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On the topology of some Sasaki–Einstein
manifolds

Charles P. Boyer and Christina W.
Tønnesen-Friedman

Abstract. This is a sequel to our forthcoming paper (J. Geom. Anal.,
2015) in which we concentrate on developing some of the topological
properties of Sasaki–Einstein manifolds. In particular, we explicitly
compute the cohomology rings for several cases not treated in that paper,
and give formulæ for homotopy equivalence as well as homeomorphism
equivalence in one particular 7-dimensional case.
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1. Introduction

Recently the authors have been able to obtain many new results on ex-
tremal Sasakian geometry [BTF13c, BTF13a, BTF14a, BTF15] by giving
a geometric construction that combines the ‘join construction’ of [BG00,
BGO07] with the ‘admissible construction of Hamiltonian 2-forms’ for ex-
tremal Kähler metrics described in [ACG06, ACGTF04, ACGTF08b] and
[ACGTF08a]. The current paper is a result of re-arranging the two previous
ArXiv papers [BTF13b, BTF14b]. The basic analysis of both the constant
scalar curvature and Sasaki–Einstein cases were combined in [BTF15] which
also contains the foundational topological description. The current paper
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contains further results on the topology of the Sasaki–Einstein manifolds
most of which appeared in [BTF13b], but were left out of [BTF15].

The main result concerning Sasaki–Einstein manifolds in [BTF15] is:

Theorem 1.1. Let Ml1,l2,w = M ?l1,l2 S
3
w be the S3

w-join with a regular
Sasaki manifold M which is an S1-bundle over a compact positive Kähler–
Einstein manifold N with a primitive Kähler class [ωN ] ∈ H2(N,Z). As-
sume that the relatively prime positive integers (l1, l2) are the relative Fano
indices given explicitly by

l1(w) =
IN

gcd(w1 + w2, IN )
, l2(w) =

w1 + w2

gcd(w1 + w2, IN )
,

where IN denotes the Fano index of N . Then for each vector w = (w1, w2) ∈
Z+×Z+ with relatively prime components satisfying w1 > w2 there exists a
Reeb vector field ξv in the 2-dimensional w-Sasaki cone on Ml1,l2,w such that
the corresponding Sasakian structure S = (ξv, ηv,Φ, g) is Sasaki–Einstein
(SE).

The procedure involved taking a join of a regular Sasaki–Einstein mani-
fold M with the weighted 3-sphere S3

w, that is, S3 with its standard contact
structure, but with a weighted contact 1-form whose Reeb vector field gen-
erates rotations with generally different weights w1, w2 for the two complex
coordinates z1, z2 of S3 ⊂ C2. We call this the S3

w-join. By the w-Sasaki
cone we mean the two dimensional subcone of Sasaki cone induced by the
Sasaki cone of S3

w. It is denoted by t+w and can be identified with the open
first quadrant in R2.

Most of the SE structures in Theorem 1.1 are irregular. Such struc-
tures have irreducible transverse holonomy [HS12], implying there can be
no generalization of the join procedure to the irregular case. We must de-
form within the Sasaki cone to obtain them. Furthermore, it follows from
[RT11, CoS12] that constant scalar curvature Sasaki metrics (hence, SE)
imply a certain K-semistability.

The SE metrics obtained from Theorem 1.1 were obtained earlier by physi-
cists [GHP03, GaMSW04b, GaMSW04a, CvLPP05, MS05] working on the
AdS/CFT correspondence. Their method, particularly that of [GaMSW04a],
is very closely related to the Hamiltonian 2-form approach of [ACG06] (cf.
Section 4.3 of [Spa11]). In fact Thorem 1.1 indicates that the physicist’s re-
sults fit naturally into our geometric construction. Furthermore, we showed
in [BTF15] that our geometric approach leads naturally to an algorithm for
computing the cohomology ring of the 2n+ 3-manifolds. In the present pa-
per we explicitly compute the cohomology ring of all such examples of SE
manifolds in dimension 7 showing that there are a countably infinite num-
ber of distinct homotopy types of such manifolds. The case that M is a
standard odd dimensional sphere was computed in [BTF15], so here we give
the cohomology rings of the joins when M is a circle bundle over one of the
remaining del Pezzo surfaces. Explicitly, for N = CP1 × CP1 we have:



ON THE TOPOLOGY OF SOME SASAKI–EINSTEIN MANIFOLDS 59

Theorem 1.2. For each relatively prime pair (w1, w2) of positive integers
there exist Sasaki–Einstein metrics on the 7-manifolds M7

l1,l2,w
with coho-

mology ring

Z[x, y, u, z]/(x2, l2(w)xy,w1w2l1(w)2y2, z2, u2, zu, zx, ux, uy)

with (l1, l2) = (2, |w|) if w is odd, or (l1, l2) = (1, |w|2 ) if w is even, where
x, y are 2-classes, and z, u are 5-classes.

