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Bimodules over Cartan MASAs in von
Neumann algebras, norming algebras, and

Mercer’s Theorem

Jan Cameron, David R. Pitts and Vrej Zarikian

Abstract. In a 1991 paper, R. Mercer asserted that a Cartan bimod-
ule isomorphism between Cartan bimodule algebras A1 and A2 extends
uniquely to a normal ∗-isomorphism of the von Neumann algebras gener-
ated by A1 and A2 (Corollary 4.3 of Mercer, 1991). Mercer’s argument
relied upon the Spectral Theorem for Bimodules of Muhly, Saito and
Solel, 1988 (Theorem 2.5, there). Unfortunately, the arguments in the
literature supporting their Theorem 2.5 contain gaps, and hence Mer-
cer’s proof is incomplete.

In this paper, we use the outline in Pitts, 2008, Remark 2.17, to
give a proof of Mercer’s Theorem under the additional hypothesis that
the given Cartan bimodule isomorphism is σ-weakly continuous. Un-
like the arguments contained in the abovementioned papers of Mercer
and Muhly–Saito–Solel, we avoid the use of the machinery in Feldman–
Moore, 1977; as a consequence, our proof does not require the von Neu-
mann algebras generated by the algebras Ai to have separable preduals.
This point of view also yields some insights on the von Neumann subal-
gebras of a Cartan pair (M,D), for instance, a strengthening of a result
of Aoi, 2003.

We also examine the relationship between various topologies on a
von Neumann algebra M with a Cartan MASA D. This provides the
necessary tools to parameterize the family of Bures-closed bimodules
over a Cartan MASA in terms of projections in a certain abelian von
Neumann algebra; this result may be viewed as a weaker form of the
Spectral Theorem for Bimodules, and is a key ingredient in the proof of
our version of Mercer’s Theorem. Our results lead to a notion of spectral
synthesis for σ-weakly closed bimodules appropriate to our context, and
we show that any von Neumann subalgebra of M which contains D is
synthetic.

We observe that a result of Sinclair and Smith shows that any Cartan
MASA in a von Neumann algebra is norming in the sense of Pop, Sinclair
and Smith.
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1. Background and preliminaries

1.1. Background. The following appears in a 1991 paper of R. Mercer:

Assertion 1.1.1 ([13, Corollary 4.3]). For i = 1, 2, let Mi be a von Neu-
mann algebra with separable predual and let Di ⊆ Mi be a Cartan MASA.
Suppose Ai is a σ-weakly closed subalgebra of Mi which contains Di and
which generates Mi as a von Neumann algebra.

If θ : A1 → A2 is an isometric algebra isomorphism such that θ(D1) = D2,
then θ extends to a von Neumann algebra isomorphism θ : M1 → M2.
Furthermore, if Mi is identified with its Feldman–Moore representation, so
Mi ⊆ B(L2(Ri)), then θ may be taken to be a spatial isomorphism.

Mercer’s argument supporting this assertion relies upon the Spectral The-
orem for Bimodules of Muhly, Saito and Solel [15, Theorem 2.5]. The pur-
pose of [15, Theorem 2.5] is to characterize σ-weakly closed bimodules over
a Cartan MASA in terms of measure-theoretic data. We know of two ar-
ticles claiming to prove this characterization: the original paper [15] and
another paper of Mercer, see [12, Theorem 5.1]. Unfortunately, the proofs
in both articles contain gaps, so the validity of [15, Theorem 2.5] in general
is uncertain. However, for σ-weakly closed bimodules over a Cartan MASA
in a hyperfinite von Neumann algebra, the Spectral Theorem for Bimodules
follows from a more general result of Fulman, see [9, Theorem 15.18].

The paper of Aoi [1, pages 724–725] gives a discussion of the gap in
the proof presented in [15, Theorem 2.5]. On the other hand, Mercer’s
argument (see the proof of [12, Theorem 5.1]) claims that if (M,D) is a
pair consisting of a separably-acting von Neumann algebra M and a Cartan
MASA D, and S ⊆M is a σ-weakly closed subspace, then S is closed in the
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relative L2 topology. (This is the topology arising from the norm, M 3 T 7→√
ω(E(T ∗T )), where ω is a fixed faithful normal state on D and E : M→ D

is the faithful normal conditional expectation.) The following example, from
Roger Smith, shows this statement is false.

Example 1.1.2. Let M = D = L∞[0, 1] where the measure is Lebesgue
measure. In this case, the L2 topology on M is the relative topology on M

arising from viewing M as a subspace of L2[0, 1]. Since M∗ may be identified
with L1[0, 1], the linear functional φ on M given by

φ(f) :=

∫ 1

0
f(x)x−3/4 dx

is σ-weakly continuous. Let S := kerφ. Then S is σ-weakly closed. But
φ is not continuous with respect to the L2-norm, so S is not L2-closed [5,
Theorem 3.1].

Because of these issues, the question of whether Assertion 1.1.1 is correct
in general arises. It is interesting that when Assertion 1.1.1 is valid, θ is
necessarily σ-weakly continuous. While Mercer did not explicitly assume θ
is σ-weakly continuous (or continuous with respect to another appropriate
topology) in his assertion, Mercer tacitly assumes continuity of θ. Indeed,
Mercer’s argument for Assertion 1.1.1 relies upon [13, Proposition 2.2], and
the first paragraph of the proof of that proposition implicitly assumes a
continuity hypothesis. Thus, the statement of Assertion 1.1.1 appearing
in [13] should also include an appropriate continuity assumption.

A principal goal of this paper is to provide a proof of Assertion 1.1.1,
under the additional hypothesis that θ is σ-weakly continuous, which does
not use the Spectral Theorem for Bimodules. Our argument uses the no-
tion of norming algebras and follows the outline given in [16, Remark 2.17].
Unlike Mercer’s original statement, we do not require that M have sepa-
rable predual. We shall require an understanding of two topologies on M,
the Bures and L2 topologies. As a consequence of this analysis, we obtain
Theorem 2.5.1, the Spectral Theorem for Bures Closed Bimodules, where
the bimodules characterized are those which are closed in the Bures (or,
equivalently, the L2) topology rather than the σ-weak topology. Instead of
using measure theoretic data to characterize Bures closed bimodules, our
characterization uses projections in a certain abelian von Neumann algebra
constructed from the Cartan MASA D and M. This leads to a notion of
synthesis similar to that found in Arveson’s seminal paper [2], but appro-
priate to our context. When A ⊆ M is a von Neumann algebra containing
D, we give a new proof, and a strengthening, of a result of Aoi [1], which
shows that D is a Cartan MASA in A and establishes the existence of a
conditional expectation from M onto A. Our methods also show that any
von Neumann subalgebra of M containing D is Bures closed, from which it
follows that the class of von Neumann subalgebras of M which contain D is
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a class of D-bimodules which satisfy synthesis and for which the conclusion
of [15, Theorem 2.5] is valid.

Acknowledgements. We are grateful to the referee of a previous version
of this paper for alerting us to the issues involving the Spectral Theorem for
Bimodules and to Paul Muhly for the references to the papers of Aoi and
Fulman.

We also wish to acknowledge our indebtedness to the very interesting
papers of Muhly–Saito–Solel [15] and Mercer [12] discussed above. Many
of the ideas found in those papers provide techniques for the analysis of
bimodules in our context. We utilized several of the tools in those papers
and the present paper would not have been written without them.

1.2. Some general notation. Because we shall be dealing with certain
nonselfadjoint algebras, we use X# for the dual of the Banach space X;
likewise, when X is a complex vector space and τ is a locally convex topology
on X, (X, τ)# will denote its dual space.

For any unital C∗-algebra C containing a unital abelian C∗-subalgebra D,
let

N(C,D) := {v ∈ C : v∗Dv ∪ vDv∗ ⊆ D}.
An element v ∈ N(C,D) is a normalizer of D. Finally, if v ∈ N(C,D) is
a partial isometry, then we say that v is a groupoid normalizer of D, and
write v ∈ GN(C,D).

Lemma 1.2.1. Let M be a von Neumann algebra, let D ⊆M be an abelian
von Neumann subalgebra (with the same unit) and let S ⊆M be a σ-weakly
closed D-bimodule. Given v ∈ S∩N(M,D), let v = u|v| be the polar decom-
position of v. Then u ∈ S ∩ GN(M,D).

Proof. The statement is trivial if v = 0, so assume v 6= 0. Since v ∈
N(M,D), v∗Iv ∈ D, so |v| ∈ D. Let S be the spectral measure for |v|.
For 0 < ε < ‖v‖, let fε(t) = t−1χ[ε,∞)(t) and Pε = S([ε, ‖v‖]). Then
|v|fε(|v|) = Pε, so vfε(|v|) = uPε converges σ-strong-∗ to u as ε→ 0. Also,
vfε(|v|) ∈ N(M,D) with ‖vfε(|v|)‖ ≤ 1. Since multiplication on bounded
sets is jointly continuous in the σ-strong topology, we conclude that u ∈
GN(M,D).

Since v ∈ S, u|v|n = v|v|n−1 ∈ S for all n ∈ N, which implies u|v|1/n ∈ S

for all n ∈ N. But u|v|1/n σ-weak−→ uu∗u = u, so u ∈ S. �

Definition 1.2.2. A MASA D in a von Neumann algebra M is called a
Cartan MASA if there is a faithful, normal conditional expectation E :
M→ D and span{U ∈M : U is unitary and UDU∗ = D} is σ-weakly dense
in M. We will call the pair (M,D) a Cartan pair.

Standing Assumption 1.2.3. Unless explicitly stated to the contrary,
throughout this paper, M will denote a von Neumann algebra with a Cartan
MASA D.
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1.3. Bimodules and normalizers. We now give some properties of the
expectation E, and use them to show that bimodules often contain a rich
supply of normalizers. We require some notation. Recall that any discrete
abelian group G has an invariant mean Λ. This means that Λ is a state
on `∞(G) such that for any h ∈ G and F ∈ `∞(G), Λ(F ) = Λ(Fh), where
Fh(g) = F (gh−1). We will usually write, Λg∈G F (g) instead of Λ(F ). We
will always assume that Λ has the additional property that it is invariant
under inversion, that is,

Λ
g∈G

F (g) = Λ
g∈G

F (g−1);

this can be achieved by replacing Λ if necessary with Λ̃, where

˜Λg∈GF (g) = Λ
g∈G

F (g) + F (g−1)

2
.

We now require two lemmas, the first of which is standard. Throughout,
when C is a unital C∗-algebra, U(C) denotes the unitary group of C.

