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On geometrical properties of
noncommutative modular function spaces

Ghadir Sadeghi and Reza Saadati

Abstract. We introduce and study the noncommutative modular func-
tion spaces of measurable operators affiliated with a semifinite von Neu-
mann algebra and show that they are complete with respect to their
modular. We prove that these spaces satisfy the uniform Opial condition
with respect to ρ̃-a.e.-convergence for both the Luxemburg norm and the
Amemiya norm. Moreover, these spaces have the uniform Kadec–Klee
property with respect to ρ̃-a.e.-convergence when they are equipped with
the Luxemburg norm. The above geometric properties enable us to ob-
tain some results in noncommutative Orlicz spaces.
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1. Introduction

The first attempts to generalize the classical function spaces of Lebesgue
type Lp were made in the early 1930’s by Orlicz and Birnbaum in connection
with orthogonal expansions. The possibility of introducing the structure of
a linear metric in Orlicz spaces Lϕ as well as the interesting properties of
these spaces and many applications to differential and integral equations
with kernels of nonpower type were among the reasons for the development
of the theory of Orlicz spaces.

We note two principal directions of further development. The first one
is a theory of Banach function spaces initiated in 1955 by Luxemburg [L55]
and then developed in a series of joint papers with Zaanen [LZ63]. The
main idea consists of considering the function space L of all real functions
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f ∈ L0(X ,Σ, ν) such that ‖f‖ < ∞, where (X ,Σ, ν) is a measure space,
L0(X ,Σ, ν) denotes the space of all real measurable functions on X , and
‖ · ‖ is a function norm which satisfies

‖f‖ ≤ ‖g‖ whenever |f(x)| ≤ |g(x)| ν-a.e.

The noncommutative version of this approach, which is called the noncom-
mutative symmetric space of τ -measurable operators affiliated with a von
Neumann algebra, was considered for the first time by Ovchinnikov [Ov71].
Some properties of these spaces were examined in [DDP89, DDS89, CDSF96,
P07].

The other direction, also inspired by the successful theory of Orlicz spaces,
is based on replacing the integral form of a nonlinear functional with an ab-
stract given functional with some suitable properties. This idea was the basis
behind the theory of modular spaces initiated by Nakano [Na50] in connec-
tion with the theory of order spaces, which was redefined and generalized
by Musielak and Orlicz [MO59].

Presently the theory of modulars and modular spaces is applied exten-
sively, in particular in the study of various Orlicz spaces [Or88] and inter-
polation theory [Kr82]. Recently, the author of this paper studied noncom-
mutative Orlicz spaces from the point of view of modulars [Sa12]. The main
objective of the current paper is to investigate the theory of noncommutative
modular function spaces.

The organization of the paper is as follows. In the second section we
provide some necessary preliminaries related to the theory of τ–measurable
operators affiliated with a von Neumann algebra and the classical theory
of modular spaces. In Section 3, we introduce the definition of noncom-
mutative modular function spaces associated to a modular on τ -measurable
operators and give some relations between the ρ̃-a.e.-convergence and the
convergence of the modular. In the last section, we prove that these spaces
satisfy the uniform Opial condition with respect to ρ̃-a.e.-convergence for
both the Luxemburg norm and the Amemiya norm. Moreover, these spaces
have the uniform Kadec–Klee property with respect to ρ̃-a.e.-convergence
when they are equipped with the Luxemburg norm.

2. Preliminaries

In this section, we collect some basic facts and give some notations related
to τ–measurable operators and modular function spaces. We denote by M a
semifinite von Neumann algebra on a Hilbert space H, with a fixed faithful
and normal semifinite trace τ . For standard facts concerning von Neumann
algebras we refer the reader to [Ta79]. The identity in M is denoted by 1
and we denote by P(M) the complete lattice of all self–adjoint projections
in M. A linear operator x : D(x) → H with domain D(x) ⊆ H is affiliated

with M if ux = xu for all unitaries u in the commutant M
′

of M, and this
is denoted by xηM. Note that the equality ux = xu involves the equality
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of the domains of the operators ux and xu, that is, D(x) = u−1(D(x)). If x
is in the algebra B(H) of all bounded linear operators on the Hilbert space
H, then x is affiliated with M if and only if x ∈ M. If x is a self–adjoint
operator in H affiliated with M, then the spectral projection ex(B) is an
element of M for any Borel set B ⊆ R.

A closed and densely defined operator x affiliated with M is called τ -
measurable if there exists a number λ ≥ 0 such that

τ
(
e|x|(λ,∞)

)
<∞.

The collection of all τ -measurable operators is denoted by M̃. With the
sum and product defined as the respective closure of the algebraic sum and

product, it is well known that M̃ is a ∗-algebra [Ne74]. Given positive real

numbers ε, δ, we define V(ε, δ) to be the set of all x ∈ M̃ for which there
exists p ∈ P(M) such that ‖xp‖B(H) ≤ ε and τ(1 − p) ≤ δ. An alternative
description of this set is

V(ε, δ) =
{
x ∈ M̃ : τ

(
e|x|(ε,∞)

)
< δ
}
.

The collection {V(ε, δ)}ε,δ>0 is a neighborhood base at 0 for a vector space

topology τm on M̃. For x ∈ M̃, the generalized singular value function
µ(x) = µ(|x|) is defined by

µt(x) = inf
{
λ ≥ 0 : τ

(
e|x|(λ,∞)

)
≤ t
}

(t ≥ 0).

It follows directly that the generalized singular value function µ(x) is a de-
creasing right-continuous function on the positive half-line [0,∞). Moreover,

for all u, v ∈M and x ∈ M̃,

µ(uxv) ≤ ‖u‖‖v‖µ(x)

and

µ(f(x)) = f(µ(x))

whenever 0 ≤ x ∈ M̃ and f is an increasing continuous function on [0,∞)

with f(0) = 0. M̃ is a partially ordered vector space under the ordering

x ≥ 0 defined by 〈xξ, ξ〉 ≥ 0, ξ ∈ D(x). If 0 ≤ xα ↑ x holds in M̃, then
supµt(xα) ↑α µt(x) for each t ≥ 0. The trace τ is extended to the positive

cone of M̃ as a nonnegative extended real–value functional which is positively
homogeneous, additive, unitary invariant and normal. Furthermore,

τ(x∗x) = τ(xx∗)

for all x ∈ M̃ and

(2.1) τ(f(x)) =

∫ ∞
0

f(µt(x))dt
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whenever 0 ≤ x ∈ M̃ and f is a nonnegative Borel function which is bounded
on a neighborhood of 0 and satisfies f(0) = 0. In the following proposition,
we list some properties of the rearrangement mapping µt(·).
Proposition 2.1. Let x, y and z be τ -measurable operators. Then the fol-
lowing hold true:

(i) The map t ∈ (0,∞) 7→ µt(x) is nonincreasing and continuous from
the right. Moreover,

lim
t↓0

µt(x) = ‖x‖ ∈ [0,∞].

