circ \gamma_{\eta}^{-1}\left(\left[\left(T_{\xi(i)} S_{\nu(i)} \otimes 1_{n}\right) p_{i}^{l}\left(S_{\nu(i)}^{*} T_{\xi(i)}^{*} \otimes 1_{n}\right)\right]\right) \\
& \quad=\sum_{b \in \Sigma^{\eta}}\left[\left(S_{\nu(i)^{\prime}} T_{\bar{\xi}(i)^{\prime} b} \otimes 1_{n}\right)\left(T_{b}^{*} \otimes 1_{n}\right) p_{i}^{l}\left(T_{b} \otimes 1_{n}\right)\left(T_{\bar{\xi}(i)^{\prime} b}^{*} S_{\nu(i)^{\prime}}^{*} \otimes 1_{n}\right)\right]
\end{aligned}
$$

so that

$$
\begin{aligned}
& \Phi_{\rho, k} \circ \iota_{*,+1} \circ \gamma_{\eta}^{-1}\left(\left[\left(T_{\xi(i)} S_{\nu(i)} \otimes 1_{n}\right) p_{i}^{l}\left(S_{\nu(i)}^{*} T_{\xi(i)}^{*} \otimes 1_{n}\right)\right]\right. \\
& \left.=\sum_{b \in \Sigma^{\eta}} \Phi_{\rho, k}\left(\left[S_{\nu(i)^{\prime}} T_{\bar{\xi}(i)^{\prime} b} \otimes 1_{n}\right)\left(T_{b}^{*} \otimes 1_{n}\right) p_{i}^{l}\left(T_{b} \otimes 1_{n}\right)\left(T_{\bar{\xi}(i)^{\prime} b}^{*} S_{\nu(i)^{\prime}}^{*} \otimes 1_{n}\right)\right]\right) \\
& =\sum_{b \in \Sigma^{\eta}}\left[\left(T_{b}^{*} \otimes 1_{n}\right) p_{i}^{l}\left(T_{b} \otimes 1_{n}\right)\right] \\
& =\lambda_{\eta}\left(\left[p_{i}^{l}\right]\right)=\left(\lambda_{\eta} \circ \Phi_{\rho, k}\right)\left(\left[\left(T_{\xi(i)} S_{\nu(i)} \otimes 1_{n}\right) p_{i}^{l}\left(S_{\nu(i)}^{*} T_{\xi(i)}^{*} \otimes 1_{n}\right)\right]\right) .
\end{aligned}
$$

Therefore we have $\Phi_{\rho, k} \circ \iota_{\rho,+1} \circ \gamma_{\eta}^{-1}=\lambda_{\eta} \circ \Phi_{\rho, k}$.
(ii) The proof is completely symmetric to the above proof.

Put for $j, k \in \mathbb{Z}_{+}$

$$
\left.\begin{array}{rl}
G_{\rho, k} & =K_{0}\left(\mathcal{F}_{\rho, k}\right)\left(\cong G_{\rho}\right. \\
G_{j, \eta} & =K_{0}\left(\mathcal{F}_{j, \eta}\right)\left(\cong G_{\eta}=\lim \left\{\lambda_{\rho}: K_{0}(\mathcal{A}) \longrightarrow K_{0}(\mathcal{A}) \longrightarrow K_{0}(\mathcal{A})\right\}\right), \\
\hline
\end{array}\right), \quad .
$$

The map $\lambda_{\eta}: K_{0}(\mathcal{A}) \longrightarrow K_{0}(\mathcal{A})$ naturally gives rise to a homomorphism from $G_{\rho, k}$ to $G_{\rho, k+1}$ which we will still denote by λ_{η}. Similarly we have a homomorphism λ_{ρ} from $G_{j, \eta}$ to $G_{j+1, \eta}$.

Lemma 8.12. For $k, j \in \mathbb{Z}_{+}$, the following diagrams are commutative:
(i)

(ii)

We denote the abelian group $K_{0}\left(\mathcal{F}_{\rho, \eta}\right)$ by $G_{\rho, \eta}$. Since

$$
\begin{aligned}
K_{0}\left(\mathcal{F}_{\rho, \eta}\right) & =\lim _{k}\left\{\iota_{\rho,+1}: K_{0}\left(\mathcal{F}_{\rho, k}\right) \longrightarrow K_{0}\left(\mathcal{F}_{\rho, k+1}\right)\right\} \\
& =\lim _{j}\left\{\iota+1, \eta: K_{0}\left(\mathcal{F}_{j, \eta}\right) \longrightarrow K_{0}\left(\mathcal{F}_{j+1, \eta}\right)\right\},
\end{aligned}
$$

one has

$$
G_{\rho, \eta}=\lim _{k}\left\{\lambda_{\eta}: G_{\rho, k} \longrightarrow G_{\rho, k+1}\right\}=\lim _{j}\left\{\lambda_{\rho}: G_{j, \eta} \longrightarrow G_{j+1, \eta}\right\}
$$

Define two endomorphisms

$$
\begin{aligned}
& \sigma_{\eta} \text { on } G_{\rho, \eta}=\lim _{k}\left\{\lambda_{\eta}: G_{\rho, k} \longrightarrow G_{\rho, k+1}\right\} \quad \text { and } \\
& \sigma_{\rho} \text { on } G_{\rho, \eta}=\lim _{j}\left\{\lambda_{\rho}: G_{j, \eta} \longrightarrow G_{j+1, \eta}\right\}
\end{aligned}
$$

by setting

$$
\begin{aligned}
& \sigma_{\rho}:[g, k] \in G_{\rho, k} \longrightarrow[g, k-1] \in G_{\rho, k-1} \text { for } g \in G_{\rho} \text { and } \\
& \sigma_{\eta}:[h, j] \in G_{j, \eta} \longrightarrow[h, j-1] \in G_{j-1, \eta} \text { for } h \in G_{\eta} .
\end{aligned}
$$

Therefore we have:

Lemma 8.13.

(i) There exists an isomorphism $\Phi_{\rho, \infty}: K_{0}\left(\mathcal{F}_{\rho, \eta}\right) \longrightarrow G_{\rho, \eta}$ such that the following diagrams are commutative:

$$
\begin{array}{ccc}
K_{0}\left(\mathcal{F}_{\rho, \eta}\right) & \xrightarrow{\gamma_{\eta}^{-1}} & K_{0}\left(\mathcal{F}_{\rho, \eta}\right) \\
\Phi_{\rho, \infty} \downarrow & & \Phi_{\rho, \infty} \downarrow \\
G_{\rho, \eta} & \xrightarrow{\sigma_{\eta}} & G_{\rho, \eta}
\end{array}
$$

and hence

$$
\begin{array}{ccc}
K_{0}\left(\mathcal{F}_{\rho, \eta}\right) & \xrightarrow{i d-\gamma_{\eta}^{-1}} & K_{0}\left(\mathcal{F}_{\rho, \eta}\right) \\
\Phi_{\rho, \infty} \downarrow & & \Phi_{\rho, \infty} \downarrow \\
G_{\rho, \eta} & \xrightarrow{i d-\sigma_{\eta}} & G_{\rho, \eta} .
\end{array}
$$

(ii) There exists an isomorphism $\Phi_{\infty, \eta}: K_{0}\left(\mathcal{F}_{\rho, \eta}\right) \longrightarrow G_{\rho, \eta}$ such that the following diagrams are commutative:

$$
\begin{array}{ccc}
K_{0}\left(\mathcal{F}_{\rho, \eta}\right) & \xrightarrow{\gamma_{\rho}^{-1}} & K_{0}\left(\mathcal{F}_{\rho, \eta}\right) \\
\Phi_{\infty, \eta} \downarrow & & \Phi_{\infty, \eta} \downarrow \\
G_{\rho, \eta} & \xrightarrow{\sigma_{\rho}} & G_{\rho, \eta}
\end{array}
$$

and hence

$$
\begin{array}{ccc}
K_{0}\left(\mathcal{F}_{\rho, \eta}\right) & \xrightarrow{i d-\gamma_{\rho}^{-1}} & K_{0}\left(\mathcal{F}_{\rho, \eta}\right) \\
\Phi_{\infty, \eta} \downarrow & & \Phi_{\infty, \eta} \downarrow \\
G_{\rho, \eta} & \xrightarrow{i d-\sigma_{\rho}} & G_{\rho, \eta} .
\end{array}
$$

Let us denote by $J_{\mathcal{A}}$ the natural embedding $\mathcal{A}=\mathcal{F}_{0,0} \hookrightarrow \mathcal{F}_{\rho, \eta}$, which induces a homomorphism $J_{\mathcal{A} *}: K_{0}(\mathcal{A}) \longrightarrow K_{0}\left(\mathcal{F}_{\rho, \eta}\right)$.

Lemma 8.14. The homomorphism $J_{\mathcal{A} *}: K_{0}(\mathcal{A}) \longrightarrow K_{0}\left(\mathcal{F}_{\rho, \eta}\right)$ is injective such that

$$
J_{\mathcal{A} *} \circ \lambda_{\rho}=\gamma_{\rho}^{-1} \circ J_{\mathcal{A} *} \quad \text { and } \quad J_{\mathcal{A} *} \circ \lambda_{\eta}=\gamma_{\eta}^{-1} \circ J_{\mathcal{A} *}
$$

Proof. We will first show that the endomorphisms $\lambda_{\rho}, \lambda_{\eta}$ on $K_{0}(\mathcal{A})$ are both injective. Put a projection $Q_{\alpha}=S_{\alpha} S_{\alpha}^{*}$ and a subalgebra $\mathcal{A}_{\alpha}=\rho_{\alpha}(\mathcal{A})$ of \mathcal{A} for $\alpha \in \Sigma^{\rho}$. Then the endomorphism ρ_{α} on \mathcal{A} extends to an isomorphism from $\mathcal{A} Q_{\alpha}$ onto \mathcal{A}_{α} by setting $\rho_{\alpha}(x)=S_{\alpha}^{*} x S_{\alpha}, x \in \mathcal{A} Q_{\alpha}$ whose inverse is $\phi_{\alpha}: \mathcal{A}_{\alpha} \longrightarrow \mathcal{A} Q_{\alpha}$ defined by $\phi_{\alpha}(y)=S_{\alpha} y S_{\alpha}^{*}, y \in \mathcal{A}_{\alpha}$. Hence the induced homomorphism $\rho_{\alpha *}: K_{0}\left(\mathcal{A} Q_{\alpha}\right) \longrightarrow K_{0}\left(\mathcal{A}_{\alpha}\right)$ is an isomorphism. Since $\mathcal{A}=$ $\bigoplus_{\alpha \in \Sigma^{\rho}} Q_{\alpha} \mathcal{A}$, the homomorphism

$$
\sum_{\alpha \in \Sigma^{\rho}} \phi_{\alpha *} \circ \rho_{\alpha *}: K_{0}(\mathcal{A}) \longrightarrow \bigoplus_{\alpha \in \Sigma^{\rho}} K_{0}\left(Q_{\alpha} \mathcal{A}\right)
$$

is an isomorphism, one may identify $K_{0}(\mathcal{A})=\bigoplus_{\alpha \in \Sigma^{\rho}} K_{0}\left(Q_{\alpha} \mathcal{A}\right)$. Let $g \in$ $K_{0}(\mathcal{A})$ satisfy $\lambda_{\rho}(g)=0$. Put $g_{\alpha}=\phi_{\alpha *} \circ \rho_{\alpha *}(g) \in K_{0}\left(Q_{\alpha} \mathcal{A}\right)$ for $\alpha \in \Sigma^{\rho}$ so that $g=\sum_{\alpha \in \Sigma^{\rho}} g_{\alpha}$. As $\rho_{\beta *} \circ \phi_{\alpha *}=0$ for $\beta \neq \alpha$, one sees $\rho_{\beta *}\left(g_{\alpha}\right)=0$ for $\beta \neq \alpha$. Hence

$$
0=\lambda_{\rho}(g)=\sum_{\beta \in \Sigma^{\rho}} \sum_{\alpha \in \Sigma^{\rho}} \rho_{\beta *}\left(g_{\alpha}\right)=\sum_{\alpha \in \Sigma^{\rho}} \rho_{\alpha *}\left(g_{\alpha}\right) \in \bigoplus_{\alpha \in \Sigma^{\rho}} K_{0}\left(\mathcal{A}_{\alpha}\right)
$$

It follows that $\rho_{\alpha *}\left(g_{\alpha}\right)=0$ in $K_{0}\left(\mathcal{A}_{\alpha}\right)$. Since $\rho_{\alpha *}: K_{0}\left(Q_{\alpha} \mathcal{A}\right) \longrightarrow K_{0}\left(\mathcal{A}_{\alpha}\right)$ is isomorphic, one sees that $g_{\alpha}=0$ in $K_{0}\left(\mathcal{A} Q_{\alpha}\right)$ for all $\alpha \in \Sigma^{\rho}$. This implies that $g=\sum_{\alpha \in \Sigma^{\rho}} g_{\alpha}=0$ in $K_{0}(\mathcal{A})$. Therefore the endomorphism λ_{ρ} on $K_{0}(\mathcal{A})$ is injective, and similarly so is λ_{η}.

