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Scaffolds and integral Hopf Galois module
structure on purely inseparable extensions

Alan Koch

Abstract. Let p be prime. Let L/K be a finite, totally ramified, purely
inseparable extension of local fields, [L : K] = pn, n ≥ 2. It is known
that L/K is Hopf Galois for numerous Hopf algebras H, each of which
can act on the extension in numerous ways. For a certain collection of
such H we construct “Hopf Galois scaffolds” which allow us to obtain a
Hopf analogue to the Normal Basis Theorem for L/K. The existence of
a scaffold structure depends on the chosen action of H on L. We apply
the theory of scaffolds to describe when the fractional ideals of L are
free over their associated orders in H.
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1. Introduction

Let L/K be a totally ramified extension of local fields of degree pn, where
the residue field of K has characteristic p. Suppose further that L/K is
Galois with G = Gal(L/K). Let OK and OL denote the valuation rings of
K and L respectively. There are two natural ways to describe the elements
of L, namely by using its valuation vL or by using its Galois action. If
π ∈ L is a uniformizing parameter, then every element of L is a K-linear
combination of powers of π; computing its valuation is a simple process. A
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drawback of the valuation representation of L is that the Galois action is
not necessarily transparent.

Alternatively, we have the Normal Basis Theorem, which asserts that
there exists a ρ ∈ L whose Galois conjugates form a K-basis for L/K; equiv-
alently, L is a free rank one module over the group algebra KG. Here, every
element of L is a K-linear combination of {σ(ρ) : σ ∈ G}, which allows for
a simple description of the Galois action; however, the valuation representa-
tion is not transparent, making certain Galois module theory questions diffi-
cult to answer. For example, OL is an OKG-module, however by Noether’s
Theorem [13] OL is not free of rank one if L/K is wildly ramified. The
OKG-module structure of OL when OL does not possess a normal integral
basis can be more difficult. A typical strategy, thanks to Leopoldt [11] is to
replace OKG with a larger OK-subalgebra of KG, namely

A = {α ∈ KG : α(OL) ⊂ OL} ,

which also acts on OL; the structure of OL as an A-module can be simpler
to describe.

In an attempt to unite these representations, G. Griffith Elder [5] first
developed a theory of “Galois scaffolds”. In that work a Galois scaffold
consists of a subset {θ1, θ2, . . . , θn} of KG, together with a positive integer v,

called an integer certificate, such that {vL(θji (ρ)) : 1 ≤ i ≤ n, 0 ≤ j ≤ p−1}
is a complete set of residues mod pn where ρ ∈ L is any element of valuation

v. Certainly, {θji (ρ)} forms a K-basis for L, and this basis facilitates the
study of both valuation and Galois action, particularly if θpi = 0 for all i. A
simple example of a Galois scaffold arises when n = 1 and the break number
b is relatively prime to p; in this case, if G = 〈σ〉 then θ1 = σ − 1, v = b
is an example of a Galois scaffold. Such scaffolds do not always exist — in
fact, integer certificates may not exist, for example if L/K is unramified and
πp = 1 [1]. This notion of scaffold was refined in [3], and then again in [2],
the latter version being the most useful for describing the integral Galois
module structure.

The version in [2] is also the most general as it does not insist that L/K
be Galois, merely that there is a K-algebra A which acts on L in a very
reasonable way. A classic example of such an algebra is a K-Hopf algebra.
There are many more Hopf Galois extensions than Galois extensions. For
example, any Galois extension is Hopf Galois for at least one Hopf algebra
(namely, H = KG) and, if n ≥ 2, many more: the exact determination
of the number of such H is a group theory problem thanks to [7], which
covers all separable extensions. At the other extreme, if the extension L/K
is purely inseparable, then it is also Hopf Galois [4]; if [L : K] ≥ p2, then
there are numerous Hopf algebras which make L/K Hopf Galois [10].

In the setting where L/K is Hopf Galois with Hopf algebra H, one can
study the structure of OL as an H-module. Given [2], a natural approach
would be an attempt to construct an H-scaffold which, loosely, consists of



SCAFFOLDS AND INTEGRAL HOPF GALOIS MODULE STRUCTURE 75

{λt : t ∈ Z} ⊂ L with vL(λt) = t, along with {Ψi : 0 ≤ i ≤ n− 1} ⊂ H such
that Ψi acts on λt in a manner which makes vL(Ψi(λt)) easy to compute.

Here, we focus on the case where L/K is a totally ramified, purely insep-
arable extension of local fields, [L : K] = pn, n ≥ 2. Such extensions are
necessarily primitive, generated as a K-algebra by a (nonunique) element

x ∈ L with xp
n ∈ K,xpn−1 6∈ K. We take a collection of Hopf algebras H

which make L/K Hopf Galois and describe the generalized integral Hopf
Galois module structure of OL. The integral Hopf Galois module structure
we seek is a description of all of the fractional ideals of L as H-modules. In
detail, each fractional ideal of L is of the form Ph

L for h ∈ Z, where PL is

the maximal ideal of OL. In other words, Ph
L = {x ∈ L : vL(x) ≥ h}. For

each h we let Ah be the largest subset of H which acts on Ph
L, i.e.,

Ah =
{
α ∈ H : αPh

L ⊂ Ph
L

}
.

We call Ah the associated order of Ph
L in H: it is clearly an OK-subalgebra

of H and Ah⊗OK
K ∼= H. By construction, Ah acts on Ph

L; the existence of

the scaffold allows for a numerical criterion for determining whether Ph
L is a

free Ah-module. The criterion itself is independent of the scaffold, provided
the scaffold exists.