Lemma 1.3.1. Let X be a Banach space and let Λ be an invariant mean
on the (discrete) group U(D). Suppose that f : U(D) → X# is a bounded
function. Then there exists T ∈ coweak-∗{f(U) : U ∈ U(D)} such that for
every x ∈ X,

〈x, T 〉 = Λ
U

〈x, f(U)〉 .

Proof. The existence of T follows from the fact that the map X 3 x 7→
ΛU 〈x, f(U)〉 is a bounded linear functional on X. For every x ∈ X, 〈x, T 〉
belongs to the closed convex hull of {〈x, f(U)〉 : U ∈ U(D)}. So a separation
theorem shows that T ∈ coweak-∗{f(U) : U ∈ U(D)}. �

Notation 1.3.2. In the setting of Lemma 1.3.1, we write T := ΛU f(U).

The following well-known fact appears as [3, Theorem 6.2.1]. Since it will
be useful in the sequel, we include a proof for the convenience of the reader.

Lemma 1.3.3. For T ∈M,

E(T ) = Λ
U∈U(D)

UTU∗

and
{E(T )} = D ∩ coσ-weak{UTU∗ : U ∈ U(D)}.

Proof. For T ∈ M, set E1(T ) = ΛU∈U(D) UTU
∗. Given ρ ∈ M∗, and

W ∈ U(D), we have

ρ(WE1(T )) = Λ
U∈U(D)

ρ(WUTU∗)

= Λ
U∈U(D)

ρ((WU)T (WU)∗W )



460 JAN CAMERON, D.R. PITTS AND VREJ ZARIKIAN

= Λ
U∈U(D)

ρ(UTU∗W )

= ρ(E1(T )W ).

Therefore E1(T ) commutes with U(D). But D is the linear span of U(D),
so E1(T ) ∈ D′ ∩M. Since D is a MASA in M, E1(T ) ∈ D. The normality
of E and the fact that E(UTU∗) = E(T ) for each U ∈ U(D) yield

{E1(T )} ⊆ D ∩ coσ-weak{UTU∗ : U ∈ U(D)}

= E(D ∩ coσ-weak{UTU∗ : U ∈ U(D)})

⊆ E(coσ-weak{UTU∗ : U ∈ U(D)})
= {E(T )}. �

The following result, together with Lemma 1.2.1, shows that any D-
bimodule in M which is closed in an appropriate topology contains an abun-
dance of groupoid normalizers. The technique used here has been employed
previously in several articles, for example, see [14, Proposition 4.4] or [7,
Proposition 3.10].

Proposition 1.3.4. Let S ⊆ M be a σ-weakly closed D-bimodule. If v ∈
N(M,D) and T ∈ S, then vE(v∗T ) ∈ S, and when T 6= 0, v ∈ N(M,D)
may be chosen so that vE(v∗T ) 6= 0. In particular, if S is nonzero, then
(S\{0}) ∩N(M,D) 6= ∅.

Proof. If v ∈ N(M,D) and T ∈ S, then Lemma 1.3.3 shows that

{vE(v∗T )} ⊆ v coσ-weak{Uv∗TU∗ : U ∈ U(D)}

⊆ coσ-weak{(vUv∗)TU∗ : U ∈ U(D)} ⊆ S

(because vUv∗ ∈ D).
If T ∈M satisfies E(v∗T ) = 0 for every v ∈ N(M,D), then T = 0. Indeed,

for every x ∈ spanN(M,D), E(x∗T ) = 0. By normality of E, we conclude
that E(T ∗T ) = 0. As E is faithful, T = 0.

If 0 6= T ∈ M and v ∈ N(M,D) satisfies E(v∗T ) 6= 0, then vE(v∗T ) 6= 0.
To see this, argue by contradiction. If vE(v∗T ) = 0, then (v∗v)nE(v∗T ) = 0

for every n ∈ N. Therefore, (v∗v)1/nE(v∗T ) = 0 for every n ∈ N. But

0 6= E(v∗T ) = lim
n→∞

E((v∗v)1/nv∗T ) = lim
n→∞

(v∗v)1/nE(v∗T ) = 0,

which is absurd. Thus vE(v∗T ) 6= 0, and the proof is complete. �

We now give a slight generalization of a result appearing in [12]. We use
it throughout the paper, often without explicit mention. We include the
proof because it seems novel.

Lemma 1.3.5 ([12, Lemma 2.1]). Let v ∈ N(M,D). Then for every x ∈M,

E(v∗xv) = v∗E(x)v.
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Proof. We prove this in several steps.
Step 1. First, assume that v is a unitary normalizer. Since v∗U(D)v =

U(D), Lemma 1.3.3 gives

{E(v∗xv)} = coσ-weak{U∗v∗xvU : U ∈ U(D)} ∩D

= coσ-weak{v∗(vU∗v∗)x(vUv∗)v : U ∈ U(D)} ∩D

= [v∗
(
coσ-weak{(vU∗v∗)x(vUv∗) : U ∈ U(D)}

)
v] ∩ v∗Dv

= v∗[
(
coσ-weak{(vU∗v∗)x(vUv∗) : U ∈ U(D)}

)
∩D]v

= {v∗E(x)v}.

Thus the lemma holds in this case.
Step 2. Next, assume v is a partial isometry. Then

V :=

(
v (I − vv∗)

(I − v∗v) v∗

)
is a unitary element of M2(M) = M⊗M2(C). Let

D2(D) :=

{(
d1 0
0 d2

)
: di ∈ D

}
.

Then (M2(M), D2(D)) is a Cartan pair, and the conditional expectation is
the map E2 given by

M2(M) 3
(
y11 y12

y21 y22

)
7→
(
E(y11) 0

0 E(y22)

)
.

A simple calculation using the fact that vv∗, v∗v ∈ D shows that V belongs

to N(M2(M), D2(D)). By Step 1, we have, for X =

(
x 0
0 0

)
, E2(V ∗XV ) =

V ∗E2(X)V . The equality of the upper-left corner entries of these matrices
yields E(v∗xv) = v∗E(x)v.

Step 3. Finally, assume that v is a general normalizer. Let v = u|v| be
the polar decomposition of v. Then u is a partial isometry normalizer, by
Lemma 1.2.1. Since |v| ∈ D, we have

E(v∗xv) = |v|E(u∗xu)|v| = |v|u∗E(x)u|v| = v∗E(x)v. �

1.4. A MASA. Here we show that when (M,D) is in the standard form
arising from a suitable weight, then the von Neumann algebra generated
by D and D′ is a MASA. As a corollary, we show that D norms M, in the
sense of Pop–Sinclair–Smith [18]. Note that these observations are implicit
in [20] when the von Neumann algebra M is assumed to be finite and have
separable predual.

Fix a faithful, normal, semifinite weight φ on M such that φ ◦E = φ. (If
ω is a faithful, normal, semifinite weight on D, then φ = ω ◦ E is such a
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weight on M, see [22, Proposition IX.4.3].) We freely use notation from [22]:
in particular,

nφ := {T ∈M : φ(T ∗T ) <∞},
and (πφ,Hφ, ηφ) is the semi-cyclic representation associated to φ. (See [22,
VII.1] for more details.) Since E(T )∗E(T ) ≤ E(T ∗T ) for every T ∈ M, we
have E(nφ) = nφ ∩D.

Lemma 1.4.1. Let Γ = {d ∈ nφ ∩ D : 0 ≤ d ≤ I} and view Γ as a net
indexed by itself. Then for x ∈ nφ, limd∈Γ ηφ(xd) = ηφ(x).

Proof. Let S be the spectral measure for E(x∗x), and let µ be the (fi-
nite) Borel measure on [0,∞) defined by µ(A) = φ(E(x∗x)S(A)). Then
limt→0 µ([0, t)) = µ({0}) = 0, so given ε > 0 we may find t > 0 so that
µ([0, t)) < ε2. Since tS([t,∞)) ≤ E(x∗x), we obtain p := S([t,∞)) ∈ Γ. For
d ∈ Γ with d ≥ p, we have

‖ηφ(x)− ηφ(xd)‖2 = φ(E(x∗x)(I − d)2) ≤ φ(E(x∗x)(I − p))
= µ([0, t)) < ε2. �

Corollary 1.4.2. Given ε > 0 and ζ ∈ Hφ, there exists d ∈ nφ ∩ D and
y ∈ spanN(M,D) such that

‖ζ − ηφ(yd)‖ < ε.

Proof. Since ηφ(nφ) is dense in Hφ, we may find x ∈ nφ such that

‖ζ − ηφ(x)‖ < ε/3.

By Lemma 1.4.1, there exists d ∈ nφ ∩D such that

0 ≤ d ≤ I and ‖ηφ(x)− ηφ(xd)‖ < ε/3.

Let M0 := spanN(M,D). Then M0 is a unital ∗-algebra which is σ-strongly
dense in M. Thus we may find y ∈ spanN(M,D) such that

‖ηφ(xd)− ηφ(yd)‖ =
√
〈πφ((x− y)∗(x− y))ηφ(d), ηφ(d)〉 < ε/3.

It follows that ‖ζ − ηφ(yd)‖ < ε. �

Since φ ◦E = φ, nφ and n∗φ are D-bimodules and furthermore, for D ∈ D,
x ∈ nφ and y ∈ n∗φ ,

max{φ((Dx)∗(Dx)), φ((xD)∗(xD))} ≤ ‖D‖2 φ(x∗x),(1.1)

max{φ((Dy∗)∗(Dy∗)), φ((y∗D)∗(y∗D))} ≤ ‖D‖2 φ(yy∗).(1.2)

In particular, for D ∈ D, the maps on ηφ(nφ) given by

π`(D)ηφ(x) = ηφ(Dx) and πr(D)ηφ(x) = ηφ(xD)

extend to bounded operators π`(D) and πr(D) on Hφ. This produces ∗-
representations π` and πr of D on Hφ. Clearly,

π` = πφ|D.
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The relationship between π` and πr is given by Lemma 1.4.3 below, whose
proof is joint work with Adam Fuller. The image of M under πφ acts on Hφ
in standard form, and we write J for the modular conjugation operator.

Lemma 1.4.3. For each D ∈ D,

Jπ`(D)J = πr(D
∗).

Proof. Throughout the proof, we will freely use notation from [22], some-
times without explicit mention.

Let Aφ be the full left Hilbert algebra ηφ(nφ∩n∗φ) (see [22, Thm. VII.2.6]).
For x ∈ nφ ∩ n∗φ and D ∈ D,

(1.3) π`(D)(ηφ(x)]) = ηφ(Dx∗) = ηφ(xD∗)] = (πr(D
∗)ηφ(x))].

