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On solvability of some boundary value
problems for a fractional analogue of the

Helmholtz equation

B. Kh. Turmetov and B. T. Torebek

Abstract. In this paper we study some boundary value problems for
fractional analogue of Helmholtz equation in a rectangular and in a
half-band. Theorems about existence and uniqueness of a solution of
the considered problems are proved by spectral method.
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1. Introduction and problem statement

For an arbitrary positive α an operator of fractional integration in the
sense of Riemann–Liouville of the α order is the following expression [10]:

Iα [f ] (t) =
1

Γ (α)

t∫
0

(t− s)α−1 f (s)ds.

given on the functions f (t) , defined on the interval (0, `), ` <∞. Since

Iα[f ](t)→ f(t)

almost everywhere as α→ 0, then by definition we suppose that

I0[f ](t) = f(t).
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Let m− 1 < α ≤ m, m = 1, 2, . . . . Then the following expression

RLD
α [f ] (t) =

dm

dtm
Im−α [f ] (t)

is called a differentiation operator of the α order in the sense of Riemann–
Liouville, and

CD
α [f ] (t) = RLD

α

[
f (t)− f (0)− f ′ (0)

1!
t− · · · − f (m−1) (0)

(m− 1)!
tm−1

]
is a differentiation operator of the α order in the sense of Caputo [10]. If
f (t) ∈ Cm [0, l] , then the operator CD

α can be rewritten as:

CD
α [f ] (t) = Im−α

[
f (m)

]
(t) .

Furthermore, we will use another kind of fractional order derivative.
Namely, the sequential derivative of the kα, k = 1, 2, . . . order is:

Dα = CD
α, 0 < α ≤ 1, Dkα = DαD(k−1)α, k = 2, 3, . . . .

Note that the concept of sequential derivative was introduced in [14].
Various properties of these operators were studied in [10], [14], [18].

Correct formulation of the initial-boundary value problems for differential
equations of fractional order have been studied in many papers [19], [1], [12],
[6], [3], [5], [7]. Some questions of solvability of boundary value problems
with fractional analogues of the Laplace operator were studied in [8], [21],
[13], [4], [2], [11], [20].

As we know, if 0 < α ≤ 2 and ∂αx is one of the operators RLD
α
x or CD

α
x ,

for a fractional order differential equation of the form

∂αxu(x, y)− uyy(x, y) = 0, (x, y) ∈ Ω

correct formulation of boundary value problems depends on the parameter α.
So for values α ∈ (0, 1] as in the case of the conventional parabolic equation
for the correctness of mixed problem together with boundary conditions it
is enough to give one initial condition, and in the case α ∈ (1, 2] as for
hyperbolic equations it is enough to give two initial conditions.

In the case of differential equation of the form:

D2α
x u(x, y)− uyy(x, y) = 0, (x, y) ∈ Ω, 0 < α < 1,

for any α ∈ (0, 2] correct problem is a mixed problem with the Cauchy
conditions (see e.g., [6]):

u(x, 0) = f(x), Dα
xu(x, 0) = g(x).

In this paper, we study boundary value problems for fractional analogue
of elliptic equations. Denote

Ω∞ =
{

(x, y) ∈ R2 : 0 < x < 1, 0 < y <∞
}
,

Ω1 =
{

(x, y) ∈ R2 : 0 < x < 1, 0 < y < 1
}
,

Ω̄∞ = {(x, y) : 0 ≤ x ≤ 1, y ≥ 0} ,
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Ω̄1 = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} .
Furthermore, Ω will mean one of the domains Ω∞ or Ω1. Let 0 < α ≤ 1 .
Consider in the domain Ω the following equation:

(1.1) D2α
x u(x, y) + uyy(x, y)− c2u(x, y) = 0, (x, y) ∈ Ω,

where c is a real number, D2α
x means D2α

x = Dα
xD

α
x and the operator Dα

x

acts by the variable x.
Regular solution of Equation (1.1) is a function u (x, y) ∈ C

(
Ω̄
)
, such

that Dα
xu (x, y) , D2α

x u (x, y) , uyy (x, y) ∈ C (Ω) .

