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Semigroups in which all strongly
summable ultrafilters are sparse

Neil Hindman, Juris Steprāns and Dona Strauss

Abstract. We show that if (S,+) is a commutative semigroup which
can be embedded in the circle group T, in particular if S = (N,+), then
all nonprincipal, strongly summable ultrafilters on S are sparse and can
be written as sums in βS only trivially. We develop a simple condition
on a strongly summable ultrafilter which guarantees that it is sparse
and show that this holds for many ultrafilters on semigroups which are
embeddable in the direct sum of countably many copies of T.
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1. Introduction

In 1972 the first author of this paper became aware of a question of Fred
Galvin. This question was whether there exists an ultrafilter p on the set N of
positive integers such that, for any A ∈ p, {x ∈ N : −x+A ∈ p} ∈ p. Galvin
called such an ultrafilter almost translation invariant . (One can appreciate
the terminology if one views an ultrafilter as a {0, 1}-valued measure on
P(N).) Galvin wanted to know because he knew that the existence of such an
ultrafilter trivially implied the validity of what was then called the Graham–
Rothschild conjecture. That is, if r ∈ N and N =

⋃r
i=1Ai, then there exist

i ∈ {1, 2, . . . , r} and a sequence 〈xn〉∞n=1 such that FS(〈xn〉∞n=1) ⊆ Ai, where
FS(〈xn〉∞n=1) = {

∑
t∈F xt : F ∈ Pf (N)} and given a set X, Pf (X) is the set

of finite nonempty subsets of X. In [5] that author showed that, assuming
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the continuum hypothesis, the Graham–Rothschild conjecture implies the
existence of almost translation invariant ultrafilters. With the subsequent
proof [6] of the Graham–Rothschild conjecture, almost translation invariant
ultrafilters became a figment of the continuum hypothesis.

Of course Galvin wanted to know whether almost translation invariant
ultrafilters really existed. He subsequently ran into Steven Glazer who knew
of a result of Robert Ellis [3, Lemma 1] that a compact right topological
semigroup has an idempotent and who also knew that, given a discrete
semigroup (S,+), there is a natural extension of the operation on S to
its Stone-Čech compactification βS making βS a compact right topological
semigroup, where βS is taken to be the set of ultrafilters on S. Further, an
idempotent p ∈ βN is precisely an almost translation invariant ultrafilter.
We need to know very little about the operation on βS in this paper, and
then only in the proof of Theorem 4.8. That is the fact that, given p, q ∈
βS and A ⊆ S, A ∈ p + q if and only if {x ∈ S : −x + A ∈ q} ∈ p,
where −x + A = {y ∈ S : x + y ∈ A}. For more background information,
the interested reader is referred to [7] for more information than she could
possibly want to know.

Consequently, there seemed to no longer be anything of interest in [5].
However, in 1985 Eric van Douwen pointed out in conversation that the
almost translation invariant ultrafilters produced there had a stronger prop-
erty. That is, they had a basis consisting of sets of the form FS(〈xn〉∞n=1).

Definition 1.1. Let (S,+) be a commutative semigroup and let p be an
ultrafilter on S. Then p is strongly summable if and only if for every A ∈ p
there exists 〈xn〉∞n=1 such that FS(〈xn〉∞n=1) ⊆ A and FS(〈xn〉∞n=1) ∈ p.

Naturally, van Douwen wanted to know whether the existence of strongly
summable ultrafilters on N could be established in ZFC. In fact, their exis-
tence implies the existence of P -points in βN [2, Theorem 3], and so cannot
be established in ZFC. An important tool in the verification of this fact was
the notion of union ultrafilter introduced by Blass in [1].

Given a sequence 〈Fn〉∞n=1 in Pf (N), we let

FU(〈Fn〉∞n=1) =

{⋃
t∈H

Ft : H ∈ Pf (N)

}
.

Definition 1.2. A union ultrafilter is an ultrafilter U on Pf (N) with the
property that for each A ∈ U , there is a sequence 〈Fn〉∞n=1 of pairwise disjoint
members of Pf (N) such that FU(〈Fn〉∞n=1) ⊆ A and FU(〈Fn〉∞n=1) ∈ U .

It was shown in [1] that Martin’s Axiom implies the existence of union
ultrafilters and in [2] that the existence of union ultrafilters is equivalent to
the existence of strongly summable ultrafilters on N.

An important fact about strongly summable ultrafilters on N is that, in
one sense at least, they are badly named. That is, [7, Theorem 12.42], if
p is a strongly summable ultrafilter and q, r ∈ N∗ = βN \ N are such that
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q + r = r + q = p, then in fact q, r ∈ Z + p. So the largest subgroup of
βN with p as identity is just a copy of Z. In fact, some strongly summable
ultrafilters are even harder to write as sums.