The estimates (1.1) and (1.2) combined with [22, Lemma VI.1.4] yield that
D] is invariant under π`(D) and πr(D

∗). Thus, (1.3) implies that for ξ ∈ D],
π`(D)Sξ = Sπr(D

∗)ξ; similarly, Sπ`(D)ξ = πr(D
∗)Sξ. Hence

(1.4) π`(D)S = Sπr(D
∗) and Sπ`(D) = πr(D

∗)S.

Since D[ = {ζ ∈ Hφ : D] 3 ξ 7→ 〈ζ, Sξ〉 is bounded}, we see that D[ is also
invariant under π`(D

∗) and πr(D). Next, [22, Lemma VI.1.5(ii)] yields,

(1.5) Fπ`(D
∗) = πr(D)F and π`(D

∗)F = Fπr(D).

Therefore,

∆π`(D) = FSπ`(D) = Fπr(D
∗)S = π`(D)FS = π`(D)∆.

We thus obtain,

∆1/2π`(D) = π`(D)∆1/2.

By [22, Lemma VI.1.5(v)], for ξ ∈ D(∆1/2) = D],

πr(D
∗)ξ = Sπ`(D)Sξ = J∆1/2π`(D)∆−1/2Jξ = Jπ`(D)Jξ.

Since D] is dense in Hφ and {πr(D∗), Jπ`(D)J} ⊆ B(Hφ), the lemma follows.
�

Notation 1.4.4. Let

Z := (π`(D) ∪ πr(D))′′.

Our first task is to show that Z is a MASA in B(Hφ). While this is
established in [8, Theorem 1 and Proposition 2.9(1)], we provide an alternate
proof (also see [19]). Our proof has the advantage that it avoids some of
the measure-theoretic issues of the Feldman–Moore approach, and does not
require the separability of M∗.

Notation 1.4.5. Denote by P the projection on Hφ determined by extend-
ing the map ηφ(nφ) 3 ηφ(x) 7→ ηφ(E(x)) by continuity. A calculation shows
that for any D ∈ D,

(1.6) π`(D)P = πr(D)P = Pπr(D) = Pπ`(D).
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Lemma 1.4.6. For v ∈ GN(M,D), set

Pv = Λ
U∈U(D)

π`(vUv
∗)πr(U

∗) ∈ B(Hφ).

Then Pv ∈ Z and the following statements hold.

(a) Pv = πφ(v)Pπφ(v)∗.

(b) Pv is the orthogonal projection onto {ηφ(vd) : d ∈ nφ ∩D}, and for
x ∈ nφ,

(1.7) Pvηφ(x) = ηφ(vE(v∗x)).

(c) If ξ ∈ range(Pv), then there exists h ∈ GN(M,D) such that Ph is the
projection onto Zξ and Ph ≤ Pv.

(d) If v, w ∈ GN(M,D), then Pv ⊥ Pw if and only if E(v∗w) = 0.

Proof. Since v ∈ N(M,D), we have vUv∗ ∈ D for every U ∈ U(D). Hence
the function f(U) = π`(vUv

∗)πr(U
∗) maps U(D) into Z, so Lemma 1.3.1

shows that Pv ∈ Z.
Let d ∈ nφ ∩D satisfy 0 ≤ d ≤ I. For x, y ∈ nφ,

〈Pvηφ(x), ηφ(yd)〉 = Λ
U∈U(D)

〈π`(vUv∗)πr(U∗)ηφ(x), ηφ(yd)〉

= Λ
U∈U(D)

〈ηφ(vUv∗xU∗), πr(d)ηφ(y)〉

= Λ
U∈U(D)

〈πr(d)ηφ(vUv∗xU∗), ηφ(y)〉

= Λ
U∈U(D)

〈ηφ(vUv∗xU∗d), ηφ(y)〉

= Λ
U∈U(D)

〈πφ(vUv∗xU∗)ηφ(d), ηφ(y)〉

= 〈πφ(vE(v∗x))ηφ(d), ηφ(y)〉

= 〈ηφ(vE(v∗x)d), ηφ(y)〉

= 〈πr(d)ηφ(vE(v∗x)), ηφ(y)〉

= 〈ηφ(vE(v∗x)), πr(d)ηφ(y)〉

= 〈ηφ(vE(v∗x)), ηφ(yd)〉.

The equality (1.7) of part (b) now follows from Lemma 1.4.1. The remainder
of part (b) follows from Equation (1.7), which in turn implies (a).
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Turning now to the proof of (c), suppose that ξ ∈ range(Pv). Then
ξ = πφ(v)ζ for some ζ ∈ range(P ). For d1 ∈ D and d2 ∈ nφ ∩ D, we have
that

π`(d1)πφ(v)ηφ(d2) = ηφ(d1vd2) = ηφ(vd2v
∗d1v) = πr(v

∗d1v)πφ(v)ηφ(d2).

Since η(nφ ∩D) is dense in range(P ), it follows that

π`(d1)ξ = π`(d1)πφ(v)ζ = πr(v
∗d1v)πφ(v)ζ = πr(v

∗d1v)ξ,

so π`(D)ξ ⊆ πr(D)ξ. Likewise πr(d1)ξ = π`(vd1v
∗)ξ, so πr(D)ξ ⊆ π`(D)ξ.

The fact that Z is generated by π`(D) and πr(D) yields

π`(D)ξ = πr(D)ξ = Zξ.

We claim πr(D)|range(Pv) is a MASA in B(range(Pv)). First, π`(D)|range(P )

is a MASA in B(range(P )), since π`(·)|range(P ) is unitarily equivalent to πω,
the semi-cyclic representation of D corresponding to ω := φ|D. (The imple-
menting unitary U : range(P )→ Hω maps ηφ(d) to ηω(d) for all d ∈ nφ∩D.)
It follows that π`(D)|π`(v∗v) range(P ) is a MASA in B(π`(v

∗v) range(P )). Now
πr(·)|range(Pv) is unitarily equivalent to π`(·)|π`(v∗v) range(P ). (The implement-
ing unitary V : range(Pv)→ π`(v

∗v) range(P ) maps ηφ(vd) to π`(v
∗v)ηφ(d)

for all d ∈ nφ ∩D.) This establishes the claim.

Now let Q ∈ B(range(Pv)) be the orthogonal projection onto πr(D)ξ.
Then Q ∈ (πr(D)|range(Pv))

′ = πr(D)|range(Pv), and so there exists a pro-
jection q ∈ D such that Q = πr(q)|range(Pv). Define h = vq. Then h ∈
GN(M,D), and we have

range(Ph) = πφ(h) range(P ) = πφ(vq) range(P ) = πφ(v)π`(q) range(P )

= πφ(v)πr(q) range(P ) = πr(q)πφ(v) range(P ) = πr(q) range(Pv)

= range(Q) = πr(D)ξ = Zξ.

The fact that Ph ≤ Pv follows from the facts that both are projections and
range(Ph) ⊆ range(Pv).

Finally we prove (d). For v, w ∈ GN(M,D) and d1, d2 ∈ nφ ∩D, we have
that

〈ηφ(vd1), ηφ(wd2)〉 = φ(d∗2w
∗vd1) = φ(E(d∗2w

∗vd1)) = φ(d∗2E(w∗v)d1)

= ω(d∗2E(w∗v)d1) = 〈πω(E(w∗v))ηω(d1), ηω(d2)〉,

and so Pv ⊥ Pw if and only if E(w∗v) = 0. �

Theorem 1.4.7. The algebra Z is a MASA in B(Hφ).

Proof. Let 0 6= Q ∈ Z′ be a projection. We first show there exists 0 6= h ∈
GN(M,D) so that Ph ≤ Q.

Let ζ be a unit vector in the range of Q. Corollary 1.4.2 implies that
there exists w ∈ N(M,D) and d ∈ nφ ∩D so that 〈ζ, ηφ(wd)〉 6= 0. Writing
the polar decomposition, w = v|w|, we have ηφ(wd) = πφ(v)ηφ(|w|d) ∈
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range(Pv). Hence Pvζ 6= 0. By Lemma 1.4.6, ZPvζ is the range of Ph for
some h ∈ GN(M,D), and as range(Q) is invariant for Z, we have Ph ≤ Q.

As Ph ∈ Z ⊆ Z′, Q − Ph ∈ Z′. A Zorn’s Lemma argument now yields
a maximal family A ⊆ GN(M,D) such that (a) {Pv : v ∈ A} is a pairwise
orthogonal family of projections; and (b) Pv ≤ Q for each v ∈ A. The
maximality of A ensures that

∨
v∈A Pv = Q. As each Pv ∈ Z, we conclude

that Q ∈ Z as well. Therefore Z is a MASA. �

The following extends part of [8, Proposition 2.8] to our context.

Corollary 1.4.8. Let ∆ be the modular operator and {σφt }t∈R be the modular

automorphism group . Then for each t ∈ R, ∆it ∈ U(Z). Moreover, σφt |D =

id|D and for v ∈ GN(M,D), h := v∗σφt (v) is a partial isometry in D and

σφt (v) = vh.

Proof. The proof of Lemma 1.4.3 shows that ∆ commutes with each el-
ement of π`(D), hence for each t ∈ R, ∆it ∈ π`(D)′. Since J∆J = ∆−1

([22, LemmaVI.1.5(v)]), Lemma 1.4.3 implies that ∆it ∈ πr(D)′. Hence
∆it ∈ Z′ = Z.

ForD ∈ D, πφ(σφt (D)) = ∆itπ`(D)∆−it = πφ(D), so σφt fixes each element

of D. Let v ∈ GN(M,D) and fix t ∈ R. Set w = σφt (v). We show that
v∗w ∈ D and that w = v(v∗w) ∈ vD. To see this, observe that for d ∈ D we
have,

wdw∗ = σφt (vdv∗) = vdv∗.

Therefore for d ∈ D,

v∗wd = v∗(wdw∗)w = v∗(vdv∗)w = dv∗w.

Since D is a MASA in M, v∗w ∈ D. Finally, w = (ww∗)w = v(v∗w), as
desired. �

We now turn to showing that D norms M. We need some general prepa-
ration. Recall that if C ⊆ B(H) is a C∗-algebra of operators, then C is locally
cyclic if, for any ε > 0, n ∈ N, and vectors ξ1, . . . , ξn ∈ H, there is a vector
ζ ∈ H and elements T1, . . . , Tn ∈ C such that for 1 ≤ i ≤ n, ‖Tiζ − ξi‖ < ε.