The paper is organized as follows. After giving a definition of an H-
scaffold, a simpler version than the one in [2], we consider the family of
monogenic K-Hopf algebras Hn,r,f , 1 ≤ r ≤ n − 1, f ∈ K× introduced
in [10] which make L an Hn,r,f -Galois object. We examine the case where
2r ≥ n and consider actions of the linear dual H := H∗n,r,f which give L/K
the structure of a Hopf Galois extension. A subtlety that arises is that
H possesses an infinite number of actions on L; in each case, L/K is H-
Galois. The different actions correspond with different choices for K-algebra
generator x ∈ L; and for each choice of x we will construct H-scaffolds for
infinitely many actions. As with the Galois case, the H-scaffold will allow us
to consider the effect of the action on the valuation of some specially chosen
elements, and using [2, Th 3.1, 3.7] we will use it to describe the integral
Hopf Galois module structure. We will then focus on a specific action for
which an H-scaffold exists, and explicitly describe which fractional ideals
Ph

L are free over their associated orders. We conclude with some remarks
concerning selecting the “best” choices of r and f , and the action on L, for
answering integral Hopf Galois module theory questions.

The evident purpose of this work is to construct H-scaffolds. However,
our results contribute to the bigger picture of scaffolds. The definition of
a scaffold has evolved significantly since Elder’s 2009 paper, which required
L/K to be a Galois extension. At this point, it is not yet clear how prevalent
scaffolds are for general Hopf Galois extensions. But we will see that in the
finite purely inseparable case, many scaffolds exist.
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Throughout, we fix an integer n ≥ 2 and L a totally ramified purely
inseparable extension of K = Fq((T )) of degree pn. Let vK be the T -adic
valuation, vL the extension of vK to L. Write L = K(x), xp

n
= β ∈ K,

vK(β) = −b < 0, p - b. We let H and Hn,r,f be as above, and we assume
2r ≥ n.

Acknowledgements. The author would like to thank G. Griffith Elder for
his input in the preparation of this paper, and the University of Nebraska
at Omaha for their generous hospitality during the development of some of
these results.

2. Scaffolds

The definition of an A-scaffold in [2] is very general — more so than we
need here. We will simplify this definition as much as possible, and since
our acting K-algebra is a Hopf algebra we will refer to it as an H-scaffold.

Definition 2.1. Let a be an integer such that ab ≡ −1 mod pn. Let T > 1
be an integer. An H-scaffold on L of tolerance T consists of:

(1) A set {λj : j ∈ Z, vL(λj) = j} of elements of L such that λj1λ
−1
j2
∈ K

when j1 ≡ j2 mod pn.
(2) A collection {Ψs : 0 ≤ s ≤ n− 1} of elements in H such that

Ψs(1K) = 0

for all s and, mod λj+psbP
T
L,

Ψs(λj) ≡

{
us,jλj+psb res(aj)s > 0

0 otherwise

where us,j ∈ O×K , res(aj) is the least nonnegative residue of aj mod
pn, and

res(aj) =

n−1∑
s=0

res(aj)s p
s, 0 ≤ res(aj)s ≤ p− 1

is the p-adic expansion of res(aj).

Given an H-scaffold we know the effect of applying Ψs to λj , provided
res(aj)s > 0. For 0 < i ≤ p− 1 it can be readily seen that

res(a(b+ psbi))s = p− i > 0,

hence Ψi
s(λb) ≡ uλb+psbi modλj+psbP

T
L for some u ∈ O×K . More generally,

vL(Ψi0
0 Ψi1

1 · · ·Ψ
in−1

n−1 (λb)) = b+ b

n−1∑
s=0

isp
s, 0 ≤ is ≤ p− 1.
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By allowing the {is} to vary, we obtain pn elements of L, pairwise incongru-
ent modulo pn, hence{

Ψi0
0 Ψi1

1 · · ·Ψ
in−1

n−1 (λb) : 0 ≤ is ≤ p− 1
}

is a K-basis for L.
We will use the result below to construct our H-scaffolds.

Lemma 2.2. Suppose we have {Ψs : 0 ≤ s ≤ n− 1} ⊂ H such that, for

i ≤ pn − 1, i =
∑n−1

s=0 isp
s,

Ψs(x
i) ≡ isxi−p

s
modxi−p

s
PT

L

for some T > 1. Let

λj = T (j+b res(aj))/pnxres(aj).

Then {λj} , {Ψs} form a scaffold of tolerance T.

Proof. First, since vL(x) = −b,
vL(λj) = j + b res(aj)− b res(aj) = j,

and clearly vL(λj1λ
−1
j2

) = j1 − j2, so condition (1) of the definition above is
satisfied. Next, we have

Ψs(λj) = Ψs(T
(j+b res(aj))/pnxres(aj))

= T (j+b res(aj))/pnΨs(x
res(aj))

≡ T (j+b res(aj))/pn res(aj)sx
res(aj)−ps modxres(aj)−p

s
PT

L.

If res(aj)s = 0 then Ψs(λj) = 0. Otherwise, a(j + bps) ≡ aj − ps mod pn

and

res(a(j + bps)) = res(aj − ps)
= res(aj)− ps,

the latter equality since res(aj) ≥ ps. Thus res(aj) = ps + res(a(j + bps))
and so

j + b res(aj) = j + b(ps + res(a(j + bps)))

= j + b res(a(j + bps)) + bps,

giving

res(aj)sT
(j+b res(aj))/pnxres(aj)−p

s

= res(aj)sT
(j+b res(a(j+bps))+bps)/pnxres(a(j+bps))

= res(aj)sλj+bps .