(ii) µt(x) = µt(|x|) = µt(x
∗).

(iii) µt(x) ≤ µt(y), for t > 0, if 0 ≤ x ≤ y.
(iv) µt+s(x+ y) ≤ µt(x) + µs(y), t, s > 0.
(v) µt(zxy) ≤ ‖z‖‖y‖µt(x), t > 0.
(vi) µt+s(xy) ≤ µt(x)µs(y), t, s > 0.

For further details and proofs we refer the reader to [FK86, DDP89].

Lemma 2.2. [Ku90] Let x, y be τ -measurable operators. Then there exist
partial isometries u, v in M such that

|x+ y| ≤ u|x|u∗ + v|y|v∗.
The proof for measurable operators is straightforward using the fact that

the square root function is operator monotone; see [AAP82].
In the sequel, we recall some basic concepts about modular function

spaces. Let Ω be a nonempty set and Σ be a nontrivial σ-algebra of subsets
of Ω. Let P be a δ-ring of subsets of Ω, such that E ∩A ∈ P for any E ∈ P
and A ∈ Σ. Let us assume that there exists an increasing sequence of sets
Kn ∈ P such that Ω =

⋃
Kn. In other words, the family P plays the role

of the δ-ring of subsets of finite measure. By E we denote the linear space
of all simple functions with supports from P. ByM we denote the space of
all measurable functions, i.e., all functions f : Ω→ R such that there exists
a sequence {sn} ⊂ E , |sn| ≤ |f | such that sn(ω) → f(ω) for all ω ∈ Ω. By
χA we denote the characteristic function of the set A.

Let us recall that a set function ν : Σ→ [0,+∞] is called a σ-subadditive
measure if ν(∅) = 0, ν(A) ≤ ν(B) for any A ⊆ B and ν(∪nAn) ≤ Σnν(An)
for any sequence of sets {An} ⊆ Σ.

Definition 2.3. A functional ρ : E×Σ→ [0,∞] is called a function modular
if:

(i) ρ(0, A) = 0 for any A ∈ Σ.
(ii) ρ(f,A) ≤ ρ(g,A) whenever |f(ω) ≤ |g(ω)|, for ω ∈ Ω, f, g ∈ E ,

A ∈ Σ.
(iii) ρ(f, ·) : Σ→ [0,+∞] is a σ-subadditive measure for every f ∈ E .
(iv) ρ(α,A)→ 0 as α decreases to 0 for every A ∈ P, where

ρ(α,A) = ρ(αχA, A).
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(v) If there exists α > 0 such that ρ(α,A) = 0, then ρ(β,A) = 0 for
every β > 0.

(vi) For any α > 0, ρ(α, ·) is order continuous on P, i.e., ρ(α,An) → 0
if {An} ⊆ P and decreases to ∅.

When ρ satisfies

(iii′) ρ(f, ·) : Σ→ [0,+∞] is a σ-subadditive measure,

we say that ρ is additive if ρ(f,A∪B) = ρ(f,A)+ρ(f,B) whenever A,B ∈ Σ
such that A ∩B = ∅ and f ∈M.

The definition of ρ can be extended to all f ∈M by

ρ(f,A) = sup{ρ(s,A); s ∈ E , |s(x)| ≤ |f(x)| for every ω ∈ Ω}.

Similarly as in the case of measure spaces, a set A ∈ Σ is called ρ-null
if ρ(α,A) = 0 for every α > 0. A property p(ω) is said to hold ρ-almost
everywhere (ρ-a.e.) if the set {ω ∈ Ω : p(ω) does not hold} is ρ-null. We say
that fn → f ρ-a.e. if {ω ∈ Ω : f(ω) 6= limn→∞ fn(ω)} is ρ-null. As usual,
we identify any pair of measurable sets whose symmetric difference is ρ-null,
as well as any pair of measurable functions differing only on a ρ-null set.

In the above conditions, we define the functional ρ : M → [0,+∞] by
ρ(f) = ρ(f,Ω). Then it is easy to check that ρ is a modular, that is, ρ
satisfies the following properties:

(i) ρ(f) = 0 if and only if f = 0.
(ii) ρ(αf) = ρ(f) for every scalar α with |α| = 1.
(iii) ρ(αf + βg) ≤ ρ(f) + ρ(g) if α+ β = 1 and α, β ≥ 0.

If (iii) is replaced by

(iii′) ρ(αf + βg) ≤ αρ(f) + βρ(g) if α+ β = 1 and α, β ≥ 0,

then we say that ρ is a convex modular.
A modular ρ defines a corresponding modular function space, i.e., the

vector space Lρ given by

Lρ = {x ∈M : ρ(λx)→ 0 as λ→ 0} .
When ρ is convex, the formulas

‖f‖ρ = inf

{
λ > 0 : ρ

(
f

λ

)
≤ 1

}
and

‖f‖Aρ = inf

{
1

λ
(1 + ρ(λf)) : λ > 0

}
define two complete norms on Lρ which are called the Luxemburg norm and
the Amemiya norm, respectively. The spaces (Lρ, ‖ · ‖ρ) and (Lρ, ‖ · ‖Aρ )
are complete. Moreover, the Luxemburg norm and the Amemiya norm are
equivalent. Indeed,

(2.2) ‖f‖ρ ≤ ‖f‖Aρ ≤ 2‖f‖ρ
for every f ∈ Lρ.
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A function modular is said to satisfy the ∆2-condition if

sup
n
ρ(2fn, Dk)→ 0

as k →∞, whenever {fn} ⊆ M, Dk ∈M decreases to ∅ and

sup
n
ρ(fn, Dk)→ 0.

Definition 2.4. A function modular is said to satisfy the ∆2-type condition
if there exists k > 0 such that for any f ∈ Lρ it holds that ρ(2f) ≤ kρ(f).

It is clear that the ∆2-type condition implies the ∆2-condition, but in
general, they are not equivalent. Note that the ∆2-type condition ensures
that 0 < ρ(λf) <∞ for every λ > 0 provided that 0 < ρ(f) <∞.

Let us recall an example of a modular function space.

Example 2.5 (Orlicz–Musielak spaces). Let (Ω,Σ, ν) be a measure space,
where ν is a positive σ-finite measure. Let us denote by P the δ-ring of all
sets of finite measure. Define the modular ρ by the formula

ρϕ(f,E) =

∫
E
ϕ(t, |f(t)|)dν(t)

provided ϕ belongs to the class Φ. For the precise definitions of the class
Φ and properties of Orlicz–Musielak spaces see e.g., [Mu83]. For an Orlicz–
Musielak space, the ρ-null sets coincide with the sets of measure zero in
the sense of ν [Ko88, Proposition 4.1.9]. Thus the ρ-a.e.-convergence is
equivalent to the convergence almost everywhere. If the modular is given by

ρϕ(f,E) =

∫
E
ϕ(|f(t)|)dν(t),

where ϕ is an Orlicz function, we obtain the notion of Orlicz space. In
particular, if ϕ(t) = tp for 1 ≤ p < +∞, we obtain the Lebesgue space
Lp(ν), where the Luxemburg norm is the classic norm ‖ · ‖p.