Definition 1.3. Let (S,+) be a countable commutative semigroup and let p
be an ultrafilter on S. Then p is a sparse strongly summable ultrafilter if and
only if for every A ∈ p, there exist a sequence 〈xn〉∞n=1 and a subsequence
〈yn〉∞n=1 of 〈xn〉∞n=1 such that FS(〈xn〉∞n=1) ⊆ A, FS(〈yn〉∞n=1) ∈ p, and
{xn : n ∈ N} \ {yn : n ∈ N} is infinite.

We view the circle group T as R/Z and represent its elements by points
in (−1

2 ,
1
2 ]. (So when we say t ∈ T we really mean that t + Z ∈ T.) By Sd

we mean the set S with the discrete topology.

Theorem 1.4. Let S be a countable subsemigroup of T, let G be the subgroup
of T generated by S, and let p be a sparse strongly summable ultrafilter on
S. If q, r ∈ βGd and q + r = p, then q, r ∈ G+ p.

Proof. It is routine to show that p is a sparse strongly summable ultrafilter
on G. (To be precise, the ultrafilter on G generated by p is a sparse strongly
summable ultrafilter on G.) So [8, Theorem 4.5] applies. �

In [9] Peter Krautzberger established that all strongly summable ultrafil-
ters on N have a property that he called special . And in a personal com-
munication he easily showed that any special strongly summable ultrafilter
on N is sparse. (And, less easily, the two notions are equivalent for strongly
summable ultrafilters on N.) Had he been aware of [8, Theorem 4.5] he could
have included the following theorem.

Theorem 1.5 (Krautzberger). Let p be a strongly summable ultrafilter on
N and let q, r ∈ βZ such that q + r = p. Then q, r ∈ Z + q.

Proof. Since all strongly summable ultrafilters on N are sparse, Theo-
rem 1.4 applies. �

In Section 2 of this paper we will show that there does not exist a union
ultrafilter on Pf (N) such that for all A ∈ U , N \

⋃
A is finite. In fact this

is a special case of [9, Theorem 4]. However, we believe our proof is much
simpler than the proof of that theorem.

In Section 3 we will show that any strongly summable ultrafilter on a
commutative semigroup (S,+) which satisfies a strong uniqueness of finite
sums condition is sparse.

In Section 4 we will show that if S is a countable subsemigroup of T and
p is a strongly summable ultrafilter on S, then p is sparse. Consequently,
by Theorem 1.4 any strongly summable ultrafilter on S can only be written
as a sum trivially. In this section we will also show that if S is a countable
subsemigroup of

⊕∞
n=1 T, p is a strongly summable ultrafilter on S, and the

set of points whose first nonzero coordinate is 1
2 is not a member of p, then

p is sparse.
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The authors would like to thank the referee for some helpful comments
and suggestions. In particular we thank him or her for the suggestion that
we might be able to prove Corollary 4.7.

2. Nonexistence of certain union ultrafilters

In [9, Theorem 4], Krautzberger showed that if U is a union ultrafilter
and L is an infinite subset of N, then there is a member A of U such that
L \

⋃
A is infinite. We establish in this section the (at least superficially)

weaker assertion that for any union ultrafilter U , there is a member A of U
such that N \

⋃
A is infinite. We do this because we believe our proof is

significantly simpler than the proof of [9, Theorem 4].

Definition 2.1. Let X ∈ Pf (N).

(a) A block of X is a maximal interval contained in X.
(b) Π(X) = {I : I is a block of X}.
(c) ϕ(X) = |Π(X)|.
(d) P : Pf (N)→ {0, 1} is defined by P (X) ≡ ϕ(X) (mod 2).
(e) If Y ∈ Pf (N) and X ⊆ Y , then L(X,Y ) = {x ∈ X : x− 1 ∈ N \ Y }

and R(X,Y ) = {x ∈ X : x+ 1 ∈ N \ Y }.

It is trivial that there is no pairwise disjoint sequence 〈Fn〉∞n=1 with P
constantly equal to 1 on FU(〈Fn〉∞n=1).

Lemma 2.2. Let A,B ∈ Pf (N) with A ∩B = ∅. Then

ϕ(A ∪B) ≡ ϕ(A) + ϕ(B) + |{x ∈ A : x− 1 ∈ B}|
+ |{x ∈ A : x+ 1 ∈ B}| (mod2).

Proof. Given I ∈ Π(A ∪B), let

τ(I) = |{J : J ∈ Π(A) and J ⊆ I}|+ |{J : J ∈ Π(B) and J ⊆ I}|.