By the previous lemma, there exists an isomorphism $\Phi_{j, k}: K_{0}\left(\mathcal{F}_{j, k}\right) \longrightarrow$ $K_{0}(\mathcal{A})$ such that the diagram

$$
\begin{array}{lll}
K_{0}\left(\mathcal{F}_{j, k}\right) \xrightarrow{\iota_{+1, *}} & K_{0}\left(\mathcal{F}_{j+1, k}\right) \\
\Phi_{j, k} \downarrow & & \Phi_{j+1, k} \downarrow \\
K_{0}(\mathcal{A}) & \xrightarrow{\lambda_{\rho}} & K_{0}(\mathcal{A})
\end{array}
$$

is commutative so that the embedding $\iota_{+1, *}: K_{0}\left(\mathcal{F}_{j, k}\right) \longrightarrow K_{0}\left(\mathcal{F}_{j+1, k}\right)$ is injective, and similarly $\iota_{*,+1}: K_{0}\left(\mathcal{F}_{j, k}\right) \longrightarrow K_{0}\left(\mathcal{F}_{j, k+1}\right)$ is injective. Hence for $n, m \in \mathbb{N}$, the homomorphism

$$
\iota_{n, m}: K_{0}(\mathcal{A})=K_{0}\left(\mathcal{F}_{0,0}\right) \longrightarrow K_{0}\left(\mathcal{F}_{n, m}\right)
$$

defined by the compositions of $\iota_{+1, *}$ and $\iota_{*,+1}$ is injective. By [44, Theorem 6.3 .2 (iii)], one knows $\operatorname{Ker}\left(J_{\mathcal{A}_{*}}\right)=\cup_{n, m \in \mathbb{N}} \operatorname{Ker}\left(\iota_{n, m}\right)$, so that $\operatorname{Ker}\left(J_{\mathcal{A}_{*}}\right)=$ 0.

We henceforth identify the group $K_{0}(\mathcal{A})$ with its image $J_{\mathcal{A} *}\left(K_{0}(\mathcal{A})\right)$ in $K_{0}\left(\mathcal{F}_{\rho, \eta}\right)$. As in the above proof, not only $K_{0}(\mathcal{A})\left(=K_{0}\left(\mathcal{F}_{0,0}\right)\right)$ but also the groups $K_{0}\left(\mathcal{F}_{j, k}\right)$ for j, k are identified with subgroups of $K_{0}\left(\mathcal{F}_{\rho, \eta}\right)$ via injective homomorphisms from $K_{0}\left(\mathcal{F}_{j, k}\right)$ to $K_{0}\left(\mathcal{F}_{\rho, \eta}\right)$ induced by the embeddings of $\mathcal{F}_{j, k}$ into $\mathcal{F}_{\rho, \eta}$. We note that

$$
\begin{aligned}
& \left(\mathrm{id}-\gamma_{\eta}\right) K_{0}\left(\mathcal{F}_{\rho, \eta}\right)=\left(\mathrm{id}-\gamma_{\eta}^{-1}\right) K_{0}\left(\mathcal{F}_{\rho, \eta}\right), \\
& \left(\mathrm{id}-\gamma_{\rho}\right) K_{0}\left(\mathcal{F}_{\rho, \eta}\right)=\left(\mathrm{id}-\gamma_{\rho}^{-1}\right) K_{0}\left(\mathcal{F}_{\rho, \eta}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \operatorname{Ker}\left(\mathrm{id}-\gamma_{\rho}\right) \cap \operatorname{Ker}\left(\mathrm{id}-\gamma_{\eta}\right) \text { in } K_{0}\left(\mathcal{F}_{\rho, \eta}\right) \\
& =\operatorname{Ker}\left(\operatorname{id}-\gamma_{\rho}^{-1}\right) \cap \operatorname{Ker}\left(\operatorname{id}-\gamma_{\eta}^{-1}\right) \text { in } K_{0}\left(\mathcal{F}_{\rho, \eta}\right) .
\end{aligned}
$$

Denote by $\left(\mathrm{id}-\gamma_{\rho}\right) K_{0}\left(\mathcal{F}_{\rho, \eta}\right)+\left(\mathrm{id}-\gamma_{\eta}\right) K_{0}\left(\mathcal{F}_{\rho, \eta}\right)$ the subgroup of $K_{0}\left(\mathcal{F}_{\rho, \eta}\right)$ generated by $\left(\mathrm{id}-\gamma_{\rho}\right) K_{0}\left(\mathcal{F}_{\rho, \eta}\right)$ and $\left(\mathrm{id}-\gamma_{\eta}\right) K_{0}\left(\mathcal{F}_{\rho, \eta}\right)$.
Lemma 8.15. Any element in $K_{0}\left(\mathcal{F}_{\rho, \eta}\right)$ is equivalent to some element of $K_{0}(\mathcal{A})$ modulo the subgroup $\left(\mathrm{id}-\gamma_{\rho}\right) K_{0}\left(\mathcal{F}_{\rho, \eta}\right)+\left(\mathrm{id}-\gamma_{\eta}\right) K_{0}\left(\mathcal{F}_{\rho, \eta}\right)$.
Proof. For $g \in K_{0}\left(\mathcal{F}_{\rho, \eta}\right)$, we may assume that $g \in K_{0}\left(\mathcal{F}_{j, k}\right)$ for some $j, k \in$ \mathbb{Z}_{+}. As γ_{ρ}^{-1} commutes with γ_{η}^{-1}, one sees that $\left(\gamma_{\rho}^{-1}\right)^{j} \circ\left(\gamma_{\eta}^{-1}\right)^{k}(g) \in K_{0}(\mathcal{A})$. Put $g_{1}=\gamma_{\rho}^{-1}(g)$ so that

$$
g-\left(\gamma_{\rho}^{-1}\right)^{j} \circ\left(\gamma_{\eta}^{-1}\right)^{k}(g)=g-\gamma_{\rho}^{-1}(g)+g_{1}-\left(\gamma_{\rho}^{-1}\right)^{j-1} \circ\left(\gamma_{\eta}^{-1}\right)^{k}\left(g_{1}\right) .
$$

We inductively see that $g-\left(\gamma_{\rho}^{-1}\right)^{j} \circ\left(\gamma_{\eta}^{-1}\right)^{k}(g)$ belongs to the subgroup

$$
\left(\mathrm{id}-\gamma_{\rho}\right) K_{0}\left(\mathcal{F}_{\rho, \eta}\right)+\left(\mathrm{id}-\gamma_{\eta}\right) K_{0}\left(\mathcal{F}_{\rho, \eta}\right)
$$

Denote by $\left(\mathrm{id}-\lambda_{\rho}\right) K_{0}(\mathcal{A})+\left(\mathrm{id}-\lambda_{\eta}\right) K_{0}(\mathcal{A})$ the subgroup of $K_{0}(\mathcal{A})$ generated by $\left(\mathrm{id}-\lambda_{\rho}\right) K_{0}(\mathcal{A})$ and $\left(\mathrm{id}-\lambda_{\eta}\right) K_{0}(\mathcal{A})$.

Lemma 8.16. If $g \in K_{0}(\mathcal{A})$ belongs to

$$
\left(\mathrm{id}-\gamma_{\rho}^{-1}\right) K_{0}\left(\mathcal{F}_{\rho, \eta}\right)+\left(\mathrm{id}-\gamma_{\eta}^{-1}\right) K_{0}\left(\mathcal{F}_{\rho, \eta}\right),
$$

then g belongs to $\left(\mathrm{id}-\lambda_{\rho}\right) K_{0}(\mathcal{A})+\left(\mathrm{id}-\lambda_{\eta}\right) K_{0}(\mathcal{A})$.
Proof. By the assumption that $g \in\left(\mathrm{id}-\gamma_{\rho}^{-1}\right) K_{0}\left(\mathcal{F}_{\rho, \eta}\right)+\left(\mathrm{id}-\gamma_{\eta}^{-1}\right) K_{0}\left(\mathcal{F}_{\rho, \eta}\right)$, there exist $h_{1}, h_{2} \in K_{0}\left(\mathcal{F}_{\rho, \eta}\right)$ such that $g=\left(\mathrm{id}-\gamma_{\rho}^{-1}\right)\left(h_{1}\right)+\left(\mathrm{id}-\gamma_{\eta}^{-1}\right)\left(h_{2}\right)$. We may assume that $h_{1}, h_{2} \in K_{0}\left(\mathcal{F}_{j, k}\right)$ for large enough $j, k \in \mathbb{Z}_{+}$. Put $e_{i}=\left(\gamma_{\rho}^{-1}\right)^{j} \circ\left(\gamma_{\eta}^{-1}\right)^{k}\left(h_{i}\right)$ which belongs to $K_{0}\left(\mathcal{F}_{0,0}\right)\left(=K_{0}(\mathcal{A})\right)$ for $i=0,1$. It follows that

$$
\lambda_{\rho}^{j} \circ \lambda_{\eta}^{k}(g)=\left(\mathrm{id}-\lambda_{\eta}\right)\left(e_{1}\right)+\left(\mathrm{id}-\lambda_{\rho}\right)\left(e_{2}\right) .
$$

Since $g \in K_{0}(\mathcal{A})$ and $\lambda_{\rho}^{j} \circ \lambda_{\eta}^{k}(g) \in\left(\mathrm{id}-\lambda_{\eta}\right) K_{0}(\mathcal{A})+\left(\mathrm{id}-\lambda_{\rho}\right) K_{0}(\mathcal{A})$, as in the proof of Lemma 8.15, by putting $g^{(n)}=\lambda_{\rho}^{n}(g), g^{(n, m)}=\lambda_{\eta}^{m}\left(g^{(n)}\right) \in K_{0}(\mathcal{A})$ we have

$$
\begin{aligned}
& g-\lambda_{\rho}^{j} \circ \lambda_{\eta}^{k}(g) \\
& =g-\lambda_{\rho}(g)+g^{(1)}-\lambda_{\rho}\left(g^{(1)}\right)+g^{(2)}-\lambda_{\rho}\left(g^{(2)}\right)+\cdots+g^{(j-1)}-\lambda_{\rho}\left(g^{(j-1)}\right) \\
& \quad+g^{(j)}-\lambda_{\eta}\left(g^{(j)}\right)+g^{(j, 1)}-\lambda_{\eta}\left(g^{(j, 1)}\right)+g^{(j, 2)}-\lambda_{\eta}\left(g^{(j, 2)}\right)+\cdots \\
& \quad+g^{(j, k-1)}-\lambda_{\eta}\left(g^{(j, k-1)}\right) \\
& = \\
& \left(\mathrm{id}-\lambda_{\rho}\right)\left(g+g^{(1)}+\cdots+g^{(j-1)}\right)+\left(\mathrm{id}-\lambda_{\eta}\right)\left(g^{(j)}+g^{(j, 1)}+\cdots+g^{(j, k-1)}\right)
\end{aligned}
$$

so that g belongs to the subgroup $\left(\mathrm{id}-\lambda_{\eta}\right) K_{0}(\mathcal{A})+\left(\mathrm{id}-\lambda_{\rho}\right) K_{0}(\mathcal{A})$.
Hence we obtain the following lemma for the cokernel.
Lemma 8.17. The quotient group

$$
K_{0}\left(\mathcal{F}_{\rho, \eta}\right) /\left(\left(\mathrm{id}-\gamma_{\eta}^{-1}\right) K_{0}\left(\mathcal{F}_{\rho, \eta}\right)+\left(\mathrm{id}-\gamma_{\rho}^{-1}\right) K_{0}\left(\mathcal{F}_{\rho, \eta}\right)\right)
$$

is isomorphic to the quotient group

$$
K_{0}(\mathcal{A}) /\left(\left(\mathrm{id}-\lambda_{\eta}\right) K_{0}(\mathcal{A})+\left(\mathrm{id}-\lambda_{\rho}\right) K_{0}(\mathcal{A})\right)
$$

