New York Journal of Mathematics

New York J. Math. 21 (2015) 333-338.

A sequence of inclusions whose colimit is not a homotopy colimit

Benjamin Branman, Igor Kriz and Aleš Pultr

Abstract

It is known that the homotopy colimit of a sequence of inclusions of T1 spaces is weakly equivalent with the actual colimit. We show that the assumption of T1 is essential by providing a counterexample for non-T1 spaces.

Contents

1. Introduction 333
2. The example 334
3. Proof that X is not the homotopy colimit of $X_{n} 337$

References 338

1. Introduction

It is well known that the canonical map from the homotopy colimit (telescope, [1]) of a sequence of inclusions

$$
X_{1} \subseteq \cdots \subseteq X_{n} \subseteq \ldots
$$

of T 1 topological spaces to the actual colimit is a weak equivalence:

$$
\begin{equation*}
\operatorname{hocolim}_{n} X_{n} \xrightarrow{\sim} \bigcup_{n} X_{n} . \tag{1}
\end{equation*}
$$

The reason is simply that for any compact space K (using the covering definition, regardless of separation axioms), the image of a continuous map

$$
f: K \rightarrow \bigcup_{n} X_{n}
$$

is contained in one of the spaces X_{n}. This is easily seen as follows: Assume otherwise and pick points $s_{n} \in f(K) \backslash X_{n}$. Let

$$
S_{m}=\left\{s_{m}, s_{m+1}, \ldots\right\} .
$$

Received October 8, 2014.
2010 Mathematics Subject Classification. 57M25, 57M27, 57R58.
Key words and phrases. Homotopy colimit, T1 spaces.
The first author was supported by NSF REU. The second author was supported by NSF grant DMS 1104348. The third author was supported by CE-ITI, GACR 202/12/6061.

Then $S_{m} \cap X_{n}$ is closed in X_{n} for each n, since the spaces are T1, and hence S_{m} is closed in $\bigcup X_{n}$. Hence, the sets $f^{-1}\left(S_{m}\right)$ are closed in K, $f^{-1}\left(S_{m}\right) \supseteq f^{-1}\left(S_{m+1}\right)$, while

$$
\bigcap_{m} f^{-1}\left(S_{m}\right)=f^{-1}\left(\bigcap_{m} S_{m}\right)=f^{-1}(\emptyset)=\emptyset .
$$

This is a contradiction to K being compact.
The authors do not know an original reference for this simple argument, which however plays a key role in homotopy theory (cf. [2]). Clearly, the assumption that the spaces X_{n} are T1 is essential to the argument.

The first author noticed, however, that (1) also holds for so-called quasidiscrete spaces, which means spaces in which an intersection of any (possibly infinite) number of open sets is open. Finite spaces are examples of quasidiscrete spaces. Quasi-discrete spaces are, in some sense, the opposites of T1 spaces. For any T0 space X, there is a partial ordering on the set X where $x \leq y$ if and only if the closure of x contains y. For T1 spaces, this partial ordering is trivial. On the other hand, for quasidiscrete spaces, the ordering determines the topology completely: For a quasidiscrete space X, a subset $S \subseteq X$ is closed if and only if

$$
x \in S, x \leq y \Rightarrow y \in S
$$

McCord [3] exhibited, for a quasi-discrete space X, a continuous map from the classifying space of the poset ($X_{\text {disc }}, \leq$) (where $X_{\text {disc }}$ denotes X with the discrete topology) to X which is a weak equivalence, and is functorial under inclusions. This implies (1).

The authors then began asking whether (1) is true for all topological spaces. Eventually, they found a counterexample, which is the subject of the present note. It remains an open problem if (1) is true for some reasonable separation axiom weaker than T1, such as TD spaces (a space is TD if every point x contains an open neighborhood U such that $U \backslash\{x\}$ is open). While such follow-up questions may fall into the realm of curiosities, the example presented here is an important cautionary tale on the role of the T1 axiom in the foundations of homotopy theory.