Suppose we have a counterexample and choose one with

k = max{τ(I) : I ∈ Π(A ∪B)}

as small as possible and with |{I ∈ Π(A ∪ B) : τ(I) = k}| as small as
possible.

Assume first that k = 1. Then ϕ(A ∪B) = ϕ(A) + ϕ(B) and

|{x ∈ A : x− 1 ∈ B}| = |{x ∈ A : x+ 1 ∈ B}| = 0.

Thus k > 1. Pick L ∈ Π(A ∪B) such that τ(L) = k and let y = maxL.
Case 1. y ∈ A. Pick J ∈ Π(A) such that y ∈ J and let A′ = A \J . Then,

since J 6= L, it follows that L \ J 6= ∅ and either

max{τ(I) : I ∈ Π(A′ ∪B)} < k or

|{I ∈ Π(A′ ∪B) : τ(I) = k}| < |{I ∈ Π(A ∪B) : τ(I) = k}|.
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Therefore the minimality hypothesis implies that

ϕ(A ∪B) = ϕ(A′ ∪B)

≡ ϕ(A′) + ϕ(B) + |{x ∈ A′ : x− 1 ∈ B}|
+ |{x ∈ A′ : x+ 1 ∈ B}| (mod2)

= ϕ(A)− 1 + ϕ(B) + |{x ∈ A : x− 1 ∈ B}| − 1

+ |{x ∈ A : x+ 1 ∈ B}|.
The second case is symmetric to the first. �

We omit the routine proof of the following lemma.

Lemma 2.3. Let 〈Fk〉nk=1 be a disjoint sequence in Pf (N). Then

L(F1, F1) = L(F1,
⋃n

k=1 Fk) ∪
⋃n

k=2{x ∈ F1 : x− 1 ∈ Fk},
R(F1, F1) = R(F1,

⋃n
k=1 Fk) ∪

⋃n
k=2{x ∈ F1 : x+ 1 ∈ Fk}.

Lemma 2.4. Let G,H,X ∈ Pf (N) and assume that 1 ∈ G ⊆ H, X =
{1, 2, . . . ,maxG+1}\H, and, if X 6= ∅, then {1, 2, . . . ,maxX+1}\X ⊆ G.
Then:

(1) L(G,H) = {x ∈ N :
(
∃I ∈ Π(X)

)
(x− 1 = max I)}.

(2) R(G,H) = {x ∈ N :
(
∃I ∈ Π(X)

)
(x+ 1 = min I)}.

(3) |L(G,H)| = |R(G,H)| = ϕ(X).

Proof. This is routine. The fact that |R(G,H)| = ϕ(X) uses the fact that
1 /∈ X. �

Theorem 2.5. There does not exist a pairwise disjoint sequence 〈Fn〉∞n=1

in Pf (N) such that N \
⋃∞

n=1 Fn is finite and P is constantly equal to 0 on
FU(〈Fn〉∞n=1).

Proof. Suppose we have such a sequence and order it so that for all n,
minFn < minFn+1. We first note that we can assume that 1 ∈ F1. To
see this, let a = minF1, assume that a > 1, and pick I ∈ Π(F1) such that
a ∈ I. Let F ′1 = F1 ∪ {1, 2, . . . , a − 1} and for each n > 1, let F ′n = Fn.
Then I ∪ {1, 2, . . . , a− 1} ∈ Π(F ′1) and for each H ∈ Pf (N), ϕ(

⋃
n∈H F ′n) =

ϕ(
⋃

n∈H Fn).
Let X = N \

⋃∞
n=1 Fn. We claim that if X 6= ∅, then we can assume

that {1, 2, . . . ,maxX + 1} \ X ⊆ F1. To see this, let m = maxX, let

F ′1 =
⋃m+1

k=1 Fk and for n > 1, let F ′n = Fm+n. Then for each H ∈ Pf (N),

ϕ(
⋃

n∈H F ′n) = ϕ(
⋃

n∈K Fn),

where K = {1, 2, . . . ,m + 1} ∪
{
m + n : n ∈ H \ {1}

}
if 1 ∈ H, while

K = {m+ n : n ∈ H} if 1 /∈ H.
Now |L(F1, F1)| = ϕ(F1) − 1 is odd and |R(F1, F1)| = ϕ(F1) is even.

Let r = maxF1 and let H =
⋃r+1

k=1 Fk. We have that 1 ∈ F1 ⊆ H,
{1, 2, . . . ,maxX + 1} \X ⊆ F1, and

X = {1, 2, . . . ,maxF1 + 1} \H
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so by Lemma 2.4, |L(F1, H)| = |R(F1, H)| = ϕ(X). Also by Lemma 2.3,

L(F1, F1) = L(F1, H) ∪
⋃r+1

k=2{x ∈ F1 : x− 1 ∈ Fk},

R(F1, F1) = R(F1, H) ∪
⋃r+1

k=2{x ∈ F1 : x+ 1 ∈ Fk}.

