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On Abelian Hopf Galois structures and
finite commutative nilpotent rings

Lindsay N. Childs

Abstract. Let G be an elementary abelian p-group of rank n, with p
an odd prime. In order to count the Hopf Galois structures of type G on
a Galois extension of fields with Galois group G, we need to determine
the orbits under conjugation by Aut(G) of regular subgroups of the
holomorph of G that are isomorphic to G. The orbits correspond to
isomorphism types of commutative nilpotent Fp-algebras N of dimension
n with Np = 0. Adapting arguments of Kruse and Price, we obtain
lower and upper bounds on the number fc(n) of isomorphism types of
commutative nilpotent algebras N of dimension n (as vector spaces) over
the field Fp satisfying N3 = 0. For n = 3, 4 there are five, resp. eleven
isomorphism types of commutative nilpotent algebras, independent of p
(for p > 3). For n ≥ 6, we show that fc(n) depends on p. In particular,
for n = 6 we show that fc(n) ≥ b(p− 1)/6c by adapting an argument of
Suprunenko and Tyschkevich. For n ≥ 7, fc(n) ≥ pn−6. Conjecturally,
fc(5) is finite and independent of p, but that case remains open. Finally,
applying a result of Poonen, we observe that the number of Hopf Galois
structures of type G is asymptotic to fc(n) as n goes to infinity.
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1. Introduction

Let L/K be a Galois extension with Galois group Γ of order m. If H is a
cocommutative K-Hopf algebra and L is an H-module algebra, then L/K
is an H-Hopf Galois extension of K if the obvious map

L⊗K H → EndK(L)

is a bijection. (The map is an isomorphism of K-algebras if one puts a
cross product multiplication on the domain.) Greither and Pareigis [GP87]
showed that if L/K is a H-Galois extension, then L ⊗ H ∼= LN as Hopf
algebras, where N is a regular subgroup of Perm(Γ) that is normalized by
λ(Γ), the image in Perm(Γ) of the left regular representation

λ : Γ→ Perm(Γ), λ(g)(x) = gx.

Here, a regular subgroup N of Perm(Γ) is a subgroup so that |N | = |Γ| and
{η(x) : η ∈ N} = Γ for every x in Γ.

The correspondence given by base change from K to L and Galois descent
from L to K then yields a bijection

{Hopf Galois structures on L/K}
←→

{regular subgroups of Perm(Γ) normalized by λ(Γ)}.

Let S be a set of representatives of the isomorphism classes of groups of
order n. If H is a K-Hopf algebra and L ⊗K H ∼= LN where N ∼= G for
some G in S, we say that H has type G. Thus there is a bijection

{Hopf Galois structures on L/K of type G}
←→

{regular subgroups of Perm(Γ) normalized by λ(Γ) and isomorphic to G}.

Rather than seeking Hopf Galois structures of type G by looking directly at
regular subgroups of Perm(Γ) normalized by λ(Γ) and isomorphic to G, an
alternate approach is to work with the holomorph of G,

Hol(G) ∼= ρ(G) ·Aut(G) ⊂ Perm(G),

the normalizer of λ(G) in Perm(G) (where ρ is the right regular representa-
tion of G in Perm(G)). As shown in [By96], there is a bijection:

{regular subgroups of Perm(Γ) normalized by λ(Γ) and isomorphic to G}
←→

{equivalence classes of regular embeddings from Γ to Hol(G)}

where two embeddings β and β′ : Γ → Hol(G) are equivalent if there is an
automorphism α of Aut(G) ⊂ Hol(G) so that for all γ in Γ,

β′(γ) = α−1β(γ)α
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in Perm(G). We will work exclusively with the holomorph Hol(G) in this
paper.

Call two regular subgroups J and J ′ of Hol(G) conjugate if there is an
α in Aut(G) so that J ′ = α−1Jα = C(α)(J). If two regular embeddings β
and β′ are equivalent, then β(Γ) and β′(Γ) are conjugate. Conversely, if J
and J ′ are conjugate, J ′ = α−1Jα, and β : Γ → J is a regular embedding,
then β′ : Γ → J ′ given by β′(γ) = α−1β(γ)α = C(α)β is equivalent to β.
So to find equivalence classes of regular embeddings of Γ to Hol(G), we may
partition the set of regular subgroups of Hol(G) isomorphic to Γ into orbits,
conjugacy classes under the action of Aut(G), pick a representative J of
each orbit, and determine the regular embeddings of Γ into J .

Let Sta(J) be the subgroup of elements C(α) in Aut(J) for α in Aut(G),
such that C(α)(J) := α−1Jα = J .

Proposition 1.1. For J a representative of a conjugacy class of regular
subgroups of Hol(G) isomorphic to Γ, the number of equivalence classes of
embeddings of Γ into Hol(G) with image J is equal to |Aut(Γ)|/|Sta(J)|.
Proof. If β : Γ→ Hol(G) is a regular embedding with image J , then so is βθ
for any automorphism θ of Γ. If β′ : Γ→ Hol(G) is a regular embedding with
image J and is equivalent to β, then β′ = C(α)β for some α in Sta(J). But
then β−1β′ = β−1C(α)β = θ is an automorphism of Γ, and C(α)β = βθ.
So we have an embedding of Sta(J) into Aut(Γ) by C(α) 7→ θ, and two
regular embeddings β, βθ are equivalent iff θ is in the image in Aut(G) of
Sta(J). �

Since the stabilizers of different subgroups in the orbit of J are isomorphic,
the number in Proposition 1.1 is independent of the choice of J in an orbit
of regular subgroups of Hol(G).

This count then yields:

Theorem 1.2. The number of Hopf Galois structures of type G on a Galois
extension L/K with Galois group Γ is equal to∑

J∈C
|Aut(Γ)|/|Sta(J)|

where C is a set of representatives of all orbits (conjugacy classes) in Hol(G)
of regular subgroups isomorphic to Γ.

This result implies that the number of orbits in Hol(G) plays a key role
in the count of Hopf Galois structures. We focus on that number in this
paper.

In this paper G is an elementary abelian p-group of rank n, and the Galois
group Γ of L/K is isomorphic to G. Assume p ≥ 3 throughout.

The main point of the paper is to utilize the result of Caranti, Della
Volta and Sala [CDVS06] that gives a bijection between orbits of regular
subgroups of Hol(G) and isomorphism types of commutative nilpotent Fp-
algebra structures on the additive group G. That correspondence transforms
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the problem of counting orbits into that of counting isomorphism types of
commutative nilpotent Fp-algebras.