Proof. Surjectivity of the quotient map

$$
K_{0}(\mathcal{A}) \longrightarrow K_{0}\left(\mathcal{F}_{\rho, \eta}\right) /\left(\left(\mathrm{id}-\gamma_{\eta}^{-1}\right) K_{0}\left(\mathcal{F}_{\rho, \eta}\right)+\left(\mathrm{id}-\gamma_{\rho}^{-1}\right) K_{0}\left(\mathcal{F}_{\rho, \eta}\right)\right)
$$

comes from Lemma 8.15. Its kernel coincides with

$$
\left(\mathrm{id}-\lambda_{\eta}\right) K_{0}(\mathcal{A})+\left(\mathrm{id}-\lambda_{\rho}\right) K_{0}(\mathcal{A})
$$

by the preceding lemma.
For the kernel, we have:
Lemma 8.18. The subgroup

$$
\operatorname{Ker}\left(\operatorname{id}-\gamma_{\eta}^{-1}\right) \cap \operatorname{Ker}\left(\operatorname{id}-\gamma_{\rho}^{-1}\right) \text { in } K_{0}\left(\mathcal{F}_{\rho, \eta}\right)
$$

is isomorphic to the subgroup

$$
\operatorname{Ker}\left(\operatorname{id}-\lambda_{\eta}\right) \cap \operatorname{Ker}\left(\operatorname{id}-\lambda_{\rho}\right) \text { in } K_{0}(\mathcal{A})
$$

through $J_{\mathcal{A} *}$.
Proof. For $g \in \operatorname{Ker}\left(\mathrm{id}-\gamma_{\eta}^{-1}\right) \cap \operatorname{Ker}\left(\mathrm{id}-\gamma_{\rho}^{-1}\right)$ in $K_{0}\left(\mathcal{F}_{\rho, \eta}\right)$, one may assume that $g \in K_{0}\left(\mathcal{F}_{j, k}\right)$ for some $j, k \in \mathbb{Z}_{+}$so that $g=\left(\gamma_{\rho}^{-1}\right)^{j} \circ\left(\gamma_{\eta}^{-1}\right)^{k}(g) \in K_{0}(\mathcal{A})$. Since $\lambda_{\eta}=\gamma_{\eta}^{-1}$ and $\lambda_{\rho}=\gamma_{\rho}^{-1}$ on $K_{0}(\mathcal{A})$ under the identification between $J_{\mathcal{A} *}\left(K_{0}(\mathcal{A})\right)$ and $K_{0}(\mathcal{A})$ via $J_{\mathcal{A} *}$, one has that $g \in \operatorname{Ker}\left(\mathrm{id}-\lambda_{\eta}\right) \cap \operatorname{Ker}\left(\mathrm{id}-\lambda_{\rho}\right)$ in $K_{0}(\mathcal{A})$. The converse inclusion relation

$$
\operatorname{Ker}\left(\mathrm{id}-\lambda_{\eta}\right) \cap \operatorname{Ker}\left(\mathrm{id}-\lambda_{\rho}\right) \subset \operatorname{Ker}\left(\mathrm{id}-\gamma_{\eta}^{-1}\right) \cap \operatorname{Ker}\left(\mathrm{id}-\gamma_{\rho}^{-1}\right)
$$

is clear through the above identification.
Therefore the short exact sequence for $K_{0}\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)$ in Theorem 7.10 is restated as the following proposition.

Proposition 8.19. Assume that $\left(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa\right)$ forms square and

$$
K_{1}\left(\mathcal{F}_{\rho, \eta}\right)=\{0\} .
$$

Then there exists a short exact sequence:

$$
\begin{aligned}
0 & \longrightarrow K_{0}(\mathcal{A}) /\left(\left(\operatorname{id}-\lambda_{\eta}\right) K_{0}(\mathcal{A})+\left(\operatorname{id}-\lambda_{\rho}\right) K_{0}(\mathcal{A})\right) \\
& \longrightarrow K_{0}\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right) \\
& \longrightarrow \operatorname{Ker}\left(\mathrm{id}-\lambda_{\eta}\right) \cap \operatorname{Ker}\left(\mathrm{id}-\lambda_{\rho}\right) \text { in } K_{0}(\mathcal{A}) \\
& \longrightarrow 0 .
\end{aligned}
$$

Let \mathcal{F}_{ρ} be the fixed point algebra $\left(\mathcal{O}_{\rho}\right)^{\hat{\rho}}$ of the C^{*}-algebra \mathcal{O}_{ρ} by the gauge action $\hat{\rho}$ for the C^{*}-symbolic dynamical system $\left(\mathcal{A}, \rho, \Sigma^{\rho}\right)$. The algebra \mathcal{F}_{ρ} is isomorphic to the subalgebra $\mathcal{F}_{\rho, 0}$ of $\mathcal{F}_{\rho, \eta}$ in a natural way. As in the proof of Lemma 8.15, the group $K_{0}\left(\mathcal{F}_{\rho, 0}\right)$ is regarded as a subgroup of $K_{0}\left(\mathcal{F}_{\rho, \eta}\right)$ and the restriction of γ_{η}^{-1} to $K_{0}\left(\mathcal{F}_{\rho, 0}\right)$ satisfies $\gamma_{\eta}^{-1}\left(K_{0}\left(\mathcal{F}_{\rho, 0}\right)\right) \subset K_{0}\left(\mathcal{F}_{\rho, 0}\right)$ so that γ_{η}^{-1} yields an endomorphism on $K_{0}\left(\mathcal{F}_{\rho}\right)$, which we still denote by γ_{η}^{-1}.

For the group $K_{1}\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)$, we provide several lemmas.

Lemma 8.20.

(i) Any element in $K_{0}\left(\mathcal{F}_{\rho, \eta}\right)$ is equivalent to some element of $K_{0}\left(\mathcal{F}_{\rho, 0}\right)(=$ $K_{0}\left(\mathcal{F}_{\rho}\right)$) modulo the subgroup (id $\left.-\gamma_{\eta}\right) K_{0}\left(\mathcal{F}_{\rho, \eta}\right)$.
(ii) If $g \in K_{0}\left(\mathcal{F}_{\rho, 0}\right)\left(=K_{0}\left(\mathcal{F}_{\rho}\right)\right)$ belongs to (id $\left.-\gamma_{\eta}\right) K_{0}\left(\mathcal{F}_{\rho, \eta}\right)$, then g belongs to $\left(\mathrm{id}-\gamma_{\eta}\right) K_{0}\left(\mathcal{F}_{\rho}\right)$.
As γ_{ρ} commutes with γ_{η} on $K_{0}\left(\mathcal{F}_{\rho, \eta}\right)$, it naturally acts on the quotient group $K_{0}\left(\mathcal{F}_{\rho, \eta}\right) /\left(\mathrm{id}-\gamma_{\eta}^{-1}\right) K_{0}\left(\mathcal{F}_{\rho, \eta}\right)$. We denote it by $\bar{\gamma}_{\rho}$. Similarly λ_{ρ} naturally induces an endomorphism on $K_{0}(\mathcal{A}) /\left(\mathrm{id}-\lambda_{\eta}\right) K_{0}(\mathcal{A})$. We denote it by $\bar{\lambda}_{\rho}$.

Lemma 8.21.

(i) The quotient group $K_{0}\left(\mathcal{F}_{\rho, \eta}\right) /\left(\mathrm{id}-\gamma_{\eta}^{-1}\right) K_{0}\left(\mathcal{F}_{\rho, \eta}\right)$ is isomorphic to the quotient group $K_{0}\left(\mathcal{F}_{\rho}\right) /\left(\mathrm{id}-\gamma_{\eta}^{-1}\right) K_{0}\left(\mathcal{F}_{\rho}\right)$, that is also isomorphic to the quotient group $K_{0}(\mathcal{A}) /\left(\mathrm{id}-\lambda_{\eta}\right) K_{0}(\mathcal{A})$.
(ii) The kernel of id $-\bar{\gamma}_{\rho}$ in $K_{0}\left(\mathcal{F}_{\rho, \eta}\right) /\left(\mathrm{id}-\gamma_{\eta}^{-1}\right) K_{0}\left(\mathcal{F}_{\rho, \eta}\right)$ is isomorphic to the kernel of $\mathrm{id}-\bar{\lambda}_{\rho}$ in $K_{0}(\mathcal{A}) /\left(\mathrm{id}-\lambda_{\eta}\right) K_{0}(\mathcal{A})$.

Proof. (i) The fact that the three quotient groups

$$
\begin{gathered}
K_{0}\left(\mathcal{F}_{\rho, \eta}\right) /\left(\mathrm{id}-\gamma_{\eta}^{-1}\right) K_{0}\left(\mathcal{F}_{\rho, \eta}\right), \\
K_{0}\left(\mathcal{F}_{\rho}\right) /\left(\mathrm{id}-\gamma_{\eta}^{-1}\right) K_{0}\left(\mathcal{F}_{\rho}\right), \\
K_{0}(\mathcal{A}) /\left(\mathrm{id}-\lambda_{\eta}\right) K_{0}(\mathcal{A}),
\end{gathered}
$$

are naturally isomorphic is similarly proved to the previous discussions.
(ii) The kernel $\operatorname{Ker}\left(\mathrm{id}-\bar{\gamma}_{\rho}\right)$ in $K_{0}\left(\mathcal{F}_{\rho, \eta}\right) /\left(\mathrm{id}-\gamma_{\eta}^{-1}\right) K_{0}\left(\mathcal{F}_{\rho, \eta}\right)$ is isomorphic to the kernel $\operatorname{Ker}\left(\mathrm{id}-\bar{\gamma}_{\rho}\right)$ in $K_{0}\left(\mathcal{F}_{\rho}\right) /\left(\mathrm{id}-\gamma_{\eta}^{-1}\right) K_{0}\left(\mathcal{F}_{\rho}\right)$ which is isomorphic to the kernel $\operatorname{Ker}\left(\mathrm{id}-\bar{\lambda}_{\rho}\right)$ in $K_{0}(\mathcal{A}) /\left(\mathrm{id}-\lambda_{\eta}\right) K_{0}(\mathcal{A})$.

Lemma 8.22. The kernel of id $-\gamma_{\rho}$ in $K_{0}\left(\mathcal{F}_{\rho, \eta}\right)$ is isomorphic to the kernel of $\mathrm{id}-\gamma_{\rho}$ in $K_{0}\left(\mathcal{F}_{\rho}\right)$ that is also isomorphic to the kernel of $\mathrm{id}-\lambda_{\eta}$ in $K_{0}(\mathcal{A})$ such that the quotient group

$$
\left(\operatorname{Ker}\left(\mathrm{id}-\gamma_{\eta}\right) \text { in } K_{0}\left(\mathcal{F}_{\rho, \eta}\right)\right) /\left(\mathrm{id}-\gamma_{\rho}\right)\left(\operatorname{Ker}\left(\mathrm{id}-\gamma_{\eta}\right) \text { in } K_{0}\left(\mathcal{F}_{\rho, \eta}\right)\right)
$$

is isomorphic to the quotient group

$$
\left(\operatorname{Ker}\left(\mathrm{id}-\lambda_{\eta}\right) \text { in } K_{0}(\mathcal{A})\right) /\left(\mathrm{id}-\lambda_{\rho}\right)\left(\operatorname{Ker}\left(\mathrm{id}-\lambda_{\eta}\right) \text { in } K_{0}(\mathcal{A})\right) .
$$

Proof. The proofs are similar to the previous discussions.
Therefore the short exact sequence for $K_{1}\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right)$ in Theorem 7.10 is restated as the following proposition.