Since for α = 1 : CD
1 = D1 = d

dy , then

D2
x +

∂2

∂y2
=

∂2

∂x2
+

∂2

∂y2
= ∆,

i.e., in this case Equation (1.1) coincides with the Helmholtz equation.
For Equation (1.1) we consider the following problems:

Problem 1. Find in the domain Ω1 a regular solution of Equation (1.1),
satisfying the following boundary value conditions:

u (0, y) = f (y) , u (1, y) = g (y) , 0 ≤ y ≤ 1,(1.2)

u (x, 0) = 0, u (x, 1) = 0, 0 ≤ x ≤ 1,(1.3)

Problem 2. Find in the domain Ω∞ a regular solution of Equation (1.1),
satisfying the following boundary value conditions:

u (x, 0) = f (x) , 0 ≤ x ≤ 1,(1.4)

u (0, y) = 0, u (1, y) = 0, 0 ≤ y,(1.5)

and the condition:

(1.6) lim
y→∞

|u (x, y)| → 0.

Problem 3. Find in the domain Ω∞ a regular solution of Equation (1.1),
such that ux (x, y) ∈ C

(
Ω̄
)
, and satisfying condition (1.4),

(1.7) ux (0, y) = 0, ux (1, y) = 0, 0 ≤ y,
and the condition:

(1.8) lim
y→∞

|u (x, y)| → 0,

or the condition:

(1.9) lim
y→∞

|u (x, y)| ≤ C, C = Const .

Note that Dirichlet type problem for fractional analogue of the Laplace
equation:

(1.10) CD
α
xu(x, y) + uyy(x, y) = 0, (x, y) ∈ Ω, 1 < α < 2.

was studied in [13]. Since for the operator CD
α, in general, the inequality

CD
α
CD

β 6= CD
α+β, 0 < α, β /∈ N
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holds (see [18]), then our problem 1 is different from the Dirichlet problems
for Equation (1.10).

Need to study boundary value problems for Equation (1.1) is determined
by using fractal Laplace equation to describe the production processes in
mathematical modeling of socio-economic systems [17]. Note also that in
[17] attention was drawn to the fact that the problem of finding a generalized
two-factor Cobb-Douglas function is reduced to the Dirichlet problem for a
generalized Laplace equation of fractional order.

2. Solution of one dimensional equation with fractional
derivative

Let 0 < α ≤ 1, µ is a positive real number. For further research, we need
to give some information about the solutions of differential equations of the
form:

(2.1) D2α [y] (t)− µ2y (t) = 0, t > 0.

Denote

S1 = {t : 0 < t < 1},

S∞ = {t : 0 < t <∞},

S̄1 = {t : 0 ≤ t ≤ 1},

S̄∞ = {t : 0 ≤ t <∞}.
We will looking for a solution of Equation (2.1) from the class y (t) ,

Dαy (t) ∈ C(S̄), D2αy (t) ∈ C (S) , where S is one of the domains S1 or S∞.
Since µ > 0, then Equation (2.1) is equivalent to the equation of the form:

(2.2) (Dα − µ) (Dα + µ) y (t) = 0.

It is well known (see [10]), that partial solution of the equation

(Dα + µ) y (t) = 0

is a function

y (t) = Eα,1 (−µtα) ,

where

Eα,β (z) =

∞∑
k=0

zk

Γ (αk + β)

is a Mittag-Leffler type function [10].
Then functions

(2.3) {Eα,1 (µtα) , Eα,1 (−µtα)} ,

are solutions of Equation (2.2).
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It is easy to show that the functions Eα,1 (µtα) and Eα,1 (−µtα) are linear
independent. Hence, the system of functions (2.3) are the fundamental so-
lutions of Equation (2.1), and therefore the general solution of this equation
has the form:

(2.4) y (t) = D1Eα,1 (−µtα) +D2Eα,1 (µtα) ,

where D1, D2 are arbitrary constants.
Note that in the case α = 1

2 :

Eα,1 (λtα) = E 1
2
,1

(
λ
√
t
)