An Orlicz function ϕ is said to satisfy the ∆2-condition if there exists
k > 0 such that ϕ(2α) ≤ kϕ(α) for every α ≥ 0. If ϕ is an Orlicz function
satisfying the ∆2-condition it is clear that the modular ρϕ satisfies the ∆2-
type condition.

In the following theorem we recall some of the properties of modular
function spaces that will be used later on in this paper. For proofs and
details the reader is referred to [Mu83, Ko88].

Theorem 2.6.

(i) (Lρ, ‖ · ‖ρ) is complete and the norm ‖ · ‖ρ is monotone with the
natural order in M.

(ii) ‖f‖ρ → 0 if and only if ρ(αf)→ 0 for every α > 0.
(iii) If ρ(αf) → 0 for an α > 0 then there exists a subsequence {gn} of

{fn} such that gn → 0 ρ-a.e.
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(iv) If fn → f ρ-a.e., there exists a nondecreasing sequence of sets En ∈
P such that En ↑ Ω and {fn} converges uniformly to f on every En
(Egoroff theorem).

(v) ρ(f) ≤ lim infn→∞ ρ(fn) whenever fn → f ρ-a.e. (This property is
equivalent to the Fatou property).

Let X be a Banach space and τ be a topology on X. We say that X
satisfies the uniform Opial condition with respect to τ if oτ (α) > 0 for every
α > 0, where oτ (·) is the Opial modulus defined as

oτ (α) = inf
{

lim inf
n→∞

‖xn + x‖ − 1
}
,

and the infimum is taken over all x ∈ X with ‖x‖ ≥ α and all sequences
{xn} such that τ -limn→∞ xn = 0 and lim infn→∞ ‖xn‖ ≥ 1 (see [APP13]).

A space X is said to have the uniform Kadec–Klee property with respect
to τ (UKK(τ)) if for every 0 < ε ≤ 2 there exists δ > 0 such that if {xn} is a
sequence in the unit ball of X with sep{xn} = inf {‖xn − xm‖ : n 6= m} > ε
and {xn} is τ -convergent to x ∈ X, then ‖x‖ < 1− δ.

In connection to the uniform Kadec–Klee property, we can define the
following modules:

kτ (ε) = inf
{

1− ‖x‖ : {xn} ∈ BX , τ − lim
n→∞

xn = x and sep{xn} > ε
}
.

It is clear that X has the uniform Kadec–Klee property with respect to τ
iff kτ (ε) > 0 for every ε > 0.

In the particular case that X is a modular function space, we can replace
the convergence with respect to a topology τ by the ρ-a.e.-convergence. The
uniform Opial condition and the uniform Kadec–Klee property are geometric
properties, which are connected to the existence of fixed points for some
kinds of mappings.

3. Noncommutative modular function spaces

In this section, we assume that M is a semifinite von Neumann algebra on
a Hilbert space H with a normal faithful trace τ . We define noncommutative
modular function spaces of τ -measurable operators affiliated to M. To this
end, we assume Ω = [0,∞) and ν is a Lebesgue measure on Ω. By L0(ν) we
denote the linear space of all (equivalence classes of) real valued Lebesgue
measurable functions on Ω, Σ is the σ-algebra of Lebesgue measurable sets
and P is the family of such sets of finite measure. Let ρ(f) := ρ(f,Ω) be a
convex modular on L0(ν) such that for every f, g ∈ L0(ν), f ≺≺ g (i.e., f
is submajorized by g in the sense of Hardy, Littlewood and Polya) implies
that ρ(f) ≤ ρ(g), and let Lρ denote the modular function space associated
to ρ on L0(ν).

We now define the functional ρ̃ on M̃ as follows:

ρ̃ : M̃→ [0,∞], ρ̃(x) = ρ(µ(|x|)).
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Proposition 3.1. ρ̃ is a convex modular functional on M̃.

Proof. It is sufficient to show that ρ̃ satisfies

(3.1) ρ̃(αx+ βy) ≤ αρ̃(x) + βρ̃(y)

for α + β = 1 with α, β ≥ 0. Let x, y be two operators in M̃. It is known
that µ(x + y) ≺≺ µ(x) + µ(y) [FK86, Theorem 4.4]. By Lemma 2.2 there

exist partial isometries u, v in M̃ such that

|x+ y| ≤ u|x|u∗ + v|y|v∗.
Hence

ρ̃(αx+ βy) = ρ(µ(|αx+ βy|)) ≤ ρ(µ(αu|x|u∗ + βv|y|v∗))
≤ αρ(µ(|x|)) + βρ(µ(|y|))
= αρ̃(x) + βρ̃(y).

Thus, ρ̃ is a convex modular on M̃. �

The noncommutative modular function space Lρ̃(M̃, τ) is defined by

Lρ̃(M̃, τ) =
{
x ∈ M̃ : ρ̃(λx)→ 0 as λ→ 0

}
,

or equivalently,

Lρ̃(M̃, τ) =
{
x ∈ M̃ : ρ(λµ(x))→ 0 as λ→ 0

}
=
{
x ∈ M̃ : µ(x) ∈ Lρ

}
.

The vector space Lρ̃(M̃, τ) can be equipped with the Luxemburg norm de-
fined by

‖x‖ρ̃ = inf
{
λ > 0 : ρ̃

(x
λ

)
≤ 1
}

= inf

{
λ > 0 : ρ

(
µ(|x|)
λ

)
≤ 1

}
= ‖µ(|x|)‖ρ.

Similar to the commutative case, one can define the Amemiya norm as
follows:

‖x‖Aρ̃ = inf

{
1

λ
(1 + ρ̃(λx)) : λ > 0

}
= inf

{
1

λ
(1 + ρ (λµ(|x|))) : λ > 0

}
= ‖µ(|x|)‖Aρ .

Moreover, by (2.2), these norms satisfy

‖x‖ρ̃ ≤ ‖x‖Aρ̃ ≤ 2‖x‖ρ̃.
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It follows from [DDP89, Theorem 4.5] that Lρ̃(M̃, τ) is a Banach space since
the norm ‖ · ‖ρ̃ has the Fatou property.

Theorem 3.2. Let ρ be a convex function modular with the ∆2-type con-

dition. Then the noncommutative modular function space Lρ̃(M̃, τ) is ρ̃-
complete.

