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Stable lengths on the pants graph are
rational

Ingrid Irmer

Abstract. For the pants graph, there is little known about the be-
haviour of geodesics, as opposed to quasi-geodesics. Brock–Masur–
Minsky showed that geodesics or geodesic segments connecting end-
points satisfying a bounded combinatorics condition, such as the sta-
ble/unstable laminations of a pseudo-Anosov, all have bounded combi-
natorics, outside of annuli. In this paper it is shown that there exist
geodesics that also have bounded combinatorics within annuli. These
geodesics are shown to have finiteness properties analogous to those of
tight geodesics in the complex of curves, from which rationality of stable
lengths of pseudo-Anosovs acting on the pants graph then follows from
the arguments of Bowditch for the curve complex.
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1. Introduction

Suppose S is a closed, orientable, connected surface with genus at least 2,
and let CP (S) be the pants graph of S, first defined by Hatcher–Thurston
[11]. The vertices of CP (S) represent pants decompositions of S, and vertices
are connected by an edge if it is possible to get from one vertex to the other
via an elementary move, defined in Section 2.

In Theorem 12.3 of [4], Behrstock–Drutu–Mosher showed that when the
genus of S is at least 3, Teichmüller space with the Weil–Petersson metric is
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neither hyperbolic nor relatively hyperbolic relative to any nontrivial collec-
tion of subsets. Since Brock showed in [7], Theorem 1.1, that Teichmüller
space of S with the Weil–Petersson metric is quasi-isometric to CP (S), the
same is true for CP (S). As a result, geodesic stability is not true for geodesics
in general, but only under certain assumptions. The K-bounded combina-
torics condition of Brock–Masur–Minsky, [8], will be defined in Section 2.
An example of objects satisfying the K-bounded combinatorics condition are
the stable and unstable limit points, e and b respectively, of a pseudo-Anosov
element g of the mapping class group Mod(S) of S. The K-bounded com-
binatorics condition ensures geodesic stability for geodesics with endpoints
satisfying this condition. This fact was already known, although expressed
in different language, as a consequence of Theorem 6.5 of [3].

The K-bounded combinatorics condition also helps to make sense of a
notion of boundary points at infinity, as explained in Theorem 4.4 of [8].
Informally this is because a geodesic connecting two vertices satisfying the
bounded combinatorics condition determines a direction in which CP (S)
behaves as though it were negatively curved. Alternatively, a boundary at
infinity for CP (S) can also be obtained from the construction in Example
2.15 of [10].

The stable length of g is defined to be

lim
n→∞

d(v, gnv)

n

where d(∗, ∗) is the usual combinatorial distance on CP (S) obtained by
assigning each edge length one, and v is any vertex of CP (S). Since the
mapping class group acts by isometry, it is not hard to see that this quantity
is locally constant, and hence independent of v, due to connectedness of
CP (S). Connectedness of CP (S) is shown in the appendix of Hatcher–
Thurston, [9].

A definition of Harvey’s complex of curves C(S) is given in Section 2.
It was shown in [13], Proposition 7.6, that the stable length of a pseudo-
Anosov acting on Harvey’s complex of curves is nonzero. In Section 5 other
results of Masur–Minsky will be summarised, that relate distances in C(S)
to distances in CP (S), from which it follows that the stable length of g acting
on CP (S) must also be nonzero.

Benson Farb, [12], asked whether pseudo-Anosovs also have rational stable
lengths on CP (S), and the main theorem of this paper answers that in the
affirmative.

Theorem 1. Let g be a pseudo-Anosov element of the mapping class group
of S. Then the stable length of the action of g on CP (S) is rational.

The Nielsen–Thurston classification of mapping classes states that ev-
ery mapping class is either pseudo-Anosov, periodic or reducible. These
categories are known to have many properties in common with hyperbolic,
elliptic and parabolic isometries, respectively, of the hyperbolic plane. One
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property of a hyperbolic isometry h acting on the complex plane H2 is that
the hyperbolic isometry leaves invariant a geodesic connecting its limit points
at infinity; the axis of h. That the stable length of a pseudo-Anosov acting
on C(S) is rational is a corollary of Proposition 7.6 of [14]. Rationality of
the stable length of a pseudo-Anosov acting on C(S) was then reproven in
[6] by showing the existence of an axis for some finite power of the pseudo-
Anosov. The stable length is then the translation length along the invariant
geodesic divided by the power of the pseudo-Anosov that leaves the geodesic
invariant. This is the approach taken in this paper for CP (S).