Proposition 8.23. Assume that $\left(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa\right)$ forms square and

$$
K_{1}\left(\mathcal{F}_{\rho, \eta}\right)=\{0\} .
$$

Then there exists a short exact sequence:

$$
\begin{aligned}
0 & \longrightarrow\left(\operatorname{Ker}\left(\mathrm{id}-\lambda_{\eta}\right) \text { in } K_{0}(\mathcal{A})\right) /\left(\operatorname{id}-\lambda_{\rho}\right)\left(\operatorname{Ker}\left(\mathrm{id}-\lambda_{\eta}\right) \text { in } K_{0}(\mathcal{A})\right) \\
& \longrightarrow K_{1}\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right) \\
& \longrightarrow \operatorname{Ker}\left(\mathrm{id}-\bar{\lambda}_{\rho}\right) \text { in }\left(K_{0}(\mathcal{A}) /\left(\operatorname{id}-\lambda_{\eta}\right) K_{0}(\mathcal{A})\right) \\
& \longrightarrow 0 .
\end{aligned}
$$

We give a condition on $\left(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa\right)$ which makes $K_{1}\left(\mathcal{F}_{\rho, \eta}\right)=\{0\}$.
Lemma 8.24. Suppose that a C^{*}-textile dynamical system

$$
\left(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa\right)
$$

forms square and satisfies $K_{1}(\mathcal{A})=\{0\}$. Then $K_{1}\left(\mathcal{F}_{\rho, \eta}\right)=\{0\}$.
Proof. The algebra $\mathcal{F}_{\rho, \eta}$ is an inductive limit C^{*}-algebra of subalgebras $\mathcal{F}_{j, k}$ with inclusion maps (5.3). Let $E_{i}^{l}, i=1, \ldots, m(l)$ be the minimal projections
in \mathcal{A}_{l} as in Lemma 8.4, which are central in \mathcal{A} such that $\sum_{i=1}^{m(l)} E_{i}^{l}=1$. By Lemma 8.4, we have

$$
K_{1}\left(\mathcal{F}_{j, k}\right)=\bigoplus_{i=1}^{m(l)} K_{1}\left(\mathcal{F}_{j, k}(i)\right)=\bigoplus_{i=1}^{m(l)} K_{1}\left(E_{i}^{l} \mathcal{A} E_{i}^{l}\right)=K_{1}(\mathcal{A})
$$

so that the condition $K_{1}(\mathcal{A})=\{0\}$ implies $K_{1}\left(\mathcal{F}_{\rho, \eta}\right)=\{0\}$.
A a C^{*}-textile dynamical system $\left(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa\right)$ is said to have trivial K_{1} if $K_{1}(\mathcal{A})=\{0\}$.

Consequently we reach the following K-theory formulae for the C^{*}-algebra $\mathcal{O}_{\rho, \eta}^{\kappa}$ by Proposition 8.19 and Proposition 8.23.
Theorem 8.25. Suppose that a C^{*}-textile dynamical system

$$
\left(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa\right)
$$

forms square having trivial K_{1}. Then there exist short exact sequences for their K-groups as in the following way:

$$
\begin{aligned}
0 & \longrightarrow K_{0}(\mathcal{A}) /\left(\left(\mathrm{id}-\lambda_{\eta}\right) K_{0}(\mathcal{A})+\left(\mathrm{id}-\lambda_{\rho}\right) K_{0}(\mathcal{A})\right) \\
& \longrightarrow K_{0}\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right) \\
& \longrightarrow \operatorname{Ker}\left(\mathrm{id}-\lambda_{\eta}\right) \cap \operatorname{Ker}\left(\mathrm{id}-\lambda_{\rho}\right) \text { in } K_{0}(\mathcal{A}) \\
& \longrightarrow 0
\end{aligned}
$$

and

$$
\begin{aligned}
0 & \longrightarrow\left(\operatorname{Ker}\left(\operatorname{id}-\lambda_{\eta}\right) \text { in } K_{0}(\mathcal{A})\right) /\left(\operatorname{id}-\lambda_{\rho}\right)\left(\operatorname{Ker}\left(\operatorname{id}-\lambda_{\eta}\right) \text { in } K_{0}(\mathcal{A})\right) \\
& \longrightarrow K_{1}\left(\mathcal{O}_{\rho, \eta}^{\kappa}\right) \\
& \longrightarrow \operatorname{Ker}\left(\operatorname{id}-\bar{\lambda}_{\rho}\right) \text { in }\left(K_{0}(\mathcal{A}) /\left(\operatorname{id}-\lambda_{\eta}\right) K_{0}(\mathcal{A})\right) \\
& \longrightarrow 0
\end{aligned}
$$

where the endomorphisms $\lambda_{\rho}, \lambda_{\eta}: K_{0}(\mathcal{A}) \longrightarrow K_{0}(\mathcal{A})$ are defined by

$$
\begin{aligned}
& \lambda_{\rho}([p])=\sum_{\alpha \in \Sigma^{\rho}}\left[\rho_{\alpha}(p)\right] \in K_{0}(\mathcal{A}) \text { for }[p] \in K_{0}(\mathcal{A}), \\
& \lambda_{\eta}([p])=\sum_{a \in \Sigma^{\eta}}\left[\eta_{a}(p)\right] \in K_{0}(\mathcal{A}) \text { for }[p] \in K_{0}(\mathcal{A}) .
\end{aligned}
$$

9. Examples

9.1. LR-textile $\boldsymbol{\lambda}$-graph systems. A symbolic matrix

$$
\mathcal{M}=[\mathcal{M}(i, j)]_{i, j=1}^{N}
$$

is a matrix whose components consist of formal sums of elements of an alphabet Σ, such as

$$
\mathcal{M}=\left[\begin{array}{cc}
a & a+c \\
c & 0
\end{array}\right] \quad \text { where } \Sigma=\{a, b, c\} .
$$

\mathcal{M} is said to be essential if there is no zero column or zero row. \mathcal{M} is said to be left-resolving if for each column a symbol does not appear in two different rows. For example, $\left[\begin{array}{cc}a & a+b \\ c & 0\end{array}\right]$ is left-resolving, but $\left[\begin{array}{cc}a & a+b \\ c & b\end{array}\right]$ is not left-resolving because of b at the second column. We assume that symbolic matrices are always essential and left-resolving. We denote by $\Sigma^{\mathcal{M}}$ the alphabet Σ of the symbolic matrix \mathcal{M}.

Let $\mathcal{M}=[\mathcal{M}(i, j)]_{i, j=1}^{N}$ and $\mathcal{M}^{\prime}=\left[\mathcal{M}^{\prime}(i, j)\right]_{i, j=1}^{N}$ be $N \times N$ symbolic matrices over $\Sigma^{\mathcal{M}}$ and $\Sigma^{\mathcal{M}^{\prime}}$ respectively. Suppose that there is a bijection $\kappa: \Sigma^{\mathcal{M}} \longrightarrow \Sigma^{\mathcal{M}^{\prime}}$. Following Nasu's terminology [34] we say that \mathcal{M} and \mathcal{M}^{\prime} are equivalent under specification κ, or simply, specified equivalent if \mathcal{M}^{\prime} can be obtained from \mathcal{M} by replacing every symbol $\alpha \in \Sigma^{\mathcal{M}}$ by $\kappa(\alpha) \in \Sigma^{\mathcal{M}^{\prime}}$. That is if $\mathcal{M}(i, j)=\alpha_{1}+\cdots+\alpha_{n}$, then $\mathcal{M}^{\prime}(i, j)=\kappa\left(\alpha_{1}\right)+\cdots+\kappa\left(\alpha_{n}\right)$. We write this situation as $\mathcal{M} \stackrel{\kappa}{\approx} \mathcal{M}^{\prime}$ (see [34]).

For a symbolic matrix $\mathcal{M}=[\mathcal{M}(i, j)]_{i, j=1}^{N}$ over $\Sigma^{\mathcal{M}}$, we set for $\alpha \in$ $\Sigma^{\mathcal{M}}, i, j=1, \ldots, N$

$$
A^{\mathcal{M}}(i, \alpha, j)= \begin{cases}1 & \text { if } \alpha \text { appears in } \mathcal{M}(i, j) \\ 0 & \text { otherwise }\end{cases}
$$

Put an $N \times N$ nonnegative matrix $A^{\mathcal{M}}=\left[A^{\mathcal{M}}(i, j)\right]_{i, j=1}^{N}$ by setting

$$
A^{\mathcal{M}}(i, j)=\sum_{\alpha \in \Sigma^{\mathcal{M}}} A^{\mathcal{M}}(i, \alpha, j) .
$$

Let \mathcal{A} be an N-dimensional commutative C^{*}-algebra \mathbb{C}^{N} with minimal projections E_{1}, \ldots, E_{N} such that

$$
\mathcal{A}=\mathbb{C} E_{1} \oplus \cdots \oplus \mathbb{C} E_{N} .
$$

We set for $\alpha \in \Sigma^{\mathcal{M}}$:

$$
\rho_{\alpha}^{\mathcal{M}}\left(E_{i}\right)=\sum_{j=1}^{N} A^{\mathcal{M}}(i, \alpha, j) E_{j}, \quad i=1, \ldots, N .
$$

Then we have a C^{*}-symbolic dynamical system $\left(\mathcal{A}, \rho^{\mathcal{M}}, \Sigma^{\mathcal{M}}\right)$.
Let $\mathcal{M}=[\mathcal{M}(i, j)]_{i, j=1}^{N}$ and $\mathcal{N}=[\mathcal{N}(i, j)]_{i, j=1}^{N}$ be $N \times N$ symbolic matrices over $\Sigma^{\mathcal{M}}$ and $\Sigma^{\mathcal{N}}$ respectively. We have two C^{*}-symbolic dynamical systems $\left(\mathcal{A}, \rho^{\mathcal{M}}, \Sigma^{\mathcal{M}}\right)$ and $\left(\mathcal{A}, \rho^{\mathcal{N}}, \Sigma^{\mathcal{N}}\right)$. Put

$$
\begin{aligned}
& \Sigma^{\mathcal{M N}}=\left\{(\alpha, b) \in \Sigma^{\mathcal{M}} \times \Sigma^{\mathcal{N}} \mid \rho_{b}^{\mathcal{N}} \circ \rho_{\alpha}^{\mathcal{M}} \neq 0\right\}, \\
& \Sigma^{\mathcal{N M}}=\left\{(a, \beta) \in \Sigma^{\mathcal{N}} \times \Sigma^{\mathcal{M}} \mid \rho_{\beta}^{\mathcal{M}} \circ \rho_{a}^{\mathcal{N}} \neq 0\right\} .
\end{aligned}
$$

Suppose that there is a bijection κ from $\Sigma^{\mathcal{M} \mathcal{N}}$ to $\Sigma^{\mathcal{N} \mathcal{M}}$ such that κ yields a specified equivalence

$$
\begin{equation*}
\mathcal{M N} \stackrel{\kappa}{\cong} \mathcal{N} \mathcal{M} \tag{9.1}
\end{equation*}
$$

and fix it.

Proposition 9.1. Keep the above situations. The specified equivalence (9.1) induces a specification $\kappa: \Sigma^{\mathcal{M} \mathcal{N}} \longrightarrow \Sigma^{\mathcal{N} \mathcal{M}}$ such that

$$
\begin{equation*}
\rho_{b}^{\mathcal{N}} \circ \rho_{\alpha}^{\mathcal{M}}=\rho_{\beta}^{\mathcal{M}} \circ \rho_{a}^{\mathcal{N}} \quad \text { if } \quad \kappa(\alpha, b)=(a, \beta) . \tag{9.2}
\end{equation*}
$$

Hence $\left(\mathcal{A}, \rho^{\mathcal{M}}, \rho^{\mathcal{N}}, \Sigma^{\mathcal{M}}, \Sigma^{\mathcal{N}}, \kappa\right)$ gives rise to a C^{*}-textile dynamical system which forms square having trivial K_{1}.
Proof. Since $\mathcal{M} \mathcal{N} \stackrel{\kappa}{\cong} \mathcal{N} \mathcal{M}$, one sees that for $i, j=1,2, \ldots, N$,

$$
\kappa(\mathcal{M} \mathcal{N}(i, j))=\mathcal{N} \mathcal{M}(i, j)
$$

For $(\alpha, b) \in \Sigma^{\mathcal{M N}}$, there exists $i, k=1,2, \ldots, N$ such that

$$
\rho_{b}^{\mathcal{N}} \circ \rho_{\alpha}^{\mathcal{M}}\left(E_{i}\right) \geq E_{k} .
$$

As $\kappa(\alpha, b)$ appears in $\mathcal{N} \mathcal{M}(i, k)$, by putting $(a, \beta)=\kappa(\alpha, b)$, we have

$$
\rho_{\beta}^{\mathcal{M}} \circ \rho_{a}^{\mathcal{N}}\left(E_{i}\right) \geq E_{k}
$$

Hence $\kappa(\alpha, b) \in \Sigma^{\mathcal{N} \mathcal{M}}$. One indeed sees that $\rho_{b}^{\mathcal{N}} \circ \rho_{\alpha}^{\mathcal{M}}=\rho_{\beta}^{\mathcal{M}} \circ \rho_{a}^{\mathcal{N}}$ by the relation $\mathcal{M} \mathcal{N} \stackrel{\kappa}{\cong} \mathcal{N} \mathcal{M}$.