It is well-known that when N is the blow-up of CP2 at k generic points,

namely N = CP2#kCP
2

there is a Kähler–Einstein metric precisely for
k = 3, . . . , 8. Then our results give:

Theorem 1.3. For each relatively prime pair (w1, w2) of positive integers
there exist Sasaki–Einstein metrics on the 7-manifolds M7

k,w with cohomol-
ogy ring

Hq(M7
k,w,Z) ≈


Z if q = 0, 7,

Zk+1 if q = 2, 5,

Zkw1+w2
×Zw1w2 if q = 4,

0 if otherwise,

with the ring relations determined by

αi ∪ αj = 0, w1w2s
2 = 0, (w1 + w2)αi ∪ s = 0,

where αi, s are the k + 1 two-classes with i = 1, . . . , k where k = 3, . . . , 8.
Furthermore, when 4 ≤ k ≤ 8 the local moduli space of Sasaki–Einstein
metrics has real dimension 4(k − 4).

Of particular interest is the join M2r+3
w = S2r+1 ?l1,l2 S

3
w of the standard

odd dimensional sphere with the weighted S3
w where

(1) (l1, l2) =

(
r + 1

gcd(w1 + w2, r + 1)
,

w1 + w2

gcd(w1 + w2, r + 1)

)
.

By Theorem 4.5 of [BTF15] its cohomology ring is

(2) Z[x, y]/(w1w2l1(w)2x2, xr+1, x2y, y2)

where x, y are classes of degree 2 and 2r+1, respectively. Let k be the length
of the prime decomposition of w1w2. Then for arbitrary r we show that there
are 2k−1 Sasaki–Einstein manifolds of the form M2r+3

w with cohomology ring
given by Equation (2). For the manifolds M7

w of dimension 7 (r = 2) much
more is known about the topology. These are special cases of what are called
generalized Witten spaces in [Esc05]. In particular, the homotopy type was
given in [Kru97], while the homeomorphism and diffeomorphism type was
given in [Esc05]. For our subclass admitting Sasaki–Einstein metrics we give
necessary and sufficient conditions on w for homotopy equivalence when
the order of H4 is odd in Proposition 3.7 below. Thus, we answer in the
affirmative the existence of Einstein metrics on certain generalized Witten
manifolds.
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2. The w-Sasaki cone when c1(D) = 0

In this section we describe some of the properties of the w-Sasaki cone
when c1(D) = 0, ending with some examples. Since we require that N be a
positive Kähler–Einstein manifold, we have c1(N) = IN [ωN ] where IN is the
Fano index. Recall from [BTF15] that the cohomological Einstein condition
c1(Dl1,l2,w) = 0 implies:

Lemma 2.1. Necessary conditions for the Sasaki manifold Ml1,l2,w to admit
a Sasaki–Einstein metric is that IN > 0, and that

l2 =
|w|

gcd(|w|, IN )
, l1 =

IN

gcd(|w|, IN )
.

The integers l1, l2 in Lemma 2.1 were called relative Fano indices in
[BG00]. For the remainder of the paper we assume that these integers take
the values given by Lemma 2.1 unless explicitly stated otherwise. Note that
the Fano index IN of a Fano manifold of complex dimension r is bounded
by r + 1, thus, l1 is also bounded by r + 1. Moreover, IN = r + 1 if and
only if the universal cover of the regular Sasaki manifold M is the standard
sphere S2r+1.

We shall make use of the following easily verified proposition for low values
of IN .

Proposition 2.2. Let M be a regular Sasaki–Einstein manifold and con-
sider the join M ?l1,l2 S

3
w. Then:

(1) If IN = 1 then (l1, l2) = (1, |w|).

(2) If IN = 2, then (l1, l2) =

{
(2, |w|) if |w| is odd,

(1, |w|2 ) if |w| is even.

(3) If IN = 3, then (l1, l2) =

{
(3, |w|) if 3 does not divide |w|,
(1, |w|3 ) if 3 divides |w|.

A natural question that arises is whether the w-cone contains a regular
Reeb vector field.