In our context, πφ(M) is locally cyclic. Indeed, we may find xi ∈ nφ with
‖ηφ(xi)− ξi‖ < ε/2. Lemma 1.4.1 yields d ∈ D ∩ nφ with

‖ηφ(xi)− ηφ(xid)‖ < ε/2

for 1 ≤ i ≤ n; then ‖πφ(xi)ηφ(d)− ξi‖ < ε.1 Also, when C ⊆ B(H) is a
MASA, C is locally cyclic. This can be proved directly, or one can argue
as follows. Decompose H into an orthogonal sum of cyclic subspaces, H =⊕

i∈I Cui where {ui}i∈I ⊆ H is a family of unit vectors. As in the proof of
[22, Theorem VII.2.7], define a faithful normal semi-finite weight φ on the
positive cone of C by φ(T ) = sup{

∑
i∈F 〈Tui, ui〉 : F ⊆ I is finite}. Then

1A similar argument can be used to show that whenever a von Neumann algebra is in
standard form, it is locally cyclic; we do not need that fact here.
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the identity representation of C is unitarily equivalent to the semi-cyclic
representation (πφ,Hφ, ηφ) and hence C is locally cyclic because (C,C) is a
Cartan pair.

The following is the analog of [16, Lemma 2.15] for Cartan pairs.

Corollary 1.4.9. If (M,D) is a Cartan pair, then D norms M in the sense
of Pop–Sinclair–Smith [18].

Proof. The proof is an adaptation of the proof of [20, Proposition 4.1], with
the algebras M, A and B of [20, Proposition 4.1] taken to be πφ(M), π`(D)
and πr(D) respectively.

Since Z is a MASA in B(Hφ), it norms B(Hφ) by [18, Theorem 2.7]. Then
C∗(A,B) norms B(Hφ) ([18, Lemma 2.3(c)]).

Let X ∈ Mn(πφ(M)) satisfy ‖X‖ = 1 and let ε > 0. Then there exist
C1, C2 ∈Mn,1(C∗(A,B)) such that

(1.8) max{‖C1‖ , ‖C2‖} < 1 and ‖C∗2XC1‖ > 1− ε.
The proof now continues exactly as in the proof of [20, Proposition 4.1]:
replace the inequality (4.2) of [20] with (1.8) and continue the Sinclair-Smith
argument from there to show that π`(D) = πφ(D) norms πφ(M). �

2. A spectral theorem for bimodules

In this section, we provide a description of the support of a D-bimodule in
terms of a projection in Z, then use this to characterize D-bimodules closed
in an appropriate topology.

2.1. The support of a bimodule.

Definition 2.1.1. For any set A ⊆M, let 〈A〉 be the D-bimodule generated
by A.

(a) Given a D-bimodule (not necessarily closed) S ⊆M, let

supp(S) ∈ B(Hφ)

be the orthogonal projection onto πφ(S)ηφ(nφ ∩D), a Z-invariant
subspace. Because of this Z-invariance, supp(S) is a projection in Z.

(b) For T ∈M, we define the support of T , supp(T ), to be the projection
supp(〈T 〉) ∈ Z.

(c) Given a projection Q ∈ Z, the set

bimod(Q) := {T ∈M : supp(T ) ≤ Q}
is a D-bimodule.

Remark 2.1.2. The purpose of this remark is to outline the relationship
between the notion of support of a bimodule given above with the notion
of support of a bimodule found in [15]. For this, assume that M∗ is sep-
arable, that φ is a faithful normal state on M and use the notation found
in [8]. By [8, Theorem 1], there exists a countable, standard equivalence
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relation R on a finite measure space (X,B, µ), a cocycle σ ∈ H2(R,T), and
an isomorphism of M onto M(R, σ) which carries D onto the diagonal sub-
algebra A(R, σ) of M(R, σ). We may therefore assume that M = M(R, σ)
and that D = A(R, σ). With this identification, M acts on the separable
Hilbert space L2(R, ν), where ν is the right counting measure associated
with µ. By [8, Proposition 2.9], JDJ is an abelian subalgebra of M′ and
Z = (JDJ ∨ D)′′ is a MASA in B(L2(R, ν)), with cyclic vector χ∆ (here
∆ = {(x, x) : x ∈ X} ⊆ R). Each element a ∈ M(R, σ) determines a
measurable function aχ∆ on R, and the support of such a function is a mea-
surable subset of R determined uniquely up to null sets. Projections in Z are
in one-to-one correspondence with ν-measurable subsets of R modulo null
sets, so we may as well regard the support of an element of M(R, σ) as a
projection in Z. The support of the D-bimodule S is the join of the support
projections of the elements of S. Thus, Definition 2.1.1 is a reformulation
of the definition of the support of a D-bimodule from [15], but with the
measure-theoretic considerations suppressed.

The following observations will be used in the sequel.

Lemma 2.1.3. Let h ∈ GN(M,D). Then supp(h) = Ph.

Proof. Clearly

range(Ph) = πφ(h)(nφ ∩D) ⊆ πφ(〈h〉)(nφ ∩D)),

and so Ph ≤ supp(h). Conversely, since 〈h〉 = {hd : d ∈ D},

πφ(〈h〉)(nφ ∩D)) ⊆ πφ(h)(nφ ∩D) = range(Ph),

and so supp(h) ≤ Ph. �

Lemma 2.1.4. Let Q ∈ Z be a projection. For T ∈ M, the following are
equivalent:

(a) T ∈ bimod(Q).
(b) πφ(T )ηφ(nφ ∩D) ⊆ range(Q).

(c) Q⊥πφ(T )P = 0.

In particular, if h ∈ GN(M,D), then h ∈ bimod(Q) if and only if Ph ≤ Q.

Proof. As the equivalence of (b) and (c) is clear, we show only the equiv-
alence of (a) and (b). Suppose T ∈ bimod(Q). Then πφ(〈T 〉)ηφ(nφ ∩D) ⊆
range(Q), and (b) holds as T ∈ 〈T 〉.

Conversely, if (b) holds, then for any h, k ∈ D and d ∈ nφ ∩D, we have

πφ(hTk)ηφ(d) = π`(h)πr(k)πφ(T )ηφ(d) ∈ range(Q)

because range(Q) is Z-invariant. So πφ(〈T 〉)ηφ(nφ ∩D) ⊆ range(Q); hence
T ∈ bimod(Q). �

The Spectral Theorem for Bimodules from [15] may be reformulated as
the following conjecture.
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Conjecture 2.1.5 (Spectral Theorem for Bimodules). If S is a σ-weakly
closed D-bimodule in M, then S = bimod(supp(S)), that is,

(2.1) S =
{
T ∈M : πφ(T )ηφ(nφ ∩D) ⊆ πφ(S)ηφ(nφ ∩D)

}
.

Remarks 2.1.6. For these remarks, assume φ is a faithful normal state, so
that ηφ(I) is a cyclic and separating vector for πφ(M).

(a) Observe that replacing ηφ(nφ∩D) with ηφ(I) in Definition 2.1.1 leaves
the definition of supp(S) unchanged; this replacement may also be
made in (2.1). Thus, the Spectral Theorem for Bimodules is the
same as the equality

S =
{
T ∈M : πφ(T )ηφ(I) ∈ πφ(S)ηφ(I)

}
.

(b) What is known (see [11, Theorem 2.3]) is that when S is a σ-weakly
closed subspace of M, then because πφ(M) has a separating vector,
πφ(S) is reflexive, that is,

πφ(S) =
{
T ∈ B(Hφ) : Tξ ∈ πφ(S)ξ for every ξ ∈ Hφ

}
.

The faithfulness of πφ then yields

S =
{
T ∈M : πφ(T )ξ ∈ πφ(S)ξ for every ξ ∈ Hφ

}
.

Clearly,

S =
{
T ∈M : πφ(T )ξ ∈ πφ(S)ξ for all ξ ∈ Hφ

}
⊆
{
T ∈M : πφ(T )ηφ(I) ∈ πφ(S)ηφ(I)

}
.

Thus, Conjecture 2.1.5 holds if and only if the inclusion is an equality.
(This is roughly the approach attempted in [15].)

(c) Since ηφ(I) is a cyclic and separating vector for πφ(M), it is also cyclic

and separating for πφ(M)′. If T ∈ M and πφ(T )ηφ(I) ∈ πφ(S)ηφ(I),
then for each Y ∈ πφ(M)′, we have

πφ(T )Y ηφ(I) = Y πφ(T )ηφ(I) ∈ Y πφ(S)ηφ(I) ⊆ πφ(S)Y ηφ(I).

Hence{
T ∈M : πφ(T )ηφ(I) ∈ πφ(S)ηφ(I)

}
=
{
T ∈M : πφ(T )ξ ∈ πφ(S)ξ for all ξ ∈ πφ(M)′ηφ(I)

}
.

Thus we see that Conjecture 2.1.5 holds if and only if the inclusion{
T ∈M : πφ(T )ξ ∈ πφ(S)ξ for all ξ ∈ Hφ

}
⊆
{
T ∈M : πφ(T )ξ ∈ πφ(S)ξ for all ξ ∈ πφ(M)′ηφ(I)

}
is actually an equality.
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2.2. Topologies. In this subsection we discuss the Bures and L2 topologies
on M. We begin with a fact well-known to experts in noncommutative
integration.

Lemma 2.2.1. Let M be a von Neumann algebra, let φ be a faithful, semi-
finite, normal weight on M, and let (πφ,Hφ, ηφ) be the semi-cyclic represen-
tation of M arising from φ. If f ∈ M∗, then there are vectors ξ1, ξ2 ∈ Hφ
such that for every x ∈M, f(x) = 〈πφ(x)ξ1, ξ2〉.

Proof. By the polar decomposition for normal functionals on a von Neu-
mann algebra ([21, Theorem III.4.2(i)]), there exists a partial isometry
v ∈M and ρ ∈ (M∗)

+ such that for each x ∈M,

(2.2) f(x) = ρ(xv).

Since πφ puts M into standard form, [22, Theorem IX.1.2] shows there exists
ξ2 ∈ Hφ such that for every x ∈ M, ρ(x) = 〈πφ(x)ξ2, ξ2〉. Taking ξ1 :=
πφ(v)ξ2, the lemma follows from (2.2). �

As noted earlier, the semi-cyclic representation of D induced by φ|D is
unitarily equivalent to (π`, range(P ), ηφ|nφ∩D). Thus, given f ∈ D∗ there
are ξ1, ξ2 ∈ range(P ) so that for every D ∈ D,

f(D) = 〈π`(D)ξ1, ξ2〉 .