Let M be the mapping torus of the pseudo-Anosov g. In [17], Theorem
0.1, Thurston proved that the mapping torus of a pseudo-Anosov mapping
class is hyperbolic, which is unique by the Mostov rigidity theorem. Let
M̃ ≡ S × R be the infinite cyclic covering space corresponding to the fiber
of the mapping torus. Fix an inclusion of S into M̃ , and identify curves
on S with curves in M̃ . The length of a curve is then the length of its
geodesic representative in M̃ . The finiteness properties of tight geodesics
used by Bowditch in [6] to prove rationality of stable length of a pseudo-
Anosov acting on the complex of curves came from the fact that there are
only finitely many orbits of short curves in M̃ under the action of 〈g〉.

The major difficulty in working with curve complexes is that, apart from
exceptional cases, they are not locally compact. In [14], Section 4, the notion
of a tight geodesic was defined, in order to circumvent this obstacle. In [5],
Section 1, a slightly modified definition of tightness is given, which is the
one found in Section 2.

To prove Theorem 1, we need an analogue of the notion of tight geodesics
for the pants graph in order to obtain finiteness properties similar to those
used by Bowditch in [6]. Essentially, these are the geodesics that pass
through subsurfaces in the most convex way possible, as explained in Subsec-
tion 3. The most obvious choice are geodesics with bounded combinatorics.
A further consequence of Theorem 4.4 of [8] is that geodesics connecting
b and e all satisfy the K-bounded combinatorics condition outside of an-
nuli. All that remains to show is that there exist geodesics with bounded
combinatorics also inside of annuli.

Outline of paper. Section 2 sets out the basic notation and definitions re-
lating to curve complexes and bounded combinatorics. Section 3 is intended
to reconcile the “bounded curve length” arguments of Bowditch with equiv-
alent formulations using bounded combinatorics, in line with [8], and is not
strictly necessary for the proof of Theorem 1. Bowditch’s argument is out-
lined in Section 4. It will be convenient to make use of some well known
results of Masur–Minsky, [14], which are summarised briefly in Section 5,
and used to make rigorous the connections between combinatorics, distances
and bounded curve lengths. Finally, the existence of K-bounded geodesics
is proven in Section 7 using the short curve arguments from Section 6.
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2. Standard definitions relating to curve complexes

A curve is an isotopy class of maps of S1 into the manifold in question;
here either the surface S or the 3-manifold M̃ . The intersection number of
two curves c1 and c2 on a surface is equal to the smallest possible number of
crossings of two representatives of the isotopy classes. A curve will often be
confused with the image of a particular representative of the isotopy class.
When the (sub)surface has punctures or nonempty boundary, it will also
be assumed that the curve is not homotopic onto the boundary or into a
puncture. All curves are assumed to be simple, where intersection numbers
of curves in M̃ are defined by projecting onto the image of a π1 injective
embedding of the surface S into M̃ .

Pants graph. The pants graph CP (S) is the graph defined by Hatcher–
Thurston in [11] with vertex set consisting of isotopy classes of pants de-
compositions of the surfaces S. Two vertices are connected by an edge if
they represent pants decompositions that can be connected by a so-called
elementary move. An elementary move takes a curve c1 in a pants decom-
position p1 and replaces it with another curve c2, such that (p1 \ c1) ∪ c2 is
a new pants decomposition, and c1 and c2 intersect minimally in the com-
ponent of S \ (p1 \ c1) into which they can both be isotoped. To intersect
minimally means that c1 and c2 have intersection number one inside a one
holed torus or two inside a four-punctured sphere.

A geodesic in the pants graph will be said to pass through a curve c, or
alternatively, the curve c will be said to be on the geodesic if there is a vertex
of the geodesic representing a pants decomposition containing the curve c.