Proof. Suppose that {xn} is a ρ̃–Cauchy sequence in Lρ̃(M̃, τ). We first
show that {xn} is a Cauchy sequence in the measure topology τm. If ε, δ > 0
are given, then there exist η > 0, n0 ∈ N such that ‖f‖ρ < ε if ρ(f) < η for
any f ∈ L0(ν) and

ρ̃(xn − xm) < η

for any n,m ≥ n0. It is known that µ(x) is a nonincreasing function, so we
have

µ(xn − xm) ≥ µδ(xn − xm)χ[0,δ) + µ(xn − xm)χ[δ,∞).

It follows that

ρ(µδ(xn − xm)χ[0,δ)) ≤ ρ̃(xn − xm) < η

for all n,m ≥ n0. This yields ‖µδ(xn − xm)χ[0,δ)‖ρ < ε. Hence

µδ(xn − xm) < ε/‖χ[0,δ)‖ρ

for any n,m ≥ n0. Consequently, there exists x ∈ M̃ such that xn
τm−→ x.

Moreover, by [DDP89, Theorem 3.4],

|µ(xn)− µ(xm)| ≺≺ µ(xn − xm),

whence
ρ (µ(xn)− µ(xm))) ≤ ρ (µ(xn − xm))

for all n,m ∈ N. Therefore, {µ(xn)} is Cauchy sequence in Lρ. It follows
that there exists f ∈ Lρ such that ‖µ(xn) − f‖ρ → 0 as n → ∞. By
Theorem 2.6(ii), we obtain

(3.2) ρ (µ(xn)− f))→ 0 as n→∞.
Using Theorem 2.6(iii), we may suppose (by passing to a subsequence if
necessary) that µ(xn) → f ρ-a.e. We use a known version of the Egoroff
theorem for modular function spaces. There exists a nondecreasing sequence
of sets Ek with finite measure such that Ek ↑ Ω and {µ(xn)} converges
uniformly to f on every Ek. On the other hand, it follows from [FK86,
Lemma 3.4] that µ(xn)→ µ(x) almost everywhere on [0,∞) and so

µ(x) = f ∈ Lρ,

that is x ∈ Lρ̃(M̃, τ). Moreover, it follows from (3.2) that

ρ(µ(xn)− µ(x)))→ 0

as n→ 0, i.e., µ(xn)
ρ−→ µ(x). Observe that

(xn − xm)→ (xn − x)
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for the measure topology τm in M̃. Similar to the above argument one can

show that µ(xn − xm)
ρ−→ µ(xn − x). Since ρ has the Fatou property, it

follows that

ρ (µ(xn − x)) ≤ lim inf
m→∞

ρ (µ(xn − xm)) .

Hence limn→∞ ρ̃(xn − x) = 0. �

Let us give an example of a noncommutative modular function space.

Example 3.3. Let Lϕ(Ω, ν) be an Orlicz space on Ω = [0,∞) with respect
to the modular functional

ρϕ(f) =

∫ ∞
0

ϕ(|f(t)|)dν(t)

for every f ∈ Lϕ, where ν is the Lebesgue measure on Ω. We can consider
the noncommutative Orlicz spaces from the point of view of modulars as
follows:

Lϕ(M̃, τ) =
{
x ∈ M̃ : ρ̃ϕ(λx)→ 0 as λ→ 0

}
,

where ρ̃ϕ : M̃→ [0,∞] is defined by

ρ̃ϕ(x) = τ(ϕ(|x|)) =

∫ ∞
0

ϕ(µt(|x|))dt.

For more details, we refer the reader to [Sa12, AB14].

Proposition 3.4. Let x, y ∈ Lρ̃(M̃, τ).

(i) If ρ̃(λx) ≤ ρ̃(λy) for every λ > 0, then ‖x‖ρ̃ ≤ ‖y‖ρ̃.
(ii) The function α 7→ ‖αx‖ρ̃ is nondecreasing for α ≥ 0.
(iii) If ‖x‖ρ̃ < 1, then ρ̃(x) ≤ ‖x‖ρ̃.
(iv) If ρ satisfies the ∆2– type condition, then

ρ̃(x+ y) ≤ k

2
(ρ̃(x) + ρ̃(y))

for all x and y in M̃, with k > 0 satisfying ρ(2f) ≤ kρ(f) for any
f ∈ Lρ.

Proof. The properties (i) and (ii) follow immediately from the definition of
‖ · ‖ρ̃.

We prove now that (iii) holds. Let ‖x‖ρ̃ < α < 1. Then ρ
(
µ(x)
α

)
≤ 1 and

so

ρ̃(x) = ρ

(
α
µ(|x|)
α

)
≤ αρ

(
µ(|x|)
α

)
≤ α.

Since α is arbitrary, we obtain that ρ̃(x) ≤ ‖x‖ρ̃.
For (iv), it follows from Lemma 2.2 that there exist partial isometries u, v

in M̃ such that

|x+ y| ≤ u|x|u∗ + v|y|v∗.
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By Proposition 2.1(iii),(v) and the submajorization inequality

µ(x+ y) ≺≺ µ(x) + µ(y)

for x, y ∈ M̃, we have

µ(|x+ y|) ≤ µ(u|x|u∗ + v|y|v∗) ≺≺ µ(u|x|u∗) + µ(v|y|v∗)
≤ µ(|x|) + µ(|y|).

Therefore

ρ̃(x+ y) = ρ(µ(|x+ y|)) ≤ ρ(µ(u|x|u∗ + v|y|v∗))
≤ ρ(µ(|x|) + µ(|y|))

≤ kρ
(
µ(|x|) + µ(|y|)

2

)
≤ k

2
(ρ(µ(|x|) + ρ(µ(|y|)))

=
k

2
(ρ̃(x) + ρ̃(y)). �

Definition 3.5. The growth function ωρ̃ of the modular ρ̃ is defined as
follows:

ωρ̃(α) := sup

{
ρ̃(αx)

ρ̃(x)
: 0 < ρ̃(x) < +∞

}
= sup

{
ρ(αµ(|x|))
ρ(µ(|x|))

: 0 < ρ(µ(|x|)) < +∞
}

for all α ≥ 0.

The next lemma can be easily proved.

Lemma 3.6. Let ρ be a convex function modular with the ∆2-type condition.
Then the growth function ωρ̃ has the following properties:

(i) ωρ̃(α) < +∞ for every 0 ≤ α < +∞.
(ii) ωρ̃ : [0,+∞)→ [0,+∞) is a convex, strictly increasing function, so

it is continuous.
(iii) ωρ̃(αβ) ≤ ωρ̃(α)ωρ̃(β) for all α, β ≥ 0.

(iv) ω−1ρ̃ (α)ω−1ρ̃ (β) ≤ ω−1ρ̃ (αβ) for all α, β ≥ 0, where ω−1ρ̃ is the inverse

function of ωρ̃.

The following lemma shows that the growth function can be used to give
an upper bound for the norm of an operator.