Setting us,j = res(aj)s shows that (2) is also satisfied. �

Remark 2.3. By adjusting each λj by a scalar it is possible to have us,j = 1.
This is the primary difference between the construction above and the one
found in [2, Sec. 5.3].



78 ALAN KOCH

In the work to follow, we will use the definition of H-scaffold given by the
description in Lemma 2.2. As the choice of {λj} will remain fixed (assuming
a constant b), we will refer to the scaffold as {Ψs}.

3. The Hopf algebra structure

In this section, we introduce the class of Hopf algebras we will use to
construct our H-scaffolds. To do so, we first recall a family of Hopf algebras
introduced in [10]. For 0 < r < n ≤ 2r and f ∈ K×, let Hn,r,f be the

K-Hopf algebra whose K-algebra structure is Hn,r,f = K [t] /(tp
n
); whose

counit and antipodal map are ε(t) = 0 and λ(t) = −t respectively; and
whose comultiplication is

∆(t) = t⊗ 1 + 1⊗ t+ f

p−1∑
`=1

1

`!(p− `)!
tp

r` ⊗ tpr(p−`).

Let us fix values for r, n, and f as above; and let H = H∗n,r,f . Certainly,

H has a K-basis {z0 = 1, z1, . . . , zpn−1} with zi : H → K given by

zj(t
i) = δi,j ,

where δi,j is the Kronecker delta. The algebra structure on H is induced
from the coalgebra structure on Hn,r,f ; explicitly,

(1) zj1zj2(h) = mult(zj1 ⊗ zj2)∆(h).

In this section we will show that {zps : 0 ≤ s ≤ n− 1} generate H as a K-
algebra. This set will be (part of) the scaffolds we develop.

We start by recalling a result which will facilitate the study of the algebra
structure of H as well as the action of H on L.

Lemma 3.1. Let

Sf (u, v) = u+ v + f

p−1∑
`=1

1

`!(p− `)!
up

r`vp
r(p−`).

Then, for every positive integer i, Sf (u, v)i is an K×-linear combination of
elements of the form

f i3ui1+pr`′vi2+pr`′′ ,

where

i = i1 + i2 + i3

`′ = i3,1 + 2i3,2 + · · ·+ (p− 1)i3,p−1

`′′ = (p− 1)i3,1 + (p− 2)i3,2 + · · ·+ i3,p−1,

and i3,1 + i3,2 + · · ·+ i3,p−1 = i3.
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Proof. This is a straightforward calculation from [10, Lemma 5.1] — we
recall it here for the reader’s convenience.

We have

Sf (u, v)i =

(
u+ v + f

p−1∑
`=1

1

`!(p− `)!
up

r`vp
r(p−`)

)i

=
∑

i1+i2+i3=i

(
i

i1, i2, i3

)
(ui1vi2)

(
f

p−1∑
`=1

1

`!(p− `)!
up

r`vp
r(p−`)

)i3

.

The last factor in each summand can be expanded as

f i3
∑

i3,1+···+i3,p−1=i3

((
i3

i3,1, . . . , i3,p−1

)(p−1∏
j=1

1

i3,j !(p− i3,j)!

)
u

i1+pr`′
v
i2+pr`′′

)
.

The result follows. �

Next, we consider powers of the zps ’s.

Lemma 3.2. For 0 ≤ s ≤ r, 1 ≤ m ≤ p − 1; or 0 ≤ s ≤ r − 1, m = p we
have zmps = m!zmps. In particular, zpps = 0.

Proof. See [10, Lemmas 5.2, 5.3]. While the result there was for n = r+ 1,
its validity depended on the form of the comultiplication; the more general
2r ≥ n case the comultiplication has the same form., and hence a nearly
identical proof. �

The result above does not hold for s > r. However, we do have:

Lemma 3.3. For 0 ≤ s ≤ n− 1, 1 ≤ j,m ≤ p− 1, we have

zjps(t
mps) = m!δj,m.

Furthermore, if s ≥ r then zpps(t
pi) = fp

s−r
δi,s−r. In particular, zpps 6= 0.

Proof. Certainly, if s < r then the result follows from the previous lemma.

Thus, we will assume that s ≥ r. The statement zjps(t
mps) = m!δj,m is

clearly true for j = 1. Suppose zj−1ps (t(m−1)p
s
) = (m − 1)!δj,m−1. Since

s+ r ≥ n we have that tp
s

is a primitive element, hence

zjps(t
mps) = mult(zj−1ps ⊗ zps)(tp

s ⊗ 1 + 1⊗ tps)m

=
m∑
i=0

(
m

i

)
zj−1ps (tip

s
)zps(t

(m−i)ps).
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Recalling that zi(t
j) = 0 for i 6= j, for this to be nonzero, we require i = j−1

and m− i = 1. Thus, m = j and

zmps(t
mps) =

(
m

m− 1

)
zm−1ps (tp

s(m−1))zps(t
ps)

= m(m− 1)!