The corresponding problem over an algebraically closed field instead of
over Fp has been studied by several researchers during the past half-century,
for example, Suprunenko and Tyshkevich [ST68], and more recently by Poo-
nen [Po08b]. The main result is that for n ≤ 5, there is a finite number of
isomorphism types of commutative nilpotent algebras, while for n ≥ 6 there
is an infinite number. These authors have primarily focused on counting
commutative nilpotent algebras N with N3 = 0, a class that is particularly
convenient for us because such algebras correspond to regular subgroups
isomorphic to G, and hence to Hopf Galois structures of type G on a Galois
extension with Galois group G.

The problem of bounding the number of isomorphism types of nilpotent
algebras over a finite field was studied by Kruse and Price [KP69] and more
recently, by de Graaf [deG10] for nilpotent algebras of dimensions 3 and 4.
Poonen [Po08a] has studied a related problem. We will note Poonen’s work
in the final section of this paper.

By analogy with nilpotent algebras of finite dimension over an alge-
braically closed field (cf. Poonen [Po08b]), a natural conjecture is that for
n ≤ 5, the number of isomorphism types of commutative nilpotent Fp-
algebras is a finite number bounded by a constant independent of p, while
for n ≥ 6 the number of isomorphism types is a function that goes to infinity
with p.

As we shall show, the conjecture is known except for n = 5.
In the final section, we show that the number of Hopf Galois structures of

type G = Fnp on a Galois extension L/K with Galois group G is asymptotic

to p(2n
3)/27 as n 7→ ∞.

This paper is a sequel to but is independent of [Ch05]. It began as notes
for a talk at the 2014 Omaha workshop, Ramification and Galois Module
Theory. My special thanks to Griff Elder for his inspiration and enthusiasm,
and to him and the University of Nebraska at Omaha for their warm hos-
pitality each of the last three years. My thanks to the referee for a careful
reading of the manuscript and, in particular, for pointing out an error in an
earlier version of Proposition 4.1.

For the remainder of the paper, p is an odd prime and G ∼= (Fnp ,+), an
elementary abelian p-group of rank n. We are ultimately interested in the
number tn(G) of Hopf Galois structures of type G on a Galois field extension
L/K with Galois group Γ ∼= G.

2. Nilpotent ring structures associated to abelian regular
subgroups

ForG = (Fnp ,+), we wish to study isomorphism types of regular subgroups
of Hol(G). Recall that a regular subgroup J of Perm(G) is a subgroup of
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Perm(G) so that |J | = |G| and {η(e) | η ∈ J} = G, where e is the identity
element of G.

In this section we associate a commutative nilpotent Fp-algebra to a reg-
ular subgroup, following [CDVS06]. Here is how it is done.

Let J be an abelian regular subgroup of Hol(G), where G = (Fnp ,+).
Then associated to J is a function (not a homomorphism)

τ : G→ Hol(G)

where for x in G, τ(x) is the unique element(
I +Ax x

0 1

)
of J whose last column is (x, 1)T .

Let δ(x) = Ax. Define a multiplication on (G,+) by

x · y = δ(x)(y) = Axy.

Then, as Caranti, et. al. observe [CDVS06], this multiplication makes

N = (G,+, ·)
into a commutative nilpotent ring. Then the circle multiplication on N
defined by

x ◦ y = x+ y + x · y
= x+ y + δ(x)y

= x+ y +Axy

for all x, y in G defines a group structure on the set Fnp so that (Fnp , ◦) ∼= J
by the map

x 7→
(
I +Ax x

0 1

)
.

As shown in [CDVS06], the maps J 7→ (Fnp ,+, ·) and (Fnp ,+, ·) 7→ (Fnp , ◦)
define a bijection between abelian regular subgroups of Aff(Fnp ) and com-
mutative nilpotent Fp-algebras of Fp-dimension n.

Conjugacy of two regular subgroups in Hol(Cnp ) translates nicely, as shown
in [CDVS06]:

Proposition 2.1. Two commutative nilpotent Fp-algebras are isomorphic
iff the corresponding abelian regular subgroups of Hol(G) = Aff(Fnp ) are in
the same orbit under conjugation by elements of Aut(G) = GLn(Fp).

Thus the problem of determining the number of orbits for G = (Fnp ,+) be-
comes one of determining the number of isomorphism types of commutative
nilpotent Fp-algebras of dimension n. In particular, estimating the number
of orbits in Hol(G) of regular subgroups isomorphic to G = (Fnp ,+), trans-
lates by Proposition 2.1 to estimating the number of isomorphism types of
commutative nilpotent Fp-algebras of Fp-dimension n whose corresponding
circle group is isomorphic to G.
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It turns out that many regular subgroups of Hol(G) are isomorphic to
G. To support that statement, we cite two results. The first is a lemma of
Caranti:

Proposition 2.2. Let p ≥ 3 and let G = (Fnp ,+). If N is a commutative
nilpotent Fp-algebra of dimension n with Np = 0, then the regular subgroup
of Hol(G) defined by the circle operation on N is isomorphic to G.

Proof. Let N be is a commutative nilpotent Fp-algebra of dimension n with
Np = 0. Then the circle operation on N defined by a◦b = a+b+a ·b makes
(Fnp , ◦) into the corresponding regular subgroup of Hol(G). Let

m◦a = a ◦ a ◦ · · · ◦ a (m factors ).

Then [FCC12, Lemma 3] shows that for a in N ,

p◦a = pa+

p−1∑
i=2

(
p

i

)
ai + ap,

and therefore p ◦ a = ap. Since ap = 0, we have p◦a = 0 for all a in (Fnp , ◦).
Hence (Fnp , ◦) is isomorphic to G. �

As a consequence, we have

Theorem 2.3. Let p ≥ 3 and G = (Fnp ,+) The number of Aut(G)-orbits
of regular subgroups J of Hol(G) with J ∼= G is bounded from below by the
number of isomorphism classes of commutative Fp-algebras N of dimension
n with N3 = 0.

The other result buttressing the claim that many regular subgroups of
Hol(G) are isomorphic to G is Featherstonhaugh’s Theorem [Fe03]. As
sharpened in [FCC12], it is

Theorem 2.4. Let G ∼= (Fnp ,+). If p > n, then every abelian regular
subgroup of Hol(G) is isomorphic to G.