2. The example

For $m \in \mathbf{N}$, let $Q_{m} \subseteq \mathbb{R}^{2}$ be defined as

$$
(\{0\} \times[-1,1]) \cup\left\{\left(x, \sin \left(\frac{1}{x}\right)\right): x \in\left(0, \frac{1}{m}\right)\right\}
$$

with the subspace topology induced by \mathbb{R}^{2}. Observe that for $i \leq j, Q_{j} \subseteq Q_{i}$, and Q_{j} is open in Q_{i}. Also observe that

$$
\bigcap_{i=1}^{\infty} Q_{i}=\{0\} \times[-1,1] .
$$

Let X be the set

$$
\left\{x_{1}, x_{2}, \ldots, y\right\} \times Q_{1}
$$

with topology generated by the basis

$$
\begin{aligned}
\beta=\left\{\left(\left\{x_{k}\right\} \times U\right)\right. & \cup\left(\left\{x_{k+1}, x_{k+2}, \ldots\right\} \times Q_{k}\right) \cup(\{y\} \times V): \\
& \left.k \in \mathbb{N} \text { and } V \subseteq U \subseteq Q_{k} \text { and } U \text { and } V \text { are open in } Q_{k}\right\}
\end{aligned}
$$

We must check that β is actually a basis of topology.
Lemma 1. β is closed under finite intersections.
Proof. We consider two separate cases. In the first case, let

$$
\begin{aligned}
& A=\left(\left\{x_{k}\right\} \times U\right) \cup\left(\left\{x_{k+1}, \ldots\right\} \times Q_{k}\right) \cup(\{y\} \times V) \\
& B=\left(\left\{x_{k}\right\} \times W\right) \cup\left(\left\{x_{k+1}, \ldots\right\} \times Q_{k}\right) \cup(\{y\} \times Z)
\end{aligned}
$$

for some $k \in \mathbf{N}$, and some open sets U, V, W, and Z such that $V \subseteq U \subseteq Q_{k}$ and $Z \subseteq W \subseteq Q_{k}$. Then

$$
A \cap B=\left(\left\{x_{k}\right\} \times U \cap W\right) \cup\left(\left\{x_{k+1}, \ldots\right\} \times Q_{k}\right) \cup(\{y\} \times V \cap Z)
$$

$U \cap W$ and $V \cap Z$ are both open subsets of Q_{k}, and $(V \cap Z) \subseteq(U \cap W)$. Hence $A \cap B$ is in β.

In the second case, let

$$
\begin{aligned}
& A=\left(\left\{x_{j}\right\} \times U\right) \cup\left(\left\{x_{j+1}, \ldots\right\} \times Q_{j}\right) \cup(\{y\} \times V) \\
& B=\left(\left\{x_{k}\right\} \times W\right) \cup\left(\left\{x_{k+1}, \ldots\right\} \times Q_{k}\right) \cup(\{y\} \times Z)
\end{aligned}
$$

for some $j, k \in \mathbb{N}$, and some open sets U, V, W, and Z such that $V \subseteq U \subseteq Q_{j}$ and $Z \subseteq W \subseteq Q_{k}$. Without loss of generality we may assume $j<k$. Then

$$
\begin{aligned}
A \cap B= & \left(\left(\left\{x_{j+1}, \ldots\right\} \times Q_{j}\right) \cap\left(\left\{x_{k}\right\} \times W\right)\right) \\
& \cup\left(\left(\left\{x_{j+1}, \ldots\right\} \times Q_{j}\right) \cap\left(\left\{x_{k+1}, \ldots\right\} \times Q_{k}\right)\right) \\
& \cup((\{y\} \times V) \cap(\{y\} \times Z)) \\
= & \left(\left\{x_{k}\right\} \times W\right) \cup\left(\left\{x_{k+1}, \ldots\right\} \times Q_{k}\right) \cup(\{y\} \times Z \cap V),
\end{aligned}
$$