= m!,

proving the first statement of the lemma.
For the second, we have

zpps(t
pi) = mult(zp−1ps ⊗ zps)

(
t⊗ 1 + 1⊗ t+ f

p−1∑
`=1

1

`!(p− `)!
tp

r` ⊗ tpr(p−`)
)pi

= zp−1ps (tp
i
)zps(1) + zp−1ps (1)zps(t

pi)

+ fp
i
p−1∑
`=1

1

`!(p− `)!
zp−1ps (tp

r+i`)zps(t
pr+i(p−`)).

Since zps(1) = 0 we may ignore the first two terms, and so

zpps(t
pi) = fp

i
p−1∑
`=1

1

`!(p− `)!
zp−1ps (tp

r+i`)zps(t
pr+i(p−`)).

In order that a summand be nonzero we require pr+i(p−`) = ps, i.e. ` = p−1,

and hence i = s− r. We have, since zp−1ps (tmps) = (p− 1)!δp−1,m,

zpps(t
pi) = fp

s−r 1

(p− 1)!
zp−1ps (tp

s(p−1))

= fp
s−r 1

(p− 1)!
(p− 1)!

= fp
s−r
.

For i 6= s− r we have zpps(t
pi) = 0. �

It can be shown that the set{
n−1∏
s=0

zjsps : 0 ≤ js ≤ p− 1

}
is a K-basis for H. A formal proof will be given in section 5. By counting

dimensions, it is clear that zp
2

ps = 0 for r ≤ s ≤ n− 1.
The coalgebra structure on H is induced from the multiplication on Hn,r,f

and is simply

∆(zj) =

j∑
i=0

zj−i ⊗ zi.
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4. The Hopf Galois action

In [10] we describe how L can be viewed as an Hn,r,f -Galois object. Since
2r ≥ n the K-algebra map α : L→ L⊗Hn,r,f given by

(2) α(x) = x⊗ 1 + 1⊗ t+ f

p−1∑
`=1

1

`!(p− `)!
xp

r` ⊗ tpr(p−`)

provides an Hn,r,f -comodule structure on L; furthermore, the map

γ : L⊗ L→ L⊗Hn,r,f

given by γ(xi⊗xj) = xiα(xj) is an isomorphism, hence L is an Hn,r,f -Galois
object. In this section, we describe the induced action of H = H∗n,r,f on L

which makes L/K an H-Galois extension.
Before proceeding, notice that this action depends on two choices: the

choice of x, the K-algebra generator for L, and the choice of t, the K-
algebra generator for Hn,r,f . By replacing x with x′, p - vL(x′) we may
define

αx′(x′) = x′ ⊗ 1 + 1⊗ t+ f

p−1∑
`=1

1

`!(p− `)!
(x′)p

r` ⊗ tpr(p−`)

and obtain a different coalgebra structure. Alternatively, if we replace t
with, say, tg := gt, g ∈ K× we may define

αg(x) = x⊗ 1 + 1⊗ tg + fg1−p
r+1

p−1∑
`=1

1

`!(p− `)!
xp

r` ⊗ tpr(p−`)g

which also results in a different coalgebra structure. Furthermore, each of
the coalgebra structures here give L the structure of an Hn,r,f -Galois object.
Combined, we have coactions given by

αy
h(y) = y ⊗ 1 + 1⊗ th + fh1−p

r+1
p−1∑
`=1

1

`!(p− `)!
yp

r` ⊗ tp
r(p−`)

h ,

y ∈ L×, p - vL(y), h ∈ K×

although some choices of h, y produce the same actions, e.g. αx
1 = αTx

T−1 .
By fixing x ∈ L we eliminate some of the ambiguity as to which coaction

is being used. For the rest, notice that K [tg] /(tp
n

g ) = H
n,r,fg1−pr+1 , and

so Hn,r,f = H
n,r,fg1−pr+1 for any choice of g ∈ K×, hence choosing the

K-algebra generator for the Hopf algebra is equivalent to choosing a repre-

sentative of a coset in K×/(K×)p
r+1−1; once such a choice f is made, it is

assumed that the coaction of Hn,r,f follows the coaction given in Equation
(2). In other words, we will always use the action αx

1 .
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Generally, if A is a K-Hopf algebra such that L is an A-Galois object,
then A∗ acts on L by

(3) h(y) = mult(1⊗ h)α(y), h ∈ A∗, y ∈ L.
As H is generated by {zps : 0 ≤ s ≤ n− 1}, it suffices to compute zps(x

i) for
0 ≤ s ≤ n− 1, 1 ≤ i ≤ pn − 1.

Proposition 4.1. For 0 ≤ i ≤ pn − 1, write

i =
n−1∑
s=0

isp
`.

Then, for 0 ≤ s ≤ r − 1 we have

zps(x
i) = isx

i−ps .

Additionally,

zpr(xi) = irx
i−pr − ifxpr(p−1)+i−1.

Remark 4.2. Note that if i < ps then zps(x
i) = 0, and if i < pr then

zpr(xi) = −ifxpr(p−1)+i−1.

Proof. We have

zps(x
i) = mult(1⊗ zps)α(xi)

= mult(1⊗ zps)Sf (x⊗ 1, 1⊗ t)i

= mult(1⊗ zps)

(
x⊗ 1 + 1⊗ t+ f

p−1∑
`=1

1

`!(p− `)!
xp

r` ⊗ tpr(p−`)
)i

= mult(1⊗ zps)
∑

i1+i2+i3=i

(
i

i1, i2, i3

)
(xi1 ⊗ ti2)

·

(
f

p−1∑
`=1

1

`!(p− `)!
xp

r` ⊗ tpr(p−`)
)i3

.