Two symbolic matrices satisfying (9.1) give rise to an LR textile system that has been introduced by Nasu (see [34]). Textile systems introduced by Nasu give a strong tool to analyze automorphisms and endomorphisms of topological Markov shifts. The author has generalized LR-textile systems to LR-textile λ-graph systems which consist of two pairs of sequences $(\mathcal{M}, I)=$ $\left(\mathcal{M}_{l, l+1}, I_{l, l+1}\right)_{l \in \mathbb{Z}_{+}}$and $(\mathcal{N}, I)=\left(\mathcal{N}_{l, l+1}, I_{l, l+1}\right)_{l \in \mathbb{Z}_{+}}$such that

$$
\begin{equation*}
\mathcal{M}_{l, l+1} \mathcal{N}_{l+1, l+2} \stackrel{\kappa}{\cong} \mathcal{N}_{l, l+1} \mathcal{M}_{l+1, l+2}, \quad l \in \mathbb{Z}_{+} \tag{9.3}
\end{equation*}
$$

through a specification $\kappa([28])$. We denote the LR-textile λ-graph system by $\mathcal{T}_{\mathcal{K}_{\mathcal{N}}}$. Denote by $\mathfrak{L}^{\mathcal{M}}$ and $\mathfrak{L}^{\mathcal{N}}$ the associated λ-graph systems respectively. Since $\mathfrak{L}^{\mathcal{M}}$ and $\mathfrak{L}^{\mathcal{N}}$ have common sequences $V_{l}^{\mathcal{M}}=V_{l}^{\mathcal{N}}, l \in \mathbb{Z}_{+}$of vertices which denoted by $V_{l}, l \in \mathbb{Z}_{+}$, and its common inclusion matrices $I_{l, l+1}, l \in \mathbb{Z}_{+}$. Hence $\mathfrak{L}^{\mathcal{M}}$ and $\mathfrak{L}^{\mathcal{N}}$ form square in the sense of [28, p.170]. Let $\left(\mathcal{A}_{\mathcal{M}}, \rho^{\mathcal{M}}, \Sigma^{\mathcal{M}}\right)$ and $\left(\mathcal{A}_{\mathcal{N}}, \rho^{\mathcal{N}}, \Sigma^{\mathcal{N}}\right)$ be the associated C^{*}-symbolic dynamical systems with the λ-graph systems $\mathfrak{L}^{\mathcal{M}}$ and $\mathfrak{L}^{\mathcal{N}}$ respectively. Since both the algebras $\mathcal{A}_{\mathcal{M}}$ and $\mathcal{A}_{\mathcal{N}}$ are the C^{*}-algebras of inductive limit of the system $I_{l, l+1}^{*}: C\left(V_{l}\right) \rightarrow C\left(V_{l+1}\right), l \in \mathbb{Z}_{+}$, they are identical, which is denoted by \mathcal{A}. It is easy to see that the relation (9.3) implies

$$
\begin{equation*}
\rho_{\alpha}^{\mathcal{M}} \circ \rho_{b}^{\mathcal{N}}=\rho_{a}^{\mathcal{N}} \circ \rho_{\beta}^{\mathcal{M}} \quad \text { if } \quad \kappa(\alpha, b)=(a, \beta) . \tag{9.4}
\end{equation*}
$$

Proposition 9.2. An LR-textile λ-graph system $\mathcal{T}_{\mathcal{K}_{\mathcal{N}}^{\mathcal{M}}}$ yields a C^{*}-textile dynamical system $\left(\mathcal{A}, \rho^{\mathcal{M}}, \rho^{\mathcal{N}}, \Sigma^{\mathcal{M}}, \Sigma^{\mathcal{N}}, \kappa\right)$ which forms square. Conversely, a C^{*}-textile dynamical system $\left(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa\right)$ which forms square yields
an LR-textile λ-graph system $\mathcal{T}_{\mathcal{K}_{\mathcal{M}}{ }^{\boldsymbol{\mathcal { }}}}$ such that the associated C^{*}-textile dynamical system written $\left(\mathcal{A}_{\rho, \eta}, \rho^{\mathcal{M}^{\rho}}, \rho^{\mathcal{M}^{\eta}}, \Sigma^{\mathcal{M}^{\rho}}, \Sigma^{\mathcal{M}^{\rho}}, \kappa\right)$ is a subsystem of $\left(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa\right)$ in the sense that the relations:

$$
\mathcal{A}_{\rho, \eta} \subset \mathcal{A},\left.\quad \rho\right|_{\mathcal{A}_{\rho, \eta}}=\rho^{\mathcal{M}^{\rho}},\left.\quad \eta\right|_{\mathcal{A}_{\rho, \eta}}=\rho^{\mathcal{M}^{\eta}}
$$

hold.
Proof. Let $\mathcal{T}_{\mathcal{K}_{\mathcal{N}}}$ be an LR-textile λ-graph system. As in the above discussions, we have a C^{*}-textile dynamical system $\left(\mathcal{A}, \rho^{\mathcal{M}}, \rho^{\mathcal{N}}, \Sigma^{\mathcal{M}}, \Sigma^{\mathcal{N}}, \kappa\right)$. Conversely, let $\left(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa\right)$ be a C^{*}-textile dynamical system which forms square. Put for $l \in \mathbb{N}$

$$
\mathcal{A}_{l}^{\rho}=C^{*}\left(\rho_{\mu}(1): \mu \in B_{l}\left(\Lambda_{\rho}\right)\right), \quad \mathcal{A}_{l}^{\eta}=C^{*}\left(\eta_{\xi}(1): \xi \in B_{l}\left(\Lambda_{\eta}\right)\right) .
$$

Since $\mathcal{A}_{l}^{\rho}=\mathcal{A}_{l}^{\eta}$ and they are commutative and of finite dimensional, the algebra

$$
\mathcal{A}_{\rho, \eta}=\overline{U_{l \in \mathbb{Z}_{+}} \mathcal{A}_{l}^{\rho}}=\overline{U_{l \in \mathbb{Z}_{+}} \mathcal{A}_{l}^{\eta}}
$$

is a commutative AF-subalgebra of \mathcal{A}. It is easy to see that both $\left(\mathcal{A}_{\rho, \eta}, \rho, \Sigma^{\rho}\right)$ and $\left(\mathcal{A}_{\rho, \eta}, \eta, \Sigma^{\eta}\right)$ are C^{*}-symbolic dynamical systems such that

$$
\begin{equation*}
\eta_{b} \circ \rho_{\alpha}=\rho_{\beta} \circ \eta_{a} \quad \text { if } \quad \kappa(\alpha, b)=(a, \beta) \tag{9.5}
\end{equation*}
$$

By [27], there exist λ-graph systems \mathfrak{L}^{ρ} and \mathfrak{L}^{η} whose C^{*}-symbolic dynamical systems are $\left(\mathcal{A}_{\rho, \eta}, \rho, \Sigma^{\rho}\right)$ and $\left(\mathcal{A}_{\rho, \eta}, \eta, \Sigma^{\eta}\right)$ respectively. Let $\left(\mathcal{M}^{\rho}, I^{\rho}\right)$ and $\left(\mathcal{M}^{\eta}, I^{\eta}\right)$ be the associated symbolic matrix systems. It is easy to see that the relation (9.5) implies

$$
\mathcal{M}_{l, l+1}^{\rho} \mathcal{M}_{l+1, l+2}^{\eta} \stackrel{\kappa}{\cong} \mathcal{M}_{l, l+1}^{\eta} \mathcal{M}_{l+1, l+2}^{\rho}, \quad l \in \mathbb{Z}_{+} .
$$

Hence we have an LR-textile λ-graph system $\mathcal{T}_{\mathcal{K}_{\mathcal{M}^{\eta}}{ }^{\eta}}$. It is direct to see that the associated C^{*}-textile dynamical system is $\left(\mathcal{A}_{\rho, \eta},\left.\rho\right|_{\mathcal{A}_{\rho, \eta}},\left.\eta\right|_{\mathcal{A}_{\rho, \eta}}, \Sigma^{\rho}, \Sigma^{\eta}, \kappa\right)$.

Let A be an $N \times N$ matrix with entries in nonnegative integers. We may consider a directed graph $G_{A}=\left(V_{A}, E_{A}\right)$ with vertex set V_{A} and edge set E_{A}. The vertex set V_{A} consists of N vertices which we denote by $\left\{v_{1}, \ldots, v_{N}\right\}$. We equip $A(i, j)$ edges from the vertex v_{i} to the vertex v_{j}. Denote by E_{A} the set of the edges. Let $\Sigma^{A}=E_{A}$ and the labeling map $\lambda_{A}: E_{A} \longrightarrow \Sigma^{A}$ be defined as the identity map. Then we have a labeled directed graph denoted by G_{A} as well as a symbolic matrix $\mathcal{M}_{A}=\left[\mathcal{M}_{A}(i, j)\right]_{i, j=1}^{N}$ by setting

$$
\mathcal{M}_{A}(i, j)= \begin{cases}e_{1}+\cdots+e_{n} & \text { if } e_{1}, \ldots, e_{n} \text { are edges from } v_{i} \text { to } v_{j}, \\ 0 & \text { if there is no edge from } v_{i} \text { to } v_{j}\end{cases}
$$

Let B be an $N \times N$ matrix with entries in nonnegative integers such that

$$
\begin{equation*}
A B=B A . \tag{9.6}
\end{equation*}
$$

The equality (9.6) implies that the cardinal numbers of the sets of the pairs of directed edges

$$
\begin{aligned}
& \Sigma^{A B}(i, j)=\left\{(e, f) \in E_{A} \times E_{B} \mid s(e)=v_{i}, t(e)=s(f), t(f)=v_{j}\right\} \text { and } \\
& \Sigma^{B A}(i, j)=\left\{(f, e) \in E_{B} \times E_{A} \mid s(f)=v_{i}, t(f)=s(e), t(e)=v_{j}\right\}
\end{aligned}
$$

coincide with each other for each v_{i} and v_{j}. We put $\Sigma^{A B}=\cup_{i, j=1}^{N} \Sigma^{A B}(i, j)$ and $\Sigma^{B A}=\cup_{i, j=1}^{N} \Sigma^{B A}(i, j)$ so that one may take a bijection $\kappa: \Sigma^{A B} \longrightarrow$ $\Sigma^{B A}$ which gives rise to a specified equivalence $\mathcal{M}_{A} \mathcal{M}_{B} \stackrel{\kappa}{\cong} \mathcal{M}_{B} \mathcal{M}_{A}$. We then have a C^{*}-textile dynamical system

$$
\left(\mathcal{A}, \rho^{\mathcal{M}_{A}}, \rho^{\mathcal{M}_{B}}, \Sigma^{A}, \Sigma^{B}, \kappa\right)
$$

which we denote by

$$
\left(\mathcal{A}, \rho^{A}, \rho^{B}, \Sigma^{A}, \Sigma^{B}, \kappa\right)
$$