so $A \cap B$ is in β.
Let X_{n} be the set $\left\{x_{1}, \ldots, x_{n}, y\right\} \times Q_{1}$, with the subspace topology inherited from X. Observe that X_{n} has basis

$$
\begin{aligned}
& \beta_{n}=\left\{\left(\left\{x_{k}\right\} \times U\right) \cup\left(\left\{x_{k+1}, x_{k+2}, \ldots, x_{n}\right\} \times Q_{k}\right) \cup(\{y\} \times V):\right. \\
& \left.\quad k \in \mathbb{N}, k \leq n \text { and } V \subseteq U \subseteq Q_{k} \text { and } \mathrm{U} \text { and } \mathrm{V} \text { are open in } Q_{k}\right\}
\end{aligned}
$$

Also observe that X_{n} has the subspace topology inherited from X_{n+1}.
Theorem 2. $X=\bigcup_{n=1}^{\infty} X_{n}$, and X has the union topology, i.e., a subset $U \subseteq X$ is open if and only if for every $n, U \cap X_{n}$ is open in X_{n}.

Proof. We want to show that a set U is open in X if and only if $U \cap X_{n}$ is open in X_{n} for all $n \in \mathbb{N}$.

One direction is trivial: if U is open in X, then by definition $U \cap X_{n}$ is open in $X_{n} n \in \mathbb{N}$.

Now suppose that $U \subseteq X$, and that $U \cap X_{n}$ is open in X_{n} for all $n \in \mathbb{N}$. Fix a point $q \in U$. We will exhibit an X-open neighborhood of q in U. Note that q is either of the form $\left(x_{k}, z\right)$ or (y, z), for some $k \in \mathbb{N}$ and $z \in Q_{1}$, and these two cases need to be handled separately.

Case 1. Suppose $q=\left(x_{k}, z\right)$. Either $z \in Q_{k}$, or $z \in Q_{1} \backslash Q_{k}$. These subcases again need to be handled separately.

Subcase 1a. Suppose $z \in Q_{k}$. Then for $m \geq k+1$, any basis element of β_{m} containing $q=\left(x_{k}, z\right)$ also contains $\left\{x_{k+1}, \ldots, x_{m}\right\} \times Q_{k}$. Furthermore, there exists an open neighborhood V of z such that $V \subset Q_{k}$ and $\left\{x_{k}\right\} \times V \subset U \cap X_{k}$. Thus U contains $\left(\left\{x_{k}\right\} \times V\right) \cup\left(\left\{x_{k+1}, \ldots\right\} \times Q_{k}\right)$, which is an open set in X containing q.
Subcase 1b. Suppose $z \notin Q_{k}$. Let $j<k$ be the unique integer such that $z \in Q_{j} \backslash Q_{j+1}$. Then for $m>k$, every element of β_{m} which contains (x_{k}, z) also contains $\left\{x_{j+1}, \ldots, x_{m}\right\} \times Q_{j}$. Hence U contains $\left\{x_{j+1}, \ldots\right\} \times Q_{j}$, which is an open set in X containing q.

Case 2. Suppose $q=(y, z)$. Again, we must distinguish two subcases:
Subcase 2a. $z \in\{0\} \times[-1,1]$. By hypothesis $U \cap X_{1}$ is open in X_{1}, so it contains $\{y\} \times V$ for some V open in Q_{1} and $z \in V$. Because V is open in Q_{1}, it must contain points not in $\{0\} \times[-1,1]$. Thus, there exists a $k \in \mathbb{N}$ such that $V \subseteq Q_{k}$ but $V \nsubseteq Q_{k+1}$. Let t be a point in $V \cap\left(Q_{k} \backslash Q_{k+1}\right)$. Now, for $m \geq k, U \cap X_{m}$ is open in X_{m} by hypothesis. But the definition of β_{m} implies that any open set in X_{m} containing (y, t) must also contain