Curve complexes. A complex of curves will be defined for the surface S,
and also, in order to define subsurface projections following Section 2 of
Masur–Minsky,[14], curve complexes for subsurfaces of S. These complexes
are all assumed to have the usual combinatorial distance, that assigns two
vertices distance one iff they are connected by an edge. Suppose Sg,p is an
orientable surface with genus g and p boundary curves. Except for the an-
nulus, the set of curves on the subsurface Sg,p define the vertices of Harvey’s
complex of curves, C(Sg,p). Whenever 3g + p > 4, two or more vertices
of the curve complex C(Sg,p) span a simplex if the curves they represent
can be realised disjointly. For all other subsurfaces of interest except the
annulus, namely the four punctured sphere and the once punctured torus,
C(Sg,p) has an edge connecting any pair of vertices representing curves that
intersect minimally.
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For an annulus A ⊂ S, the definition of C(A) needs to be approached
differently, and captures the concept of the amount of twisting around the
core curve of the annulus. Let Ã be the covering space of S to which A
lifts homeomorphically. Since this annular covering is hyperbolic, there is a
compactification Â of Ã. A vertex in C(A) is given by a lift of a curve to

Â, modulo homotopies that fix the endpoints. Two vertices are connected
by an edge if they represent lifts with disjoint interiors. It is not hard to see
that this complex is quasi-isometric to Z.

The notion of subsurface projection was defined by Masur–Minsky, Sec-
tions 2.3 and 2.4 of [14], as a means of breaking down curve complex prob-
lems into simpler pieces. Let Y be an incompressible, nonperipheral con-
nected open subsurface of S. If c is a curve in S that intersects Y , the
subsurface projection of c to Y is defined to be a union of curves in Y ob-
tained by surgering each arc of c ∩ Y along the boundary of Y . Since there
are some choices involved, in [14] it is shown that subsurface projections are
coarsely well defined.

The distance in the subsurface projection to Y of the vertices v1 and v2 of
C(S), dY (v1, v2), is zero when one or both of the vertices represent curves
that can be isotoped out of Y . Otherwise, it is the distance in C(Y ) of the
subsurface projections to Y of the vertices v1 and v2, which is shown to be
coarsely well defined.

Bounded Combinatorics. Suppose v1 and v2 are vertices of C(S). For
any incompressible, connected open subsurface Y of S, dY (v1, v2) is defined
as above. The pair (v1, v2) is said to have K-bounded combinatorics, Section
1 of [8], if there is an upper bound K on the distance in the subsurface
projection between v1 and v2 to all Y . If v1 and v2 are vertices of CP (S), the
subsurface projections of the multicurves represented by the two vertices also
have coarsely well defined subsurface projections to Y , consisting of a union
of curves in Y . When the union of curves is not a multicurve, distance in
the subsurface projection can be seen to be coarsely well defined by choosing
some nontrivial multicurve contained in the union of curves. As for v1 and
v2 in C(S), the pair (v1, v2) is said to have K-bounded combinatorics, if there
is an upper bound K on the distance in the subsurface projection between
v1 and v2 to all Y .

A path in C(S) or CP (S) will be said to be K-bounded if this is true for
all pairs of vertices through which it passes.

Let F(b, e) be the graph consisting of the union of geodesics in CP (S)
connecting b to e, and FK(b, e) be the (possibly empty) subgraph consisting
of the union of K-bounded geodesics. It follows from Theorem 4.4 of [8]
that the geodesics in FK(b, e) fellow travel.
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3. A locally finite subgraph of F(b, e)

The aim is to find a locally finite subgraph of F(b, e) closed under the
action of g. By locally finite is meant that there are only finitely many
geodesics in the subgraph connecting any two vertices.

Conjecture 5 of [2] states that all strata of CP (S), i.e., subcomplexes
of CP (S) whose vertices correspond to pants decompositions containing a
fixed multicurve, are convex. It was shown in the Appendix of [1] that this
conjecture would imply the local finiteness we are looking for.

Apart from proving Conjecture 5 of [2], there are two strategies that
might be employed to obtain a locally finite subgraph of F(b, e); namely
using bounded combinatorics analogous to the approach taken in [8] or by
using lengths of curves in mapping tori, following Bowditch, as explained in
Section 4. The two approaches can be shown to give the same results; one
direction of this will be proven in Lemma 4. Informally, the more unbounded
the combinatorics become, the longer the associated curves in the mapping
tori. In Section 6, bounded combinatorics also inside of annuli will be used
to show the existence of geodesics in F(b, e) that only pass through curves
that are not “too long”. This subsection explains how to obtain a locally
finite graph by bounding combinatorics. Proposition 2 is not essential for
the proof of the theorem.

Let p1 and p2 be two pants decompositions. Since any two pants decom-
positions represent vertices in CP (S) at finite distance, p1 and p2 have K1

bounded combinatorics, for some K1 > 0. Any two vertices along any pant
geodesics connecting p1 to p2 necessarily have bounded combinatorics, since
the geodesics have finite length. A geodesic for which the supremum of K,
taken over all pairs of vertices, is minimised, will be called a K-minimising
geodesic.