When simplified, the tensors are of the form xi1+i3pr`′ ⊗ ti2+i3pr`′′ , `′, `′′ as
before. Applying 1⊗ zps to each tensor will give 0 unless

(4) ps = i2 + i3p
r`′′.

Assume first that s < r. Since pr > ps we see that `′′ = 0. This can only
occur if i3 = 0. Thus i2 = ps and i1 = i− ps, giving

zps(x
i) =

(
i

i− ps, ps, 0

)
xi−p

s
zps(t

ps)

=

(
i

ps

)
xi−p

s

= isx
i−ps ,
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the last equality following from Lucas’ Theorem (see [6]). Thus

zps(x
i) = isx

i−ps ,

as desired.
Now we consider the case s = r. Then i3 = 0, i2 = pr, i1 = i − pr

certainly satisfies Equation (4). However, we get an additional solution to
this equation, namely i3 = 1, `′ = p− 1, `′′ = 1, i2 = 0, i1 = i− 1 — as

i2 + i3p
r`′′ = pr(p− `),

with this solution we have the left-hand side equal 0 + pr(1) = pr, hence
` = p− 1. Thus

zpr(xi) =

(
i

i− pr, pr, 0

)
xi−p

r
zpr(tp

r
)

+

(
i

i− 1, 0, 1

)
xi−1f

1

(p− 1)!(p− (p− 1))!
xp

r(p−1)zpr(tp
r
)

= irx
i−pr − ifxpr(p−1)+i−1. �

Much like it was for the algebra structure, describing the action for s > r is
more complicated as Equation (4) can have numerous solutions. However,
in the sequel we will be able to effectively study how the valuation of an
element of L changes when zps is applied.

5. A scaffold on H

Recall that L = K(x), xp
n

= β, vL(x) = vK(β) = −b, p - b. In this
section we build an H-scaffold for L using the action above. Initially, we
will insist on a restriction on f , however this restriction will ultimately not
be necessary.

We start by determining the effect of applying zps to powers of x. The
first result is fundamental.

Proposition 5.1. Let 0 ≤ s ≤ n− 1, 1 ≤ i ≤ pn− 1. Write i =
∑n−1

s=0 isp
s.

If vK(f) ≥ bpr+1−n then

zps(x
i) ≡ isxi−p

s
modxi−p

s
PT

L

where T = pnvK(f)− b(pr+1 − 1).

Proof. Since zps(x
i) = (1⊗ zps)(α(x))i we have

zps(x
i) =

∑
i1+i2+i3=i

f i3
∑

i3,1+···+i3,p−1=i3

ci1,i2,i3x
i1+pr`′zps(t

i2+pr`′′)

where ci1,i2,i3 ∈ K× and, as before,

`′ = i3,1 + 2i3,2 + · · ·+ (p− 1)i3,p−1

`′′ = (p− 1)i3,1 + (p− 2)i3,2 · · ·+ i3,p−1.
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For a summand to be nontrivial we require i2 + pr`′′ = ps, in which case the
summand is a K×-multiple of f i3xi1+pr`′ .

If s < r then Lemma 4.1 gives

zps(x
i) = isx

i−ps ,

and clearly the desired congruence holds.
Now suppose s ≥ r. Then zps(x

i) will again contain the summand
i(s)x

i−ps arising from i3 = 0, however there may be positive choices of i3
which make i2+pr`′′ = ps. Since i3 ≤ `′′ ≤ (p−1)i3 it follows that i3 ≤ ps−r.
For an `′′ in this interval we have i2 = ps−pr`′′ and i1 = i− (ps−pr`′′)− i3.
Since `′ + `′′ = pi3, the i3 > 0 terms in the summand are all of the form

ci1,i2,i3f
i3xi−(p

s−pr`′′)−i3+pr(pi3−`′′) = ci1,i2,i3f
i3xi−p

s+i3(pr+1−1)

=
(
ci1,i2,i3f

i3xi3(p
r+1−1))xi−ps .

Thus
zps(x

i) = isx
i−ps +

∑(
ci1,i2,i3f

i3xi3(p
r+1−1))xi−ps ,

where the sum is taken over all i1, i2, i3 with i3 > 0. Now for i3 ≥ 1,

vL(f i3xi3(p
r+1−1)) = pni3vK(f)− b(i3(pr+1 − 1))

= i3(p
nvK(f)− bpr+1 + b),

and since vK(f) ≥ bpr+1−n this expression is minimized when i3 is mini-
mized, i.e., i3 = 1. Thus

vL
(
f i3xi3(p

r+1−1)) ≥ pnvK(f)− b(pr+1 − 1),

so f i3xi3(p
r+1−1) ∈ PT

L, T = pnvK(f)− b(pr+1 − 1). Hence,

zps(x
i) = isx

i−ps
(

1 +
∑

ci1,i2,i3f
i3xi3(p

r+1−1)
)

and so
zps(x

i) ≡ isxi−p
s

modxi−p
s
PT

L. �

As we have seen, the restriction on vK(f) is not a restriction on the Hopf
algebra, merely on the ways in which this Hopf algebra can act on L. We
must write H = H∗n,r,f , vK(f) ≥ bpr+1−n for the action (induced from the

coaction in Equation (2) for this choice of f) to provide an H-scaffold. As
Hn,r,f = H

n,r,T pp+1−1f
, it is clear that there will be an infinite number of

actions of H on L which produce scaffolds. To ensure a scaffold of tolerance
T > 1 we require a slight increase in the lower bound for vK(f). For the
rest of the section, we shall assume vK(f) > bpr+1−n.