Lemma 2.2.2. The two families of semi-norms on M,{
M 3 T 7→

√
τ(E(T ∗T )) : τ ∈ (D∗)

+
}

and{
M 3 T 7→ ‖πφ(T )ξ‖ : ξ ∈ range(P )

}
,

coincide.

Proof. Given τ ∈ (D∗)
+, there exists ξ ∈ range(P ) so that

τ(d) = 〈π`(d)ξ, ξ〉 .

Choose hn ∈ nφ ∩D so that ηφ(hn)→ ξ. Then

τ(E(T ∗T )) = 〈π`(E(T ∗T ))ξ, ξ〉 = lim
n→∞

〈π`(E(T ∗T ))ηφ(hn), ηφ(hn)〉

= lim
n→∞

‖πφ(T )ηφ(hn)‖2 = ‖πφ(T )ξ‖2 .

It follows that{
M 3 T 7→

√
τ(E(T ∗T )) : τ ∈ (D∗)

+
}

⊆
{
M 3 T 7→ ‖πφ(T )ξ‖ : ξ ∈ range(P )

}
.

The reverse inclusion is left to the reader. �

We require two topologies on M, both discussed in [12], but the second is
extended slightly here.
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Definition 2.2.3.

(a) The Bures topology (see [4, page 48]) on M is the locally convex
topology generated by the family of seminorms

TB :=
{
M 3 T 7→

√
τ(E(T ∗T )) : τ ∈ (D∗)

+
}

=
{
M 3 T 7→ ‖πφ(T )ξ‖ : ξ ∈ range(P )

}
.

We denote the Bures topology by τB.
(b) The L2 topology on M is the topology on M induced by the family

of seminorms{
M 3 T 7→ ‖πφ(T )ηφ(d)‖ : d ∈ nφ ∩D

}
.

We will use (M, L2) to denote M equipped with the L2 topology.

Remark 2.2.4. When φ is a faithful normal state on M, the L2 topology
is determined by the single seminorm M 3 T 7→ ‖πφ(T )ηφ(I)‖ = ‖ηφ(T )‖,
and in this case, the L2 topology was considered by Mercer in [12]. When
D is isomorphic to L∞(X,µ), nφ ∩ D may be thought of as L2 ∩ L∞, so
it is tempting to use the term “bounded Bures topology” instead of the
L2-topology, but we have chosen to stay with the nomenclature used by
Mercer.

Clearly the L2-topology is coarser than the Bures topology, which in turn
is coarser than the norm topology, so the dual spaces of M equipped with
these topologies satisfy

(M, L2)# ⊆ (M, τB)# ⊆ (M,norm)#.

Corollary 2.2.5. For ξ ∈ range(P ) and ζ ∈ Hφ, the functional T 7→
〈πφ(T )ξ, ζ〉 belongs to (M, τB)#.

Proof. By the Cauchy–Schwarz inequality, | 〈πφ(T )ξ, ζ〉 | ≤ ‖πφ(T )ξ‖ ‖ζ‖.
By Lemma 2.2.2, the first term in the product is one of the seminorms
defining the Bures topology. The corollary follows. �

We now show that every Bures-continuous linear functional is of this form.

Lemma 2.2.6. Let f be a linear functional on M.

(a) If f is τB continuous, then there exist ξ ∈ range(P ) and ζ ∈ Hφ such
that

f(T ) = 〈πφ(T )ξ, ζ〉 .
In particular, f is σ-weakly continuous on M.

(b) If f ∈ (M, L2)#, then there exists d ∈ nφ ∩D and ζ ∈ Hφ such that

f(T ) = 〈πφ(T )ηφ(d), ζ〉 .

Moreover, (M, τB)# and (M, L2)# are norm-dense in M∗.
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Proof. For the first statement, we give a standard argument (see the proof
of [21, Lemma II.2.4]). Since f is τB continuous, there exist p1, . . . , pn ∈ TB
such that for every T ∈M, we have

|f(T )| ≤
n∑
k=1

pk(T )

(see [5, Theorem IV.3.1]). Write pk(T ) =
√
ωk(E(T ∗T )), where the ωk

are positive normal functionals on D. Set ω = n
∑n

k=1 ωk and let p(T ) =√
ω(E(T ∗T )). By the Cauchy–Schwarz inequality,

(2.3) |f(T )| ≤ p(T ).

By Lemma 2.2.2, there is a vector ξ ∈ range(P ) such that for T ∈M,

p(T ) = ‖πφ(T )ξ‖ .

By (2.3), the map

πφ(T )ξ 7→ f(T )

is bounded on the subspace {πφ(T )ξ : T ∈M} ⊆ Hφ. The Riesz Representa-

tion Theorem implies that there exists a vector ζ ∈ {πφ(T )ξ : T ∈M} ⊆ Hφ
such that

f(T ) = 〈πφ(T )ξ, ζ〉 .

Hence f is σ-weakly continuous on M.
The proof of statement (b) is similar and left to the reader.
Suppose T ∈ M and f(T ) = 0 for every f ∈ (M, L2)#. For every d ∈

nφ ∩D, the map M 3 S 7→ 〈πφ(S)ηφ(d), πφ(T )ηφ(d)〉 belongs to (M, L2)#,
so 〈πφ(T )ηφ(d), πφ(T )ηφ(d)〉 = 0. Hence 〈π`(E(T ∗T ))ηφ(d), ηφ(d)〉 = 0 for
each d ∈ nφ∩D. This implies that E(T ∗T ) = 0, and hence T = 0. It follows

that (M, L2)# is weakly dense in M∗. As (M, L2)# is a subspace, its weak
and norm closures coincide, so

M∗ = (M, L2)#
σ(M∗,M)

= (M, L2)#
‖‖
.

Thus, (M, L2)# is norm dense in M∗. Since every L2 continuous linear
functional is Bures continuous, the Bures continuous linear functionals are
norm dense in M∗ also. �

Corollary 2.2.7. Let C be a convex set in M. Then

C
σ-weak ⊆ CBures ⊆ CL

2

,

with equality throughout if C is also a bounded set.



BIMODULES OVER CARTAN MASAS 473

2.3. σ-weakly closed bimodules.

Lemma 2.3.1. Let S ⊆ M be a σ-weakly closed D-bimodule. Then the
following statements hold.

(a) If u ∈ N(M,D), there exists a projection Q ∈ D such that uQ ∈ S

and uQ⊥ satisfies E((uQ⊥)∗S) = 0 for every S ∈ S.
(b) If X ∈ bimod(supp(S)), then for every u ∈ N(M,D), uE(u∗X) ∈ S.
(c) Let SB be the Bures closure of S. Then supp(S) = supp(SB).

Proof. Let u ∈ N(M,D), and set J := {d ∈ D : ud ∈ S}. Since S is
a bimodule, J is an ideal in D, and the fact that S is σ-weakly closed
ensures that J is also σ-weakly closed. Therefore, there exists a unique
projection Q ∈ D such that J = DQ. Obviously, Q ∈ J and uQ⊥ ∈
N(M,D). Proposition 1.3.4 shows that if S ∈ S, then uQ⊥E((uQ⊥)∗S) ∈ S.
Thus uQ⊥E((uQ⊥)∗S) = uQ⊥E(u∗S) ∈ S, and hence Q⊥E(u∗S) ∈ J . It
follows that 0 = Q⊥E(u∗S) = E((uQ⊥)∗S), as desired.

Turning to (b), suppose first u ∈ GN(M,D) and X ∈ bimod(supp(S)).

Then πφ(X)ηφ(nφ∩D) ⊆ πφ(S)ηφ(nφ ∩D). Let Q be the projection obtained
as in part (a). For any S ∈ S and d ∈ nφ ∩ D, using Lemma 1.4.6(b), we
have

PuQ⊥(πφ(S)ηφ(d)) = πφ(uQ⊥E((uQ⊥)∗S))ηφ(d) = 0.

Hence, for any S ∈ S and h ∈ nφ ∩D,∥∥PuQ⊥(πφ(X)ηφ(h))
∥∥ =

∥∥PuQ⊥(πφ(X)ηφ(h))− PuQ⊥(πφ(S)ηφ(d))
∥∥

≤ ‖πφ(X)ηφ(h)− πφ(S)ηφ(d)‖ .
Holding h fixed and taking the infimum over S ∈ S and d ∈ nφ ∩ D, the
hypothesis on X gives

0 = PuQ⊥(πφ(X)ηφ(h)) = πφ(uQ⊥E((uQ⊥)∗X))ηφ(h)

= πφ(uE(u∗X)Q⊥)ηφ(h).

Setting y := uE(u∗X)Q⊥, this shows that for every h ∈ nφ ∩D we have

0 = φ(E(h∗y∗yh)) = φ(h∗hE(y∗y)).

Thus, for every τ ∈ D+
∗ , τ(E(y∗y)) = 0. This shows that E(y∗y) = 0, and

by faithfulness of E, y = 0; thus, uE(u∗X)Q⊥ = 0. Hence

uE(u∗X) = uE(u∗X)Q ∈ S.

Now let u ∈ N(M,D), with u 6= 0 (the case when u = 0 is trivial). If
u = w|u| is the polar decomposition of u, Lemma 1.2.1 gives w ∈ GN(M,D).
Then |u|2 = u∗u ∈ D and wE(w∗X) ∈ S. Since

uE(u∗X) = wE(w∗X)u∗u ∈ S,

the proof of (b) is complete.

To establish (c), we must show that πφ(S)ηφ(nφ ∩D) = πφ(SB)ηφ(nφ ∩D).

Since S ⊆ SB, we obtain πφ(S)ηφ(nφ ∩D) ⊆ πφ(SB)ηφ(nφ ∩D). If T ∈ SB,
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we may find a net (Tλ) in S converging in the Bures topology to T . Then

Tλ
L2

−→ T , and hence given d ∈ nφ ∩D, πφ(Tλ)ηφ(d) → πφ(T )ηφ(d). There-

fore, πφ(T )ηφ(d) ∈ πφ(S)ηφ(d). Thus, πφ(SB)ηφ(nφ ∩D) ⊆ πφ(S)ηφ(nφ ∩D)
and part (c) follows. �

Corollary 2.3.2. Let S ⊆ M be a σ-weakly closed D-bimodule and h ∈
GN(M,D). Then h ∈ S if and only Ph ≤ supp(S). Thus

supp(S) =
∨

h∈S∩GN(M,D)

Ph.