Proposition 2.3. Assume w 6= (1, 1) and let K = gcd(IN , |w|). Then there
are exactly K − 1 different w-Sasaki cones that have a regular Reeb vector
field. These are given by

(3) w =
( K + n

gcd(K + n,K − n)
,

K − n
gcd(K + n,K − n)

)
,

where 1 ≤ n < K.
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Proof. By Proposition 3.4 of [BTF15] a w-Sasaki cone contains a regular
Reeb vector field if and only if there is n ∈ Z+ such that

w1 − w2 = n
w1 + w2

gcd(IN , w1 + w2)
.

Clearly, for a solution we must have n < gcd(IN , w1 +w2). Then we have a
solution if and only if

(K − n)w1 = (K + n)w2

for all 1 ≤ n < K. Since w1 > w2 and they are relatively prime we have the
unique solution Equation (3) for each integer 1 ≤ n < K. �

We have an immediate corollary to Proposition 2.3:

Corollary 2.4. If IN = 1 there are no regular Reeb vector fields in any
w-Sasaki cone with w 6= (1, 1).

Example 2.5. Let us determine the w-joins with regular Reeb vector field
for IN = 2, 3. For example, if IN = 2 for a solution to Equation (3) we must
have K = 2 which gives n = 1 and w = (3, 1). This has as a consequence
Corollary 2.7 below. Similarly if IN = 3 we must have K = 3, which gives
two solutions w = (2, 1) and w = (5, 1).

Example 2.6. Let p and q be relatively prime positive integers satisfying
p > 1 and 1 ≤ q < p. Recall that the contact structures Y p,q on S2×S3 were
discovered in [GaMSW04b], where it is shown that there is a unique Sasaki–
Einstein metric in the Sasaki cone of each such Y p,q. These SE metrics are
most often irregular. From the viewpoint of the present work, Y p,q is a join
Ml1,l2,w = M3 ?l1,l2 S

3
w where N = S2 with its standard (Fubini–Study)

Kähler structure. Hence, IN = 2. This example has been treated in more
detail elsewhere [BP14, B11, BTF15] so we shall be very brief here1. As in
[BTF15] we have using Lemma 2.1

(4) w =
(p+ q, p− q)

gcd(p+ q, p− q)
, l1 = gcd(p+ q, p− q), l2 = p.

It follows from Proposition 2.2 that there are two cases depending on whether

|w| is odd or even. In the former case p = |w|, and in the latter p = |w|
2 .

From Example 2.5 we have:

Corollary 2.7. For Y p,q the w-Sasaki cone has a regular Reeb vector field
if and only if p = 2, q = 1 or equivalently w = (3, 1).

We remark that the quotient of Y 2,1 by the regular Reeb vector field is
CP2 blown-up at a point; whereas, we have arrived at it from the w-Sasaki
cone of an S1 orbibundle over S2 × CP1[3, 1].

1Unfortunately, the conventions are slightly different. In [BP14, B11] the convention
w1 ≤ w2 is used; whereas, here and in [BTF15] the opposite convention, w1 ≥ w2, is used.
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3. The topology of the Sasaki–Einstein manifolds

We briefly recall the method used in [BTF15] to prove Theorem 1.1.
The idea is that if we know the differentials in the spectral sequence of the
fibration

(5) M−−→N−−→BS1,

we can use the commutative diagram of fibrations

(6) M × S3
w

//

=

��

Ml1,l2,w
//

��

BS1

ψ

��

M × S3
w

// N × BCP1[w] // BS1 × BS1

to compute the cohomology ring of the join Ml1,l2,w. Here BG is the classify-
ing space of a group G or Haefliger’s classifying space [Hae84] of an orbifold
if G is an orbifold.

3.1. Examples in general dimension. In this section we mainly give
partial topological results for some examples of general dimension.

3.1.1. M is a standard sphere. The topology of the join when M is
a regular Sasakian sphere S2r+1 was worked out in [BTF15] and further
studied in [BTF14c]. We shall treat the 7-dimensional case in more detail
in Section 3.2.1 below; however, before doing so we give the following result
for M2r+3

w = S2r+1 ?l1,l2 S
3
w with (l1(w), l2(w)) satisfying Equations (1).

Lemma 3.1. If H4(M2r+3
w ,Z) = H4(M2r+3

w′ ,Z), then w′1w
′
2 = w1w2 and

l1(w
′) = l1(w).

Proof. The equality of the 4th cohomology groups together with the defi-
nition of l1 imply

w′1w
′
2l1 gcd(|w|, r + 1)2 = w1w2 gcd(|w′|, r + 1)2.