3. An upper bound

We observed in Section 2 that the number of orbits of regular subgroups
of Aff(Fnp ) under the action of Aut(G) = GLn(Fp) is equal to the number
of isomorphism types of commutative nilpotent ring structures on (Fnp ,+, ·)
on the additive group G = (Fnp ,+). Among those nilpotent rings N , those

with N3 = 0 are of particular interest because, by Caranti’s Lemma, they
yield regular subgroups of Hol(G) that are isomorphic to G.

Let fc(n, r) be the number of isomorphism types of commutative Fp-
algebras N with dimFp N = n,dimFp(N/N2) = r, and N3 = 0.

In this section, we obtain an upper bound for fc(n, r), adapting an argu-
ment of Kruse and Price [KP70].
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Theorem 3.1. Let fc(n, r) be the number of pairwise nonisomorphic com-
mutative Fp-algebras N with dimFp N = n, dimFp(N/N2) = r, and N3 = 0.
Then

fc(n, r) ≤ p
(

r2+r
2

)
(n−r)−(n−r)2+(n−r)

Proof. LetR be the free commutative Fp-algebra with generators x1, . . . , xr.
Then R may be viewed as the ideal generated by x1, . . . , xr in the polynomial
ring R = Fp[x1, . . . , xr]. Let F = R/R3. Let N be a commutative nilpotent
Fp-algebra of Fp-dimension n with N3 = 0, and let dim(N/N2) = r. Map-
ping F onto N by sending the image of x1, . . . , xr in F to elements of N
whose images modulo N2 is an Fp-basis of N/N2 is a surjective Fp-algebra
homomorphism with kernel I. The ideal I determines N up to isomorphism:
N ∼= F/I where I ⊂ F 2. Then I2 = 0, so the ideal I may simply be viewed
as an Fp-subspace of F 2.

Now

dim(F 2) = r2 −
(
r

2

)
=

(r2 + r)

2
,

the number of distinct monomials of degree 2 in R. That number is equal
to the number of ordered pairs (i, j) for 1 ≤ i, j ≤ r minus the number
of pairs (i, j) for i 6= j (since xixj = xjxi for N commutative). Under
the map from F → N , the kernel I ⊂ F 2 and F 2 maps onto N2. Hence
dim(N2) + dim(I) = dim(F 2), and so

dim(I) =
(r2 + r)

2
− (n− r).

This last computation implies that n− r ≤ r2+r
2 .

Thus the number fc(n, r) of commutative nilpotent algebras N of dimen-
sion n with dim(N/N2) = r and N3 = 0 satisfies

fc(n, r) ≤ # of ideals I of F 2 of dimension
(r2 + r)

2
− (n− r),

= # of subspaces I of F 2 of dimension
(r2 + r)

2
− (n− r).

Since F 2 is a space of dimension s = (r2+r)/2, the number of subspaces of
F 2 of dimension s−(n−r) is equal to the number of subspaces of dimension
n− r. (View one collection of subspaces as row spaces of matrices and the
other collection as the corresponding null spaces.)

To determine the number of subspaces of F 2 of dimension n− r, pick sets
of n − r linearly independent elements of F 2 sequentially: there are ps − 1
choices for the first element, then ps − p choices for the second, etc., and
ps − pn−r−1 choices for the n − r-th linearly independent element. These
n − r linearly independent elements define a subspace of dimension n − r.
Any other basis of the same space can be transformed to the original basis
by an element of GLn−r(Fp). So the number of subspaces of F 2 of dimension
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n− r is
(ps − 1)(ps − p) · · · (ps − pn−r−1)

(pn−r − 1)(pn−r − p) · · · (pn−r − pn−r−1)
.

To get a convenient upper bound for fc(n, r), observe that

ps − pl

pk − pl
<

ps

pk−1

for all 0 ≤ l < k, so we conclude that

fc(n, r) ≤ pa

where

a = s(n− r)− (n− r − 1)(n− r)

=

(
r2 + r

2

)
(n− r)− (n− r)(n− r − 1)

=

(
r2 + r

2

)
(n− r)− (n− r)2 + (n− r). �

This upper bound overstates the number of isomorphism classes of nilpo-
tent algebras N of dimension n with dim(N/N2) = r, because the analysis
does not account for changing algebra generators of a given nilpotent alge-
bra. We can see this when we do the case n = 3, below, and also when
r = n− 1, which we consider in the next section.

4. When N2 has dimension 1

The upper bound of Theorem 3.1 for isomorphism types of commutative
nilpotent algebras N of dimension n with N3 = 0 and dimN2 = 1 (hence
n− r = 1) is

fc(n, r) ≤ p

(
(n−1)2+(n−1)

2

)
= p

n(n−1)
2 .

In this section we prove:

Proposition 4.1. For p > 3 and n ≥ 3 the number of isomorphism classes
of commutative nilpotent algebras of dimension n with dim(N2) = 1 is 3n−3

2

if n is odd, and 3n−4
2 if n is even.

Proof. Suppose N is a commutative nilpotent Fp-algebra of dimension n,
N3 = 0 and dim(N2) = 1. Let N/N2 have basis x1, . . . , xn−1, let xT =
(x1, . . . , xn−1), and let N2 have basis y. Define the r × r structure matrix
Φ = (φij) by

xixj = φijy for i, j = 1, . . . , n,

or more compactly,
xxT = yΦ.

Now N is commutative, so Φ is symmetric. Thus Φ is congruent by an
invertible but not necessarily orthogonal matrix P (cf. [BW66], [Ka69] or
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[BM53], IX, 8) to a unique diagonal matrix of a special form. More precisely,
there is an invertible matrix P so that

PΦP T = D = diag(1, . . . , 1, d, 0, . . . , 0)

is diagonal and d = 1 or any nonsquare s. (Replacing xk by bxk for any b in
Fp will replace s by b2s, thus we can choose the nonsquare s as we wish.) The
number of zeros and the class of d modulo the subgroup of nonzero squares
in Fp uniquely determines the class of Φ under congruence. Let Px = z with
zT = (z1, z2, . . . , zn−1). Then N is isomorphic to Nk,d = 〈z1, z2, . . . , zn−1〉
with

z21 = · · · = z2k−1 = y, z2k = dy, z2k+1 = · · · = z2n−1 = 0, zizj = 0 for i 6= j.