=

∞∑
k=0

λkt
k
2

Γ
(
k
2 + 1

)
= eλ

2t

1 +
2√
π

λ
√
t∫

0

e−s
2
ds

 = eλ
2t erfc

(
−λ
√
t
)
,

where erfc(z) is the error function.
Furthermore, for the functions Eα,β (z) as |z| → ∞ the following asymp-

totic estimation holds [18]:

(2.5) Eα,β(z) =
1

α
z

(1−β)
α ez

1
α −

p∑
k=1

z−k

Γ (β − αk)
+O

(
1

|z|p+1

)
,

where |arg z| ≤ ρ1π, ρ1 ∈
(
α
2 ,min {1, α}

)
, α ∈ (0, 2) . And if arg z = π, then

(2.6) Eα,β(z) =
1

1 + |z|
, |z| → ∞.

In particular, for the functions Eα,1 (µtα) as 0 < α ≤ 1 we get the following
estimation:

(2.7) Eα,1 (µtα)→∞, t→∞.

3. Studying Problem 1

Application of the Fourier method for solving Problem 1 leads to a spectral
problem:

(3.1)

{
Y ′′ (y) + λY (y) = 0, 0 < y < 1,

Y (0) = 0, Y (1) = 0.

Eigenvalues of Problem (3.1) have the form: λk = (πk)2, k = 1, 2, . . . ,
and corresponding eigen functions

Yk (y) =
√

2 sin kπy

form orthonormal basis of the space L2(0, 1). Consequently, any regular
solution of the Problem 1 can be represented at all y as a series:

(3.2) u (x, y) =

∞∑
k=1

uk (x)Yk (y).
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It is well known that if f (y) , g (y) are smooth enough in [0, 1] and satisfy
conditions (1.3), then they can be uniquely represented in the form of a
uniformly and absolutely convergent Fourier series by the system Yk (y) :

f (y) =

∞∑
k=1

fkYk (y),

g (y) =
∞∑
k=1

gkYk (y),

where

fk =

1∫
0

f (y)Yk (y) dx,

gk =

1∫
0

g (y)Yk (y).

Putting (3.2) into Equation (1.1) and boundary value conditions (1.2), for
finding unknown functions uk (x) we obtain the following problem:

D2α
x uk (x)− µ2kuk (x) = 0, 0 < x < 1,(3.3)

uk (0) = fk, uk (1) = gk.(3.4)

where µ2k = (kπ)2 + c2. Due to the equality (2.4) a general solution of
Equation (3.3) has the form:

(3.5) uk (x) = C1Eα,1 (−µkxα) + C2Eα,1 (µkx
α) .

Putting function (3.5) into the boundary condition (3.4), we get

uk (x) = Ck (x) fk + Sk (x) gk,

where

Ck (x) =
Eα,1 (µk)Eα,1 (−µkxα)− Eα,1 (µkx

α)Eα,1 (−µk)
2µkE2α,α+1

(
µ2k
) ,(3.6)

Sk (x) =
xαE2α,α+1

(
µ2kx

2α
)

E2α,α+1

(
µ2k
) .(3.7)

It is easy to see that the function Eα,1
(
µ2kx

α
)

satisfies the equation:

(3.8) y′′ (x)− µ2kRLD2−αy (x) = 0, 0 < x < 1.

It is also known (see [16]) that a regular solution of Equation (3.8) is not a
constant (function y (x) from the class C [0, 1]∩C2 (0, 1) ) can not attain to
its positive maximum (negative minimum) within the segment. It is easy to
show that functions Ck (x) and Sk (x) are solutions of Equation (3.8) and

Ck (0) = 1, Ck (1) = 0,
Sk (0) = 0, Sk (1) = 1.
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Consequently, 0 ≤ Sk (x) , Ck (x) ≤ 1, for all x ∈ [0, 1] .
Further, if the function ϕ (x) belongs to the class Cm+ε [0, l] , m ∈ Z+ and

ε < 1, then for Fourier coefficients of this function the following estimation
holds (see [9]):

|ϕk| = O

(
1

km+ε

)
, k →∞.

If f ′′ (y) ∈ Cε [0, 1] , g′ (y) ∈ Cε [0, 1] and conditions f (0) = f (1) = g (0) =
g (1) = 0 hold, then

|fk| ≤
C

k2+ε
, |gk| ≤

C

k1+ε
, C = Const .