Theorem 5.2. For vK(f) > bpr+1−n, the set{
zj01 z

j1
p · · · z

jn−1

pn−1 : 0 ≤ js ≤ p− 1
}

constructed above is an H-scaffold on L with tolerance

T = pnvK(f)− b(pr+1 − 1) > 1.
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The presentation of the scaffold above follows the form given in Lem-
ma 2.2. To obtain a scaffold which follows Definition 2.1, we pick an integer
a such that ab ≡ −1 (mod pn) and set

λj = T (j+b res(aj))/pnxres(aj), j ∈ Z.

This set, together, with {Ψs = zps : 0 ≤ s ≤ n− 1}, forms the scaffold on L
of tolerance T as in the sense of Definition 2.1. In particular,

λb = T (b+b res(ab))/pnxres(ab)(5)

= T (b+b(pn−1))/pnxp
n−1

= T bxp
n−1

.

As an immediate consequence, we get:

Corollary 5.3. The set{
n−1∏
s=0

zjsps(λb) : 0 ≤ js ≤ p− 1

}
is a K-basis for L.

Proof. This follows from the discussion between Definition 2.1 and Lem-
ma 2.2. In particular, note that{

vL

(n−1∏
s=0

zjsps(λb)
)

: 0 ≤ s ≤ n− 1, 0 ≤ js ≤ p− 1

}
forms a complete set of residues mod pn. �

We devote the remainder of this section to showing that the action of
H on L has an “integer certificate”. In classical Galois module theory, a
number c ∈ Z is called an integer certificate if, for all ρ ∈ L with vL(ρ) = c,
the set {σ(ρ) : σ ∈ Gal(L/K)} is a K-basis for L. We modify that here: a
number c ∈ Z is an integer certificate if whenever vL(ρ) = c the set{

zj01 z
j1
p · · · z

jn−1

pn−1(ρ) : 0 ≤ js ≤ p− 1
}

is a K-basis for L.
As an immediate consequence to Proposition 5.1 we get

Corollary 5.4. Let 0 ≤ s ≤ n − 1, 1 ≤ i ≤ pn − 1. Suppose zps(x
i) 6= 0.

Then vL(zps(x
i)) = b(ps − i) = vL(xi) + bps.

As each application of zps increases valuation by bps, the above result
allows us to determine the effect, on valuation, of applying our basis elements
of H to the standard K-basis of L.
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Corollary 5.5. Let 1 ≤ i ≤ pn − 1, and let 0 ≤ js ≤ p − 1 for all 0 ≤ s ≤
n− 1. If zj01 z

j1
p . . . z

jn−1

pn−1(xi) 6= 0 then

vL
(
zj01 z

j1
p . . . z

jn−1

pn−1(xi)
)

= vL(xi) + b
n−1∑
s=0

jsp
s.

To set some notation, given 0 ≤ j ≤ pn − 1, we define 0 ≤ j0, . . . , jn−1 ≤
p− 1 to be the unique integers such that

j =

n−1∑
s=0

jsp
s.

Conversely, given a collection {j0, . . . , jn−1} with 0 ≤ js ≤ p − 1 for all
0 ≤ s ≤ n− 1 we define j using the summation above.

We claim that if vL(ρ) = b then{
zj01 z

j1
p2
. . . z

jn−1

pn−1(ρ) : 0 ≤ j` ≤ p− 1
}

forms a basis for L/K. The crucial step to establishing this is the following.

Proposition 5.6. Pick ρ ∈ L with vL(ρ) = b. Then

vL
(
zj01 z

j1
p . . . z

jn−1

pn−1(ρ)
)

= b(1 + j).

Proof. Any ρ ∈ L with vL(ρ) = b has the form

ρ = g

(
x−1 +

pn∑
`=1

a`x
−1−`

)
with g ∈ K, a` ∈ K, vK(g) = 0, and vL(a`) > −b` for all 1 ≤ ` ≤ pn. Let
us write g = g0T

bxp
n
, and for simplicity we assume g0 = 1. Then

ρ = T bxp
n−1 + T b

pn∑
`=1

a`x
pn−1−`

(note that T bxp
n−1 is the element λb from Equation (5), and thus is part of

the scaffold in the Definition 2.1 sense) and

zj01 z
j1
p . . . z

jn−1

pn−1(ρ)

= T bzj01 z
j1
p . . . z

jn−1

pn−1(xp
n−1) + T b

pn∑
`=1

a`z
j0
1 z

j1
p . . . z

jn−1

pn−1(xp
n−1−`).