$$
\left\{x_{k+1}, \ldots, x_{m}\right\} \times Q_{k}
$$

Thus U contains

$$
\left(\left\{x_{k+1}, \ldots\right\} \times Q_{k}\right) \cup\left(\{y\} \times\left(V \cap Q_{k+1}\right)\right)
$$

which is open in X and contains q.
Subcase $2 \mathrm{~b} . z \in Q_{k} \backslash Q_{k+1}$ for some $k \in \mathbb{N}$. Then any element of β_{k} containing $q=(y, z)$ contains a set of the form

$$
\left(\left\{x_{k}\right\} \times U\right) \cup(\{y\} \times V)
$$

for some $V \subseteq U \subseteq Q_{k}$ open, $z \in V$. On the other hand, any element of β_{m} for $m \geq k$ which contains $q=(y, z)$ also contains

$$
\left\{x_{k+1}, \ldots, x_{m}\right\} \times Q_{k}
$$

Hence, U contains

$$
\left(\left\{x_{k}\right\} \times U\right) \cup\left(\left\{x_{k+1}, x_{k+1}, \ldots\right\} \times Q_{k}\right) \cup(\{y\} \times V)
$$

which is open in X and contains q.

3. Proof that \boldsymbol{X} is not the homotopy colimit of $\boldsymbol{X}_{\boldsymbol{n}}$

Theorem 3. The weak equivalence (1) is false for the spaces X_{n} constructed in the previous section.

The theorem is a consequence of the following two propositions.
Proposition 4. There exists a continuous path in X from $\left(x_{1},(0,0)\right)$ to $(y,(0,0))$.
Proof. Let $f:[0,1] \rightarrow X f(0)=\left(x_{1},(0,0)\right), f(t)=\left(x_{n+1},(0,0)\right)$, for $n \in\left(1-\frac{1}{n}, 1-\frac{1}{n+1}\right], n \in \mathbb{N}$, and $f(1)=(y,(0,0))$.

If U is open in X and $\left(x_{n},(0,0)\right) \in U$, then for all $k \geq n,\left(x_{k},(0,0)\right) \in U$. Hence, if $y \in U$, then $f^{-1}(U)$ is either $\{1\}$, all of $[0,1]$, or of the form

$$
\left(1-\frac{1}{n}, 1\right]
$$

for some $n \in \mathbb{N}$. On the other hand, if $y \notin U$, then $f^{-1}(U),[0,1)$, or of the form

$$
\left(1-\frac{1}{n}, 1\right)
$$

for some $n \in \mathbb{N}$. Hence f is continuous.
Proposition 5. For $n \in \mathbb{N}$, there does not exist a continuous path in X_{n} from $\left(x_{1},(0,0)\right)$ to $(y,(0,0))$.

This proposition will be proved in a sequence of lemmas.
Lemma 6. Let A be the set $\{y\} \times\{0\} \times[-1,1]$. Then for $n \in \mathbb{N}, A$ is closed in X_{n}.

Proof. Observe that the complement of A in X_{n} is the union

$$
\begin{aligned}
& \left(\left\{x_{1}, \ldots, x_{n}\right\} \times Q_{1}\right) \cup\left(\left\{x_{1}, \ldots, x_{n}, y\right\} \times\left(Q_{1} \backslash(\{0\} \times[-1,1])\right)\right) \\
& =\left(\left\{x_{1}\right\} \times Q_{1}\right) \cup\left(\left\{x_{2}, \ldots, x_{n}\right\} \times Q_{1}\right) \\
& \quad \cup\left(\left\{x_{1}, \ldots, x_{n}, y\right\} \times\left(Q_{1} \backslash(\{0\} \times[-1,1])\right)\right) .
\end{aligned}
$$

This is a basis element in X_{n}, hence A is closed in X_{n}.
Lemma 7. For all $n \in \mathbb{N}$, the space $\{y\} \times Q_{1}$ with the subspace topology inherited from X_{n} is homeomorphic to Q_{1}.

