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Convexity and concavity of the ground
state energy

Herbert Koch

Abstract. This note proves convexity (resp. concavity) of the ground
state energy of one dimensional Schrödinger operators as a function of
an endpoint of the interval for convex (resp. concave) potentials.
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1. Main result and context

Let I = (a, b) ⊂ R be an open interval, V ∈ C(a, b) be a convex or concave
potential with lim inft→−∞ V = ∞ if a = −∞. Consider for t ∈ (a, b] the
energy

Et(u) =

∫ t

a
u2x + V u2dx.

There is a unique positive minimizer u ∈ H1
0 (a, t) under the constraint

‖u‖L2(a,t) = 1. It satisfies the Euler–Lagrange equation

(1) − uxx + V u = λ(t)u

on (a, t) with boundary conditions u(a) = u(t) = 0 (and obvious modifica-
tions if a = −∞). Here λ(t) is the Lagrangian multiplier, and λ(t) = Et(u).
The map t→ λ(t) is the main object of interest.

Theorem 1. The map (a, b] 3 t → λ(t) is twice differentiable, strictly
decreasing and limt→a λ(t) =∞. The map t→ λ(t) is convex if V is convex,
strictly convex if V is convex and not affine. If a = −∞ it is concave if V
is concave and strictly concave if V is concave and not affine.
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The convexity part follows from a much stronger celebrated result by
Brascamp and Lieb [3, 4]. It is related to a weaker statement in Friedland
and Hayman [6] with a computer based proof there. These statements found
considerable interest and use in the context of monotonicity formulas begin-
ning with the seminal work of Alt, Caffarelli and Friedman [1]. Caffarelli
and Kenig [5] prove a related monotonicity formula using the results by
Brascamp–Lieb [3]. They attribute an analytic proof to Beckner, Kenig and
Pipher [2] which the author has never seen. To the best knowledge of the
author the concavity statements are new.

Acknowledgements. This note has its origin in a seminar of free bound-
ary problems at Bonn. It is a pleasure to acknowledge that it would not
exist without my coorganizer Wenhui Shi. I am grateful to Elliott Lieb
for spotting an error in the formulation of the main theorem in a previous
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2. A short elementary proof

Proof. Monotonicity and limt→a λ(t) = ∞ are an immediate consequence
of the definition. We consider Equation (1) on the interval (a, t) and denote
by u(x) = u(x, t) the unique L2 normalized non negative ground state with
ground state energy λ = λ(t). Differentiability with respect to x and t is
an elementary property of ordinary differential equations. We argue at a
formal level and do not check existence of integrals resp. derivatives below,
which follows from standard arguments. We differentiate the equation with
respect to t, denote the derivative of with respect to t by u̇ and obtain

(2) − u̇xx + V u̇− λu̇ = λ̇u

with boundary conditions u̇(a) = 0 and u̇(t) = −ux(t). We multiply (2) by
u, integrate and integrate by parts. Then most terms drop out by (1). Since
‖u‖L2 = 1 we obtain

(3) λ̇ = u̇(t)ux(t) = −u2x(t).

Due to the normalization u̇ is orthogonal to u, i.e.,
∫ t
a uu̇dx = 0. The

quotient w = u̇
u satisfies

wxx +
ux
u
wx −

u2x
u2
w = λ̇ < 0.

In particular w has no nonpositive local minimum. Since w → ∞ as x → t
there can be at most one sign change. Since u̇ is orthogonal to u there is
exactly one sign change of u̇, lets say at a < t0 < t. Since also u̇(a) = 0
if a > −∞ we have u̇x(a) ≤ 0 if a > −∞. We multiplying (1) by ux and
integrate to get

(4) λ̇ = −ux(t)2 =

∫ t

a
V ′u2dx− u2x(a)
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where we omit the last term here and below if a = −∞.
We differentiate (4) with respect to t and use the orthogonality

∫ t
a uu̇dx =

0 to obtain a partly implicit formula for the second derivative of λ with
respect to t:

λ̈ =2

∫ t

a
(V ′(x)− V ′(t0))uu̇dx− 2ux(a)u̇x(a)

=2

∫ t

a
(V ′(x)− V ′(t0))wu2dx− 2ux(a)u̇x(a).

Recall that ux(a) > 0 and u̇x(a) ≤ 0 and hence the second term on the right
hand side is nonnegative. By the choice of t0 the first term is nonnegative
if V is convex, nonpositive if it is concave, positive if V is convex and not
affine, and negative if V is concave and not affine. Thus t → λ is convex if
V is convex, it satisfies λ̈ > 0 if V is convex and not affine (i.e., V ′ is not

constant), if a = −∞ it is concave if V is concave and λ̈ < 0 if V is concave
and not affine. �
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