Thus the structure matrix for Nk,d is

Dk,d = diag(d1, d2, . . . , dn−1)

with d1 = · · · = dk−1 = 1, dk = d, dk+1 = · · · = dn−1 = 0.
Any invertible linear change of variables Qz = x, w = sy will yield a

nilpotent algebra N ′ isomorphic to N , where Φ is transformed to sQΦQT .
SinceQ is invertible, the rank of Φ is preserved. Thus algebras corresponding
to Φ of different ranks are not isomorphic.

Suppose k is odd. Since every nonzero element of Fp is a sum of two
squares , we may write the nonsquare s as s = f2 + g2 for some f, g in Fp.
Let P0 be the 2× 2 matrix

P0 =

(
f g
−g f

)
,

an invertible matrix since det(P ) = s. Then P0P
T
0 = diag(s, s). Let Q be

the n− 1× n− 1 block diagonal matrix

Q = diag(P0, P0, . . . , P0, s, 1, 1, . . . , 1)

with (k − 1)/2 copies of P0 along the diagonal. Then

QDk,1Q
T = diag(s, s, . . . , s2, 0, 0, . . . , 0).

Let z = Qx and w = sy. Then

zzT = QxxTQT

= QDk,1Q
T

= y diag(s, s, . . . , s2, 0, 0, . . . , 0)

= w diag(1, 1, . . . , s, 0, 0, . . . , 0)

= wDk,s.

Thus Nk,1
∼= Nk,s.

Now suppose k is even. Suppose Nk,1 has basis x1, . . . , xn−1, y as above
with n − 1 × n − 1 structure matrix D1 = diag(1, 1, . . . , 1, 0, . . . , 0) (k 1’s).
Then

xxT = yD1.
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Similarly, suppose Nk,s has basis z1, . . . , zn−1, w with structure matrix

Ds = diag(1, 1, . . . , 1, s, 0, . . . , 0)

(with k − 1 1’s). Then

zzT = wDs.

Now Nk,1 is isomorphic to Nk,s if and only if there is an invertible (n− 1)×
(n− 1) matrix P and a nonzero element b of Fp so that

z = Px and w = by.

Substituting, P and b must satisfy

PD1P
T = bDs.

Write

P =

(
P11 P12

P21 P22

)
where P11 is k × k. Then we must have

P11P
T
11 = bdiag(1, . . . , 1, s).

Then

det(P 2
11) = bks.

Since k is even, this would imply that s is a square. Hence the n-dimensional
algebras Nk,1 and Nk,s cannot be isomorphic when s is a nonsquare in Fp
and k is even.

The number of isomorphism types of commutative nilpotent algebras N
of dimension n with dimN2 = 1 is then

1, 3, 4, 6, 7, 9, . . . , for n− 1 = 1, 2, 3, 4, 5, 6, . . . .

The count in the statement of the theorem is easily obtained. �

The case n = 3. There are five isomorphism types of commutative nilpo-
tent algebras of dimension 3. Let N be a nilpotent algebra of dimension
n = 3 over Fp. If N3 = 0 and dim(N/N2) = r, then dim(N2) = 3 − r, so
r cannot be = 1. If r = 3 then N2 = 0. If r = 2 then dim(N2) = 1, the
case just covered: we obtain N1,1, N2,1 and N2,s for s a nonsquare in Fp.
The only other isomorphism type of dimension 3 has r = 1, in which case
N = 〈x〉 with x4 = 0.

In [Ch05] we determined the number of orbits of regular subgroups in
Hol(G) under conjugation for n ≤ 3 by associating to a regular subgroup
a commutative nilpotent polynomial degree 2 formal group, and then using
the fact that conjugate regular subgroups correspond to linearly isomorphic
formal groups. Using that correspondence, [Ch05] showed that for n = 1, 2, 3
there are 1, 2, 5 orbits, resp. For n = 3 there is one orbit with r = 3, three
orbits with r = 2 and one with r = 1. The approach here, using nilpotent
ring structures and the methods of this section, is more efficient.
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5. When I has dimension 1

We can also apply the diagonalization when dim(I) = 1. This case occurs
when

1 = dim(I) = dim(R2)− dim(N2) =
r2 + r

2
− (n− r) =

r2 + 3r

2
− n.

The possibilities include (n, r) = (2, 1), (4, 2), (8, 3), (13, 4), (19, 5), (26, 6),
etc. Then I = 〈q〉, a quadratic form in r variables, where, after a linear
change of generators of R as before, we may assume that q has the form

q = x21 + · · ·+ x2k−1 + dx2k

with d = 1 or d = s′. Since the ideal I uniquely determines the algebra
N , the number of classes of commutative nilpotent algebras of dimension n
with I principal is equal to 2r − 1.

6. The case n = 4

There are eleven isomorphism types of commutative nilpotent Fp-algebras
N of dimension n = 4.

We first look at the case where N3 = 0.
Let N be a commutative Fp-algebra of dimension n . Let r = dim(N/N2).

If r = 4 then N2 = 0. If r = 1 then N = 〈x〉 with x5 = 0. So the cases of
interest are r = 2 and r = 3.

Assume N3 = 0.
If r = dim(N/N2) = 3, then dim(N2) = 1, so by Proposition 4.1 there

are four isomorphism types of commutative nilpotent Fp-algebras N of di-
mension 4, when dim(N2) = 1.

If r = dim(N/N2) = 2, then dim(N2) = 2, while dim(R2) = 3, so
dim(I) = 1. Thus I is a principal ideal of R, generated by a quadratic
form in two variables. The ideal doesn’t change under congruence of the
corresponding symmetric matrix. So there are three possible ideals, cor-
responding to the the vectors of coefficients of the quadratic forms that
represent the congruence classes under congruence:

(1, 0)

(1, 1)

(1, s′)

where s′ is a nonsquare in Fp. Including the case where N2 = 0, we have:

Proposition 6.1. For n = dim(N) = 4, there are exactly eight isomorphism
classes of commutative nilpotent Fp-algebras N with N3 = 0.

This compares with the upper bound of Theorem 3.1, which involves
powers of p:

For n = 4, r = 2 the upper bound fc(4, 2) ≤ (p3− 1)/(p− 1) = p2 + p+ 1.
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For n = 4, r = 3 the upper bound

fc(4, 3) ≤ (p6 − 1)/(p− 1) = p5 + p4 + p3 + p2 + p+ 1.