Set gw = gcd(|w|, r + 1) and gw′ = gcd(|w′|, r + 1). Assume gw′ > 1.
Since gcd(w′1, w

′
2) = 1, gw′ does not divide w′1w

′
2. Thus, g2w′ divides g2w.

Interchanging the roles of w′ and w gives gw′ = gw which implies l1(w
′) =

l1(w), and hence, the lemma in the case that gw′ > 1. Now assume gw′ = 1.
Then we have w1w2 = w′1w

′
2g

2
w which implies that gw divides w1w2. But

then since w1, w2 are relatively prime, we must have gw = 1. �

Let us set W = w1w2, and write the prime decomposition of

W = w1w2 = pa11 . . . pakk

Let Pk be the number of partitions of W into the product w1w2 of unordered
relatively prime integers, including the pair (w1w2, 1). Then a counting
argument gives Pk = 2k−1. Once counted we then order the pair w1 > w2 as
before. Let PW denote the set of (2r+ 3)-manifolds M2r+3

w with isomorphic
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cohomology rings. Then Lemma 3.1 implies that the cardenality of PW is
Pk = 2k−1. This proves:

Proposition 3.2. Let k denote the length of the prime decomposition of
w1w2, then there are 2k−1 simply connected Sasaki–Einstein manifolds

M2r+3
w = S2r+1 ?l1,l2 S

3
w

of dimension 2r + 3 with isomorphic cohomology rings such that H4 has
order w1w2l1(w)2.

3.1.2. M is a rational homology sphere. If we replace the standard
odd dimensional sphere by a rational homology sphere V 2r+1 with a regular
Sasakian structure the computations in [BTF15] immediately give:

Proposition 3.3. The rational cohomology ring of the S3
w-join

V 2r+1 ?l1,l2,w S3
w

of a rational homology sphere V 2r+1 is

Q[x, y]/(x2, y2)

where x, y are classes of degree 2 and 2r+ 1, respectively. Here the l1, l2 are
any positive integers satisfying gcd(l2, w1w2l1) = 1.

Examples of rational homology spheres with regular Sasaki–Einstein met-
rics are given in [BGN02]. They are the Sasakian homogeneous Stiefel man-
ifolds V2(R

2n+1) of 2-frames in R2n+1 and the 3-Sasakian homogeneous 11-
manifold2 G2/Sp(1)+. Since we want the join to have a Sasaki–Einstein
metric somewhere it the Sasaki cone, we require that the pair (l1, l2) to be
the relative Fano indices of Lemma 2.1.

Example 3.4. The Stiefel manifold V2(R
2n+1) of dimension 4n− 1. It is a

circle bundle over the odd complex quadric Q2n−1(C). Its Fano index I is
2n− 1. So the relative Fano indices are

(7) l1(w) =
2n− 1

gcd(|w|, 2n− 1)
, l2(w) =

|w|
gcd(|w|, 2n− 1)

.

Moreover, the cohomology of V2(R
2n+1) is

Hp(V2(R
2n+1),Z) ≈


Z if p = 0, 4n− 1,

Z2 if p = 2n,

0 otherwise.

From the long exact homotopy sequence and the commutative diagram one
easily obtains the partial results for the joinMl1,l2,w(V ) = V2(R

2n+1)?l1,l2S
3
w

when n > 2, namely Ml1,l2,w(V ) is simply connected,

H3(Ml1,l2,w(V ),Z) = H5(Ml1,l2,w(V ),Z) = 0,

2The reason for the subscript + on Sp(1) is that there are two nonconjugate Sp(1)
subgroups in the exceptional Lie group G2 which we denote by the subscripts ±. The
quotient by Sp(1)− is equivalent to V2(R7).
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and

π1(Ml1,l2,w(V )) = H2(Ml1,l2,w(V ),Z) ≈ Z,(8)

H4(Ml1,l2,w(V ),Z) ≈ Zw1w2l21
.

Since the Stiefel manifolds V2(R
2n+1) are S1-bundles over a complex quadric,

they are special cases of 3.1.3 below.

Example 3.5. The homogeneous 3-Sasakian 11-manifold G2/Sp(1)+. It
is a rational homology sphere with a Z3 in cohomological degrees 4 and 8.
By Proposition 2.3 in [BG00] the Fano index I associated to G2/Sp(1)+ is
3. Then by Proposition 2.2 we have Sasaki–Einstein metrics on the sim-
ply connected 13-manifolds, G2/Sp(1)+ ?3,|w| S

3
w if 3 does not divide |w|,

and G2/Sp(1)+ ?
1,
|w|
3

S3
w if 3 divides |w|. These 13-manifolds are simply

connected with π2 = Z and torsion in H4.