Applying Corollary 5.5 to the case where i = pn − 1− `, either

zj01 z
j1
p . . . z

jn−1

pn−1(xp
n−1−`) = 0

or

vL
(
zj01 z

j1
p . . . z

jn−1

pn−1(xp
n−1−`)

)
= −b(pn − 1− `) + bj.
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Furthermore, observe that

zj01 z
j1
p2
. . . z

jn−1

pn−1(xp
n−1) 6= 0, 0 ≤ j` ≤ p− 1

since pn − 1 = (p− 1) + (p− 1)p+ · · ·+ (p− 1)pn−1. Thus,

vL
(
T bzj01 z

j1
p . . . z

jn−1

pn−1(xp
n−1)

)
= bpn − b(pn − 1) + bj

= b(1 + j)

since

vL
(
T ba`z

j0
1 z

j1
p . . . z

jn−1

pn−1(xp
n−1−`)

)
≥ pnb+ vL(a`)− b(pn − 1− `) + bj

and, since vL(a`) > −b`,

pnb+ vL(a`)− b(pn − 1− `) + bj = pnb+ vL(a`)− bpn + b+ b`+ bj

= vL(a`) + b`+ b(1 + j)

> b(1 + j)

= vL
(
T bzj01 z

j1
p . . . z

jn−1

pn−1(xp
n−1)

)
,

hence

vL
(
zj01 z

j1
p . . . z

jn−1

pn−1(ρ)
)

= min {b(1 + j), vL(a`) + b`+ b(1 + j)} = b(1 + j)

since the minimum is uniquely achieved. �

Remark 5.7. Generally, it is not the case that if zps(y) 6= 0 then

vL
(
zps(y)

)
= vL(y) + bps,

i.e., that an application of zps universally increases valuation by bps. For
example, vL(xp−1+Txp) = −(p−1)b but vL

(
zp(x

p−1+Txp)
)

= vL(T ) = pn.

However, it is always true that vL
(
zps(y)

)
≥ vL(y) + bps.

Corollary 5.8. The set
{
zj01 z

j1
p · · · zjn−1

pn−1(ρ) : 0 ≤ js ≤ p− 1
}

forms a K-

basis for L, i.e., b is an integer certificate.

Proof. Observe that{
vL
(
zj01 z

j1
p2
. . . z

jn−1

pn−1(ρ)
)

: 0 ≤ js ≤ p− 1
}

= {b(1 + j) : 0 ≤ j ≤ pn − 1} .

Now {b(1 + j) : 0 ≤ j ≤ pn − 1} is a complete set of residues mod pn since

p - b. Thus,
{
zj01 z

j1
p . . . z

jn−1

pn−1(ρ) : 0 ≤ js ≤ p− 1
}

is K-linearly independent,

and hence a basis for L. �
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6. Integral Hopf Galois module structure

In this section we describe the Hopf Galois module structure of OL and
of all of the fractional ideals Ph

L of L. Given a high enough tolerance level,

the results of [2] enable us to describe the H-module structure of Ph
L We

apply their work below, and then we will take a look at a specific action of
H on L.

Let h ∈ Z. Since Ph+pn

L = TPh
L and Ah+pn = Ah it suffices to consider

the Hopf Galois module structure on a complete set of residues mod pn. We
will pick the set of residues h such that 0 ≤ b− h ≤ pn − 1.

We start with:

Lemma 6.1. There exists actions of H on L which produce H-scaffold
structures on L/K with arbitrarily high tolerance.

Proof. As we can write H = H∗n,r,f with vK(f) of arbitrarily high valuation,

this is clear since T = pnvK(f)− b(pr+1 − 1) for vK(f) ≥ bpr+1−n. �

For the remainder of this section, pick f such that

vK(f) ≥ 2pn − 1 + b(pr+1 − 1)

pn
,

so T ≥ 2pn − 1. This level of tolerance allows us to determine integral Hopf
Galois module structure.

Remark 6.2. This new bound on vK(f) is larger than the one we imposed
in Section 5. While we could have simply assumed

vK(f) ≥
(
2pn − 1 + b(pr+1 − 1)

)
p−n

throughout, we wanted to also provide examples of H-scaffolds for which
Hopf Galois module structure could not be completely determined.

We will now introduce numerical data from [2]. For each 0 ≤ j ≤ pn − 1,
let

dh(j) =

⌊
bj + b− h

pn

⌋
wh(j) = min {dh(i+ j)− dh(i) : 0 ≤ i ≤ pn − 1, is + js ≤ p− 1 for all s} ,

using our convention that j =
∑
jsp

s, i =
∑
isp

s as before. Then, using
Theorem 3.1, Theorem 3.7, and Corollary 3.2 of [2] we get all of the following.

Proposition 6.3. With the notation as above:

(1) Ah has OK-basis
{
T−wh(j)zj01 z

j1
p · · · zjn−1

pn−1 : 0 ≤ j ≤ pn − 1
}

.

(2) OK is a free A-module of rank one — explicitly,

OL = A · ρ, vL(ρ) = b

— if res(b) | (pm − 1) for some 1 ≤ m ≤ n.
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(3) Ph
L is a free Ah-module if and only if wh(j) = dh(j) for all 0 ≤ j ≤

pn−1; furthermore if this equality holds then Ph
L = Ah ·ρ, vL(ρ) = b.

(4) If wh(j) 6= dh(j), then Ph
L can be generated over Ah using ` genera-

tors, where

` = #
{
i : dh(i) > dh(i− j) + wh(j) for all 0 ≤ j ≤ pn−1 with js ≤ is

}
.

Remark 6.4. It is important to note that the determination as to whether
Ph

L is free over Ah does not depend on the H-scaffold itself, merely on the
behavior of dh and wh.

Remark 6.5. Note that if res(b) | (pm − 1) then OK is free over A, but
in general the converse does not hold. But since (2) is a special case of (3)
where h = 0 we do have necessary and sufficient conditions for when OK is
free over A.

Let us interpret these results in the case where b = 1, which requires that
vK(f) ≥ 3. (Note that scaffolds exist for vK(f) = 2, as well as for vK(f) = 1
unless n = r + 1.) Then 2− pn ≤ h ≤ 1 and

dh(j) =

⌊
j + 1− h

pn

⌋
=

{
1 j ≥ pn − 1 + h

0 j < pn − 1 + h.