If n = 4 and N3 6= 0 there are three isomorphism types. One of them has
r = dim(N/N2) = 1: then N = 〈x〉 with x5 = 0: the Jordan block example
of [Ch05]. The remaining two have dim(N/N2) = 2,dim(N2/N3) = 1 and
dim(N3) = 1. We omit this case here. The argument in subsection 1.1 of
[Po08b] may be adapted to Fp to show that there are two isomorphism types;
also, the full classification of commutative nilpotent algebras of dimensions
3 and 4 has been obtained by Willem de Graaf [deG10].

7. The case n = 5

We briefly consider commutative nilpotent Fp-algebras of dimension 5
with N3 = 0.

Recall r = dimN/N2. Thus r = 1 is not possible.
If r = 2, then we must have dim(N2) = 3, which implies that dim(N2) =

dim(R2), so I = 0, and N ∼= R/R3.
If r = 4, then dim(N2) = 1, so Proposition 4.1 applies with n = 5 to give

six isomorphism classes of commutative nilpotent algebras with N3 = 0: the
vector of diagonal entries of the structure matrix Φ can be

(1, 0, 0, 0), (1, 1, 0, 0), (1, s′, 0, 0), (1, 1, 1, 0), (1, 1, 1, 1), (1, 1, 1, s′)

where s′ is a fixed nonsquare in Fp.
Thus the remaining interesting case is r = 3. Then dim(N2) = 2,

dim(R2) = 6 and dim(I) = 4. This is the most complicated case in [Po08b].
Both Poonen [Po08b] and Suprunenko and Tyshkevich ([ST68], Theorem
18) obtain a total of thirteen isomorphism types of commutative nilpotent
algebras N of dimension 5 with N3 = 0 over an algebraically closed field.
Of those, one has r = 2 and four have r = 4. (The six over Fp with r = 4
reduce to four because there is no nonsquare over an algebraically closed
field.) The argument in [ST68] utilizes a normal form for a complex sym-
metric matrix under action by the orthogonal group, a result that apparently
has no counterpart over a finite field.

8. A lower bound

We found in Section 3 an upper bound for fc(n, r), the number of pairwise
nonisomorphic commutative Fp-algebras N with

dimFp N = n, dimFp(N/N2) = r, and N3 = 0.

We now seek a lower bound on fc(n, r). As with the upper bound, we adapt
an argument of Kruse and Price [KP70], [KP69]. The method generalizes
the argument in the proof of Proposition 4.1.
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Theorem 8.1. Let fc(n, r) be as just defined. Then

fc(n, r) ≥ p(
r2+r

2
)(n−r)−(n−r)2−r2 .

Proof. Let N be a commutative nilpotent Fp-algebra of dimension n, where
dim(N/N2 = r, dim(N2) = n− r and N3 = 0. Let µa be the multiplication
on N :

µN : N ×N → N.

Then µN maps onto N2, and for every a in N2, µN (ab) = 0 for all b in N
since N3 = 0. So µ uniquely defines and is defined by a map

µ : N/N2 ×N/N2 → N2.

Let N have an Fp-basis {e1, . . . , er, f1, . . . , fn−r} where the first r elements
define modulo N2 a basis of N/N2. The ring structure on N is defined by

n− r matrices Φ(k) = (φ
(k)
ij ) of structure constants φ

(k)
ij defined by

eiej =

n−r∑
k=1

φ
(k)
ij fk.

If we let e1, . . . , er be the induced basis ofN/N2, then the structure constants
only depend on {e1, . . . , er} and {f1, . . . , fn−r}. Since N is commutative,

φ
(k)
ij = φ

(k)
ji , that is, the Φ(k) are symmetric matrices in Mr(Fp). There are

no conditions on the φ related to associativity because N3 = 0. So each
choice of the symmetric structure matrices {Φ(k) | k = 1, . . . , n − r} will
define a commutative nilpotent algebra structure.

Let S = {{Φ(1), . . . ,Φ(n−r)}} be the set of all possible sets of structure
constants. Then

|S| = p(n−r)(
r2+r

2
).

We may view a nilpotent Fp-algebra N with dim(N) = n and dim(N2) =
n− r as uniquely corresponding to a multiplication map

µN : Frp × Frp → Fn−rp :

we fix a basis (e1, . . . , er) for Frp, a basis (f1, . . . , fn−r) for Fn−rp , and a set

{Φ(1), . . . ,Φ(n−r)} of structure constants, and define a multiplication µN by
the structure constants:

µN (ei, ej) = ei · ej =

n−r∑
k=1

φ
(k)
ij fk,

where Φ(k) = (φ
(k)
ij ).
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Let Q ∈ GLn−r(Fp) and P ∈ GLr(Fp). Let Q−1 = (qij). Define new bases
of Frp and Fn−rp by

a1
a2
...
ar

 = P


e1
e2
...
er

 , Q


f1
f2
...

fn−r

 =


b1
b2
...

bn−r

 .

Then

ai · aj =

r∑
k=1

pikek ·
r∑
l=1

pjlel

=
r∑

k,l=1

pikφ
(m)
kl pjl

n−r∑
ν=1

qmνbν

=
∑
ν

θ
(ν)
ij bν .

So

θ
(ν)
ij =

r∑
k,l=1

pikφ
(m)
kl pjlqmν ,

where Θ(ν) = (θ
(ν)
ij ). We have

Θ(ν) =
n−r∑
m=1

qmνPΦ(m)P T .

Composition works: acting by (P,Q), then by (R,S) is the same as acting
by (RP, SQ).

Thus the group H = GLn−r(Fp) × GLr(Fp) acts on the set S of sets of
structure constants, and two sets of structure constants in the same orbit
under the action of H define isomorphic Fp-algebras. Conversely, if two Fp-
algebras are isomorphic, then there is an element of H that maps one to the
other, so the corresponding sets of structure constants are in the same orbit
under H.

Therefore, the number fc(n, r) of isomorphism classes of commutative
nilpotent Fp-algebras N with dim(N) = n, dim(N2) = n − r and N3 = 0
satisfies

fc(n, r) = # of orbits in S under the action of H.

So

|S| =
∑
orbits

# of elements in each orbit ≤
∑
orbits

|H| = fc(n, r) · |H|.