3.1.3. M is the link of a Fermat hypersurface. The projective Fer-
mat hypersurface Fd,n+1 of degree d in CPn+1 is described in homogeneous
coordinates by the equation

(9) zd0 + zd1 + · · ·+ zdn+1 = 0.

It is Fano when d ≤ n + 1 with index IFd,n+1
= n + 2 − d when d ≤ n + 1.

Moreover, they have a Kähler–Einstein metric when n+1
2 ≤ d ≤ n + 1.

So for this range of d the Sasakian circle bundle Sd,n+1 over Fd,n+1 has
a Sasaki–Einstein metric [BG00]. Note that F2,2n is the complex quadric
Q2n−1 ⊂ CP2n and S2,2n = V2(R

2n+1) described in Example 3.4 and they are
endowed with KE and SE metrics, respectively although d is outside of the
range given above. The integral cohomology ring of Fd,n+1 is well understood
[KW80]. It is torsion free with H∗(Fd,n+1,Z) = H∗(P

n,Z) except in the

middle dimension n where the nth cohomology group of Fd,n+1 is Zbn when

n is odd, and Zbn+1 when n is even, where

bn = (−1)n
(

1 +
(1− d)n+2 − 1

d

)
.

Then if n > 4 we see as in Example 3.4 that the joinMl1,l2,w = Sd,n+1?l1,l2S
3
w

is simply connected satisfying the conditions of Equation (8). In order that
the join has a Sasaki–Einstein metric in its w-Sasaki cone, we must choose
the relative Fano indices to be

(10) l1(w) =
n+ 2− d

gcd(|w|, n+ 2− d)
, l2(w) =

|w|
gcd(|w|, n+ 2− d)

with n+1
2 ≤ d ≤ n + 1 or d = 2. For 2 < d < n+1

2 it is unknown whether
there is such an SE metric.
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3.2. Examples in dimension 7. We focus attention to dimension seven
in which case N is a del Pezzo Surface, namely CP2,CP1 × CP1, and CP2

blown-up at k generic points with 1 ≤ k ≤ 8. Then the S3
w-join a Sasakian

circle bundle over N will be a Sasaki 7-manifold.

3.2.1. M = S5, N = CP2. For CP2 with its standard Fubini–Study
Kählerian structure, we have IN = 3. From Example 2.5 we see that we
have a regular Reeb vector field in the w-Sasaki cone in precisely two cases,
either w = (2, 1), or w = (5, 1). In the first case the relative Fano indices
are (l1, l2) = (1, 1) while in the second case they are (l1, l2) = (1, 2). In
the former case our 7-manifold M7

(2,1) = S5 ?1,1 S
3
(2,1) is an S3-bundle over

CP2; whereas, in the latter case the 7-manifold M7
(5,1) = S5 ?1,2 S

3
(5,1) is an

L(2; 5, 1) bundle over CP2. Moreover, it follows from standard lens space
theory that L(2; 5, 1) is diffeomorphic to the real projective space RP3. For
general w we have two cases by Proposition 2.2, H4(M7

w,Z) = Zw1w2 if 3
divides |w| and H4(M7

w,Z) = Z9w1w2 if 3 does not divide |w|. In both cases
the cohomology ring is given by

Z[x, y]/(w1w2l
2
1x

2, x3, x2y, y2)

where x, y are classes of degree 2 and 5, respectively. Notice that since 3
must divide w1 + w2 in the first case and w1w2 are relatively prime, the
cohomology rings are never isomorphic for the two different cases.

Remark 3.6. Let us make a brief remark about the homogeneous case
w = (1, 1) with symmetry group SU(3)× SU(2)× U(1). There is a unique
solution with a Sasaki–Einstein metric as shown in [BG00]. However, drop-
ping both the Einstein and Sasakian conditions, Kreck and Stolz [KreS88]
gave a diffeomorphism and homeomorphism classification. Furthermore, us-
ing the results of [WZ90], they show that in certain cases each of the 28
diffeomorphism types admits an Einstein metric. If we drop the Einstein
condition and allow contact bundles with nontrivial c1 we can apply the
classification results of [KreS88] to the Sasakian case. This will be studied
elsewhere.