The associated C^{*}-algebra is denoted by $\mathcal{O}_{A, B}^{\kappa}$. The algebra $\mathcal{O}_{A, B}^{\kappa}$ depends on the choice of a specification $\kappa: \Sigma^{A B} \longrightarrow \Sigma^{B A}$. The algebras are 2-graph algebras of Kumjian and Pask [19]. They are also C^{*}-algebras associated to textile systems studied by V. Deaconu [9]. By Theorem 8.25, we have:
Proposition 9.3. Keep the above situations. There exist short exact sequences:

$$
\begin{aligned}
0 & \longrightarrow \mathbb{Z}^{N} /\left((1-A) \mathbb{Z}^{N}+(1-B) \mathbb{Z}^{N}\right) \\
& \longrightarrow K_{0}\left(\mathcal{O}_{A, B}^{\kappa}\right) \\
& \longrightarrow \operatorname{Ker}(1-A) \cap \operatorname{Ker}(1-B) \text { in } \mathbb{Z}^{N} \longrightarrow 0
\end{aligned}
$$

and

$$
\begin{aligned}
0 & \longrightarrow\left(\operatorname{Ker}(1-B) \text { in } \mathbb{Z}^{N}\right) /(1-A)\left(\operatorname{Ker}(1-B) \text { in } \mathbb{Z}^{N}\right) \\
& \longrightarrow K_{1}\left(\mathcal{O}_{A, B}^{\kappa}\right) \\
& \longrightarrow \operatorname{Ker}(1-A) \text { in } \mathbb{Z}^{N} /(1-B) \mathbb{Z}^{N} \longrightarrow 0 .
\end{aligned}
$$

We consider 1×1 matrices $[N]$ and $[M]$ with its entries N and M respectively for $1<N, M \in \mathbb{N}$. Let G_{N} be a directed graph with one vertex and N directed self-loops. Similarly we consider a directed graph G_{M} with M directed self-loops at the vertex. The self-loops are denoted by $\Sigma^{N}=\left\{e_{1}, \ldots, e_{N}\right\}$ and $\Sigma^{M}=\left\{f_{1}, \ldots, f_{M}\right\}$ respectively. As a specification κ, we take the exchanging map $(e, f) \in \Sigma^{N} \times \Sigma^{M} \longrightarrow(f, e) \in \Sigma^{M} \times \Sigma^{N}$ which we will fix. Put

$$
\rho_{e_{i}}^{N}(1)=1, \quad \rho_{f_{j}}^{M}(1)=1 \quad \text { for } i=1, \ldots, N, j=1, \ldots, M .
$$

Then we have a C^{*}-textile dynamical system

$$
\left(\mathbb{C}, \rho^{N}, \rho^{M}, \Sigma^{N}, \Sigma^{M}, \kappa\right) .
$$

The associated C^{*}-algebra is denoted by $\mathcal{O}_{N, M}^{\kappa}$.

Lemma 9.4. $\mathcal{O}_{N, M}^{\kappa}=\mathcal{O}_{N} \otimes \mathcal{O}_{M}$.
Proof. Let $s_{i}, i=1, \ldots, N$ and $t_{j}, i=1, \ldots, M$ be the generating isometries of the Cuntz algebra \mathcal{O}_{N} and those of of \mathcal{O}_{M} respectively which satisfy

$$
\sum_{i=1}^{N} s_{i} s_{i}^{*}=1, \quad \sum_{j=1}^{M} t_{j} t_{j}^{*}=1
$$

Let $S_{i}, i=1, \ldots, N$ and $T_{j}, i=1, \ldots, M$ be the generating isometries of $\mathcal{O}_{N, M}^{\kappa}$ satisfying

$$
\sum_{i=1}^{N} S_{i} S_{i}^{*}=1, \quad \sum_{j=1}^{M} T_{j} T_{j}^{*}=1
$$

and

$$
S_{i} T_{j}=T_{j} S_{i}, \quad i=1, \ldots, N, \quad j=1, \ldots, M
$$

The universality of $\mathcal{O}_{N, M}^{\kappa}$ subject to the relations and that of the tensor product $\mathcal{O}_{N} \otimes \mathcal{O}_{M}$ ensure us that the correspondence $\Phi: \mathcal{O}_{N, M} \longrightarrow \mathcal{O}_{N} \otimes \mathcal{O}_{M}$ given by $\Phi\left(S_{i}\right)=s_{i} \otimes 1, \Phi\left(T_{j}\right)=1 \otimes t_{j}$ yields an isomorphism.

Although we may easily compute the K-groups $K_{*}\left(\mathcal{O}_{M, N}^{\kappa}\right)$ by using the Künneth formula for $K_{i}\left(\mathcal{O}_{N} \otimes \mathcal{O}_{M}\right)([46])$, we will compute them by Proposition 9.3 as in the following way.

Proposition 9.5 (cf. [19]). For $1<N, M \in \mathbb{N}$, the C^{*}-algebra $\mathcal{O}_{N, M}^{\kappa}$ is simple, purely infinite, such that

$$
K_{0}\left(\mathcal{O}_{N, M}^{\kappa}\right) \cong K_{1}\left(\mathcal{O}_{N, M}^{\kappa}\right) \cong \mathbb{Z} / d \mathbb{Z}
$$

where $d=\operatorname{gcd}(N-1, M-1)$ the greatest common divisor of $N-1, M-1$.
Proof. It is easy to see that the group $\mathbb{Z} /((N-1) \mathbb{Z}+(N-1) \mathbb{Z})$ is isomorphic to $\mathbb{Z} / d \mathbb{Z}$. As $\operatorname{Ker}(N-1)=\operatorname{Ker}(M-1)=0$ in \mathbb{Z}, we see that

$$
K_{0}\left(\mathcal{O}_{N, M}^{\kappa}\right) \cong \mathbb{Z} / d \mathbb{Z}
$$

It is elementary to see that the subgroup

$$
\{[k] \in \mathbb{Z} /(M-1) \mathbb{Z} \mid(N-1) k \in(M-1) \mathbb{Z}\}
$$

of $\mathbb{Z} /(M-1) \mathbb{Z}$ is isomorphic to $\mathbb{Z} / d \mathbb{Z}$. Hence we have

$$
K_{1}\left(\mathcal{O}_{N, M}^{\kappa}\right) \cong \mathbb{Z} / d \mathbb{Z}
$$

We will generalize the above examples from the view point of tensor products.
9.2. Tensor products. Let $\left(\mathcal{A}^{\rho}, \rho, \Sigma^{\rho}\right)$ and $\left(\mathcal{A}^{\eta}, \eta, \Sigma^{\eta}\right)$ be C^{*}-symbolic dynamical systems. We will construct a C^{*}-textile dynamical system by taking tensor product. Put
$\overline{\mathcal{A}}=\mathcal{A}^{\rho} \otimes \mathcal{A}^{\eta}, \quad \bar{\rho}_{\alpha}=\rho_{\alpha} \otimes \mathrm{id}, \quad \bar{\eta}_{a}=\mathrm{id} \otimes \eta_{a}, \quad \Sigma^{\bar{\rho}}=\Sigma^{\rho}, \quad \Sigma^{\bar{\eta}}=\Sigma^{\eta}$ for $\alpha \in \Sigma^{\rho}, a \in \Sigma^{\eta}$, where \otimes means the minimal C^{*}-tensor product $\otimes_{\min }$. For $(\alpha, a) \in \Sigma^{\rho} \times \Sigma^{\eta}$, we see $\eta_{b} \circ \rho_{\alpha}(1) \neq 0$ if and only if $\eta_{b}(1) \neq 0, \rho_{\alpha}(1) \neq 0$, so that

$$
\Sigma^{\bar{\rho} \bar{\eta}}=\Sigma^{\rho} \times \Sigma^{\eta} \quad \text { and similarly } \quad \Sigma^{\bar{\eta} \bar{\rho}}=\Sigma^{\eta} \times \Sigma^{\rho}
$$

Define $\bar{\kappa}: \Sigma^{\bar{\rho} \bar{\eta}} \longrightarrow \Sigma^{\bar{\eta} \bar{\rho}}$ by setting $\bar{\kappa}(\alpha, b)=(b, \alpha)$.
Lemma 9.6. ($\left.\overline{\mathcal{A}}, \bar{\rho}, \bar{\eta}, \Sigma^{\bar{\rho}}, \Sigma^{\bar{\eta}}, \bar{\kappa}\right)$ is a C^{*}-textile dynamical system.
Proof. By [2], we have $Z_{\overline{\mathcal{A}}}=Z_{\mathcal{A}^{\rho}} \otimes Z_{\mathcal{A}^{\eta}}$ so that

$$
\bar{\rho}_{\alpha}\left(Z_{\overline{\mathcal{A}}}\right) \subset Z_{\overline{\mathcal{A}}}, \quad \alpha \in \Sigma^{\bar{\rho}} \quad \text { and } \quad \bar{\rho}_{a}\left(Z_{\overline{\mathcal{A}}}\right) \subset Z_{\overline{\mathcal{A}}}, \quad a \in \Sigma^{\bar{\eta}}
$$

We also have $\sum_{\alpha \in \Sigma^{\bar{\rho}}} \bar{\rho}_{\alpha}(1)=\sum_{\alpha \in \Sigma^{\rho}} \rho_{\alpha}(1) \otimes 1 \geq 1$, and similarly

$$
\sum_{a \in \Sigma^{\bar{\eta}}} \bar{\eta}_{(}(1) \geq 1
$$

so that both families $\left\{\bar{\rho}_{\alpha}\right\}_{\alpha \in \Sigma^{\bar{\rho}}}$ and $\left\{\bar{\eta}_{a}\right\}_{a \in \Sigma^{\bar{\eta}}}$ of endomorphisms are essential. Since $\left\{\rho_{\alpha}\right\}_{\alpha \in \Sigma^{\rho}}$ is faithful on \mathcal{A}^{ρ}, the homomorphism

$$
x \in \mathcal{A}^{\rho} \longrightarrow \sum_{\alpha \in \Sigma^{\rho}}{ }^{\oplus} \rho_{\alpha}(x) \in \sum_{\alpha \in \Sigma^{\rho}}{ }^{\oplus} \mathcal{A}^{\rho}
$$

is injective so that the homomorphism

$$
x \otimes y \in \mathcal{A}^{\rho} \otimes \mathcal{A}^{\eta} \longrightarrow \sum_{\alpha \in \Sigma^{\rho}}{ }^{\oplus} \rho_{\alpha}(x) \otimes y \in \sum_{\alpha \in \Sigma^{\rho}}{ }^{\oplus} \mathcal{A}^{\rho} \otimes \mathcal{A}^{\eta}
$$

is injective. This implies that $\left\{\bar{\rho}_{\alpha}\right\}_{\alpha \in \Sigma^{\bar{\rho}}}$ is faithful. Similarly, so is $\left\{\bar{\eta}_{a}\right\}_{a \in \Sigma^{\bar{n}}}$. Hence $\left(\overline{\mathcal{A}}, \bar{\rho}, \Sigma^{\bar{\rho}}\right)$ and $\left(\overline{\mathcal{A}}, \bar{\eta}, \Sigma^{\bar{\eta}}\right)$ are both C^{*}-symbolic dynamical systems. It is direct to see that $\bar{\eta}_{b} \circ \bar{\rho}_{\alpha}=\bar{\rho}_{\alpha} \circ \bar{\eta}_{b}$ for $(\alpha, b) \in \Sigma^{\bar{\rho} \bar{\eta}}$. Therefore $\left(\overline{\mathcal{A}}, \bar{\rho}, \bar{\eta}, \Sigma^{\bar{\rho}}, \Sigma^{\bar{\eta}}, \bar{\kappa}\right)$ is a C^{*}-textile dynamical system.