The notion of K-minimising geodesics are intended to be a generalisation
of Masur–Minsky’s tight geodesics in C(S). Informally speaking, a curve
representing a vertex of a tight geodesic in C(S) enters a subsurface of S
only if it is forced to by a vertex on one side of it along the geodesic, and only
as deeply as this vertex to one side of it. Distances in subsurface projections
of the endpoints of a tight geodesic bound distances in subsurface projections
of pairs of vertices along the geodesic. A key property of tight geodesics is
that there are only finitely many tight geodesics between any two vertices of
C(S), [14], Theorem 6.14. The closest analogy of a tight geodesic in CP (S)
is a hierarchy path, defined in Section 4 of [14]. However, it is not known
whether or not hierarchy paths are geodesics. The condition that a geodesic
in CP (S) is K-minimising is strong enough to obtain the local finiteness
properties needed in this paper.

Proposition 2. Let d(v1, v2) denote the distance in CP (S) between two ver-
tices v1 and v2. Suppose also that v1 and v2 do not represent pants decom-
positions with curves in common. The number of K-minimising geodesics
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in CP (S) connecting v1 and v2 is bounded from above by(
−3K

2
χ(S)

)d(v1,v2)
.

Proof. Starting at the vertex v1, an elementary move might possibly be
performed on any one of −3

2χ(S) of the curves in the pants decomposition
of S. Suppose the elementary move is performed on the curve c. Since
v2 represents a pants decomposition containing a curve that intersects c,
applying the K-bounded combinatorics condition to the annular subsurface
with core curve c restrains the number of twists the elementary move can
perform within the one holed torus or four punctured sphere containing c.
This gives at most −3K

2 χ(S) edges emerging from v1 that a K-bounded
geodesic connecting v1 to v2 might take. From each of the endpoints of
these finite number of edges, again there are only finitely many edges that
a K-bounded geodesic might take, etc. The bound follows. �

Remark. Since the action of the mapping class group on CP (S) preserves
distance in subsurface projections, any mapping class maps K-minimising
geodesic segments to K-minimising geodesic segments. If two pants decom-
positions have a curve c in common, it is not clear whether K-minimising
geodesics, (or geodesics in general) connecting the corresponding vertices
in CP (S) only pass through vertices representing pants decompositions con-
taining c; this amounts to proving Conjecture 5 of [2]. If not, the assumption
in Proposition 2 is necessary, because there is a mapping class consisting of
a Dehn-twist around c that fixes v1 and v2, but has an infinite orbit of
K-minimising geodesics.

Suppose now that p1 and p2 are no longer pants decompositions, but a
pair of laminations satisfying the K-bounded combinatorics condition, such
as the limit points of a pseudo-Anosov. It is not yet clear that K-minimising
geodesics connecting these two boundary points exist.

4. Short curves and invariant quasi-geodesics

Recall that Brock showed that the pants graph is quasi-isometric to Te-
ichmüller space of S, T (S), with the Weil–Petersson metric, [7], Theorem
1.1. The intuition behind this is that a vertex v in CP (S) determines a
neighbourhood N (v) in T (S), consisting of the set of points in T (S) cor-
responding to metrics that make the curves in v “short”. There is some
freedom in choosing what is meant by “short”; from now on it will be fixed
to mean shorter than twice Bers’ constant L. By the length of a curve is
meant here, the length of the unique geodesic in the free homotopy class in
a given metric. That sufficiently short curves determine a pants decompo-
sition is a consequence of Margulis’ lemma. The proof in [7] makes use of
the fact that the neighbourhood N (v) has bounded diameter in the Weil–
Petersson metric. The way the position of the short curves change when
traversing a path in T (S) is modelled by a path in CP (S).
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Recall that M̃ is the infinite cyclic covering space of the mapping torus
with monodromy g. As the covering space of a compact manifold without
boundary, M̃ has injectivity radius bounded from below, so it follows from
Theorem A of [15] that M̃ determines a quasi-geodesic (with respect to
the Teichmüller metric) in Teichmüller space. By construction, this quasi-
geodesic is in the ε-thick part of Teichmüller space. In addition, since g is
pseudo-Anosov, the image in CP (S) of this quasi-geodesic under the quasi-
isometry from Theorem 1.1 of [7] satisfies K-bounded combinatorics, also in
annuli. It follows from Theorem 1.1 of [16] that a quasi-geodesic with respect
to the Weil–Petersson metric is obtained. Composing the quasi-geodesic in
Teichmüller space with the quasi-isometry from Teichmüller space to CP (S),
a family, Q2L(b, e), of quasi-geodesics in CP (S) connecting b to e, is obtained.