For dimension 7 we see from Proposition 2.2 that if 3 divides w1+w2 then
the order |H4| is W . However, if 3 does not divide w1 + w2 then the order
of |H4| is 9W . So by Lemma 3.1 PW splits into two cases, P0

W if W + 1 is
divisible by 3, and P1

W if W + 1 is not divisible by 3. Of course, in either

case the cardenality of PW is 2k−1 where k is the number of prime powers
in the prime decomposition of W .

Proposition 3.7. Suppose the order of H4 is odd. The elements M7
w and

M7
w′ in P0

W are homotopy inequivalent if and only if either(
w′1 + w′2

3

)3

≡ ±
(
w1 + w2

3

)3

mod ZW .
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The elements M7
w and M7

w′ in P1
W are homotopy inequivalent if and only if

(w′1 + w′2)
3 ≡ ±(w1 + w2)

3 mod Z9W .

Proof. For r = 2 consider the E6 differential d6(β) = l2(w)3s3 in the spec-
tral sequence of Theorem 4.5 of [BTF15]. Since l2 is relatively prime to
l1(w)2w1w2, this takes values in the multiplicative group Z∗

l21W
of units in

Zl21W
. Taking into account the choice of generators, it takes its values in

Z∗
l21W

/{±1}. According to Theorem 5.1 of [Kru97] M7
w,M

7
w′ ∈ PW are

homotopy equivalent if and only if l2(w
′)3 = l2(w)3 in Z∗

l21W
/{±1}. Of

course, this means that l2(w
′)3 = ±l2(w)3 in Z∗

l21W
. Note that the the other

two conditions of Theorem 5.1 of [Kru97] are automatically satisfied in our
case. �

Using a Maple program we have checked some examples for homotopy
equivalence which appears to be quite sparse. So far we haven’t found
any examples of a homotopy equivalence. However, we have not done a
systematic computer search which we leave for future work.

Example 3.8. Our first example is an infinite sequence of pairs with the
same cohomology ring. Set W = 3p with p an odd prime not equal to 3,
which gives Pk = 2. Then for each odd prime p 6= 3 there are two manifolds
in P1

W , namely M7
(3p,1) and M7

(p,3). The order of H4 is 27p. We check the

conditions of Proposition 3.7. We find

(3p+ 1)3 ≡ 9p+ 1 mod 27p, (p+ 3)3 ≡ p3 + 9p2 + 27 mod 27p.

First we look for integer solutions of p3+9p2−9p+26 ≡ 0 mod 27p. By the
rational root test the solutions could only be p = 2, 13, 26 none of which are
solutions. Next we check the second condition of Proposition 3.7, namely,
p3 + 9p2 + 9p+ 28 ≡ 0 mod 27p. Again by the rational root test we find the
only possibilities are p = 2, 7, 14, 28, from which we see that there are no
solutions. Thus, we see that M7

(3p,1) and M7
(p,3) are not homotopy equivalent

for any odd p 6= 3.
By the same arguments one can also show that the infinite sequence of

pairs of the form M7
(9p,1) and M7

(p,9), with p an odd prime relatively prime

to 3, are never homotopy equivalent.

Remark 3.9. In Example 3.8 we do not need to have p a prime, but we
do need it to be relatively prime to 3. In this more general case, there will
be more elements in P1

W . For example, if p = 55 we have Pk = 4 and the
pair M7

(165,1),M
7
(55,3) has the same cohomology ring as M7

(33,5) and M7
(15,11).

However, they are not homotopy equivalent to either member of the pair
nor to each other.

Example 3.10. A somewhat more involved example is obtained by setting
W = 5 · 7 · 11 · 17. Here Pk = 8, so this gives eight 7-manifolds in P0

W ,
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namely,

M7
(6545,1), M7

(1309,5), M7
(935,7), M7

(595,11),

M7
(385,17), M7

(187,35), M7
(119,55), M7

(85,77).

One can check that these do not satisfy the conditions for homotopy equiv-
alence of Proposition 3.7. So they are all homotopy inequivalent.

It is easy to get a necessary condition for homeomorphism.

Proposition 3.11. Suppose w′1w
′
2 = w1w2 is odd and that M7

w and M7
w′

are homeomorphic. Then in addition to the conditions of Proposition 3.7,
we must have

2(w′1 + w′2)
2 ≡ 2(w1 + w2)

2 mod 3w1w2.