Proof. Suppose h ∈ S. Then h ∈ bimod(supp(S)), and so Ph ≤ supp(S),
by Lemma 2.1.4. Conversely, suppose Ph ≤ supp(S). Then, again by Lem-
ma 2.1.4, h ∈ bimod(supp(S)). By Lemma 2.3.1(b), h = hE(h∗h) ∈ S.

By the proof of Theorem 1.4.7, supp(S) =
∨
h∈A Ph, for some A ⊆

GN(M,D). For h ∈ A, Ph ≤ supp(S), and so h ∈ S. Thus

supp(S) =
∨
h∈A

Ph ≤
∨

h∈S∩GN(M,D)

Ph ≤ supp(S). �

2.4. D-orthogonality.

Definition 2.4.1. A nonempty set E ⊆ GN(M,D)\{0} is called D-orthogon-
al if for every v1, v2 ∈ E with v1 6= v2, E(v∗1v2) = 0 (equivalently, Pv1 ⊥ Pv2 ,
by Lemma 1.4.6(d)).

A simple Zorn’s Lemma argument shows the existence of a maximal D-
orthogonal set.

Remark 2.4.2. Notice that for v1, v2 ∈ GN(M,D), v1 and v2 are D-
orthogonal if and only if v∗1 and v∗2 are D-orthogonal. Indeed, E(v∗1v2) = 0
implies 0 = v1E(v∗1v2)v∗1 = E(v1v

∗
1v2v

∗
1) = E(v2v

∗
1); the converse is similar.

Lemma 2.4.3. Let E ⊆ GN(M,D)\{0} be a maximal D-orthogonal set.
Then

∑
u∈E Pu = I, where the sum converges strongly in B(Hφ).

Proof. Let Q =
∑

u∈E Pu ∈ Z. If I − Q 6= 0, then by the proof of The-
orem 1.4.7, there exists 0 6= h ∈ GN(M,D) such that Ph ≤ I − Q. Then
Ph ⊥ Pu for all u ∈ E, contradicting maximality of E. �

The following is an adaptation of a result of Mercer to our context.

Proposition 2.4.4 (cf. [12, Theorem 4.4]). Let E ⊆ GN(M,D)\{0} be
a maximal D-orthogonal set and let Γ be the set of all finite subsets of E

directed by inclusion. Fix X ∈M. For F ∈ Γ, let

XF =
∑
u∈F

uE(u∗X).

Then (XF )F∈Γ is a net which converges in the Bures topology to X.
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Proof. Let d ∈ nφ ∩D. Lemma 1.4.6(b) gives,

πφ(XF )ηφ(d) =
∑
u∈F

ηφ(uE(u∗Xd)) =
∑
u∈F

Puηφ(Xd) =
∑
u∈F

Puπφ(X)ηφ(d),

and hence for every ξ ∈ ηφ(nφ ∩D),

πφ(XF )ξ =
∑
u∈F

Puπφ(X)ξ.

Since I =
∑

u∈E Pu (where the sum converges strongly in B(Hφ)), for every

ξ ∈ ηφ(nφ ∩D),

πφ(XF )ξ → πφ(X)ξ.

Therefore, XF
Bures→ X. �

2.5. A characterization of Bures closed bimodules. The following is
a version of the Spectral Theorem for Bimodules, which characterizes Bures
(or L2) closed bimodules.

Theorem 2.5.1. Let S ⊆ M be a D-bimodule. Then the following state-
ments are equivalent:

(a) S = bimod(supp(S)).
(b) S is L2-closed.
(c) S is Bures-closed.
(d) S is the smallest Bures-closed D-bimodule containing S∩ GN(M,D).

Proof. Suppose (a) holds. Let (Tλ) in S be such that Tλ
L2

−→ T ∈M. Then
given d ∈ nφ ∩ D, πφ(Tλ)ηφ(d) → πφ(T )ηφ(d). Therefore, πφ(T )ηφ(d) ∈
πφ(S)ηφ(d). Then Lemma 2.1.4 gives T ∈ bimod(supp(S)) = S. Thus S is
L2-closed.

As the Bures topology is stronger than the L2-topology, we see that (b)
⇒ (c).

We now establish (c) ⇒ (a). Suppose X ∈ bimod(supp(S)). Let E be a
maximal D-orthogonal subset of GN(M,D)\{0}. By Lemma 2.3.1(b) and

Proposition 2.4.4, XF ∈ S and XF
Bures→ X; hence X ∈ S

Bures
= S. Thus,

bimod(supp(S)) ⊆ S. As the reverse inclusion is obvious, (a) holds.
Let S1 = 〈S ∩ GN(M,D)〉B, the smallest Bures-closed D-bimodule con-

taining S ∩ GN(M,D). If S = S1, then S is Bures closed, thus (d) ⇒ (c).
Conversely, suppose S is Bures-closed. Then S1 ⊆ S, clearly. On the other
hand, S ∩ GN(M,D) ⊆ S1 ∩ GN(M,D), which implies supp(S) ⊆ supp(S1),
by Corollary 2.3.2, and so S = bimod(supp(S)) ⊆ bimod(supp(S1)) = S1,
using the equivalence of (a) and (c). �

Corollary 2.5.2. Let S ⊆ M be a σ-weakly closed D-bimodule. Then

S
Bures

= bimod(supp(S)).
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Proof. By Theorem 2.5.1 and Lemma 2.3.1(c),

S
Bures

= bimod(supp(S
Bures

)) = bimod(supp(S)). �

Let L be a commutative subspace lattice acting on the Hilbert space H.
Consider the family R of all σ-weakly closed subalgebras A of B(H) such
that A ∩ A∗ = L′ and Lat (A) = L. Arveson [2, Theorem 2.1.8] showed
that relative to set inclusion, the family R has a minimal element, Amin(L),
and Alg (L) is the maximal element of R. The following proposition has the
same flavor.

Proposition 2.5.3. Let Q ∈ Z and let B be the set of all σ-weakly closed

D-bimodules S ⊆M with supp(S) = Q. Then 〈bimod(Q) ∩ GN(M,D)〉σ-weak

is the minimal element of B and bimod(Q) is the maximal element of B.

Proof. First we show that supp(bimod(Q)) = Q. Indeed, for h ∈ GN(M,D),

h ∈ bimod(Q) ⇐⇒ Ph ≤ Q,
by Lemma 2.1.4. Therefore,

supp(bimod(Q)) =
∨
{Ph : h ∈ bimod(Q) ∩ GN(M,D)}

=
∨
{Ph : h ∈ GN(M,D), Ph ≤ Q} = Q.

Thus bimod(Q) ∈ B.

Now let S0 = 〈bimod(Q) ∩ GN(M,D)〉σ-weak
, a σ-weakly closed D-bimod-

ule in M. Then

bimod(Q) ∩ GN(M,D) ⊆ S0 ∩ GN(M,D) ⊆ bimod(Q) ∩ GN(M,D).

Corollary 2.3.2 gives supp(S0) = supp(bimod(Q)) = Q, which implies S0 ∈
B.

Finally, if S ∈ B, then for h ∈ GN(M,D),

h ∈ S ⇐⇒ Ph ≤ supp(S) = Q ⇐⇒ h ∈ bimod(Q),

by Corollary 2.3.2 and Lemma 2.1.4. Therefore,

S0 = 〈bimod(Q) ∩ GN(M,D)〉σ-weak
= 〈S ∩ GN(M,D)〉σ-weak

⊆ S ⊆ bimod(supp(S)) = bimod(Q). �

Remark 2.5.4. By Lemma 1.2.1,

〈bimod(Q) ∩ GN(M,D)〉 = span(bimod(Q) ∩N(M,D)),

and so spanσ-weak(bimod(Q)∩N(M,D)) is another expression for the mini-
mal element of B.

Remark 2.5.5. Using the failure of spectral synthesis for an appropriate
locally compact abelian group, in [2], Arveson constructed a commutative
subspace lattice L for which Amin(L) ( Alg (L). This, together with Propo-
sition 2.5.3, suggests that Conjecture 2.1.5 may not hold in general.
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While our context differs from that of [2], the parallels are sufficiently
strong that we make the following definition.

Definition 2.5.6. Let S ⊆ M be a σ-weakly closed D-bimodule. We say
S is synthetic, or satisfies spectral synthesis, if the minimal and maximal
σ-weakly closed bimodules with supp(S) coincide, that is, if

spanσ-weak(S ∩N(M,D)) = S = S
Bures

.

Remark 2.5.7. Let A be a CSL algebra. We wish to point out that when
A contains a Cartan MASA in B(H), our notion of synthesis and Arveson’s
notion coincide.

Let H be a separable Hilbert space, let {en} be an orthonormal basis for
H and let D be the atomic MASA of all operators diagonal with respect to
this basis. Then (B(H),D) is a Cartan pair (all Cartan MASAs in B(H)
are of this form). Let eie

∗
j denote the rank-one operator ξ 7→ 〈ξ, ej〉 ei.

Taking φ to be the tracial weight on B(H), Hφ is the set of Hilbert-Schmidt
operators. Each minimal projection in Z ⊆ B(Hφ) has range Cηφ(eie

∗
j ) for

some i, j ∈ N, and it follows that Z ⊆ B(Hφ) is an atomic MASA.
If A ⊆ B(H) is a σ-weakly closed algebra with D ⊆ A, then for each finite-

rank projection P ∈ D, PAP is spanned by {PvP : v ∈ A∩GN(B(H),D)}.
Since I may be written as the strong limit of an increasing sequence of
such projections, the span of the rank one operators contained in A is σ-
weakly dense in A. Using the description of the atoms of Z from above,
one shows A is synthetic in the sense of Definition 2.5.6. Moreover, [6,
Theorem 23.7] shows A is a completely distributive CSL algebra. Hence
by [6, Corollary 23.9], A is synthetic in Arveson’s sense as well.

The following consequence of Theorem 2.5.1 and the proof of Proposi-
tion 2.5.3 is worth noting; we leave the proof to the reader.

Theorem 2.5.8. Let S be the lattice of all Bures-closed D-bimodules of
M (where

∧
is intersection and

∨
is Bures-closed span) and let L be the

projection lattice of Z. The maps bimod : L → S and supp : S → L are
lattice isomorphisms and (bimod)−1 = supp.