Hence

fc(n, r) ≥
|S|
|H|

=
p(

r2+r
2

)(n−r)

|GLn−r(Fp)| · |GLr(Fp)|
.
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Now |GLk(Fp) < pk
2
, so we conclude that

fc(n, r) ≥
p(

r2+r
2

)(n−r)

p(n−r)2+r2
= pb

where

b =

(
r2 + r

2

)
(n− r)− ((n− r)2 + r2). �

Note that the exponent b of p in the lower bound is in fact less than the
upper bound a found in Section 3: a = b+ (n− r + r2).

Since fc(n, r) counts the number of isomorphism types of nilpotent alge-
bras N with dim(N/N2) = r, dim(N2) = n − r and N3 = 0, it is a lower
bound on tn(G), the number of Hopf Galois structures of type G on a Galois
extension L/K with Galois group G.

The lower bound on fc(n, r) just found goes to infinity with n when r is
near 2n/3. In fact, for r = 2n/3,

b =
2n2

27
(n− 6).

More precisely:

Proposition 8.2. For n ≥ 7, there is an r so that fc(n, r) is bounded from
below by pb where b is positive. Hence tn(G) is bounded from below by a
positive power of p for n ≥ 7.

Proof. Let n = 3m + s with s = 0, 1, 2. Let r = 2m and n − r = m + s.
Then

b =
(2m)2 + 2m)

2
(m+ s)− (m+ s)2 − (2m)2

= 2m3 − (4− 2s)m2 −ms− s2.

For s = 0, b = 2m3 − 4m2 > 0 for m ≥ 3;
For s = 1, b = 2m3 − 2m2 −m− 1 > 0 for m ≥ 2;
For s = 2, b = 2m3 − 2m− 4 > 0 for m ≥ 2.
So fc(m, r) = fc(3m+ s, 2m) > pb and b > 0 for all n ≥ 7. �

For r = n− 2 we get a clean lower bound:

Corollary 8.3.

fc(n, n− 2) ≥ p

(
(n−2)2+(n−2)

2

)
2

p(n−2)2p4

=
p(n−2)

2
pn−2

p(n−2)2p4
= pn−6.
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However, for n ≤ 6 the lower bound is not informative.
For n ≤ 5 the exponent of p on the bound

fc(n, r) ≥ p
1
2
(r2(n−r)+r(n−r)−2(n−r)2−2r2)

is negative for all r, hence gives no information on the possible number of
commutative nilpotent Fp algebras of dimension 5.

9. The case n = 6

The lower bound on fc(n, r) is also not helpful for n = 6.
For n = 6, r = 4, the more precise lower bound,

fc(n, r) ≥
p(

r2+r
2

)(n−r)

|GLn−r(Fp)| · |GLr(Fp)|

is

fc(6, 4) ≥ 1

(p−1p )2(p
2−1
p2

)2(p
3−1
p3

)(p
4−1
p4

))

and the right hand side of this last inequality is < 2 for all p ≥ 5: for
example,

p bound
3 2.99
5 1.7
17 1.13
31 1.07
101 1.02

However, for n = 6 we can show that fc(6, 4) goes to infinity with p.
In [ST68], Suprunenko and Tyshkevich constructed a class of commutative

dimension 6 nilpotent algebras N with N3 = 0 over an infinite field F and
showed that they form an infinite set of nonisomorphic algebras over F .

In this section we present Suprunenko and Tyshkevich’s construction in
detail. The construction implies that the number of isomorphism types of
commutative dimension 6 nilpotent algebras over Fp is bounded below by a
linear function of p.

More precisely, we consider a class of dimension 6 nilpotent algebras N =
Nα with dim(N/N2) = 4 and N3 = 0, parametrized by elements α of Fp We
show that the orbits of these algebras under the action of G = GL4 × GL2

contains either six or two such algebras. We obtain a precise count of the
number of orbits of these algebras, a count that depends on whether p is
congruent to 1 or 5 modulo 6. The number of orbits will depend on p.
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Let Nα = 〈u1, u2, u3, u4〉, let {v1, v2} be a basis of N2, and

u21 = v1 − v2
u22 = v1

u23 = v1 + v2

u24 = v1 + αv2

uiuj = 0 for all i 6= j.

Then Nα has structure matrices

Φ(1) = I, Φ(2) = diag(−1, 0, 1, α) = Aα.

Let Nβ = 〈w1, w2, w3, w4〉, with {z1, z2} a basis of N2, and

w2
1 = z1 − z2

w2
2 = z1

w2
3 = z1 + z2

w2
4 = z1 + βz2

wiwj = 0 for all i 6= j.

Thus Θ(1) = I,Θ(2) = Aβ are the structure matrices for Nβ. Now Nα and
Nβ are in the same orbit under G if and only if there is an invertible 4× 4
matrix P and an invertible 2× 2 matrix Q = (qij) so that

Θ(1) = q11PΦ(1)P T + q21PΦ(2)P T ;

Θ(2) = q12PΦ(1)P T + q22PΦ(2)P T .

That is,

I = q11PP
T + q21PAαP

T ;

Aβ = q12PP
T + q22PAαP

T .

We first show that PP T and PAαP
T must be diagonal. Let

(PP T )ij = tij , (PAαP
T )ij = sij .

Then for i 6= j, we have from these last equations:

0 = q11tij + q21sij

0 = q12tij + q22sij .

Since Q is invertible, the only solution is sij = tij = 0.
Thus PP T = diag(c1, c2, c3, c4) is diagonal. If we multiply P by 1/c1 and

multiply Q by c21, we don’t change the equations connecting the structure
matrices of Nα and Nβ, and may assume that

PP T = diag(1, p1, p2, p3) = D.

Then PP TD−1 = I, so P T = P−1D, hence PAαP
T = PAαP

−1D. The
eigenvalues of PAαP

−1 are the same as those of Aα, namely, −1, 0, 1 and
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α. So PAαP
−1 = diag(α0, α1, α2, α3), where {α0, α1, α2, α3} = {1, 0,−1, α}

(in some unspecified order).
Our two equations above are then

I = q11 diag(1, p1, p2, p3) + q21 diag(α0, α1p1, α2p2, α3p3)

diag(−1, 0, 1, β) = q12 diag(1, p1, p2, p3) + q22 diag(α0, α1p1, α2p2, α3p3).