By construction, the elements of Q2L(b, e) only pass through short curves

in M̃ . The property of short curves in M̃ of interest for this proof is that, by
Margulis’ lemma, there are only finitely many of them in M , so the vertices
of quasi-geodesics in Q2L(b, e) are contained in finitely many orbits of g.
This will be shown to be the source of the periodicity used to prove the
theorem.

Since g acts by isometry, both on CP (S) and on M̃ , Q2L(b, e) is closed
under the action of g. It then follows from exactly the same argument given
in [6], that there is a quasi-geodesic Q in Q2L(b, e) invariant under gm for
some m.

Clearly, the existence of Q does not prove the theorem, since Q is only a
quasi-geodesic. In Section 6, the proximity of geodesics to Q will be used to
show the existence of geodesics in FK for large enough K.

For the sake of completeness, Bowditch’s argument is sketched below.

Bowditch argument. Let G(b, e) be the graph consisting of the union of
tight, directed geodesics in C(S) connecting b to e, and let E be the set of
directed edges of G(b, e). The mapping class group maps tight geodesics to
tight geodesics, so G(b, e) is closed under the action of g. The set E/〈g〉
is shown by Bowditch in Section 7 of [6] to be finite using an argument of
Minsky’s that puts vertices on a geodesic in G(b, e) in correspondence with

short curves in M̃ . The finite number of g orbits of short curves in M̃ gives
a bound on the number of elements of the set E/〈g〉.

It may not be the case that all geodesics contained in G(b, e) are tight, so
let L(b, e) be the set of all geodesics contained in G(b, e).

Remark. The geodesics in L(b, e) are all constructed by connecting edges
of E/〈g〉. There is no assumption being made that all paths constructed in
this way are geodesics.

Short curve arguments gave us finiteness of the set of edges of E/〈g〉. It
is not yet clear that a geodesic invariant under some power of g exists. The
following argument of Delzant is used to show that there exist geodesics
passing through the finite set of edges with cyclic repetitions. Assign each
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of the finite elements of E/〈g〉 a number. A geodesic γ in L(b, e) will be said
to be lexicographically least for all vertices v, w of γ if the sequence of labels
of directed edges in the segment of γ connecting v to w is lexicographically
least amongst all geodesic segments in G(b, e) connecting v to w. Let LL(b, e)
be the subgraph of lexicographically least geodesics in G(b, e). It is shown
that:

• LL(b, e) is nonempty.
• LL(b, e) is closed under the action of g.
• LL(b, e) contains finitely many elements.

Since there is a finite, nonempty, set of geodesics connecting b to e, closed
under the action of g, it follows that some finite power m of g has an axis.

5. Masur–Minsky background and K-bounded
combinatorics

Hierarchy paths are defined in Section 4 of [14]. A hierarchy is a combi-
natorial object, informally described in [14] as a thickening of a geodesic in
C(S). The construction in Section 4 of [14] results in a path in the marking
graph. The marking graph is a graph defined similarly to the pants graph,
but with the curves in the pants decompositions provided with transver-
sals. There is an action of the mapping class group on the marking graph,
and the transversals ensure that vertex stabiliser subgroups of the mapping
class group are trivial. A simpler construction of hierarchy paths in the
pants graph is all that will be needed here. A discussion of how the results
in [14] for the marking graph can be applied to the pants graph is given in
Section 8 of [14].

Let φ be an element of the mapping class group, and v be a vertex of
CP (S) representing the pants decomposition by the curves

(p1, p2, . . . , p− 3
2
χ(S)).

The hierarchy path is constructed around a tight geodesic α in C(S) passing
from p1 to φ(p1). Suppose α passes through the vertices

p1, α1, α2, . . . , αm, φ(p1).