For such functions, we obtain

|uk (x)| ≤ C
(

1

k2+ε
+

1

k1+ε

)
.

Then the series (3.2) converges uniformly in the domain Ω̄1, and therefore
its sum u (x, y) ∈ C

(
Ω̄1

)
.

Further, using estimations (2.5) and (2.6), we get

2xαµkE2α,α+1

(
µ2kx

2α
)

=
1

α
eµ

1
α
k x +O

(
1

µ2k

)
,

Eα,1 (µkx
α) =

1

α
eµ

1
α
k x +O

(
1

µk

)
,

Eα,1 (−µkxα) = O

(
1

µk

)
, x ≥ x0.

Then

Sk (x) = O

(
eµ

1
α
k (x−1)

)
,

Ck (x) = O

(
1

µk

)
.

Taking derivative term by term from the series (3.2) twice by y, we have:

uyy (x, y) = −
∞∑
k=1

λkuk (x)Yk (y).

Then for all x ≥ x0 > 0 , 0 ≤ y ≤ 1 we get

|uyy (x, y)| ≤
∞∑
k=1

∣∣µ2k∣∣ |uk (x)| ≤ C
∞∑
k=1

[
e−µk(1−x)

kε
+

1

kε

]
<∞.

Similarly, estimate the series

D2αu (x, y) =
∞∑
k=1

µ2kuk (x)Yk (y).

Then uyy (x, y) , D2αu (x, y) ∈ C (Ω1) .
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Uniqueness of the solution of Problem 1 follows from uniqueness of the
solution of problems (3.3) and (3.4). Thus, we have proved the following:

Theorem 1. Let 0 < α ≤ 1, f (y) ∈ C2+ε [0, 1] , g (y) ∈ C1+ε [0, 1] and
conditions f (0) = f (1) = 0, g (0) = g (1) = 0 hold. Then solution of
Problem 1 exists, is unique and can be represented as:

u (x, y) =
∞∑
k=1

[fkCk (x) + gkSk (x)] sin kπy,

where fk, gk - Fourier coefficients of the functions f (y) , g (y) , and Ck (x)
and Sk (x) are defined by the equalities (3.6) and (3.7), respectively.

4. Studying Problem 2

We formulate the main proposition concerning Problem 2.

Theorem 2. Let f (x) ∈ C1+ε [0, 1] , f (0) = f (1) = 0. Then solution of
Problem 2 exists, is unique and can be represented as:

(4.1) u (x, y) =
∞∑
k=1

fkEα,1 (−µkyα) sin kπx,

where

fk = 2

1∫
0

f (x) sin kπxdx, k = 1, 2, . . . .

Proof. Applying the Fourier method to solve Problem 2, we lead it to a
spectral problem (3.1). As we have already noticed the eigen values of this
problem have the form λk = (πk)2, k = 1, 2, . . . , and the corresponding
eigen functions

Yk (x) =
√

2 sin kπx.

System Yk (x) forms a orthonormal basis in the space L2(0, 1). Consequently,
any regular solution of the problem 2 at all y > 0 can be represented as a
series:

(4.2) u (x, y) =

∞∑
k=1

uk (y) sin kπx.

Expand the function f (x) in Fourier series by the system Yk (x) :

(4.3) f (x) =
∞∑
k=1

fk sin kπx,

where fk = (f, Yk) .
Using methods of [15], we consider functions:

(4.4) uk (y) = 2

1∫
0

u (x, y) sin kπxdx, k = 1, 2, . . . ,
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Applying the operator D2α
y − c2 to functions (4.4) and taking account

Equation (1.1), we obtain

(
D2α
y − c2

)
[uk] (y) = 2

1∫
0

(
D2α
y − c2

)
[u] (x, y) sin kπxdx

= −2

π∫
−π

uxx (x, y) sin kπxdx.

Twice integrating by parts the last integral and using conditions (1.5) and
(1.6), we receive:

D2α
y uk (y)− µ2kuk (y) = 0,(4.5)

uk (0) = fk, k = 1, 2, . . . ,(4.6)

lim
y→∞

|uk (y)| → 0.(4.7)

The general solution of Equation (4.5) has the form:

uk (y) = D1Eα,1 (µky
α) +D2Eα,1 (−µkyα) , µk =

√
c2 + (kπ)2.