Therefore

|L(F1, F1)|+ |R(F1, F1)|

= 2ϕ(X) +
∑r+1

k=2(|{x ∈ F1 : x− 1 ∈ Fk}|+ |{x ∈ F1 : x+ 1 ∈ Fk}|)

≡
∑r+1

k=2(|{x ∈ F1 : x− 1 ∈ Fk}|+ |{x ∈ F1 : x+ 1 ∈ Fk}|) (mod 2)

so that
∑r+1

k=2(|{x ∈ F1 : x− 1 ∈ Fk}|+ |{x ∈ F1 : x+ 1 ∈ Fk}|) is odd so we
may pick k ∈ {2, 3, . . . , r + 1} such that |{x ∈ F1 : x− 1 ∈ Fk}|+ |{x ∈ F1 :
x+ 1 ∈ Fk}| is odd.

By Lemma 2.2

ϕ(F1 ∪ Fk) ≡ϕ(F1) + ϕ(Fk) +

|{x ∈ F1 : x− 1 ∈ Fk}|+ |{x ∈ F1 : x+ 1 ∈ Fk}| (mod 2).

But this is a contradiction, because ϕ(F1 ∪ Fk), ϕ(F1), and ϕ(Fk) are all
even. �

Theorem 2.6. Let U be a union ultrafilter. Then there exists A ∈ U such
that N \

⋃
A is infinite.

Proof. Suppose that U is a union ultrafilter such that for every A ∈ U one
has N \

⋃
A is finite. Pick i ∈ {0, 1} such that

B = {F ∈ Pf (N) : P (F ) = i} ∈ U .

Pick a disjoint sequence 〈Fn〉∞n=1 in Pf (N) such that FU(〈Fn〉∞n=1) ∈ U
and FU(〈Fn〉∞n=1) ⊆ B. One cannot have i = 1 since we may choose
a subsequence 〈Gn〉∞n=1 with maxGn < minGn+1 for each n. But since
FU(〈Fn〉∞n=1) ∈ U , we have N \

⋃∞
n=1 Fn is finite, so by Theorem 2.5, we

cannot have i = 0 either. �

3. Strong uniqueness of finite sums

We show in this section that any strongly summable ultrafilter which is
generated by sums of sequences satisfying a simple condition is sparse.

Definition 3.1. A sequence 〈xn〉∞n=1 in a commutative semigroup (S,+)
satisfies strong uniqueness of finite sums if and only if for all F,H ∈ Pf (S):

(1) If
∑

t∈F xt =
∑

t∈H xt, then F = H.
(2) If

∑
t∈F xt +

∑
t∈H xt ∈ FS(〈xn〉∞n=1), then F ∩H = ∅.

It is a consequence of [7, Lemmas 12.20 and 12.34] that if p is a strongly
summable ultrafilter on N, then p has a filter base consisting of sets of the
form FS(〈xn〉∞n=1) where 〈xn〉∞n=1 satisfies strong uniqueness of finite sums.
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Theorem 3.2. Let (S,+) be a commutative semigroup and let p be an ul-
trafilter on S. If for every A ∈ p there is a sequence 〈xn〉∞n=1 in S sat-
isfying strong uniqueness of finite sums such that FS(〈xn〉∞n=1) ⊆ A and
FS(〈xn〉∞n=1) ∈ p, then p is a sparse strongly summable ultrafilter.

Proof. Trivially p is strongly summable. Suppose that p is not sparse. Pick
A ∈ p such that for every sequence 〈xn〉∞n=1 in S and every subsequence
〈yn〉∞n=1 of 〈xn〉∞n=1, if FS(〈xn〉∞n=1) ⊆ A and FS(〈yn〉∞n=1) ∈ p, then

{xn : n ∈ N} \ {yn : n ∈ N}
is finite. Pick a sequence 〈xn〉∞n=1 satisfying strong uniqueness of finite sums
such that FS(〈xn〉∞n=1) ⊆ A and FS(〈xn〉∞n=1) ∈ p. Given B ∈ p, let F(B) =
{F ∈ Pf (N) :

∑
t∈F xt ∈ B} and let U = {F(B) : B ∈ p}. It is routine to

establish that U is an ultrafilter on Pf (N).
We claim that U is a union ultrafilter. To see this, let B ∈ p. We need to

show that there is a pairwise disjoint sequence 〈Fn〉∞n=1 in Pf (N) such that
FU(〈Fn〉∞n=1) ⊆ F(B) and FU(〈Fn〉∞n=1) ∈ U .