Proof. This is because the first Pontrjagin class p1 is actually a homeomor-
phism invariant3. From Kruggel [Kru97] we see that if 3 does not divide
|w|
(11) p1(M

7
w) ≡ 3|w|2 − 9w2

1 − 9w2
2 ≡ −6|w|2 mod 9w1w2,

which implies the result in this case. If 3 divides |w| we have

(12) p1(M
7
w) ≡ −6

(
|w|
3

)2

mod w1w2

and this implies the same result. �

Note that Equations (11) and (12) both imply the third condition of
Theorem 5.1 in [Kru97] holds in our case. To determine a full homeomor-
phism and diffeomorphism classification requires the Kreck–Stolz invariants
[KreS88] s1, s2, s3 ∈ Q/Z. These can be determined as functions of w in
our case by using the formulae in [Esc05, Kru05]; however, they are quite
complicated and the classification requires computer programing which we
leave for future work.

It is interesting to compare the Sasaki–Einstein 7-manifolds described in
this section with the 3-Sasakian 7-manifolds studied in [BGM94, BG99] for
their cohomology rings have the same form. Seven dimensional manifolds
whose cohomology rings are of this type were called 7-manifolds of type
r in [Kru97] where r is the order of H4. First recall that the 3-Sasakian
7-manifolds in [BGM94] are given by a triple of pairwise relatively prime
positive integers (p1, p2, p3) and H4 is isomorphic to Zσ2(p) where

σ2(p) = p1p2 + p1p3 + p2p3

is the second elementary symmetric function of p = (p1, p2, p3). It follows
that σ2 is odd. The following theorem is implicit in [Kru97], but we give its
simple proof here for completeness.

3This appears to be a folklore result with no proof anywhere in the literature. It is
stated without proof on page 2828 of [Kru97] and on page 31 of [KreL05]. We thank
Matthias Kreck for providing us with a proof that p1 is a homeomorphism invariant.
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Theorem 3.12. The 7-manifolds M7
p and M7

w are not homotopy equivalent
for any admissible p or w.

Proof. These manifolds are distinguished by π4. Our manifolds M7
w are

quotients of S5 × S3 by a free S1-action, whereas, the manifolds M7
p of

[BGM94] are free S1 quotients of SU(3). So from their long exact homotopy
sequences we have πi(M

7
w) ≈ πi(S

5 × S3) and πi(M
7
p) ≈ πi(SU(3)) for all

i > 2. But it is known that π4(SU(3)) ≈ 0 whereas, π4(S
5 × S3) ≈ Z2. �

3.2.2. M = S2 × S3, N = CP1 × CP1. Note that this is Example 3.1.3
with n = d = 2. We have IN = 2, so there are two cases: |w| is odd impying

l2 = |w| and l1 = 2; and |w| is even with l2 = |w|
2 and l1 = 1. In both cases

the smoothness condition gcd(l2, l1wi) = 1 is satisfied. The E2 term of the
Leray–Serre spectral sequence of the top fibration of diagram (6) is

Ep,q2 = Hp(BS1, Hq(S2 × S3 × S3
w,Z)) ≈ Z[s]⊗Z[α]/(α2)⊗ Λ[β, γ],

which by the Leray–Serre Theorem converges to Hp+q(Ml1,l2,w,Z). Here α
is a 2-class and β, γ are 3-classes. From the bottom fibration in Diagram
(6) we have d2(β) = α ⊗ s1 and d4(γ) = w1w2s

2
2. From the commutativity

of diagram (6) we have d2(β) = l2s and d4(γw) = w1w2l
2
1s

2 which gives

E4,0
4 ≈ Zw1w2l21

, E0,3
4 ≈ Z, E2,2

4 ≈ Zl2 , and E0,3
∞ = 0. Then using Poincaré

duality and universal coefficients we obtain:

Proposition 3.13. In this case M7
l1,l2,w

with either (l1, l2) = (2, |w|) or

(1, |w|2 ) has the cohomology ring given by

H∗(M7
l1,l2,w,Z) = Z[x, y, u, z]/(x2, l2xy,w1w2l

2
1y

2, z2, u2, zu, zx, ux, uy)

where x, y are 2-classes, and z, u are 5-classes.

There is only one case with a regular Reeb vector field, and that is w =
(3, 1) in which case the relative Fano indices are (1, 2). Then the 7-manifold
is (S2×S3)?1,2S

3
(3,1) can be realized as an L(2; 3, 1) ≈ RP3 lens space bundle

over CP1 × CP1. Proposition 3.13 and Theorem 1.1 prove Theorem 1.2.