Since p1 is nonzero, the four equations involving α0 and α1 are equivalent
to

1 = q11 + q21α0

−1 = q12 + q22α0

1/p1 = q11 + q21α1

0 = q12 + q22α1,

which in matrix form becomes(
q11 q21
q12 q22

)
=

(
1 1

p1
−1 0

)(
α1 −1
−α0 1

)
.

We can use these to solve for the components of Q in terms of the the αj ,
the pi and β:

q11 =

(
1

α1 − α0

)(
α1 −

α0

p1

)
q12 =

(
1

α1 − α0

)
(−α1)

q21 =

(
1

α1 − α0

)
(−1 + 1/p1)

q22 =
1

α1 − α0
.

The remaining four equations involve p1, p2, p3 and β:

1 = q11p2 + q21α2p2

1 = q12p2 + q22α2p2

1 = q11p3 + q21α3p3

β = q12p3 + q22α3p3.

These are equivalent to

1

p2
= q11 + q21α2 = q12 + q22α2

1

p3
= q11 + q21α3 =

1

β
(q12 + q22α3).
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Substituting for the components of Q gives

1

p2
=

(
1

α1 − α0

)[(
α1 −

α0

p1

)
+

(
−1 +

1

p1

)
α2

]
1

p2
=
α2 − α1

α1 − α0

1

p3
=

(
1

α1 − α0

)[(
α1 −

α0

p1

)
+

(
−1 +

1

p1

)
α3

]
;

β

p3
=
α3 − α1

α1 − α0
.

We set the two expressions for 1/p2 to solve for p1:(
α1 −

α0

p1

)
+

(
−1 +

1

p1

)
α2 = α2 − α1,

so

p1 =
α2 − α0

2(α2 − α1)
.

We also have that

p2 =
α1 − α0

α2 − α1
.

Substituting for p1 in the expression for 1/p3, we have that

1

p3
=

(α1 − α3)

(α2 − α0) + 2(α3 − α0)(α2 − α1)
(α2 − α0)(α1 − α0).

So

p3 =
(α1 − α0)(α2 − α0)

(α1 − α3)(α2 − α0) + 2(α3 − α0)(α2 − α1)
.

Then

β = p3
(α3 − α1)

(α1 − α0)

=
(α3 − α1)(α2 − α0)

(α1 − α3)(α2 − α0) + 2(α3 − α0)(α2 − α1)
.

Thus β is uniquely determined, provided that α 6= −1, 0 or 1 (which implies
that the components of Q, p1 and p2 are defined) and the denominator

∆ = (α1 − α3)(α2 − α0) + 2(α3 − α0)(α2 − α1)

of p3 and β is nonzero.
We have 24 cases, corresponding to the 4! possible ways of choosing

α1, α2, α3, α4 from {−1, 0, 1, α}. The possible ways of choosing α0, α1, α2

and α3, and the corresponding β, are shown in Table 1
As the table shows, each possible permutation of −1, 0, 1 and α yields a

unique value of β, provided that the denominators ∆ = 3α± 1 are not zero.
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Table 1. Values of β.

α0 α1 α2 α3 ∆ β
−1 0 1 α 2 α
1 0 −1 α −3α− 1 −α
0 1 −1 α 3α− 1 (α− 1)/(3α+ 1)
0 −1 1 α −3α− 1 (α+ 1)/(3α− 1)
−1 1 0 α 3α− 1 −(α− 1)/(3α+ 1)
1 −1 0 α 3α− 1 −(α+ 1)/(3α− 1)
−1 0 α 1 3α− 1 (α+ 1)/(3α− 1)
1 0 α −1 −3α− 1 (α− 1)/(3α+ 1)
0 1 α −1 2 −α
0 −1 α 1 2 α
−1 1 α 0 3α− 1 −(α+ 1)/(3α− 1)
1 −1 α 0 −3α− 1 −(α− 1)/(3α+ 1)
−1 α 0 1 −3α− 1 (α− 1)/(3α+ 1)
1 α 0 −1 3α− 1 (α+ 1)/(3α− 1)
0 α 1 −1 3α− 1 −(α+ 1)/(3α− 1)
0 α −1 1 −3α− 1 −(α− 1)/(3α+ 1)
−1 α 1 0 2 −α
1 α −1 0 2 α
α −1 0 1 2 −α
α 1 0 −1 2 α
α 0 1 −1 −3α− 1 −(α− 1)/(3α+ 1)
α 0 −1 1 3α− 1 −(α+ 1)/(3α− 1)
α −1 1 0 −3α− 1 (α− 1)/(3α+ 1)
α 1 −1 0 3α− 1 (α+ 1)/(3α− 1)

The β’s are obtained from α by applying the six Mobius transformations
that send x to:

x, −x, x− 1

3x+ 1
, − x− 1

3x+ 1
,

x+ 1

3x− 1
, − x+ 1

3x− 1
.

It is routine to check that this set M of transformations is closed under
composition and is isomorphic to the dihedral group D3 of order 6. In fact,
under the map from GL2(Fp) to M ,

(
a b
c d

)
7→ ax+ b

cx+ d
,
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the group M is isomorphic to the subgroup of PGL2(Fp) represented by the
matrices (

1 0
0 1

)
,

(
−1 0
0 1

)
,

(
1 −1
3 1

)
,(

−1 1
3 1

)
,

(
1 1
3 −1

)
,

(
−1 −1
3 −1

)
.

Thus we have:

Proposition 9.1. Let p ≥ 7 and let N be the set of six-dimensional nilpotent
algebras Nα where α is in A = Fp\{0, 1,−1, 13 ,−

1
3}. Then the orbit of Nα in

N under the action of G = GL4(Fp)×GL2(Fp) contains at most six algebras

Nβ, and each β is in A. Thus there are at least bp−56 c isomorphism types of
nilpotent algebras in N .

Example 9.2. For p = 7, the set A = {3, 4} is a single orbit under the
action of G.

For p = 13, A partitions into two orbits: {2, 11} and {3, 10, 5, 8, 6, 7}.
For p = 19, A partitions into three orbits:

{2, 17, 7, 12, 8, 11}, {3, 16, 4, 15, 9, 10} and {5, 14}.
For p = 41, A partitions into six orbits:

{2, 39, 6, 35, 17, 24}, {4, 37, 7, 34, 16, 25},
{3, 38, 8, 33, 20, 21}, {5, 36, 10, 31, 18, 23}
{9, 32, 12, 29, 13, 28}, {11, 30, 15, 26, 19, 22}.