Now B ∩ FS(〈xn〉∞n=1) ∈ p so pick a sequence 〈yn〉∞n=1 in S such that
FS(〈yn〉∞n=1) ∈ p and FS(〈yn〉∞n=1) ⊆ B ∩ FS(〈xn〉∞n=1). For each n ∈ N,
pick Fn ∈ Pf (N) such that yn =

∑
t∈Fn

xt. Since 〈xn〉∞n=1 satisfies strong
uniqueness of finite sums, we have that Fn ∩ Fm = ∅ when n 6= m.

We now claim that FU(〈Fn〉∞n=1) = F
(
FS(〈yn〉∞n=1)

)
so that

FU(〈Fn〉∞n=1) ⊆ F(B) and FU(〈Fn〉∞n=1) ∈ U
as required. To see this, first let H ∈ Pf (N) and let K =

⋃
n∈H Fn. Then∑

t∈K xt =
∑

n∈H
∑

t∈Fn
xt

=
∑

n∈H yn ∈ FS(〈yn〉∞n=1)

so K ∈ F
(
FS(〈yn〉∞n=1)

)
. For the other inclusion, let K ∈ F

(
FS(〈yn〉∞n=1)

)
and pick H ∈ Pf (N) such that

∑
t∈K xt =

∑
n∈H yn. Let L =

⋃
n∈H Fn.

Then
∑

t∈K xt =
∑

n∈H
∑

t∈Fn
xt =

∑
t∈L xt. By the uniqueness of finite

sums K = L.
Since U is a union ultrafilter, by Theorem 2.6 we may pick A ∈ U such

that N \
⋃
A is infinite. Pick B ∈ p such that A = F(B). As before pick a

sequence 〈yn〉∞n=1 in S such that

FS(〈yn〉∞n=1) ∈ p and FS(〈yn〉∞n=1) ⊆ B ∩ FS(〈xn〉∞n=1).

Also as before, pick Fn ∈ Pf (N) such that yn =
∑

t∈Fn
xt. Let L =

⋃∞
n=1 Fn.

Then 〈xt〉t∈L is a subsequence of 〈xn〉∞n=1 and FS(〈yn〉∞n=1) ⊆ FS(〈xt〉t∈L)
so FS(〈xt〉t∈L) ∈ p. But then N\L is finite and L =

⋃
FU(〈Fn〉∞n=1) ⊆

⋃
A,

so N \
⋃
A ⊆ N \ L, a contradiction. �

4. Semigroups embedded in the direct sum of circle groups

We begin this section by showing that countable semigroups that are
embeddable in the circle group do not have any nonsparse strongly summable
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ultrafilters. As a consequence, any strongly summable ultrafilter on such a
semigroup can be written as a sum only trivially.

Recall that we view the circle group as R/Z and let t ∈ (−1
2 ,

1
2 ] represent

the coset t+ Z.

Lemma 4.1. Let S be a subsemigroup of T and let ι̃ : βSd → T be the
continuous extension of the inclusion map. If p is an ultrafilter on S with
the property that each member of p contains FS(〈xn〉∞n=1) for some sequence
〈xn〉∞n=1, in particular if p is strongly summable, then ι̃(p) = 0.

Proof. Suppose that ι̃(p) = x 6= 0. Then (addition in T) we have x+x 6= x
so pick a neighborhood U of x such that (U +U) ∩U = ∅. Pick A ∈ p such
that ι̃ [A ] ⊆ U . Pick a sequence 〈xn〉∞n=1 such that FS(〈xn〉∞n=1) ⊆ A. Then
x1 + x2 ∈ (U + U) ∩ U , a contradiction. �

In view of Lemma 4.1, the following theorem follows from Theorem 4.5.
However, its proof is simpler.

Theorem 4.2. Let S be a countable subsemigroup of T and let p be a non-
principal, strongly summable ultrafilter on S. Then p has a basis of sets of
the form FS(〈xn〉∞n=1) for a sequence which satisfies strong uniqueness of
finite sums. Consequently, p is sparse.

Proof. In view of Theorem 3.2, it suffices to show that p has a basis of sets
of the form FS(〈xn〉∞n=1) for a sequence which satisfies strong uniqueness of
finite sums. Let ι̃ : βSd → T be the continuous extension of the inclusion
map. By Lemma 4.1 we know ι̃(p) = 0 so there is some A ∈ p such that
ι̃ [A ] ⊆ (−1

4 ,
1
4). Since p is nonprincipal, {0} /∈ p so either

{x ∈ S : x ∈ (−1
4 , 0)} ∈ p or {x ∈ S : x ∈ (0, 14)} ∈ p.