Proof. Taking the intersection of each element of β_{n} with $\{y\} \times Q_{1}$ gives

$$
\left\{\{y\} \times U: U \text { is an open subset of } Q_{1}\right\}
$$

as a basis for the inherited topology. Thus, the map sending (y, z) to z, for $z \in Q_{1}$, is trivially a homeomorphism from $\{y\} \times Q_{1}$ onto Q_{1}.

Lemma 8. For $n \in \mathbb{N}$, the set A is a path-component of X_{n}.
Proof. The set $A=\{y\} \times\{0\} \times[-1,1]$ is clearly path-connected. Now suppose $\omega:[0,1] \rightarrow X_{n}$ is a path such that $\omega(0)=(y,(0,0))$. We wish to show that $\omega([0,1]) \subseteq A$. By Lemma $6, A$ is closed in Q_{n}, so $\omega^{-1}(A)$ is closed in $[-1,1]$. Observe from the definition of β_{n} that $\{y\} \times Q_{n+1}$ is open in X_{n}. Thus $\omega^{-1}\left(\{y\} \times Q_{n+1}\right)$ is an open subset of $[-1,1]$, and hence a disjoint union of relatively open intervals. By Lemma $7, A$ is a pathcomponent of $\{y\} \times Q_{n+1}$. Thus $\omega^{-1}(A)$ is a union of path components of $\omega^{-1}\left(\{y\} \times Q_{n+1}\right)$. But the path-components of $\omega^{-1}\left(\{y\} \times Q_{n+1}\right)$ are just disjoint relatively open intervals in $[0,1]$, hence $\omega^{-1}(A)$ is also a disjoint union of relatively open intervals in $[0,1]$, so $\omega^{-1}(A)$ is open in $[0,1]$

By hypothesis, $\omega(0) \in A$, so $\omega^{-1}(A)$ is nonempty. Thus $\omega^{-1}(A)$ is a nonempty, closed, and open subset of $[-1,1]$, hence it is all of $[-1,1]$.

Note that Proposition 5 is a formal consequence of Lemma 8.
Remark. The spaces X_{n} are, in fact, compact and hence they, and the space X, are compactly generated. Therefore, our example also applies to the version of the category of compactly generated spaces [4] without the T1 axiom.

References

[1] Adams, J. F. Stable homotopy and generalised homology. Reprint of the 1974 original. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1995. x+373 pp. ISBN: 0-226-00524-0. MR1324104 (96a:55002), Zbl 0309.55016.
[2] Lewis, L. G., Jr.; May, J. P.; Steinberger, M. Equivariant stable homotopy theory. With contributions by J. E. McClure. Lecture Notes in Mathematics, 1213. Springer-Verlag, Berlin, 1986. x+538 pp. ISBN: 3-540-16820-6. MR0866482 (88e:55002), Zbl 0611.55001, doi: 10.1007/BFb0075778.
[3] McCord, Michael C. Singular homology groups and homotopy groups of finite topological spaces. Duke Math. J. 33 (1966), 465-474. MR0196744 (33 \#4930), Zbl 0142.21503, doi: 10.1215/S0012-7094-66-03352-7.
[4] Steenrod, N. E. A convenient category of topological spaces. Michigan Math. J. 14 (1967), 133-152. MR0210075 (35 \#970), Zbl 0145.43002, doi: $10.1307 / \mathrm{mmj} / 1028999711$.
(Benjamin Branman) Department of Mathematics, University of Michigan, 530 Church Street, Ann Arbor, MI 48109-1043, U.S.A.
bbranman@umich.edu
(Igor Kriz) Department of Mathematics, University of Michigan, 530 Church Street, Ann Arbor, MI 48109-1043, U.S.A.
ikriz@umich.edu
(Aleš Pultr) KAM, MFF Charles University, Malostranske nam.25, 11800 Praha 1, Czech Republic
pultr@kam.mff.cuni.cz
This paper is available via http://nyjm.albany.edu/j/2015/21-15.html.