We close this section by showing that the class of von Neumann subalge-
bras which lie between D and M is a class of σ-weakly closed D-bimodules
which is well-behaved with respect to the operations of bimod and supp.
Suppose A is a von Neumann algebra with D ⊆ A ⊆ M. Then A0 :=
spanσ-weak(GN(M,D) ∩ A) is also a von Neumann algebra. A much less
obvious fact, contained in Theorem 2.5.9 below, is that the Bures-closure,

AB := A
Bures

is also a von Neumann algebra. By Proposition 2.5.3, A0

and AB are the minimal and maximal σ-weakly closed D-bimodules with
supp(A). It is somewhat surprising that actually A is Bures closed, so that

A0 = A = AB = bimod(supp(A)).
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Thus, the class of von Neumann algebras which lie between D and M is a
class of D-bimodules for which Conjecture 2.1.5 (the spectral theorem for
bimodules) holds, and for which each element of the class is synthetic.

We now prove these facts, and somewhat more, by extending, and pro-
viding a new proof of, a theorem of Aoi [1]. Aoi attributes the statement
of his theorem to unpublished work of C. Sutherland. Aoi’s proof uses the
Feldman–Moore formalism and therefore requires that the von Neumann
algebras involved have separable predual. Our proof allows us to eliminate
the separability hypothesis, and also to give a description of the conditional
expectation.

Theorem 2.5.9 (cf. [1, Theorem 1.1]). Let (M,D) be a Cartan pair, and
suppose A is a von Neumann algebra such that D ⊆ A ⊆ M. Then (A,D)
is a Cartan pair, and there exists a unique faithful normal conditional ex-
pectation Φ of M onto A. In addition, A is a synthetic D-bimodule, and the
following statements hold.

(a) For each x ∈ nφ, Φ(x) ∈ nφ and

(2.4) ηφ(Φ(x)) = supp(A)ηφ(x).

(b) For each T ∈M,

(2.5) πφ(Φ(T ))P = supp(A)πφ(T )P

and Φ is Bures-continuous.
(c) If E ⊆ GN(A,D) is a maximal D-orthogonal family, then for every

x ∈M, Φ(x) is the Bures-convergent sum,

Φ(x) =
∑
u∈E

uE(u∗x).

Proof. Let A0 := spanσ-weak(GN(M,D) ∩ A). Then A0 is a von Neumann
algebra such that

D ⊆ A0 ⊆ A ⊆M.

Here is the plan of the proof. Our first step is to show the existence of a
unique faithful, normal conditional expectation Φ of M onto A0. Step 2 will
show that parts (a) and (b) hold. We then show A is synthetic, that is,

(2.6) A0 = A = A
Bures

.

Afterwards, we show (A,D) is a Cartan pair, and then conclude the proof
by verifying (c) holds.

Let σφt be the modular automorphism group arising from φ. Since the
span of GN(M,D)∩A0 is σ-weakly dense in A0, Corollary 1.4.8 implies that
for every t ∈ R,

(2.7) σφt (A0) = A0.

Next we show that φ|A0 is semi-finite on A0. Let

GNsf(M,D) := GN(M,D) ∩ nφ and GNsf(A0,D) := GNsf(M,D) ∩A0.
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Since nφ∩D is σ-weakly dense in D, we may find dλ ∈ D∩nφ which converges
to ID σ-weakly. Thus for any v ∈ GN(M,D)∩A0, v = limλ vdλ which gives,

GNsf(A0,D)
σ-weak ⊇ GN(M,D) ∩A0.

As span(GNsf(A0,D)) ⊆ nφ, we conclude that φ is semi-finite on A0.
An application of [22, Theorem IX.4.2] yields the existence and uniqueness

of a normal conditional expectation Φ : M→ A0 such that φ ◦Φ = φ. Note
that Φ is faithful because φ is.

We now show the formulas (2.4) and (2.5) hold for the conditional ex-
pectation Φ just constructed. If x ∈ nφ, then φ(Φ(x)∗Φ(x)) ≤ φ(Φ(x∗x)) =
φ(x∗x) <∞, so nφ is invariant under Φ. This calculation also shows the map
ηφ(nφ) 3 ηφ(x) 7→ ηφ(Φ(x)) is norm decreasing on ηφ(nφ). The facts that Φ
is an idempotent linear map and Φ(x)∗ = Φ(x∗) for every x ∈M imply that
this map extends to a projection Q ∈ B(Hφ) such that Qηφ(x) = ηφ(Φ(x))
for every x ∈ nφ.

Notice πφ(A0)ηφ(nφ ∩D) ⊆ range(Q). By definition,

range(supp(A0)) = πφ(A0)ηφ(nφ ∩D),

so supp(A0) ≤ Q. On the other hand, for x ∈ nφ, Φ(x) ∈ nφ ∩ A0.

Lemma 1.4.1 gives ηφ(nφ ∩A0) ⊆ πφ(A0)ηφ(nφ ∩D), so

ηφ(Φ(nφ)) ⊆ range(supp(A0)).

But range(Q) = ηφ(Φ(nφ)), which yields Q ≤ supp(A0), so Q = supp(A0).
By Lemma 2.3.1(c), supp(A0) = supp(A) = supp(AB), so (2.4) holds.

Let T ∈M and d ∈ D ∩ nφ. Using (2.4), we have,

πφ(Φ(T ))ηφ(d) = ηφ(Φ(Td)) = supp(A)ηφ(Td) = supp(A)πφ(T )ηφ(d).

Since ηφ(D ∩ nφ) is dense in range(P ), we obtain (2.5).

By (2.5), Φ is Bures continuous. Let T ∈ A
Bures

. Theorem 2.5.1 ensures

that T ∈ A0
Bures

, so there exists a net Tλ in A0 which Bures-converges to
T . Since Φ is Bures continuous,

T = lim
λ
Tλ = lim

λ
Φ(Tλ) = Φ(lim

λ
Tλ) = Φ(T ),

so T ∈ A0. The equality (2.6) now follows.
Next we show (A,D) is a Cartan pair. Obviously, E|A is a faithful normal

conditional expectation of A onto D, so we need only prove that the span of
U(A) ∩ N(M,D) is σ-weakly dense in A. Since A = A0, it suffices to show
that

(2.8) GN(M,D) ∩A ⊆ spanσ-weak(GN(M,D) ∩ U(A)).

Recall that the maximal ideal space of D, D̂, is a compact, extremally
disconnected space (see [21, Theorem III.1.18]). In particular, the Gelfand
transform determines a bijection between the set of projections in D and the

family of clopen subsets of D̂. Also, each nonzero v ∈ GN(A,D) determines
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a partial homeomorphism βv of D̂ with domain {ρ ∈ D̂ : ρ(v∗v) = 1} and

range {ρ ∈ D̂ : ρ(vv∗) = 1}, via the formula,

βv(ρ)(d) := ρ(v∗dv).

When βv(ρ) = ρ for all ρ ∈ dom(βv), it is not difficult to see that v commutes
with D and hence v ∈ D. Finally, when Q ∈ D is a projection such that

Qv∗v 6= 0, βvQ is the restriction of βv to {ρ ∈ D̂ : ρ(Q) = 1} ∩ dom(βv).
Given v ∈ GN(A,D) with v 6= 0, applying a variant of Froĺık’s Theorem

(see [17, Proposition 2.7]) to βv yields projections Q0, Q1, Q2, Q3 ∈ D such
that vQ0 ∈ D, (vQj)

2 = 0 for j = 1, 2, 3 and

(2.9) v =

3∑
j=0

vQj .

A calculation shows that when w ∈ GN(M,D) ∩A satisfies w2 = 0, then

U := w + w∗ + (I − w∗w − ww∗) ∈ U(A) ∩ GN(M,D) and w = Uw∗w.

Since span(U(D)) is σ-weakly dense in D, we obtain

w ∈ spanσ-weak(GN(M,D) ∩ U(A)).

Hence,

spanσ-weak(GN(M,D) ∩ U(A)) ⊇ span{w ∈ GN(M,D) ∩A : w2 = 0}.

This together with (2.9) implies that

spanσ-weak(GN(M,D) ∩ U(A)) ⊇ span(GN(M,D) ∩A).

Thus (2.8) holds and (A,D) is a Cartan pair.
To obtain (c), let E ⊆ GN(A,D) be a maximal D-orthogonal family. For

each u ∈ E, Corollary 2.3.2 gives Pu ≤ supp(A). For any u ∈ E, x ∈M and
d ∈ D ∩ nφ we obtain,

πφ(uE(u∗Φ(x)))ηφ(d) = Puπφ(Φ(x))ηφ(d)

= Puηφ(Φ(xd)) (now apply part (a))

= Pu supp(A)ηφ(xd) = Puηφ(xd) = Puπφ(x)ηφ(d)

= πφ(uE(u∗x))ηφ(d).

This holds for every d ∈ D ∩ nφ. Thus (using the fact that φ = φ ◦ E is
faithful) for every x ∈M and u ∈ E, we have

(2.10) uE(u∗Φ(x)) = uE(u∗x).

By Proposition 2.4.4 applied to the Cartan pair (A,D),

Φ(x) =
∑
u∈E

uE(u∗Φ(x)) =
∑
u∈E

uE(u∗x),

where the sums are Bures convergent. This completes the proof. �
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3. An extension theorem

In this section, we prove our main result about extending isometric algebra
isomorphisms. We begin with two definitions.

Definition 3.1.1.

(a) Given a Cartan pair (M,D), a Cartan bimodule algebra is a σ-weakly
closed subalgebra A of M satisfying D ⊆ A and which generates M

as a von Neumann algebra. We will sometimes write A ⊆ (M,D) to
indicate that A is a Cartan bimodule algebra for the pair (M,D).

(b) For i = 1, 2, let Ai ⊆ (Mi,Di) be Cartan bimodule algebras. An (al-
gebraic) isomorphism θ : A1 → A2 is a Cartan bimodule isomorphism
if θ is isometric and θ(D1) = D2.

Remark 3.1.2. In view of Theorem 2.5.9, when A is a σ-weakly closed
subalgebra of M containing D, A is a Cartan bimodule algebra relative to
the Cartan pair, (W ∗(A),D).

Lemma 3.1.3. For i = 1, 2, let Ai ⊆ (Mi,Di) be Cartan bimodule algebras
and suppose θ : A1 → A2 is a Cartan bimodule isomorphism. Then

θ(GN(M1,D1) ∩A1) = GN(M2,D2) ∩A2.

Proof. Let v ∈ GN(M1,D1)∩A1. Obviously θ(v) ∈ A2. For all h ∈ D1, we
have that

θ(h)θ(v) = θ(hv) = θ(hvv∗v) = θ(vv∗hv) = θ(v)θ(v∗hv).