Essentially without loss of generality we assume that {x ∈ S : x ∈ (0, 14)} ∈
p. For j ∈ {0, 1, 2}, let Xj =

⋃∞
m=0

[
1

23m+j+3 ,
1

23m+j+2

)
. Then (0, 14) =

X0 ∪X1 ∪X2 so pick j ∈ {0, 1, 2} such that Xj ∈ p.
Let B ∈ p. We need to show that there is a sequence 〈xn〉∞n=1 in S

such that FS(〈xn〉∞n=1) ∈ p, FS(〈xn〉∞n=1 ⊆ B, and 〈xn〉∞n=1 satisfies strong
uniqueness of finite sums. Since p is strongly summable, pick a sequence
〈xn〉∞n=1 in S such that FS(〈xn〉∞n=1) ∈ p and FS(〈xn〉∞n=1 ⊆ Xj ∩ B. Note
that if 1

23m+j+3 ≤ a ≤ b < 1
23m+j+2 , then 1

23m+j+2 ≤ a + b < 1
23m+j+1 and

so a + b /∈ Xj . Thus there is at most one xn in each interval of the
form

[
1

23m+j+3 ,
1

23m+j+2

)
. We may thus assume that the sequence 〈xn〉∞n=1

is strictly decreasing and thus for each n ∈ N, 4xn+1 < xn. As a con-
sequence we have for each n ∈ N that xn > 3

∑∞
t=n+1 xt. From this we

conclude easily that if F,H ∈ Pf (N), for each n ∈ F , an ∈ {1, 2}, for each
n ∈ H, bn ∈ {1, 2}, and

∑
n∈F anxn =

∑
n∈H bnxn, then F = H and for

each n ∈ F , an = bn. We then have directly that 〈xn〉∞n=1 satisfies the
first requirement of Definition 3.1. To verify the second requirement, let
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F,H,K ∈ Pf (N) and assume that
∑

t∈F xt +
∑

t∈H xt =
∑

t∈K xt. Then∑
t∈F4H xt +

∑
t∈F∩H 2xt =

∑
t∈K xt, so F ∩H = ∅ as required. �

If S is any discrete commutative semigroup contained in a discrete group
G, then βS ⊆ βG. By [7, Theorem 4.23] if p is any idempotent in βS and
x ∈ G, then (x+ p) + (−x+ p) = p.

Corollary 4.3. Let S be a countable subsemigroup of T, let G be the group
generated by S, and let p be a nonprincipal, strongly summable ultrafilter on
S. If x, y ∈ βSd \ S and x+ y = p, then x, y ∈ G+ p.

Proof. By Theorem 4.2 p is sparse. But then it is routine to verify that p
is also sparse when viewed as an ultrafilter on G. (Precisely,

{A ⊆ G : A ∩ S ∈ p}
is a sparse ultrafilter on G.) So [8, Theorem 4.5] applies. �

We will use the following simple lemma. Note however, that it is possible

that h̃(p) = 0 even when p is nonprincipal.

Lemma 4.4. Let S and T be discrete semigroups, let h : S → T be a

homomorphism, and let h̃ : βS → βT be its continuous extension. If p

is a strongly summable ultrafilter on S, then h̃(p) is a strongly summable
ultrafilter on T .

Proof. Let A ∈ h̃(p). Then π−1[A] ∈ p so pick a sequence 〈xn〉∞n=1 in S
such that FS(〈xn〉∞n=1) ∈ p and FS(〈xn〉∞n=1) ⊆ h−1[A]. Since h is a homo-
morphism, we have h[FS(〈xn〉∞n=1)] = FS(〈h(xn)〉∞n=1) so FS(〈h(xn)〉∞n=1) ∈
h̃(p) and FS(〈h(xn)〉∞n=1) ⊆ A. �

The proof of the following theorem is adapted from the proof of [8, Lemma
3.3]. Given x ∈ (

⊕∞
n=1 T) \ {0} we let supp(x) = {i ∈ N : πi(x) 6= 0} and

min(x) = min supp(x).

Theorem 4.5. Let S be a countable subsemigroup of
⊕∞

n=1 T and let p be
a nonprincipal, strongly summable ultrafilter on S. If

{x ∈ S : πmin(x)(x) 6= 1
2} ∈ p,

then there exists X ∈ p such that any sequence 〈xn〉∞n=1 with FS(〈xn〉∞n=1) ⊆
X has the property that if F,H ∈ Pf (N), an ∈ {1, 2} for each n ∈ F ,
bn ∈ {1, 2} for each n ∈ H, and

∑
n∈F anxn =

∑
n∈H bnxn, then F = H

and an = bn for each n ∈ F . In particular each such 〈xn〉∞n=1 satisfies strong
uniqueness of finite sums. Consequently, p has a basis of sets of the form
FS(〈xn〉∞n=1) for which 〈xn〉∞n=1 satisfies strong uniqueness of finite sums
and p is sparse.