We call $\left(\overline{\mathcal{A}}, \bar{\rho}, \bar{\eta}, \Sigma^{\bar{\rho}}, \Sigma^{\bar{\eta}}, \bar{\kappa}\right)$ the tensor product between $\left(\mathcal{A}^{\rho}, \rho, \Sigma^{\rho}\right)$ and $\left(\mathcal{A}^{\eta}, \eta, \Sigma^{\eta}\right)$. Denote by $S_{\alpha}, \alpha \in \Sigma^{\bar{\rho}}, T_{a}, a \in \Sigma^{\bar{\eta}}$ the generating partial isometries of the C^{*}-algebra $\mathcal{O}_{\bar{\rho}, \bar{\eta}}^{\bar{\epsilon}}$ for the C^{*}-textile dynamical system

$$
\left(\overline{\mathcal{A}}, \bar{\rho}, \bar{\eta}, \Sigma^{\bar{\rho}}, \Sigma^{\bar{\eta}}, \bar{\kappa}\right)
$$

By the universality for the algebra $\mathcal{O}_{\bar{\rho}, \bar{\eta}}^{\bar{\kappa}}$ subject to the relations $(\bar{\rho}, \bar{\eta} ; \bar{\kappa})$, the algebra $\mathcal{D}_{\bar{\rho}, \bar{\eta}}$ is isomorphic to the tensor product $\mathcal{D}_{\rho} \otimes \mathcal{D}_{\eta}$ through the correspondence

$$
S_{\mu} T_{\xi}(x \otimes y) T_{\xi}^{*} S_{\mu}^{*} \longleftrightarrow S_{\mu} x S_{\mu}^{*} \otimes T_{\xi} y T_{\xi}^{*}
$$

for $\mu \in B_{*}\left(\Lambda_{\rho}\right), \xi \in B_{*}\left(\Lambda_{\eta}\right), x \in A^{\rho}, y \in \mathcal{A}^{\eta}$.
Lemma 9.7. Suppose that $\left(\mathcal{A}^{\rho}, \rho, \Sigma^{\rho}\right)$ and $\left(\mathcal{A}^{\eta}, \eta, \Sigma^{\eta}\right)$ are both free (resp. AF-free). Then the tensor product $\left(\overline{\mathcal{A}}, \bar{\rho}, \bar{\eta}, \Sigma^{\bar{\rho}}, \Sigma^{\bar{\eta}}, \bar{\kappa}\right)$ is free (resp. AF-free).

Proof. Suppose that $\left(\mathcal{A}^{\rho}, \rho, \Sigma^{\rho}\right)$ and $\left(\mathcal{A}^{\eta}, \eta, \Sigma^{\eta}\right)$ are both free. There exist increasing sequences $\mathcal{A}_{l}^{\rho}, l \in \mathbb{Z}_{+}$and $\mathcal{A}_{l}^{\eta}, l \in \mathbb{Z}_{+}$of C^{*}-subalgebras of \mathcal{A}^{ρ} and \mathcal{A}^{η} satisfying the conditions of their freeness respectively. Put

$$
\overline{\mathcal{A}}_{l}=\mathcal{A}_{l}^{\rho} \otimes \mathcal{A}_{l}^{\eta}, \quad l \in \mathbb{Z}_{+} .
$$

It is clear that:
(1) $\bar{\rho}_{\alpha}\left(\bar{A}_{l}\right) \subset \overline{\mathcal{A}}_{l+1}, \alpha \in \Sigma^{\bar{\rho}}$ and $\bar{\eta}_{a}\left(\bar{A}_{l}\right) \subset \overline{\mathcal{A}}_{l+1}, a \in \Sigma^{\bar{\eta}}$ for $l \in \mathbb{Z}_{+}$.
(2) $\cup_{l \in \mathbb{Z}_{+}} \overline{\mathcal{A}}_{l}$ is dense in $\overline{\mathcal{A}}$.

We will show that the condition (3) for $\overline{\mathcal{A}}$ in Definition 5.3 holds. Take and fix arbitrary $j, k, l \in \mathbb{N}$ with $j+k \leq l$. For $j \leq l$, one may take a projection $q_{\rho} \in \mathcal{D}_{\rho} \cap \mathcal{A}_{l}^{\rho \prime}$ satisfying the condition (3) of the freeness of $\left(\mathcal{A}^{\rho}, \rho, \Sigma^{\rho}\right)$, and similarly for $k \leq l$, one may take a projection $q_{\eta} \in \mathcal{D}_{\eta} \cap \mathcal{A}_{l}^{\eta \prime}$. Put $q=q_{\rho} \otimes q_{\eta} \in \mathcal{D}_{\rho} \otimes \mathcal{D}_{\eta}\left(=\mathcal{D}_{\bar{\rho}, \bar{\eta}}\right)$ so that $q \in \mathcal{D}_{\bar{\rho}, \bar{\eta}} \cap \overline{\mathcal{A}}_{l}^{\prime}$. As the maps $\Phi_{l}^{\rho}: x \in \mathcal{A}_{l}^{\rho} \longrightarrow q_{\rho} x \in q_{\rho} \mathcal{A}_{l}^{\rho}$ and $\Phi_{l}^{\eta}: y \in \mathcal{A}_{l}^{\eta} \longrightarrow q_{\eta} x \in q_{\eta} \mathcal{A}_{l}^{\eta}$ are both isomorphisms, the tensor product

$$
\Phi_{l}^{\rho} \otimes \Phi_{l}^{\eta}: x \otimes y \in \mathcal{A}_{l}^{\rho} \otimes \mathcal{A}_{l}^{\eta} \longrightarrow\left(q_{\rho} \otimes q_{\eta}\right)(x \otimes y) \in\left(q_{\rho} \otimes q_{\eta}\right)\left(\mathcal{A}_{l}^{\rho} \otimes \mathcal{A}_{l}^{\eta}\right)
$$

is isomorphic. Hence $q a \neq 0$ for $0 \neq a \in \overline{\mathcal{A}}_{l}$. It is straightforward to see that q satisfies the condition (3) (ii) of Definition 5.3. Therefore the tensor product $\left(\overline{\mathcal{A}}, \bar{\rho}, \bar{\eta}, \Sigma^{\bar{\rho}}, \Sigma^{\bar{\eta}}, \bar{\kappa}\right)$ is free. It is obvious to see that if both $\left(\mathcal{A}^{\rho}, \rho, \Sigma^{\rho}\right)$ and $\left(\mathcal{A}^{\eta}, \eta, \Sigma^{\eta}\right)$ are AF-free, then $\left(\overline{\mathcal{A}}, \bar{\rho}, \bar{\eta}, \Sigma^{\bar{\rho}}, \Sigma^{\bar{\eta}}, \bar{\kappa}\right)$ is AF-free.

Proposition 9.8. Suppose that $\left(\mathcal{A}^{\rho}, \rho, \Sigma^{\rho}\right)$ and $\left(\mathcal{A}^{\eta}, \eta, \Sigma^{\eta}\right)$ are both free. Then the C^{*}-algebra $\mathcal{O}_{\bar{\rho}, \bar{\eta}}^{\kappa}$ for the tensor product C^{*}-textile dynamical system $\left(\overline{\mathcal{A}}, \bar{\rho}, \bar{\eta}, \Sigma^{\bar{\rho}}, \Sigma^{\bar{\eta}}, \bar{\kappa}\right)$ is isomorphic to the minimal tensor product $\mathcal{O}_{\rho} \otimes \mathcal{O}_{\eta}$ of the C^{*}-algebras between \mathcal{O}_{ρ} and \mathcal{O}_{η}. If in particular, $\left(\mathcal{A}^{\rho}, \rho, \Sigma^{\rho}\right)$ and $\left(\mathcal{A}^{\eta}, \eta, \Sigma^{\eta}\right)$ are both irreducible, the C^{*}-algebra $\mathcal{O}_{\bar{\beta}, \bar{\eta}}^{\bar{\eta}}$ is simple.

Proof. Suppose that $\left(\mathcal{A}^{\rho}, \rho, \Sigma^{\rho}\right)$ and $\left(\mathcal{A}^{\eta}, \eta, \Sigma^{\eta}\right)$ are both free. By the preceding lemma, the tensor product $\left(\overline{\mathcal{A}}, \bar{\rho}, \bar{\eta}, \Sigma^{\bar{\rho}}, \Sigma^{\bar{\eta}}, \bar{\kappa}\right)$ is free and hence satisfies condition (I). Let $s_{\alpha}, \alpha \in \Sigma^{\rho}$ and $t_{a}, a \in \Sigma^{\eta}$ be the generating partial isometries of the C^{*}-algebras \mathcal{O}_{ρ} and \mathcal{O}_{η} respectively. Let $S_{\alpha}, \alpha \in \Sigma^{\bar{\rho}}$ and $T_{a}, a \in \Sigma^{\bar{\eta}}$ be the generating partial isometries of the C^{*}-algebra $\mathcal{O}_{\bar{\rho}, \bar{\eta}}^{\bar{\kappa}}$. By the uniqueness of the algebra $\mathcal{O}_{\bar{\rho}, \bar{\eta}}^{\bar{~}}$ with respect to the relations $(\bar{\rho}, \bar{\eta} ; \bar{\kappa})$, the correspondence

$$
S_{\alpha} \longrightarrow s_{\alpha} \otimes 1 \in \mathcal{O}_{\rho} \otimes \mathcal{O}_{\eta}, \quad T_{a} \longrightarrow 1 \otimes t_{a} \in \mathcal{O}_{\rho} \otimes \mathcal{O}_{\eta}
$$

naturally gives rise to an isomorphism from $\mathcal{O}_{\bar{\rho}, \bar{\eta}}^{\bar{\epsilon}}$ onto the tensor product $\mathcal{O}_{\rho} \otimes \mathcal{O}_{\eta}$.

If in particular, $\left(\mathcal{A}^{\rho}, \rho, \Sigma^{\rho}\right)$ and $\left(\mathcal{A}^{\eta}, \eta, \Sigma^{\eta}\right)$ are both irreducible, the C^{*} algebras \mathcal{O}_{ρ} and \mathcal{O}_{η} are both simple so that $\mathcal{O}_{\bar{\rho}, \bar{\eta}}^{\bar{\kappa}}$ is simple.

We remark that the tensor product $\left(\overline{\mathcal{A}}, \bar{\rho}, \bar{\eta}, \Sigma^{\bar{\rho}}, \Sigma^{\bar{\eta}}, \bar{\kappa}\right)$ does not necessarily form square. The K-theory groups $K_{*}\left(\mathcal{O}_{\bar{\rho}, \bar{\eta}}^{\bar{\kappa}}\right)$ are computed from the Künneth formulae for $K_{*}\left(\mathcal{O}_{\rho} \otimes \mathcal{O}_{\eta}\right)$ [46].

10. Concluding remark

In [31], a different construction of C^{*}-algebra written $\mathcal{O}_{\mathcal{H}_{\kappa}}$ from C^{*}-textile dynamical system $\left(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa\right)$ is studied by using a 2 -dimensional analogue of Hilbert C^{*}-bimodule. The C^{*}-algebra $\mathcal{O}_{\mathcal{H}_{\kappa}}$ is different from the C^{*}-algebra $\mathcal{O}_{\rho, \eta}^{\kappa}$ in the present paper (see also [33], [32]).