In the subsurface projection to S \αi, the curves αi−1 and αi+1 are a certain
distance apart. For every i, construct a tight geodesic βi in the subsurface
projection to S \ αi. Suppose the geodesic βi passes through the vertices
αi−1, β

i
1, β

i
2, . . . , αi+1. For the vertex p1, construct a tight geodesic β0 in the

subsurface projection to S \α1 between p2 and α1, and for the vertex φ(p1)
construct a tight geodesic in the subsurface projection to S \ φ(p1) between
αm and φ(p2). These tight geodesics are then used to obtain an ordered set
of pairs

P := {(p1, p2), (p1, β01), (p1, β
0
2), . . . , (p1, α1), (β

1
1 , α1), (β

1
2 , α1),

. . . (α3, α2), . . . (φ(p1), φ(p2))}.
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The ordered set P is the basis around which a curve in the pants graph
is built up, by iterating the construction in the previous paragraph. More
precisely, we next construct a tight geodesic γi−1 in the subsurface projec-
tion to S \ Pi, where Pi is the ith element of P . The geodesic γi connects
the subsurface projection of Pi−1 to the subsurface S \ Pi to the subsur-
face projection of Pi+1 to S \ Pi. Recall the convention that the subsurface
projection of a curve homotopic to a boundary curve of the subsurface is
empty. So the subsurface projection of Pi−1 and Pi+1 to S \ Pi each consist
of a single curve, and it is possible to construct a geodesic in the subsurface
projection connecting these two curves. Then construct an ordered set of
triples as before. If S has genus 2, this ordered set determines a path in
CP (S), if not, keep iterating until a path in CP (S) between p1 and φ(p1) is
obtained. This path is called a hierarchy path, and it follows from Theo-
rem 6.12 of [14], together with the arguments in Section 8 of [14], that it is
a quasi-geodesic with uniform bounds on the constants.

Lemma 3. Suppose the endpoints v and φ(v) of a hierarchy path in CP (S)
have K-bounded combinatorics. Let l(α) be the length of the geodesic α in
C(S) around which the hierarchy path is constructed. Then

d(v, φ(v)) ≤ l(α)K−
3
2
χ(S)−1

where d(∗, ∗) denotes distance in CP (S).

Proof. When the endpoints of a hierarchy path have K-bounded combina-
torics, each iteration of the construction outlined above increases the number
of elements in the ordered sets by at most a factor of K. �

Recall that Q is a quasi-geodesic connecting b to e that only passes
through short curves, and whose existence was proven in Section 4. We
would like to define a quantity D(γ), similar to the Hausdorff distance in
CP (S) between Q and the geodesic γ, with the only difference being that the
usual distance between two points in CP (S) is replaced by the length of the
shortest hierarchy path between them. Since hierarchy paths are uniform
quasi-geodesics, and it follows from Theorem 4.4 of [8] that γ fellow travels
Q, D(γ) must be finite.

Defining twists. Using the quasi-isometry between the pants graph and
Teichmüller space with the Weil–Petersson metric, it is possible to define
an approximate notion of the number of Dehn twists performed by an ele-
mentary move corresponding to an edge. Alternatively, Theorem 4.4 of [8]
states that a geodesic γ in F(b, e) is within a bounded distance of Q. Since

the short curves in M̃ have bounded combinatorics, lengths of curves in M̃
could be used. This is the approach taken here. Let sL,c be the set of all

curves in M̃ of length less than twice Bers’ constant that intersect c. A
curve will be said to be twisted around c at least n times if it has distance
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at least n from any curve in sL,c in the subsurface projection to the annulus
with core curve c.

Suppose κ is a geodesic in FK∗(b, e); the existence of which will be proven
in Section 6, with 2T being the bound on the number of times a curve
through which κ passes can be twisted around a simple curve. The next
lemma shows that a bound on T gives rise to the length bounds required
for a proof of Theorem 1 analogous to Bowditch’s argument from [6].

Lemma 4 (Bounded combinatorics implies bounded length). There is a
bound on the length of curves through which κ passes, depending on Bers’
constant L, K∗, D(κ) and the upper bound lc on the width of the collar of a

curve on the Teichmüller quasi-geodesic corresponding to M̃ .

Proof. Recall that Q passes through curves whose length are all bounded
from above by 2L. Since any vertex of κ can be connected to a vertex of
Q by a hierarchy path δ of length at most D(κ), an upper bound on the
length of curves will be found by iterating: for the first vertex on δ, a bound
of b1 := 4L + 4T L + 2lc = 4L(T + 1) + 2lc is obtained. This is found by
assuming a worst case scenario, as illustrated in Figure 1.

p

p

p

p

1

2

3

4

<lc

Figure 1. Illustration of the worst case scenario, from which
the expression for b1 is derived. The curve drawn in grey has
length less than 2lc plus twice the length of the curve p3.
Since p3 has length less than 2L, the grey curve has length
less than 4L + 2lc. The grey curve could also be twisted at
most 2T times around the curve p2.