Proof. Again by virtue of Theorem 3.2, to see that p is sparse, it suffices
to show that p has a basis of sets of the form FS(〈xn〉∞n=1) for a sequence
which satisfies strong uniqueness of finite sums. And trivially any sequence
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〈xn〉∞n=1 satisfies strong uniqueness of finite sums if it has the property that
whenever F,H ∈ Pf (N), an ∈ {1, 2} for each n ∈ F , bn ∈ {1, 2} for each
n ∈ H, and

∑
n∈F anxn =

∑
n∈H bnxn, one has F = H and an = bn for

each n ∈ F . So it suffices to produce a set X ∈ p as in the statement of
the theorem. Essentially without loss of generality, we may assume that
{x ∈ S : 0 < πmin(x)(x) < 1

2} ∈ p.
For j ∈ {0, 1, 2}, let Xj =

⋃∞
m=0

[
1

23m+j+2 ,
1

23m+j+1

)
and pick j ∈ {0, 1, 2}

such that X = {x ∈ S : πmin(x)(x) ∈ Xj} ∈ p. Let 〈xn〉∞n=1 be a sequence
in S such that FS(〈xn〉∞n=1) ⊆ X. For each i ∈ N, let Mi = {n ∈ N :
min(xn) = i}.

We first note that if n, t ∈ Mi and n 6= t, then min(xn + xt) = i because
0 < πi(xn) < 1

2 and 0 < πi(xt) <
1
2 so πi(xn + xt) 6= 0. Assume that

πi(xn) ≤ πi(xt). We cannot have some m such that 1
23m+j+2 ≤ πi(xn) ≤

πi(xt) ≤ 1
23m+j+1 and thus 4πi(xn) ≤ πi(xt). Consequently, if F ∈ Pf (Mi),

then min(
∑

n∈F xn) = i.
We now claim that if y ∈ S and y =

∑
n∈F anxn where for each n ∈ F ,

an ∈ {1, 2}, then for each n ∈ F , min(xn) ≥ min(y). Suppose instead that
i = min{min(xn) : n ∈ F} < min(y). Let H = {n ∈ F ∩Mi : an = 2}. Since
for n ∈ F \Mi, min(xn) > i we have

0 = πi(y)

=
∑

n∈F∩Mi
anπi(xn)

=
∑

n∈F∩Mi
πi(xn) +

∑
n∈H πi(xn)

= πi(
∑

n∈F∩Mi
xn) + πi(

∑
n∈H xn).

But this is impossible since both πi(
∑

n∈F∩Mi
xn) and πi(

∑
n∈H xn) are in

(0, 12).
To complete the proof, suppose that 〈xn〉∞n=1 does not have the property

in the statement of the theorem and pick a counterexample with |F | as small
as possible. Let y =

∑
n∈F anxn =

∑
n∈H bnxn and let i = min(y). Then

πi(y) =
∑

n∈F anπi(xn) =
∑

n∈F∩Mi
anπi(xn)

since πi(xn) = 0 for i ∈ F \Mi. Also πi(y) =
∑

n∈H∩Mi
bnπi(xn). Essentially

as in the proof of Theorem 4.2 we conclude that F∩Mi = H∩Mi and an = bn
for n ∈ F ∩Mi. And, of course, F ∩Mi 6= ∅ since πi(y) 6= 0. If F ′ = F \Mi

and H ′ = H \Mi, we have that
∑

n∈F ′ anxn =
∑

n∈H′ bnxn. Since |F ′| < |F |
we have that F ′ = H ′ and an = bn for all n ∈ F ′. �

Corollary 4.6. Let (S,+) be a countable, commutative, and cancellative
semigroup, and let q be a nonprincipal, strongly summable ultrafilter on S.
If q is not sparse, then {x ∈ S : (∃n ∈ N)(o(x) = 2n)} ∈ q.

Proof. We may assume that there is a sequence of groups 〈Gn〉∞n=1 such
that the group S − S ⊆ T =

⊕∞
n=1Gn where each Gn is a subgroup of

T which is either isomorphic to Q or to Z[p∞] for some prime p. (See for
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example [10, Assertions 4.1.5 and 4.1.6].) Let M = {n ∈ N : Gn 6≈ Z[2∞]}
and let T0 =

⊕
n∈M Gn. (If M = ∅ then all elements of S are of order 2n for

some n.) Let π : T → T0 be the natural surjection and let π̃ : βTd → β(T0)d
be its continuous extension.