(Omitted from A for p = 41 are 0, 1, 14 = 1/3, 27 = −1/3 and −1 = 40.)

These examples generalize to give a more precise result.

Theorem 9.3. Let A = Fp \ {−1, 0, 1, 1/3,−1/3}. If p = 6k + 5, then
there are exactly k orbits in A under the action of G, and hence there are
k = p−5

6 isomorphism types of nilpotent algebras Nα over Fp. If p = 6k+ 1,
then there are k− 1 orbits of size 6 and one orbit of size 2 in A. Thus there
are k = p−1

6 isomorphism types of nilpotent algebras Nα over Fp.

Proof. One checks that α is in an orbit of size 2 if and only if

α =
α− 1

3α− 1
= − α+ 1

3α− 1

iff

−α = − α− 1

3α− 1
=

α+ 1

3α− 1
iff

3α2 = −1.

Any other equalities among

±α, ± α− 1

3α− 1
, ± α+ 1

3α− 1
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yield excluded values of α (namely α = 0, 1, −1, 1/3, −1/3).
Now the equation

3α2 = −1

has a solution in Fp iff the Legendre symbol
(−3
p

)
= 1, iff p ≡ 1 (mod 6).

In that case, there is one orbit containing the two square roots of −1/3 in
Fp. If p ≡ 5 (mod 6), then the five nontrivial Mobius transformations have
no fixed points, so the orbit of each Nα contains six Nβ. �

10. An asymptotic estimate for tn(G) for large n

We seek an estimate for tn(G), the number of Hopf Galois structures of
type G on a Galois extension L/K with Galois group G ∼= Fnp , for large n.

For a lower bound on that number, we start with a lower bound on the
number of isomorphism classes of commutative Fp-algebras N of dimension
n with N3 = 0, where r can vary. All such algebras correspond to regular
subgroups of Hol(G) isomorphic to G, as noted earlier.

To do so, we find the maximum of the lower bound exponent

b =

(
r2 + r

2

)
(n− r)− (n− r)2 − r2

over r with 0 < r < n.
Write r = tn for 0 < t < 1 and let

c(t) = −2b(t)/n2 = nt3 − 2nt2 + 5t2 − 5t+ 2.

To find the maximum value of c(t) for 0 < t < 1, differentiate c(t) to get

c′(t) = 3nt2 − 2nt+ 10t− 5,

which is zero for

t =
1

3
− 5

3n
+

1

3

√
1 +

5

n
+

25

n2
.

For various n, the t for which c(t) is maximum is

n t
3 .556
6 .586
10 .608
20 .632
50 .651
100 .659
500 .665
1000 .666
5000 .667

For large n the value of t where b(t) is maximum converges to 2/3. As noted
earlier, for r = 2n/3,

b =
2

27
n3 − 4

9
n2.
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So

Proposition 10.1. The number of commutative Fp-algebras N of dimension
n with N3 = 0 is at least

pmax{b(t)}

and for n→∞, max{b(t)} converges to 2
27n

3 − 4
9n

2.

For an upper bound, we cite Poonen ([Po08a], Theorem 10.9):

Theorem 10.2. The number of isomorphism classes of pairs (N,φ) where
N is nilpotent commutative Fp-algebra of rank n and φ : N → Fnp is an

isomorphism that defines a fixed ordered basis of N , is p
2
27
n3+O(n8/3) as n→

∞.

Forgetting the basis structure reduces the number of isomorphism classes.
So the number of isomorphism types of nilpotent commutative algebras of

rank n is bounded from above by p
2
27
n3+O(n8/3) as n goes to infinity. We

have the following inequalities:

|{isomorphism types of commutative Fp-algebras N with N3 = 0}|
≤ |{isomorphism types of commutative Fp-algebras N with Np = 0}|
≤ |{isomorphism types of commutative nilpotent Fp-algebras N}|
≤ |{isomorphism types of pairs (N,φ) as above.|

The second term,

|{isomorphism types of commutative Fp-algebras N with Np = 0}|,
is equal to the number OG of orbits in Hol(Fnp ) under conjugation where the
orbits contain regular subgroups isomorphic to G = Fnp . Thus as n→∞,

p
2
27
n3− 4

9
n2 ≤ OG ≤ p

2
27
n3+O(n8/3).

As n goes to infinity, the number of orbits of regular subgroups of Hol(G)

isomorphic to G is asymptotic to p
2
27
n3

.

We can then approach the question: For n large, if L/K is a Galois
extension with Galois group G ∼= (Fnp ,+) an elementary abelian p-group,
how many abelian Hopf Galois structures are there on L/K of type G?

To obtain an estimate of the number of abelian Hopf Galois structures
on L/K of type G, observe that for each regular subgroup J isomorphic to
Cnp
∼= Fnp , the number of equivalence classes of isomorphisms β : G→ J is

|GLn(Fp)|
|Sta(J)|

,

and the size of that number is bounded above by |Mn(Fp)| = pn
2

and below
by 1.

Applying those bounds, Theorem 1.2 and the lower and upper bounds
on nilpotent commutative algebras N with Np = 0 just noted, we see that
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the number tn(G) of Hopf Galois structures of type G on a Galois extension
L/K with Galois group G = Cnp , p odd, satisfies

p
2
27
n3− 4

9
n2
< tn(G) < p

2
27
n3+O(n8/3) · pn2

.

Hence:

Theorem 10.3. The number tn(G) of Hopf Galois structures of type G on
a Galois extension L/K with Galois group G = Cnp , p odd, is asymptotic to

p
2
27
n3

as n→∞.

The size of the stabilizer is asymptotically irrelevant.
Of course for small n the orders of stabilizers is required for precise counts.
For n = 3 we found in [Ch05] the orders of the stabilizers of each of the

five representative regular subgroups. (The fact that those stabilizers had
different orders insured that the orbits of the five representative subgroups
were all different.) Finding the orders of the stabilizers yielded in [Ch05,
Theorem 7.2] the number t3(G) of Hopf Galois structures of type G on a
Galois extension L/K with Galois group G = C3

p , namely s = p6 + p5 − p2.
But except for the special class, studied in the final section of [Ch07], of

regular subgroups corresponding to the nilpotent algebras N of dimension
n with dim(N i/N i+1) = 1 for all i, almost nothing precise is known about
stabilizers of regular subgroups of Hol(G) where G = Fnp and n ≥ 4. We
leave that problem for further research.
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