Lemma 3.7. Let ρ be a convex function modular with the ∆2-type condition.
Then

‖x‖ρ̃ ≤
1

ω−1ρ̃

(
1

ρ̃(x)

)
for every x ∈ Lρ̃(M̃, τ).
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Proof. Assume that α < ‖x‖ρ̃ = ‖µ(x)‖ρ. We have ρ̃
(
x
α

)
> 1, which

implies 1
ρ̃(x) < ωρ̃

(
1
α

)
. Hence

ω−1ρ̃

(
1

ρ̃(x)

)
<

1

α
.

Letting α→ ‖x‖ρ̃, we obtain ‖x‖ρ̃ ≤ 1

ω−1
ρ̃

(
1

ρ̃(x)

) . �

Proposition 3.8. Let ρ be a convex function modular with the ∆2-type
condition. Then for every ε > 0, there exists δ > 0 such that

‖x‖ρ̃ < ε (‖x‖Aρ̃ < ε) if ρ̃(x) < δ.

Proof. For ε > 0, we choose δ = 1
ω−1
ρ̃ ( 1

ε)
. For the Amemiya norm we use

the fact that it is equivalent to the Luxemburg norm. �

Theorem 3.9. Let ρ be a convex function modular with the ∆2-type condi-
tion. Let {xn} and {yn} be two sequences in the noncommutative modular

function space Lρ̃(M̃, τ) such that ρ̃(yn)→ 0. Then

lim sup
n→∞

ρ̃(xn + yn) = lim sup
n→∞

ρ̃(xn).

Proof. It is known that µ(xn+yn) ≺≺ µ(xn)+µ(yn) [FK86, Theorem 4.4].
For every ε ∈ (0, 1) we have

ρ̃(xn + yn) = ρ(µ(xn + yn)) ≤ ρ(µ(xn)) + µ(yn))

≤ ρ
(
µ(xn)

1− ε

)
+ ρ

(
µ(yn)

ε

)
≤ ωρ̃

(
1

1− ε

)
ρ̃(xn) + ωρ̃

(
1

ε

)
ρ̃(yn),

and so

lim sup
n→∞

ρ̃(xn + yn) ≤ ωρ̃
(

1

1− ε

)
lim sup
n→∞

ρ̃(xn).

Since ε > 0 is arbitrary and

ωρ̃

(
1

1− ε

)
→ 1 as ε→ 0+

we get

lim sup
n→∞

ρ̃(xn + yn) ≤ lim sup
n→∞

ρ̃(xn).

Moreover, the same argument shows that

lim sup
n→∞

ρ̃(xn) = lim sup
n→∞

ρ̃(xn + yn − yn) ≤ lim sup
n→∞

ρ̃(xn + yn). �
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Corollary 3.10. Let ϕ satisfy the ∆2-condition. Let {xn} and {yn} be
two sequences of τ -measurable operators in the noncommutative Orlicz space

Lϕ(M̃, τ) such that τ(ϕ(yn))→ 0. Then

lim sup
n→∞

τ(ϕ(|xn + yn|)) = lim sup
n→∞

τ(ϕ(|xn|)).

Before we give the main theorem of this section, we need the following
lemma.

Lemma 3.11. Let ε > 0 and λ > 1 be such that λε < 1. Then for every

x, y ∈ Lρ̃(M̃, τ) such that ρ̃(λx) <∞ and ρ̃
(

1
ε(λ−1)y

)
<∞, we have

|ρ̃(x+ y)− ρ̃(x)| ≤ ε [ρ̃(λx)− λρ̃(x)] + ρ̃(cεy),

where cε = 1
ε(λ−1) .

Proof. The proof of this lemma is essentially the same as that of [BL83,

Lemma 3] if C is replaced by Lρ̃(M̃, τ) and j(x) = ρ̃(x). �

Corollary 3.12. Let ε > 0 and λ > 1 be such that λε < 1. Then for every

x, y ∈ Lϕ(M̃, τ) such that τ(ϕ(λ|x|)) < ∞ and τ
(
ϕ
(
|y|

ε(λ−1)

))
< ∞, we

have

|τ(ϕ(|x+ y|))− τ(ϕ(|x|))| ≤ ε [τ(ϕ(λ|x|))− λτ(ϕ(|x|))] + τ(ϕ(cεy)),

where cε = 1
ε(λ−1) .

Definition 3.13. Let {xn} and x be in M̃. Then the sequence {xn} is said
to be ρ̃-a.e. convergent to x if µ(xn − x)→ 0 ρ-a.e.

Theorem 3.14. Let ρ be an additive convex modular on L0(ν) and {xn} be

a sequence in Lρ̃(M̃, τ) which is ρ̃-a.e.-convergent to 0. Assume that there
exists λ > 1 such that supn ρ̃(λxn) <∞. Then

lim
n→∞

(ρ̃(xn + y)− ρ̃(xn)) = ρ̃(y)

for all y ∈ Lρ̃(M̃, τ).

Proof. By the definition of the ρ̃-a.e.-convergence we have that {µ(xn)} → 0
ρ-a.e. It follows from Egoroff’s theorem that there exists an increasing se-
quence of sets Ek ∈ P such that Ω =

⋃
k Ek and {µ(xn)} converges uniformly

to 0 on every Ek. On the other hand we have

|ρ̃(xn + y)− ρ̃(xn)− ρ̃(y)|
≤ |ρ(µ(xn + y), Em)− ρ(µ(xn), Em)− ρ(µ(y), Em)|

+ |ρ(µ(xn + y), Ecm)− ρ(µ(xn), Ecm)− ρ(µ(y), Ecm)|
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where Ecm denotes the complement of the subset Em. Using Lemma 3.11 we
get

|ρ(µ(xn + y), Em)− ρ(µ(y), Em)| ≤ ε|ρ(λµ(y), Em)− λρ(µ(y), Em)|(3.3)

+ ρ(cεµ(xn), Em),

for every ε > 0 such that λε < 1. Since {µ(xn)} converges uniformly to 0
on every Em, we have

lim sup
n→∞

|ρ(µ(xn + y), Em)− ρ(µ(xn), Em)− ρ(µ(y), Em)| ≤ ερ(λµ(y)).

Using the same strategy we get

lim sup
n→∞

|ρ(µ(xn + y), Ecm)− ρ(µ(xn), Ecm)− ρ(µ(y), Ecm)|

≤ ε lim sup
n→∞

ρ(λµ(xn) + ρ(cεµ(y), Ecm) + ρ(cεµ(y), Ecm) + ρ(µ(y), Ecm).

Hence

lim sup
n→∞

|ρ(µ(xn + y)− ρ(µ(xn)− ρ(µ(y)

≤ ερ(λµ(y)) + ε sup
n
ρ(λµ(xn)) + ρ(cεµ(y), Ecm) + ρ(µ(y), Ecm).

Let m tend to ∞ and use the fact that y ∈ Lρ̃(M̃, τ) to get

lim sup
n→∞

|ρ(µ(xn + y))− ρ(µ(xn)− ρ(µ(y)|

≤ ερ(λµ(y)) + ε sup
n
ρ(λµ(xn)).