Since wh(j) ≤ dh(j), which is readily seen by setting i = 0 in the definition
of wh(j), the statement wh(j) = dh(j) for all 0 ≤ j ≤ pn − 1 is true if and
only if wh(j) = 1 whenever j ≥ pn − 1 + h. Suppose h > (1 − pn)/2 and
dh(j) = 1. Then j > pn − 1 + (1 − pn)/2 = (pn − 1)/2. Now assume there
exists an i such that dh(i+ j)− dh(i) = 0 and is + js ≤ p− 1 for all s. Then
dh(i + j) ≥ dh(j) = 1 so dh(i) = 1 as well. Thus i > (pn − 1)/2. But then
i + j ≥ pn, contradicting the fact that is + js ≤ p − 1 for all s. Therefore,
no such i can occur, hence wh(j) = dh(j) for all j and Ph

L = Ah · ρ.
Now suppose that h ≤ (1− pn)/2 and let j = pn +h− 1. Then dh(j) = 1.

Let

i = pn − 1− j = pn − 1− (pn + h− 1) = −h.
Then is+js = p−1 for all s. As above, dh(i+j) = 1. But i = −h < pn−1−h
so dh(i) = 0. Thus wh(j) = wh(pn + h− 1) = 0 and Ph

L is not free over Ah.
We summarize, generalizing to all h ∈ Z.

Theorem 6.6. Let H = H∗n,r,f , 0 < r < n ≤ 2r, f ∈ K×. Suppose

vL(x) = −1 and vL(ρ) = 1. Let h ∈ Z, and let m = bh/pnc. Then Ph
L is

free over Ah if and only if res(h − 2) > (pn − 3)/2; under this restriction,
Ph

L = Ah · (Tmρ).

Remark 6.7. Notice that we do not need vK(f) ≥ 2(1 − p−n) + pr+1−n

in the statement above since, for any f ∈ K×, an H∗n,r,f of suitably high
tolerance exists.
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Proof. Consider first the case 2−pn ≤ h ≤ 1. Then, 0 ≤ h−2+pn ≤ pn−1.
We have seen that Ph

L is Ah-free if and only if h > (1 − pn)/2, and since
h ≤ 1 this inequality holds if and only if

pn − 3

2
< h− 2 + pn ≤ pn − 1.

Thus, Ph
L is Ah-free if and only if res(h− 2) > (pn − 3)/2.

Now for more general h, Ph
L is free over Ah if and only if P

res(h)
L is free

over Ares(h) = Ah, so we have freeness if and only if

res(res(h)− 2) > (pn − 3)/2,

and since the left-hand side reduces to res(h − 2) we get the inequality

desired. That Ph
L = Ah · (Tmρ) is immediate since Ph

L = TmP
res(h)
L . �

In particular, notice that OL is free over A when b = 1.

7. Picking the best Hopf algebra and action

In the examples provided here — with L = K(x), vL(x) = b, p - b —
questions concerning the Hopf Galois module structure of OL have little to
do with the exact Hopf algebra chosen. For any choice of 0 < r < n ≤ 2r and
vK(f) ≥ 2−pn

(
1−b(pr+1−1)

)
we have scaffolds of sufficiently high tolerance,

and their existence allows us to apply the numerical data of Proposition 6.3.
So, if Ph

L is free over Ah for H = H∗n,r,f , then Ph
L is free over Ah for any

H = H∗n,r′,f ′ , 0 < r′ < n ≤ 2r and vK(f ′) ≥ 2 − pn
(
1 − b(pr+1 − 1)

)
.

Additionally, the description of Ah given in Proposition 6.3 is independent
of which Hopf algebra H is chosen since the value of T−wh(j) is independent
of H; of course, the actual elements zps depend on the chosen H.

In addition to the family constructed here, the divided power K-Hopf
algebra A of rank pn found in ([12, Ex. 5.6.8], where it is denoted H)
acts on L: in terms of its dual, A∗ represents the nth Frobenius kernel of
the additive group scheme, and its simple coaction is given by Chase in
[4]. In [2, Sec. 5.2] a scaffold of infinite tolerance (so the congruences are
replaced by equalities) is constructed for A. Their scaffold is similar to our
constructions — indeed, for large values of vK(f), A∗ and Hn,r,f act very
similarly on L, and we can view Hn,r,f as a deformation of A∗.

Thus, it is natural to ask: which Hopf algebra is “best”? As the deter-
mination of integral Hopf Galois module structure does not depend on the
choice of H, there would need to be further properties of interest to make a
distinction.

For a single choice of Hn,r,f , different actions lead to scaffolds of different
tolerances, though we can always make T arbitrarily large. So here, we may
ask: which action is the “best”? If one is primarily interested in describing
OL as an A-module then the action where L = K(x), vL(x) = −1 appears to
be a good choice since OL is free over A whenever vK(f) ≥ 3. If, on the other
hand, one is primarily interested in describing Ph

L for a specific value of h
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there may be better choices. For example, in an unpublished work by Jelena
Sundukova, she states that Ph

L is a free Ah-module if vL(x) = −h. Her work

also describes choices of vL(x) which make Ph
L free over Ah reasonably rare,

for example vL(x) = pn − 2. As with choosing the Hopf algebra, we would
need to have more properties of this action which we deem “desirable” in
order to pick one action over another.
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