The same argument with bn−1 in place of 2L gives

bn = 2bn−1 + 4bn−1T + 2lc. �

Basic problem. Although the elements of F(b, e) fellow travel Q, since
this is not the marking graph, what might happen is that every geodesic
in F(b, e) passes through curves whose length approaches infinity. In this
case, the hierarchy paths connecting points of Q to points of F(b, e) neces-
sarily perform arbitrarily large numbers of twists, precluding the possibility
of bounding either the combinatorics or the lengths of curves through which
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the geodesic passes. Since g acts by isometry both on M̃ and CP (S), if g is
to have an axis, it is necessary to rule out the possibility that all geodesics
in F(b, e) pass through arbitrarily long curves or have unbounded combina-
torics.

6. Short curves in the pants complex

We finally have all the ingredients to start the proof of Theorem 1.

Proof. Suppose γ is a geodesic in F(b, e) passing through the curve cn,
where cn is long because it has been twisted around a curve c at least n
times. It follows from Lemma 4 that if cn does not have a large subsurface
projection to an annulus, its length is bounded.

Let v be a vertex of γ that represents a pants decomposition containing
the curve cn. Cut the geodesic γ at the vertex v to obtain two rays; one
connecting v to e, call it r1, and the other connecting b to v, r2.

Lemma 5. If n is larger than some constant T (K,D(γ)), both r1 and r2
have to pass through c.

Proof. By assumption, every hierarchy path connecting v to the nearest
point(s) on Q performs a large number of twists around the curve c. Clearly,
this can not be the case for every vertex of γ, because the limits of Q and
γ are the same, and therefore can not differ when projected to a subsurface
Y consisting of an annulus with core curve c. It follows that γ necessarily
passes through curves that are not twisted a large number of times around
c and have arbitrarily large intersection number with c.

Fact: any curve that intersects cn minimally within a four punctured
sphere or a once punctured torus either does not pass through the annulus
with core curve c, or is twisted almost as many times as cn; at most two
times more or fewer. Similarly, if two curves are disjoint and both pass
through Y , the number of twists around c can only differ by at most one.

If r1 does not pass through c, how does r1 get from cn to any curve on
r1 that is not twisted a large number of times around c and intersects c
arbitrarily often?

Suppose c intersects more than one curve in the pants decomposition
corresponding to v. By the previous fact, in order to reach a pants decom-
position that does not have a large subsurface projection to the annulus
with core curve c, an elementary move at the vertex v can not decrease
the number of twists by more than one. An elementary move might in-
crease/decrease by one the number of curves in the pants decomposition
passing through the annulus with core curve c.

If c only intersects one curve, i.e., cn, in the pants decomposition corre-
sponding to v, then c and cn fill the subsurface in which elementary moves
involving cn can occur. So an elementary move can undo the twists of each
arc of a curve passing through Y at most two at a time, or increase/decrease
the intersection number of the pants decomposition with c, for example, via
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an elementary move that twists c around cn. However, it can not decrease
the intersection number of the pants decomposition with c to 0 without
passing through c, because c is the only nontrivial, nonperipheral curve in
the 1-holed torus or 4-holed sphere in question disjoint from c.

It will now be argued that, for n sufficiently large, an element of F(b, e)
can not afford to undo the twists one or two at a time, because then it would
be possible to find a quasi-geodesic segment connecting two points on the
geodesic that is shorter than the geodesic segment with the same endpoints.

Let rcn be a connected subsegment of r1 containing vertices that are all
twisted around c more than n times. By assumption, there is a vertex vδ on
a hierarchy path δ connecting Q to γ, where vδ represents a pants decom-
position containing the curve c and is one endpoint of an edge representing
the elementary move that introduces the large number of twists around c.
This is shown in part (a) of Figure 2. Let ∆ be the set of all such vδs. A
vertex vγ on rcn is a distance less than D(γ) from ∆.

Q γ

vδ vγ

rcn

(a)

Q

< K
′− 3

2
χ(S)−1

vertex of γ

vertex of γ

∆

< D(γ)

< D(γ)

(b)

distance

distance

Diameter of ∆

Figure 2. How to bound the length of rcn.

Since any vertex in ∆ is within D(γ) of γ, and γ has K-bounded combi-

natorics, it follows that there exists a K
′

depending on K and D(γ) such

that any two vertices in ∆ have K
′−bounded combinatorics. By Lemma 3,

∆ therefore has diameter bounded from above by

K
′− 3

2
χ(S)−1.