Finally, we let ε approach 0 to get

lim sup
n→∞

|ρ̃(xn + y)− ρ̃(xn)− ρ̃(y)| ≤ 0,

which completes the proof. �

Remark 3.15. It is known that, for an Orlicz space, the ρ-null sets coincide
with the sets of measure zero. Thus the ρ-a.e.-convergence is equivalent to
the convergence almost everywhere. It follows from [FK86, Lemma 3.1] that
the ρ̃-a.e.-convergence in noncommutative Orlicz spaces as well as noncom-
mutative Lp–spaces is equivalent to the convergence in the measure topology
τm.

Corollary 3.16. Let {xn} be a sequence in the noncommutative Orlicz space

Lϕ(M̃, τ) such that {xn} converges to x in the measure topology. Assume
that there exists λ > 1 such that supn τ(ϕ(λ|xn|)) <∞. Then

lim inf
n→∞

τ(ϕ(|xn|)) = lim inf
n→∞

τ(ϕ(|xn − x|)) + τ(ϕ(|x|)).
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Brezis and Lieb [BL83] proved that if {fn} is a sequence of LP –uniformly
bounded functions on a measure space and if fn → f almost everywhere
then

lim inf
n→∞

‖fn‖p = lim inf
n→∞

‖fn − f‖p + ‖f‖p,

for all p ∈ (0,∞). Now we establish an extension of this equality to the
noncommutative setting.

Corollary 3.17. Let p ≥ 1 and {xn} be a bounded sequence of Lp(M̃, τ).
Assume that {xn} converges to x in the measure topology. Then

lim inf
n→∞

‖xn‖p = lim inf
n→∞

‖xn − x‖p + ‖x‖p.

We will say that a Banach space X with the τ–topology on X satisfies the
Opial condition if for every bounded sequence {xn} in X which τ–converges
to x ∈ X we have

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖

for every y 6= x.

Theorem 3.18. Let ε > 0 and {xn} ⊆ Lρ̃(M̃, τ) be ρ̃-a.e. convergent to 0.
Assume there exists λ > 1 such that

sup
n
ρ̃(λxn) <∞.

Let x ∈ Lρ̃(M̃, τ) such that ρ̃(x) > ε. Then

lim inf
n→∞

ρ̃(x) + ε ≤ lim inf
n→∞

ρ̃(x+ xn).

Proof. The proof is obvious using the conclusion of Theorem 3.14. This is
a kind of Opial property. �

Corollary 3.19. Let ε > 0 and {xn} be a sequence in the noncommutative

Orlicz space Lϕ(M̃, τ) such that {xn} converges to 0 in the measure topology.
Assume that there exists λ > 1 such that sup τ(ϕ(λ|xn|)) < ∞. Let x ∈
Lϕ(M̃, τ) such that τ(ϕ(|x|)) > ε. Then

lim inf
n→∞

τ(ϕ(|xn|)) + ε ≤ lim inf
n→∞

τ(ϕ(|xn + x|)).

4. Uniform Opial and uniform Kadec–Klee properties

In this section, we assume that ρ is a convex additive modular with the
∆2-type condition on L0(ν) such that for every f, g ∈ L0(ν), f ≺≺ g implies
that ρ(f) ≤ ρ(g). Note that the additive condition may seem strong, but
many interesting examples lead to additive modulars (e.g., any modular gen-
erated by a functional measure). In the paper [J04], the author showed that
modular function spaces Lρ satisfy the uniform Opial condition with respect
to the ρ-a.e.-convergence for both the Luxemburg norm and Amemiya norm,
and also showed that modular function spaces Lρ have the uniform Kadec–
Klee property with respect to the ρ-a.e.-convergence when equipped with
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the Luxemburg norm. We prove these results for noncommutative modular
function spaces.

Before we give the main results of this section we need the following
lemma. It is a generalization of [J04, Lemma 2.5] which was given for
classical modular function spaces.

Lemma 4.1. Let {xn} be a sequence in the noncommutative modular func-

tion space Lρ̃(M̃, τ) such that xn → 0 ρ̃-a.e. Let x be a given operator in

Lρ̃(M̃, τ). Then for every ε > 0 there exist a subsequence {xnk}, a sequence

{yk} in Lρ̃(M̃, τ) and an operator y ∈ Lρ̃(M̃, τ) such that:

(i) limk→∞ ‖xnk − yk‖ρ̃ = 0.
(ii) supp(µ(yk)) ∩ supp(µ(y)) = ∅ for every k ∈ N.
(iii) ‖x− y‖ρ̃ < ε.

Proof. Since the given sequence {xn} converges to 0 ρ̃-a.e., µ(xn) → 0
ρ-a.e. By using the version of the Egoroff theorem for modular function
spaces, we can assume that there exists a sequence of sets Ωk ∈ P such that
Ω = ∪kΩk, Ωi∩Ωj = ∅ and {µ(xn)} converges uniformly to the null function
on every Ωk. Moreover, the ∆2–type condition of the modular implies that

ρ̃(x) = ρ(µt(x)) < +∞ for every measurable operator x ∈ Lρ̃(M̃, τ). Also,
ρ̃(x) = ρ(µt(x)) = Σkρ(µt(x),Ωk) since ρ is additive. Let ε > 0 be given.
We will consider the corresponding δ > 0 given in Proposition 3.8. Then
there exists a positive integer k0 such that∑

k>k0

ρ(µt(x),Ωk) < δ.

Let {εn} be a sequence in (0, 1) with limn→∞ εn = 0 and for every n ∈ N,
take the corresponding δn given by Proposition 3.8. By Definition 2.3(iv),

ρ(α,∪k0k=1Ωk) → 0 as α decreases to 0. Thus there exists a number α0 > 0
such that

ρ

(
α0,

k0⋃
k=1

Ωk

)
<
δ1
2
.

Due to the fact that {µt(xn)} converges uniformly to 0 in ∪k0k=1Ωk, there
exists n1 ∈ N such that for every n ≥ n1, we have |µt(xn)| ≤ α0 for every t ∈
∪k0k=1Ωk. Consider the measurable operator xn1 ∈ Lρ̃(M̃, τ) and a positive
integer k1 > k0 such that∑

k>k1

ρ(µt(xn1),Ωk) <
δ1
2
.

Define the operator y1 = xn1ek1 where ek1 = e|x|(∪k1k>k0Ωk). Since

y1 = xn1ek1 = xn1 − xn1e
⊥
k1 ,
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we have

µ(y1) = µ(xn1 − xn1e
⊥
k1) ≺≺ µ(xn1) + µ(xn1e

⊥
k1) ≤ 2µ(xn1).