3.2.3. M = k(S2 × S3), N = CP2 blown-up at k generic points

with k = 1, . . . , 8. Equivalently we write N = Nk = CP2#kCP
2
. All

the Kähler structures have an extremal representative, but for k = 1, 2 they
are not CSC. However, for k = 3, . . . , 8 they are CSC, and hence, Kähler–
Einstein. Notice that when 4 ≤ k ≤ 8 the complex automorphism group
has dimension 0, so the w-Sasaki cone is the entire Sasaki cone. Moreover,
if 5 ≤ k ≤ 8 the local moduli space has positive dimension, and we can
choose any of the complex structures. By a theorem of Kobayashi and
Ochiai [KO73] we have INk

= 1 for all k = 1, . . . , 8. So l1 = 1, l2 = |w|,
and by Corollary 2.4 there are no regular Reeb vector fields in the w-Sasaki
cone with w 6= (1, 1). In particular, if 4 ≤ k ≤ 8, there are no regular Reeb
vector fields in the Sasaki cone. Generally, these are L(|w|;w1, w2) lens
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space bundles over Nk. Of course, the case w = (1, 1) is just an S1-bundle
over Nk × CP1 with the product complex structure which is automatically
regular. These were studied in [BG00]. Let Sk denote the total space of the
principal S1-bundle over Nk corresponding to the anticanonical line bundle
K−1 on Nk. By a well-known result of Smale Sk is diffeomorphic to the k-
fold connected sum k(S2× S3). We consider the join Sk ?1,|w| S3

w. The case
w = (1, 1) was studied in [BG00] where it is shown to have a Sasaki–Einstein
metric when 3 ≤ k ≤ 8. Moreover, in this case we have determined the
integral cohomology ring (see Theorem 5.4 of [BG00]). Here we generalize
this result.

Proposition 3.14. The integral cohomology ring of the 7-manifolds M7
k,w =

Sk ?1,|w| S3
w is given by

Hq(M7
k,w,Z) ≈


Z if q = 0, 7,

Zk+1 if q = 2, 5,

Zk|w| ×Zw1w2 if q = 4,

0 otherwise,

with the ring relations determined by αi∪αj = 0, w1w2s
2 = 0, |w|αi∪ s = 0,

where αi, s are the k + 1 two-classes with i = 1, . . . , k.

Proof. As before the E2 term of the Leray–Serre spectral sequence of the
top fibration of diagram (6) is

Ep,q2 = Hp(BS1, Hq(Sk × S3
w,Z)) ≈ Z[s]⊗

∏
i

Λ[αi, βi, γ]/I,

where αi, βj , γ have degrees 2, 3, 3, respectively, and I is the ideal generated
by the relations αi∪βi = αj ∪βj , αi∪αj = βi∪βj = 0 for all i, j, αi∪βj = 0
for i 6= j and γ2 = 0.

Consider the lower product fibration of diagram (6). As in the previous
case the first nonvanishing differential of the second factor is d4, and as
in that case d4(γ) = w1w2s

2
2. For the first factor we know from Smale’s

classification of simply connected spin 5-manifolds that Sk is diffeomorphic

to the k-fold connected sum k(S2 × S3). Moreover, since N = CP2#kCP
2
,

the first factor fibration is

k(S2 × S3)−−→CP2#kCP
2−−→BS1.

Here the first nonvanishing differential is d2(βi) = αi ⊗ s. Again from the
commutativity of diagram (6) for the top fibration we have d2(βi) = |w|αi⊗s
at the E2 level and d4(γ) = w1w2s

2 at the E4 level. One easily sees that the

k + 1 2-classes αi ∈ E2,0
2 and s ∈ E0,2

2 live to E∞ and there is no torsion in

degree 2. Moreover, there is nothing in degree 1, and the 3-classes βi ∈ E3,0
2

and γ ∈ E3,0
4 die, so there is nothing in degree 3. However, there is torsion

in degree 4, namely Zk|w| × Zw1w2 . The remainder follows from Poincaré

duality and dimensional considerations. �
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This generalizes Theorem 5.4 of [BG00] where the case w = (1, 1) is
treated and together with Theorem 1.1 proves Theorem 1.3.

Remark 3.15. Since |w| and w1w2 are relatively prime,

H4(M7
k,w,Z) ≈ Zk−1|w| ×Zw1w2|w|.

We can ask the question: when can M7
k,w and M7

k′,w′ have isomorphic coho-
mology rings? It is interesting and not difficult to see that there is only one
possibility, namely M7

1,(3,2) and M7
1,(5,1) in which case H4 ≈ Z30.
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