Since rcn also stays within distance D(γ) of ∆, the length of rcn is bounded
by

K
′− 3

2
χ(S)−1 + 2D(γ).
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This is illustrated in part (b) of Figure 2.

The bound on the length of rcn gives a bound of 2K−
3
2
χ(S)−1 + 4D(γ) on

the number T of twists around c that can be untwisted one or two at a time
by elementary moves along γ. It follows that if n is larger than this bound,
r1 must pass through c in order to be able to undo the large number of
twists around c. A symmetric argument shows that r2 also passes through
the curve c. �

7. Existence of K-minimising geodesics.

The Lemma 5 will now be used to show the existence of geodesics in
F(b, e) with bounded combinatorics, also in annuli, from which Theorem 1
then follows.

Lemma 6. Starting with a geodesic in F(b, e), it is possible to untwist all
the large subsurface projections to annuli to obtain a geodesic in FK∗(b, e),
for K∗ less than the maximum of 2T , K.

Proof. Suppose 2T < n, and let v1 and v2 be two vertices containing c
on the boundary of a geodesic subsegment Ic of γ containing v. Suppose
also that v1 and v2 are as close as possible to v, so that all vertices in the
interior of Ic arel twisted many times around c. The curves in the pants
decompositions represented by v1 and v2 are all either disjoint from c or c
itself, so both v1 and v2 are fixed by the mapping class T−nc that performs n
twists backwards along c. Since the mapping class group acts on CP (S) by
isometry, T−nc takes Ic to a geodesic segment with the same endpoints. Let

γ
′

be the geodesic constructed from γ by replacing Ic with its image under
T−nc .

The proof of Lemma 5 shows that, in the interior of the interval Ic, the
variation in the number of times any vertex can be twisted around c is
bounded from above by T . Therefore, T−nc takes Ic to a geodesic segment
on which no vertex is twisted around c more than T times.

Either the image v
′

of v under T−nc is not twisted many times around

any curve, in which case v
′

consists only of curves with length less than the
bound derived in Lemma 4, or v

′
is twisted more than 2T times around

some other curve, call it d. In the second case, we have seen how to modify
γ
′

in such a way as to undo the large number of twists around d. If we keep
untwisting like this, after finitely many iterations, we obtain a geodesic γv,
for which the image of the vertex v can not be untwisted any further. This
is because at each step, at least one curve in the image of v is shortened by
an amount that is uniformly bounded from below, as will now be shown.

Length reduction from untwisting. The infinite cyclic covering M̃ rep-
resents a path through Teichmüller space; choose the point t at which the
length of the curve cn in the pants decomposition representing v (notation
taken from Lemma 5) is as short as possible. The point t in Teichmüller
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space defines a pants decomposition of short curves (p1, p2, . . . , p− 3
2
χ(S)). If

none of the pi happen to be the curve c, then cn has distance at least n in
the subsurface projection to the annulus with core curve c from at least one
of the pi, so undoing n > 2T twists around c will decrease the length of cn
by an amount bounded from below by approximately 2T s, where s > 0 is
the length of the shortest curve in the mapping torus M . If one of the pi is
c, then take t

′
to be the closest point from t along the path in Teichmüller

space represented by M̃ for which the corresponding pants decomposition
does not contain c. Since Teichmüller space is quasi-isometric to the pants
graph, the distance between t and t

′
is uniformly bounded from above by a

constant depending on K. So an estimation of the length reduction in the
metric determined by t

′
gives an estimation for the length reduction in the

metric given by t, which gives a lower bound for the length reduction in M̃ ,
because the length of cn in M̃ is realised in the metric on S coming from
the point t in Teichmüller space.

Now that we know how to modify γ to obtain at least one vertex with
bounded combinatorics inside of annuli, we need to check that it is possible
to do this consistently for all vertices. Choose a vertex w on γv that is
twisted many times around some curve f . It can be assumed without loss of
generality that w exists, because otherwise we have a geodesic with bounded
combinatorics also inside of annuli, as desired. It is not possible that the
interior of such an interval contains the image of v, because the image of v
could not be twisted around f more than T − 1 times. �

It follows from Lemmas 4 and 6 that the family of geodesics FK∗(b, e)
only passes through curves of bounded length. Therefore, exactly the same
arguments as in Section 4 show the existence of an axis γa invariant under
some power m of g.

The stable length of g is then equal to the rational number

d(p, gmp)

m
for any vertex p on γa. �
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