Due to the estimations (2.7)

Eα,1 (µky
α)→∞

as y →∞. Thus for the condition (4.7) we need to choose D1 = 0. Then

uk (y) = D2Eα,1 (−µkyα)

and by the condition (4.6) we get

uk (y) = fkEα,1 (−µkyα) .

Further, equality (4.4) directly implies uniqueness of the solution of Prob-
lem 2, since if f (x) = 0 on [0, 1] , then uk (y) = 0, k = 1, 2, . . . on (0,∞) .
Consequently, due to completeness of the system {Yk (x)}∞k=1 , the function
u (x, y) = 0 for all (x, y) ∈ Ω̄∞.

Therefore, the formal solution of Problem 2 can be represented as (4.1). If
the function f (x) satisfies conditions of Theorem 2, then Fourier coefficients
we get inequality:

|fk| ≤
C

k1+ε
.

Then for all x ∈ [0, 1] , 0 ≤ y ≤ l, l <∞ we obtain

|u (x, y)| ≤
∞∑
k=1

C

k1+ε
<∞,

i.e., series (4.1) converges uniformly in a domain [0, 1]× [0, l] , and therefore

u (x, y) ∈ C
(
Ω̄∞
)
.
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Further,

D2α
y u (x, y) =

∞∑
k=1

µ2kfkEα,1 (−µkyα) sin kπx.

To estimate the last series we use the following properties of the Mittag-
Leffler function:

−λEα,1 (−λyα) =
∞∑
j=0

(−λ)j+1 yα(j+1)

Γ (αj + 1)

1

yα

=
1

yα

∞∑
i=1

(−λ)i
yαi

Γ (αi+ 1− α)
.

Then, ∣∣µ2kEα,1 (−µkyα)
∣∣ ≤ C(k + 1)

yα
|Eα,1−α (−µkyα)| , α < 1.

Using estimation (2.6), for all 0 < x < 1, 0 < y0 ≤ y <∞ we get:∣∣D2α
y u (x, y)

∣∣ =

∣∣∣∣∣
∞∑
k=1

µ2kfkEα,1 (−µkyα) sin kπx

∣∣∣∣∣ ≤ C

yα0

∞∑
k=1

1

k1+ε
<∞.

Consequently, D2α
y u (x, y) ∈ C (Ω∞) .

Similarly, show that uxx (x, y) ∈ C (Ω∞) . Theorem 2 is proved. �

5. Studying Problem 3

For Problem 3, we obtain the following:

Theorem 3. Let f (x) ∈ C2+ε [0, 1] , f ′ (0) = f ′ (1) = 0. Then:

(1) If u (x, y) is bounded at infinity, then the solution of Problem 3 exists,
is unique and can be represented as

(5.1) u (x, y) = f0Eα,1 (−|c|yα) +
∞∑
k=1

fkEα,1 (−µkyα) cos kπx.

(2) If the function u (x, y) tends to zero at infinity, then:
(a) If c 6= 0 the solution of Problem 3 exists, is unique and can be

represented as (5.1).
(b) If c = 0, Problem 3 is solvable if and only if the following con-

dition holds:

(5.2)

1∫
0

f (x) dx = 0,

and if a solution exists, it is unique and can be represented as

(5.3) u (x, y) =
∞∑
k=1

fkEα,1 (−µkyα) cos kπx,
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where

f0 =

1∫
0

f (x) dx,

fk = 2

1∫
0

f (x) cos kπxdx, k = 1, 2, . . ..

Proof. In the case of Problem 3 the corresponding spectral problem is rep-
resented as: {

−Y ′′ (y) = λY (y) , 0 < y < 1,

Y ′ (0) = Y ′ (1) = 0.

Eigen values of the problem have the form: λk = (2kπ)2 , k = 0, 1, . . . ,
and eigen functions

Y0 (y) = 1, Yk (y) =
√

2 cos kπy, k = 1, 2, . . . ,

form orthonormal basis in the space L2(0, 1). Consequently, any regular
solution of Problem 3 can be for all y > 0 represented as the series:

(5.4) u (x, y) = v0 (y) +

∞∑
k=1

vk (y) cos kπx.