References

[1] Aranda Pino, Gonzalo; Clark, John; an Huef, Astrid; Raeburn, Iain. Kumjian-Pask algebras of higher-rank graphs. Trans. Amer. Math. Soc. 365 (2013), no. 7, 3613-3641. MR3042597, Zbl 1282.16006, doi: 10.1090/S0002-9947-2013-057170.
[2] Archbold, R. J. On the centre of a tensor product of C^{*}-algebras. J. London Math. Soc. (2) 10 (1975), 257-262. MR0402512 (53 \# 6331), Zbl 0303.46057, doi: $10.1112 / \mathrm{jlms} / \mathrm{s} 2-10.3 .257$.
[3] Bates, Teresa; Pask, David. C^{*}-algebras of labelled graphs. J. Operator Theory 57 (2007), no. 1, 207-226. MR2304922 (2008c:46079), Zbl 1113.46049, arXiv:math/0503374.
[4] Blackadar, Bruce. K-theory for operator algebras. Second edition. Mathematical Sciences Research Institute Publications, 5. Cambridge University Press, Cambridge, 1998. xx+300 pp. ISBN: 0-521-63532-2. MR1656031 (99g:46104), Zbl 0913.46054.
[5] Bratteli, Ola. Inductive limits of finite-dimensional C^{*}-algebras. Trans. Amer. Math. Soc. 171 (1972), 195-234. MR0312282 (47 \#844), Zbl 0264.46057, doi: 10.2307/1996380.
[6] Brown, Lawrence G. Stable isomorphism of hereditary subalgebras of C^{*}-algebras. Pacific. J. Math. 71 (1977), no. 2, 335-348. MR0454645 (56 \#12894), Zbl 0362.46042, doi: 10.2140/pjm.1977.71.335.
[7] Cuntz, Joachim. Simple C^{*}-algebras generated by isometries. Comm. Math. Phys. 57 (1977), no. 2, 173-185. MR0467330 (57 7189), Zbl 0399.46045, doi: 10.1007/BF01625776.
[8] Cuntz, Joachim; Krieger, Wolfgang. A class of C^{*}-algebras and topological Markov chains. Invent. Math. 56 (1980), no. 3, 251-268. MR561974 (82f:46073a), Zbl 0434.46045, doi: 10.1007/BF01390048.
[9] Deaconu, Valentin. C^{*}-algebras and Fell bundles associated to a textile system. J. Math. Anal. Appl. 372 (2010), no. 2, 515-524. MR2678879 (2012a:46092), Zbl 1205.37020, arXiv:1001.0037, doi: 10.1016/j.jmaa.2010.07.034.
[10] Evans, D. Gwion. On the K-theory of higher rank graph C^{*}-algebras. New York J. Math. 14 (2008), 1-31. MR2383584 (2009e:46065), Zbl 1146.46048, arXiv:math/0406458.
[11] Exel, Ruy; Gonçalves, Daniel; Starling, Charles. The tiling C^{*}-algebra viewed as a tight inverse semigroup algebra. Semigroup Forum 84 (2012), no. 2, 229-240. MR2898758 (2000i:46064), Zbl 1256.46034, arXiv:1106.4535, doi: 10.1007/s00233-011-9359-x.
[12] Exel, Ruy; Laca, Marcelo. Cuntz-Krieger algebras for infinite matrices. J. Reine Angew. Math. 512 (1999), 119-172. MR1703078 (2000i:46064), Zbl 0932.47053, arXiv:funct-an/9712008, doi: 10.1515/crll.1999.051.
[13] Farthing, Cynthia; Muhly, Paul S.; Yeend, Trent. Higher-rank graph C^{*} algebras: an inverse semigroup and groupoid approach. Semigroup Forum 71 (2005), no. 2, 159-187. MR2184052 (2006h:46052), Zbl 1099.46036, arXiv:math/0409505, doi: 10.1007/s00233-005-0512-2.

C^{*}-ALGEBRAS ASSOCIATED WITH TEXTILE DYNAMICAL SYSTEMS 1243

[14] Fischer, Roland. Sofic systems and graphs. Monatsh. Math. 80 (1975), no. 3, 179186. MR0407235 (53 \#11018), Zbl 0314.54043, doi: 10.1007/BF01319913.
[15] Kajiwara, Tsuyoshi; Pinzari, Claudia; Watatani, Yasuo. Ideal structure and simplicity of the C^{*}-algebras generated by Hilbert bimodules. J. Funct. Anal. 159 (1998), no. 2, 295-322. MR1658088 (2000a:46094), Zbl 0942.46035, doi: 10.1006/jfan.1998.3306.
[16] Kang, Sooran; Pask, David; Webster, Samuel B. G. Textile systems, coloured graphs and their applications to higher-rank graphs. Preprint, 2013. arXiv:1310.7651.
[17] Krieger, Wolfgang. On sofic systems. I. Israel J. Math. 48 (1984), no. 4, 305-330. MR0776312 (86j:54074), Zbl 0573.54032, doi: 10.1007/BF02760631.
[18] Krieger, W. On sofic systems II. Israel J. Math. 60 (1987), 167-176. MR0931874 (89k:54098), Zbl 0638.54034, doi: 10.1007/BF02790789.
[19] Kumjian, Alex; Pask, David. Higher rank graph C^{*}-algebras. New York J. Math. 6 (2000), 1-20. MR1745529 (2001b:46102), Zbl 0946.46044, arXiv:math/0007029.
[20] Kumjian, Alex; Pask, David; Raeburn, Iain; Renault, Jean. Graphs, groupoids and Cuntz-Krieger algebras. J. Funct. Anal. 144 (1997), no. 2, 505-541. MR1432596 (98g:46083), Zbl 0929.46055, doi: 10.1006/jfan.1996.3001.
[21] Lind, Douglas; Marcus, Brian. An introduction to symbolic dynamics and coding. Cambridge University Press, Cambridge, 1995. xvi+495 pp. ISBN: 0-521-55124-2; 0-521-55900-6. MR1369092 (97a:58050), Zbl 1106.37301, doi: 10.1017/CBO9780511626302.
[22] Markley, Nelson G.; Paul, Michael E. Matrix subshifts for \mathbb{Z}^{ν} symbolic dynamics. Proc. London Math. Soc. (3) 43 (1981), no. 2, 251-272. MR0628277 (82i:54073), Zbl 0479.54022, doi: $10.1112 / \mathrm{plms} / \mathrm{s} 3-43.2 .251$.
[23] Matsumoto, Kengo. K-theory for C^{*}-algebras associated with subshifts. Math. Scand. 82 (1998), no. 2, 237-255. MR1646513 (2000e:46087), Zbl 0921.46078.
[24] Matsumoto, Kengo. Presentations of subshifts and their topological conjugacy invariants. Doc. Math. 4 (1999), 285-340. MR1710375 (2000h:37013), Zbl 0926.37002.
[25] Matsumoto, Kengo. C^{*}-algebras associated with presentations of subshifts. Doc. Math. 7 (2002), 1-30. MR1911208 (2004j:46083), Zbl 1007.46051.
[26] Matsumoto, Kengo. Construction and pure infiniteness of C^{*}-algebras associated with lambda-graph systems. Math. Scand. 97 (2005), no. 1, 73-88. MR2179590 (2006e:46063), Zbl 1094.46041.
[27] Matsumoto, Kengo. Actions of symbolic dynamical systems on C^{*}-algebras. J. Reine Angew. Math. 605 (2007), 23-49. MR2338126 (2009g:46131), Zbl 1123.46050, doi: 10.1515/CRELLE.2007.026.
[28] Matsumoto, Kengo. Textile systems on lambda-graph systems. Yokohama Math. J. 54 (2008), no. 2, 121-206. MR2488282 (2010e:37011), Zbl 1175.37017, arXiv:math/0607520.
[29] Matsumoto, Kengo. Orbit equivalence in C^{*}-algebras defined by actions of symbolic dynamical systems. Operator structures and dynamical systems, 121-140, Contemporary Math., 503. Amer. Math. Soc., Providence, RI, 2009. MR2590619 (2012d:46166), Zbl 1194.46093,
[30] Matsumoto, Kengo. Actions of symbolic dynamical systems on C^{*}-algebras. II. Simplicity of C^{*}-symbolic crossed products and some examples. Math. Z. 265 (2010), no. 4, 735-760. MR2652533 (2011g:46123), Zbl 1208.46057, arXiv:0705.3283, doi: 10.1007/s00209-009-0538-3.
[31] Matsumoto, Kengo. C^{*}-algebras associated with Hilbert C^{*}-quad modules of C^{*} textile dynamical systems. Preprint, 2011. arXiv:1111.3091v1.
[32] Matsumoto, Kengo. Cuntz-Krieger algebras associated with Hilbert C^{*}-quad modules of commuting matrices. Math. Scand. 117 (2015), no. 1, 126-149. arXiv:1201.1056v1.
[33] Matsumoto, Kengo. C^{*}-algebras associated with Hilbert C^{*}-quad modules of finite type. Int. J. Math. Math. Sci. 2014 Art. ID 952068, 21 pp. MR3166746, Zbl 1286.46060, arXiv:1309.7704, doi: 10.1155/2014/952068.
[34] Nasu, Masakazu. Textile systems for endomorphisms and automorphisms of the shift. Mem. Amer. Math. Soc. 114 (1995), no. 546, viii+215 pp. MR1234883 (95i:54051), Zbl 0845.54031, doi: 10.1090/memo/0546.
[35] Paschke, W. L. K-theory for actions of the circle group on C^{*}-algebras. J. Operator Theory 6 (1981), no. 1, 125-133. MR0637006 (82m:46074), Zbl 0478.46057.
[36] Pask, David; Raeburn, Iain; Weaver, Natasha A. A family of 2-graphs arising from two-dimensional subshifts. Ergodic Theory Dynam. Sytems 29 (2009), no. 5, 1613-1639. MR2545020 (2010g:46115), Zbl 1187.46040. arXiv:0804.3447, doi: 10.1017/S0143385708000795.
[37] Pask, David; Raeburn, Iain; Weaver, Natasha A. Periodic 2-graphs arising from subshifts. Bull. Aust. Math. Soc. 82 (2010), no. 1, 120-138. MR2669150 (2011f:46083), Zbl 1200.46060, arXiv:0911.0730, doi: 10.1017/S0004972709001269.
[38] Paterson, Alan L. T. Groupoids, inverse semigroups, and their operator algebras. Progress in Mathematics 170. Birkhäuser Boston Inc., Boston, MA, 1999. $\mathrm{xvi}+274$ pp. ISBN: 0-8176-4051-7. MR1724106 (2001a:22003), Zbl 0913.22001, doi: 10.1007/978-1-4612-1774-9.
[39] Pimsner, Michael V. A class of C^{*}-algebras generalizing both Cuntz-Krieger algebras and crossed product by \mathbb{Z}. Free probability theory (Waterloo, ON, 1995), 189212, Fields Inst. Commun., 12. Amer. Math. Soc., Providence, RI, 1997. MR1426840 (97k:46069), Zbl 0871.46028.
[40] Pimsner, M.; Voiculescu, D. Exact sequences for K-groups and Ext-groups of certain cross-product C^{*}-algebras. J. Operator Theory 4 (1980), no. 1, 93-118. MR0587369 (82c:46074), Zbl 0474.46059.
[41] Renault, Jean. A groupoid approach to C^{*}-algebras. Lecture Notes in Mathematics, 793. Springer, Berlin, 1980. ii+160 pp. ISBN: 3-540-09977-8. MR0584266 (82h:46075), Zbl 0433.46049, doi: 10.1007/BFb0091072.
[42] Robertson, David I.; Sims, Aidan. Simplicity of C^{*}-algebras associated to higher-rank graphs. Bull. Lond. Math. Soc. 39 (2007), no. 2, 337-344. MR2323468 (2008g:46099), Zbl 1125.46045, arXiv:math/0602120, doi: $10.1112 / \mathrm{blms} / \mathrm{bdm} 006$.
[43] Robertson, Guyan; Steger, Tim. Affine buildings, tiling systems and higher rank Cuntz-Krieger algebras. J. Reine Angew. Math. 513 (1999), 115-144. MR1713322 (2000j:46109), Zbl 1064.46504, arXiv:1302.5593, doi: 10.1515/crll.1999.057.
[44] Rørdam, M.; Larsen, F.; Laustsen, N. An introduction to K-theory for C^{*} algebras. London Mathematical Society Student Texts, 49. Cambridge University Press, Cambridge, 2000. xii+242 pp. ISBN: 0-521-78334-8; 0-521-78944-3. MR1783408 (2001g:46001), Zbl 0967.19001.
[45] Rosenberg, Jonathan. Appendix to: "Crossed products of UHF algebras by product type actions" by O. Bratteli. Duke Math. J. 46 (1979), no. 1, 25-26. MR0523599 (82a:46064), Zbl 0395.46049, doi: 10.1215/S0012-7094-79-04602-7.
[46] Rosenberg, Jonathan; Schochet, Claude. The Künneth theorem and the universal coefficient theorem for Kasparov's generalized K-functor. Duke Math. J. 55 (1987), no. 2, 431-474. MR0894590 (88i:46091), Zbl 0644.46051, doi: 10.1215/S0012-7094-87-05524-4.
[47] Schmidt, Klaus. Dynamical systems of algebraic origin. Progress in Mathematics, 128. Birkhäuser, Verlag, Basel, 1995. xviii+310 pp. ISBN: 3-7643-5174-8. MR1345152 (97c:28041), Zbl 0833.28001, doi: 10.1007/978-3-0348-0277-2.
[48] Wegge-Olsen, N. E. K-theory and C^{*}-algebras. A friendly approach. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1993. xii+370 pp. ISBN: 0-19-859694-4. MR1222415 (95c:46116), Zbl 0780.46038.
(Kengo Matsumoto) Department of Mathematics, Joetsu University of Education, Joetsu 943-8512, Japan
kengo@juen.ac.jp
This paper is available via http://nyjm.albany.edu/j/2015/21-54.html.