Since θ|D1 is a ∗-isomorphism, θ(v)∗θ(h) = θ(v∗hv)θ(v)∗. Hence, for all
d ∈ D1,

θ(h)θ(v)θ(d)θ(v)∗ = θ(v)θ(v∗hv)θ(d)θ(v)∗ = θ(v)θ(d)θ(v∗hv)θ(v)∗

= θ(v)θ(d)θ(v)∗θ(h);

thus θ(v)θ(d)θ(v)∗ ∈ M2 ∩ D′2 = D2. Likewise θ(v)∗θ(d)θ(v) ∈ D2, and
so θ(v) ∈ N(M2,D2). We now show that θ(v) is a partial isometry. Note
that p := θ(v)∗θ(v) belongs to the unit ball of D2; we must show that
p is a projection. To do this, we show that the spectrum of p is {0, 1}.
If not, let 0 < λ < 1 belong to the spectrum of p, and δ > 0 be such that
0 < λ−δ < λ+δ < 1 and let q be the spectral projection for p corresponding
to the interval (λ− δ, λ+ δ). Then θ(v)q 6= 0, and θ−1(q) is a projection in
D1. Then 0 6= vθ−1(q) ∈ GN(M1,D1) ∩A1. As θ is isometric,

1 =
∥∥vθ−1(q)

∥∥2
= ‖θ(v)q‖2 = ‖pq‖ < 1,

which is absurd. Therefore, the spectrum of p equals {0, 1}, so p is a pro-
jection. Hence θ(v) ∈ GN(M2,D2) ∩A2. The lemma follows. �

Proposition 3.1.4. Let A ⊆ (M,D) be a Cartan bimodule algebra. Define
A0 = span(GN(M,D) ∩ A) (norm closure) and C = C∗(GN(M,D) ∩ A).
Then:
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(a) C = C∗(A0) and D ⊆ A0 ⊆ C.
(b) C = span(GN(M,D) ∩ C).

(c) C
σ-weak

= M.

In particular, the pair (C,D) is a C∗-diagonal in the sense of Kumjian [10].

Proof. (a) and (b) are routine. We turn now to (c). Since A0∩GN(M,D) =

A∩ GN(M,D), we have that A0
σ-weak ∩ GN(M,D) = A∩ GN(M,D), and so

supp(A0
σ-weak

) = supp(A), by Corollary 2.3.2. By Corollary 2.5.2,

A0
Bures

= bimod(supp(A0
σ-weak

)) = bimod(supp(A)) = A
Bures

.

Theorem 2.5.9 gives C
Bures

= C
σ-weak

. Thus,

A ⊆ A
Bures

= A0
Bures ⊆ C

Bures
= C

σ-weak
= M,

with the last equality holding because W ∗(A) = M. Hence M = C
σ-weak

.
Now (b) says that (C,D) is a regular inclusion. Moreover, as D is a MASA

in M, it is a MASA in C. Since D is injective and E|C is a faithful conditional
expectation of C onto D, an application of [17, Theorem 2.10] shows (C,D)
is a C∗-diagonal. �

Corollary 3.1.5. Let θ : A1 → A2 be a Cartan bimodule isomorphism.
Then:

(a) There exists a unique ∗-isomorphism Θ : C1 → C2 such that Θ(x) =
θ(x) for all x ∈ A0

1 (notation as in Proposition 3.1.4).
(b) Θ(GN(M1,D1) ∩ C1) = GN(M2,D2) ∩ C2.

Proof. By Lemma 3.1.3, θ(GN(M1,D1)∩A1) = GN(M2,D2)∩A2. It follows
that θ(A0

1) = A0
2. By Proposition 3.1.4, the pair (Ci,Di) is a C∗-diagonal and

C∗(A0
i ) = Ci, for i = 1, 2. An application of [16, Theorem 2.16] establishes

(a).
Since Θ is a ∗-isomorphism and Θ(D1) = D2, (b) holds. �

The following gives most of Assertion 1.1.1.

Theorem 3.1.6. For i = 1, 2, let Ai ⊆ (Mi,Di) be Cartan bimodule algebras
and let Ei : Mi → Di be the faithful normal conditional expectations. Let
θ : A1 → A2 be a Cartan bimodule isomorphism. Then there exists a unique
∗-isomorphism θ : M1 →M2 such that

θ|A0
1

= θ|A0
1
;

and θ|A0
1

is a homeomorphism of (A0
1, τB) onto (A0

2, τB).

Furthermore, suppose ω1 is a faithful normal semi-finite weight on D1

and let ω2 = ω1 ◦ (θ|D1)−1. Set φi := ωi ◦ Ei and let (πφi ,Hi, ηφi) be the
semicyclic representation of Mi corresponding to φi. Then there exists a
unitary U : H1 → H2 such that for every X ∈M1,

Uπφ1(X) = πφ2(θ(X))U.
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Proof. We use the notation of Corollary 3.1.5. Since (Ci,Di) are C∗-
diagonals, Ci has the extension property relative to Di. In particular, the
expectations Ei|Ci are unique. Since Θ ◦E1|C1 ◦Θ−1 is a conditional expec-
tation of C2 onto D2, we obtain

E2|C2 ◦Θ = Θ ◦ E1|C1 .

Hence

(ω2 ◦ E2)|C2 = (ω1 ◦ E1)|C1 ◦Θ−1.

For Y ∈ C1 and d ∈ nφ1 ∩D1, we have

‖πφ2(Θ(Y ))ηφ2(θ(d))‖2 = ω2(E2(Θ(d∗Y ∗Y d))) = ω1(E1(d∗Y ∗Y d))

= ‖πφ1(Y )ηφ1(d)‖2 .

As πφi(Ci)ηφi(nφi ∩Di) is dense in Hi by Lemma 1.4.1, we find that the map
πφ1(Y )ηφ1(d) 7→ πφ2(Θ(Y ))ηφ2(θ(d)) extends to a unitary U ∈ B(H1,H2).
Moreover, for any X ∈ C1, we obtain

Uπφ1(X) = πφ2(Θ(X))U.

For X ∈M1 we now define

θ(X) := π−1
φ2

(Uπφ1(X)U∗).

Then θ is a ∗-isomorphism of M1 onto M2 and by construction, θ|A0
1

=

Θ|A0
1

= θ|A0
1
.

The uniqueness of θ follows from the facts that Ci are σ-weakly dense in
Mi and Θ is the unique extension of θ|A0

1
to a ∗-isomorphism of C1 onto C2.

It is easy to see that θ ◦E1 = E2 ◦ θ, which implies θ and (θ)−1 are Bures
continuous. Thus the restriction of θ to A0

1 is a Bures homeomorphism onto
A0

2. �

We now strengthen Theorem 3.1.6 by showing that when θ is σ-weakly
continuous, θ|A1 = θ. (Note: If we knew that A0

1 was σ-weakly dense in
A1, this would be trivial. Unfortunately, all we know is that A0

1 is Bures
dense in A1.) We require some preparation. The notation will be as in
Theorem 3.1.6.

Lemma 3.1.7. For i = 1, 2, let Ai ⊆ (Mi,Di) be Cartan bimodule algebras
and let Ei : Mi → Di be the faithful normal conditional expectations. Let
θ : A1 → A2 be a σ-weakly continuous Cartan bimodule isomorphism. If
x ∈ A1 and v ∈ GN(M1,D1), then

(3.1) θ(vE1(v∗x)) = θ(v)E2(θ(v)∗θ(x)).

Before giving the proof, notice that Lemma 2.3.1(b) gives vE(v∗x) ∈ A1,
so the left side of (3.1) is defined.
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Proof. Let x ∈ A1 and v ∈ GN(M1,D1). By Lemma 1.3.3,

(3.2) {vE1(v∗x)} = vD1 ∩ coσ-weak{vUv∗xU∗ : U ∈ U(D1)}.

We then have,

θ(vE1(v∗x)) ∈ θ(coσ-weak{vUv∗xU∗ : U ∈ U(D1)})

⊆ coσ-weak{θ(vUv∗)θ(x)θ(U∗) : U ∈ U(D1)}

= coσ-weak{θ(vUv∗)θ(x)θ(U)∗ : U ∈ U(D1)}

= coσ-weak{θ(v)θ(U)θ(v)∗θ(x)θ(U)∗ : U ∈ U(D1)}

= coσ-weak{θ(v)Wθ(v)∗θ(x)W ∗ : W ∈ U(D2)}.

Since vE1(v∗x) ∈ A0
1 (cf. Lemma 1.2.1), we have

θ(vE1(v∗x)) = θ(vE1(v∗x)) ∈ θ(v)D2.

Thus,

θ(vE1(v∗x)) ∈ θ(v)D2 ∩ coσ-weak{θ(v)Wθ(v)∗θ(x)W ∗ : W ∈ U(D2)}
= {θ(v)E2(θ(v)∗θ(x))}.

The lemma follows. �

Theorem 3.1.8. In addition to the hypotheses of Theorem 3.1.6, assume θ
is σ-weakly continuous. Then

θ = θ|A1 .

Proof. Let E ⊆ GN(M1,D1) be a maximal D1-orthogonal set. Then θ(E) ⊆
GN(M2,D2) is a maximal D2-orthogonal set.

Let X ∈ A1 and suppose F ⊆ E is a finite set. Then, with the notation
of Proposition 2.4.4 and using Lemma 3.1.7, we have

θ(XF ) =
∑
v∈F

θ(vE1(v∗X)) =
∑
v∈F

θ(v)E2(θ(v)∗θ(X)).

It then follows from Proposition 2.4.4 that θ(XF ) Bures converges to θ(X).
On the other hand, since XF ∈ A0

1, we have θ(XF ) = θ(XF ). As we noted

in the proof of Theorem 3.1.6, θ is Bures continuous. Therefore,

θ(X) = Bures- limF θ(XF ) = Bures- limF θ(XF ) = θ(X). �

Remark 3.1.9. Without a continuity hypothesis, we have been unable to
obtain Assertion 1.1.1, even when the Cartan pairs Ai ⊆ (Mi,Di) are as-
sumed synthetic. Suppose Ai are synthetic. With the notation of Theo-

rem 3.1.6, let α := θ
−1 ◦ θ. The hypothesis of synthesis implies α is an

isometric automorphism of A1 such that α|A0
1

= id|A0
1
. We have not been

able to show α = idA without making a continuity hypothesis, and we sus-
pect such a hypothesis may in general be necessary.
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