Since system of the functions {Yk (x)}∞k=0 is orthonormal, then the func-
tion f (x) can be represented as:

(5.5) f (x) = f0 +
∞∑
k=1

fk cos kπx,

where f0 = (f, Y0) , fk = (f, Yk) .
Consider the function:

v0 (y) =

1∫
0

u (x, y) dx,(5.6)

vk (y) = 2

1∫
0

u (x, y) cos kπxdx, k ≥ 1.(5.7)

Using the operator D2α
y −c2 to the function (5.6), taking account Equation

(1.1), we obtain

(
D2α
y − c2

)
[v0] (y) =

1∫
0

(
D2α
y − c2

)
u (x, y) dx = −

π∫
−π

uxx (x, y) dx.
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Integrating by parts the last integral and using the boundary value con-
dition (1.7), we conclude that v0 (y) satisfies the equation:

(5.8)
(
D2α
y − c2

)
[v0] (y) = 0,

and the boundary value condition:

(5.9) v0 (0) = f0, lim
y→∞

|v0 (y)| <∞,
(

lim
y→∞

|v0 (y)| = 0

)
.

The general solution of Equation (5.8) has the form:

v0(y) = D1E(|c|yα) +D2E(−|c|yα).

If c 6= 0, then due to the condition (2.7) as y →∞ function E(|c|yα)→∞,
and therefore for the conditions (1.8) or (1.9) we assume that D1 = 0. Then
the problem (5.8)–(5.9) as

lim
y→∞

|v0 (y)| <∞

or
lim
y→∞

|v0 (y)| = 0

and c 6= 0 has a unique solution in the form:

(5.10) v0 (y) = f0Eα,1(−|c|yα).

If
lim
y→∞

|v0 (y)| = 0

and c = 0, then the problem (5.8)–(5.9) has a solution if and only if

f0 =

1∫
0

f (x) dx = 0,

and consequently, has the form: v0 (y) = 0. Necessity of the condition (5.2)
is proved. Let us show, that the condition (5.2) is sufficiency for solvability
of Equations (5.8)–(5.9) if c = 0. Indeed, let the condition (5.2) hold. Then
the problem (5.8)–(5.9) has only the trivial solution.

Analogously, for the function vk (y) we get the problem:

(5.11) D2α
y [vk] (y)− µ2kvk (y) = 0,

with conditions:

(5.12) vk (0) = fk, lim
y→∞

|vk (y)| <∞,
(

lim
y→∞

|vk (y)| = 0

)
.

The general solution of the problem (5.11) is represented in the form (2.4).
Estimation (2.7) yields that D1 = 0. Then using the condition (5.12), we
find a solution of Equation (5.11)–(5.12) in the form:

(5.13) vk (y) = fkEα,1 (−µkyα) .

Formulas (5.10) and (5.13) directly imply uniqueness of the solution of
the problem (5.11)–(5.12), since if f (x) = 0 on [0, 1] , then uk (y) = 0, k =
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0, 1, . . . on (0,∞) . Consequently according completeness of the cosine sys-
tem of function u (x, y) = 0 for all (x, y) ∈ Ω̄∞. Uniqueness is proved.

Due to the formulas (5.10) and (5.13), solution of Problem 3 can be
rewritten in the form (5.1) and (5.3). If the function f (x) satisfies conditions
of Theorem 3, then for Fourier coefficients estimation

|fk| ≤
C

k2+ε

holds.
Then for all x ∈ [0, 1] , 0 ≤ y ≤ l, l <∞ we get the estimation:

|u (x, y)| ≤
∞∑
k=1

C

k2+ε
<∞,

|ux (x, y)| ≤
∞∑
k=1

C

k1+ε
<∞,

and therefore

u (x, y) , ux (x, y) ∈ C
(
Ω̄∞
)
.

Analogously, as in Theorem 2, we prove that D2α
y u, uxx ∈ C (Ω) . Theorem 3

is proved. �
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