The convex additive modular ρ satisfies the ∆2-type condition. Hence

ρ(µ(y1)) ≤ ρ(2µ(xn1)) ≤ kρ(µ(xn1))

for some k > 0. This ensures that y1 ∈ Lρ̃(M̃, τ) since xn1 ∈ Lρ̃(M̃, τ). So

ρ̃(xn1 − y1) = ρ(µt(xn1 − y1)) = ρ(µt(xn1e
⊥
k1))

= ρ

µt(xn1e
⊥
k1),

k0⋃
k=1

Ωk ∪
k1⋃

k>k0

Ωk ∪
∞⋃

k>k1

Ωk


= ρ

µt(xn1e
⊥
k1),

k0⋃
k=1

Ωk ∪
∞⋃

k>k1

Ωk


≤ ρ

µt(xn1),

k0⋃
k=1

Ωk ∪
∞⋃

k>k1

Ωk


≤ ρ

(
α0,

k0⋃
k=1

Ωk

)
+
∑
k>k1

ρ (µt(xn1),Ωk)

< δ1.

Suppose that, by induction, we have two finite sequences of positive integers
k0 < k1 < · · · < kl−1 and n1 < n2 < · · · < nl−1 with ρ̃(xni − yi) < δi for

i = 1, 2, . . . , l−1, where the operator yi is defined by yi = xnie
|x|(∪kik>ki−1

Ωk).

By Definition 2.3(iv), we can find αl such that ρ(α1,∪
kl−1

k=1 Ωk) <
δl
2 . Since

{µt(xn)} converges uniformly to the null function on ∪kl−1

k=1 Ωk, we can find

nl > nl−1 such that |µt(xnl)| ≤ αl for every t ∈ ∪kl−1

k=1 Ωk. Moreover, we can
find kl > kl−1 with ∑

k>kl

ρ (µt(xnl),Ωk) <
δl
2
.

Using the above argument, we define the operator yl = xnlekl ∈ Lρ̃(M̃, τ),

where ekl = e|x|(∪klk>kl−1
Ωk), and obtain ρ̃(xnl − yl) < δl. Therefore

‖xnl − yl‖ < εl.

Consequently, limk→∞ ‖xnk − yk‖ = 0.

Now, define the operator y = xe0 where e0 = e|x|(∪k0k=1Ωk). It is clear
that supp(µ(yk)) ∩ supp(µ(y)) = ∅ for every k ∈ N. Moreover

ρ̃(x− y) = ρ(µ(x− xe0)) = ρ
(
µ(xe⊥0 ),∪k>k0Ωk

)
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≤ ρ (µ(x),∪k>k0Ωk) =
∑
k>k0

ρ(µ(x),Ωk) < δ,

whence ‖x− y‖ρ̃ < ε. �

Corollary 4.2. Let ϕ satisfy the ∆2-condition. Let {xn} be a sequence in

the noncommutative Orlicz space Lϕ(M̃, τ) converging to 0 in the measure

topology. Let x be a given operator in Lϕ(M̃, τ). Then for every ε > 0 there

exist a subsequence {xnk}, a sequence {yn} in Lϕ(M̃, τ) and an operator

y ∈ Lϕ(M̃, τ) such that:

(i) limk→∞ ‖xnk − yk‖ρ̃ϕ = 0.
(ii) supp(µ(yk)) ∩ supp(µ(y)) = ∅ for every k ∈ N.
(iii) ‖x− y‖ρ̃ϕ < ε.

Theorem 4.3. The noncommutative modular function space Lρ̃(M̃, τ)
equipped with the Luxemburg norm ‖ · ‖ρ̃ satisfies the uniform Opial con-
dition with respect to the ρ̃-a.e.-convergence. In particular for every c > 0,

1 + oρ̃(c) ≥ ω−1ρ̃ (1 + α),

where α = 1
ωρ̃(

1
c
)
.

Proof. Let c > 0 and {xn} be a sequence in Lρ̃(M̃, τ) such that xn →
0 ρ̃-a.e. and limn→∞ ‖xn‖ρ̃ ≥ 1. Consider an operator x ∈ Lρ̃(M̃, τ)
with ‖x‖ρ̃ ≥ c. We apply Lemma 4.1 to the sequence {xn} and some
0 < ε < c to obtain a subsequence {xnk} of {xn}, a sequence {yk} ∈
Lρ̃(M̃, τ) and an operator y ∈ Lρ̃(M̃, τ) such that limk→∞ ‖xnk − yk‖ρ̃ = 0,
supp(µ(yk)) ∩ supp(µ(y)) = ∅ for k ∈ N and ‖x − y‖ρ̃ < ε. We can also
assume that lim infn→∞ ‖xn + x‖ρ̃ = limn→∞ ‖xnk + x‖ρ̃. Consequently,
lim infk→∞ ‖yk‖ρ̃ ≥ 1 and ‖y‖ρ̃ ≥ c− ε.

Fix 0 < t < 1 and define the functions z = y
t and zk = yk

t for k ∈ N. We
know that ‖z‖ρ̃ > c− ε and ‖zk‖ρ̃ > 1 for k large enough. Set

γε := ω−1ρ̃

(
1 +

1

ζ

)
where ζ = ωρ̃

(
1

c− ε

)
.

Using the properties of the modular ρ̃, the definition of the growth func-
tion ωρ̃(·) and Lemma 3.6(iii), we have

ρ̃

(
zk + z

γε

)
= ρ

(
µ(zk + z)

γε

)
≥ ρ

(
µ(zk)− µ(z)

γε

)
= ρ

(
µ(zk)− µ(z)

γε
, supp(µ(zk)) ∪ supp(µ(z))

)
= ρ

(
µ(zk)

γε
, supp(µ(zk))

)
+ ρ

(
µ(z)

γε
, supp(µ(z))

)
= ρ

(
µ(zk)

γε

)
+ ρ

(
µ(z)

γε

)
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= ρ̃

(
zk
γε

)
+ ρ̃

(
z

γε

)
≥ 1

ωρ̃(γε)
ρ̃(zk) +

1

ωρ̃( γε
c−ε)

ρ̃

(
z

c− ε

)
>

1

ωρ̃(γε)
+

1

ωρ̃(γε)ωρ̃( 1
c−ε)

= 1.

Thus lim infk→∞ ‖yk + y‖ρ̃ ≥ tγε. Letting t tend to 1, we deduce that
lim infk→∞ ‖yk + y‖ρ̃ ≥ γε. On the other hand,

lim inf
k→∞

‖xk + x‖ρ̃ = lim
k→∞

‖xnk + x‖ρ̃

≥ lim inf
k→∞

‖yk + y‖ρ̃ − lim
k→∞

‖xnk − yk‖ρ̃ − ‖x− y‖ρ̃
≥ γε − ε.

Since ε is arbitrary and the functions ωρ̃(·) and ω−1ρ̃ (·) are continuous, we

infer that

lim inf
k→∞

‖xk + x‖ρ̃ ≥ ω−1ρ̃

(
1 +

1

ωρ̃(
1
c )

)
,

which yields the desired lower bound for 1 + oρ̃(c). This implies that

(Lρ̃(M̃, τ), ‖ · ‖ρ̃) has the uniform Opial condition with respect to the ρ̃-
a.e.-convergence �

Theorem 4.4. The noncommutative modular function space Lρ̃(M̃, τ)

equipped with the Amemiya norm ‖·‖Aρ̃ satisfies the uniform Opial condition

with respect to the ρ̃-a.e.-convergence. In particular for every c > 0,

1 + oρ̃(c) ≥ ω−1ρ̃ (1 + α),

where α = 1
ωρ̃(

1
c
)
.

Proof. Let {xn} be a sequence in Lρ̃(M̃, τ) such that xn → 0 ρ̃-a.e. and

lim inf ‖xn‖Aρ̃ ≥ 1. Consider an operator x ∈ Lρ̃(M̃, τ) with ‖x‖Aρ̃ ≥ c. By

Lemma 4.1 and using the same argument as in the proof Theorem 4.3, we
can assume that supp(µ(xn)) ∩ supp(µ(x)) = ∅ and ‖x‖Aρ̃ ≥ 1 for every

n ∈ N. Recall that

‖x‖Aρ̃ = inf

{
1 + ρ̃(λx)

λ
: λ > 0

}
for every x ∈ Lρ̃(M̃, τ). Then if x is an operator in Lρ̃(M̃, τ) with ‖x‖Aρ̃ ≥ 1,

we have that ρ̃(λx) ≥ λ− 1 for every λ > 0.
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Set γ := ω−1ρ̃

(
1 + 1

ωρ̃(
1
c
)

)
and fix λ > 0. Using the properties of the

modular ρ̃ and the growth function ωρ̃(·), we get

1

λ

[
1 + ρ̃

(
λ(xn + x)

γ

)]
=

1

λ

[
1 + ρ̃

(
λxn
γ

)
+ ρ̃

(
λx

γ

)]
≥ 1

λ

[
1 +

ρ̃(λxn)

ωρ̃(γ)
+
ρ̃(λxc )

ωρ̃(
γ
c )

]

≥ 1

λ

[
1 +

λ− 1

ωρ̃(γ)
+
λ− 1

ωρ̃(
γ
c )

]
≥ 1

λ

[
1 + (λ− 1)

(
1

ωρ̃(γ)
+

1

ωρ̃(γ)ωρ̃(
1
c )

)]
= 1.

Taking infimum over all λ > 0, we infer that lim infn→∞ ‖xn + x‖Aρ̃ ≥ γ,

which completes the proof. �

Corollary 4.5. Let ϕ satisfy the ∆2–condition. Then the noncommutative

Orlicz space Lϕ(M̃, τ) equipped with the Luxemburg and Amemiya norms
satisfies the uniform Opial condition with respect to the convergence in mea-
sure.

Theorem 4.6. The noncommutative modular function space Lρ̃(M̃, τ)
equipped with the Luxemburg norm ‖ · ‖ρ̃ has the uniform Kadec–Klee prop-
erty with respect to the ρ̃-a.e.-convergence. Moreover, for every ε > 0,

kρ̃(ε) ≥ 1− 1

ωρ̃(
1

1−ζ )
,

where ζ = 1
2ωρ̃(

1
ε
)
.

Proof. Let ε > 0 and {xn} be a sequence in the unit ball of Lρ̃(M̃, τ) with

sep(xn) > ε. Assume that {xn} is convergent to some x ∈ Lρ̃(M̃, τ) ρ̃-a.e.
Consider any real number t > 0 and define yn := xn

1+t and y := x
1+t . In this

case ‖yn‖ρ̃ < 1 and ρ̃(yn) ≤ ‖yn‖ < 1 for every n ∈ N. Put ξ = ε
1+t . Since

‖yn−ym‖ ≥ ξ for every n 6= m, we see that ρ̃
(
yn−ym

ξ

)
> 1 for every n 6= m.

This implies that

ωρ̃

(
1

ξ

)
= sup

{
ρ̃(xξ )

ρ̃(x)
: 0 < ρ̃(x) <∞

}
≥

ρ̃
(
yn−ym

ξ

)
ρ̃ (yn − ym)

>
1

ρ̃ (yn − ym)
,
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and consequently ρ̃ (yn − ym) > ωρ̃

(
1
ξ

)
for every n 6= m. If we consider

m ∈ N and use Theorem 3.14, we obtain

1

ωρ̃

(
1

ξ

)
≤ lim inf

n→∞
ρ̃ (yn − ym) = lim inf

n→∞
ρ̃ ((yn − y)− (ym − y))

= lim inf
n→∞

ρ̃ (yn − y) + ρ̃(ym − y).

Letting m tend to infinity, we get

lim inf
n→∞

ρ̃ (yn − y) ≥ 1

2ωρ̃(
1
ξ )
.

On the other hand, using Theorem 3.14, we have

lim inf
n→∞

ρ̃(yn) = lim inf
n→∞

ρ̃(yn − y + y) = lim inf
n→∞

ρ̃(yn − y) + ρ̃(y).

Thus

0 ≤ ρ̃(y) = lim inf
n→∞

ρ̃(yn)− lim inf
n→∞

ρ̃(yn − y) ≤ 1− 1

2ωρ̃(
1
ξ )
.

Employing Lemma 3.7 and the fact that the function ω−1ρ̃ is increasing we
get

‖x‖ρ̃ ≤ (1 + t)
1

ωρ̃(
1

1−ζ )
,

where ζ = 1
2ωρ̃(

1
ξ
)
. Since t > 0 is arbitrary and the functions ωρ̃ and ω−1ρ̃ are

continuous, it follows that

‖x‖ρ̃ ≤
1

ωρ̃(
1

1−ζ )
:= 1− δ(ε),

where ζ = 1
2ωρ̃(

1
ξ
)
. In order to finish the proof we have to check that 1−δ(ε) <

1. Taking into account that ωρ̃ is an increasing function and that ωρ̃(1) = 1,

the above inequality holds if and only if ωρ̃(
1
ε ) > 0. This condition is satisfied

due to the ∆2–type condition. Indeed, since we are assuming that there

exists some k > 0 such that ρ̃(2x) ≤ kρ̃(x) for every x ∈ Lρ̃(M̃, τ), we
obtain

ωρ̃

(
1

2

)
= sup

{
ρ̃(x2 )

ρ̃(x)
: 0 < ρ̃(x) <∞

}
≥ 1

k
> 0.

It follows from 0 < ε ≤ 2 that ωρ̃(
1
ε ) ≥ ωρ̃(12) > 0 as required. �

Corollary 4.7. Let ϕ satisfy the ∆2-condition. Then the noncommutative

Orlicz space Lϕ(M̃, τ) equipped with the Luxemburg norm has the uniform
Kadec–Klee property with respect to the convergence in measure.

Acknowledgement. The authors are grateful to the reviewer and the area
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