Let q0 = π̃(q). By Lemma 4.4. q0 is strongly summable. No coordi-
nate of any member of T0 is 1

2 so by Theorem 4.5, if q0 is nonprincipal,
then it is sparse. We shall show that this leads to a contradiction, and
consequently q0 must be principal, and thus q0 = 0. So suppose that q0
is sparse and let X ∈ q0 be as guaranteed by Theorem 4.5. We claim
that q is sparse. To see this let A ∈ q. Then π[A] ∈ q0. Pick a se-
quence 〈xn〉∞n=1 such that FS(〈xn〉∞n=1) ∈ q and FS(〈xn〉∞n=1) ⊆ A∩π−1[X].
Then FS(〈π(xn)〉∞n=1) ⊆ X, and FS(〈π(xn)〉∞n=1) ∈ q0. Pick a sequence
〈an〉∞n=1 and a subsequence 〈bn〉∞n=1 of 〈an〉∞n=1 such that FS(〈an〉∞n=1) ⊆
FS(〈π(xn)〉∞n=1), FS(〈bn〉∞n=1) ∈ q0, and {an : n ∈ N} \ {bn : n ∈ N} is infi-
nite. For each n ∈ N pick Hn ∈ Pf (N) such that an =

∑
t∈Hn

π(xt). Since
〈π(xn)〉∞n=1 satisfies strong uniqueness of finite sums, Hn ∩ Hk = ∅ when
n 6= k. In particular 〈an〉∞n=1 is injective. Thus if bn = ak(n) for n ∈ N, we
have N\{k(n) : n ∈ N} is infinite. For each n ∈ N, let cn =

∑
t∈Hn

xt and let
dn = ck(n). Since π(cn) = an we have that 〈cn〉∞n=1 is injective and therefore
{cn : n ∈ N} \ {dn : n ∈ N} is infinite. Now FS(〈cn〉∞n=1) ⊆ FS(〈xn〉∞n=1) ⊆
A. Also π[FS(〈dn〉∞n=1)] = FS(〈bn〉∞n=1) ∈ q0 so FS(〈dn〉∞n=1) ∈ q. thus q is
sparse as claimed.

Thus q0 = 0 so π−1[{0}] ∈ q. And π−1[{0}] ∩ S ∈ q and

π−1[{0}] ∩ S ⊆ {0} ∪ {x ∈ S : (∃n ∈ N)(o(x) = 2n)}

and so {x ∈ S : (∃n ∈ N)(o(x) = 2n)} ∈ q. �

Corollary 4.7. Let G be a countable abelian group with only finitely many
elements of order 2 and let p be a nonprincipal strongly summable ultrafilter
on G. Then p is sparse.

Proof. Suppose p is not sparse. Let H be the subgroup of G consisting of all
elements whose order is a power of 2. By Corollary 4.6, H ∈ p. Pick k ∈ N
such that if o(x) = 2, min(x) ≤ k. Note that if x ∈ H\{0}, then min(x) ≤ k.
Indeed for such x, {xn : n ∈ N} is a subgroup of H which has a member y
of order 2. Then k ≥ min(y) ≥ min(x). Thus we may pick i ∈ {1, 2, . . . , k}
such that {x ∈ H : min(x) = i} ∈ p. Since there do not exist x1 and x2
such that {x1, x2, x1 + x2} ⊆ {x ∈ H : min(x) = i and xmin(x) = 1

2}, we

must have that {x ∈ H : xmin(x) 6= 1
2} ∈ p. Therefore, by Theorem 4.5, p is

sparse. �

Theorem 4.8. Let (S,+) be a commutative semigroup embedded in a group
G, let p be a nonprincipal strongly summable ultrafilter on S, and assume
that there is a sequence 〈xn〉∞n=1 such that FS(〈xn〉∞n=1) ∈ p and whenever
F,H ∈ Pf (N), an ∈ {1, 2} for each n ∈ F , bn ∈ {1, 2} for each n ∈ H, and
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n∈F anxn =

∑
n∈H bnxn, one has F = H and an = bn for each n ∈ F . If

q, r ∈ βGd and q + r = p, then q, r ∈ G+ p.

Proof. Pick a sequence 〈xn〉∞n=1 such that FS(〈xn〉∞n=1) ∈ p and whenever
F,H ∈ Pf (N), an ∈ {1, 2} for each n ∈ F , bn ∈ {1, 2} for each n ∈ H, and∑

n∈F anxn =
∑

n∈H bnxn, one has F = H and an = bn for each n ∈ F .
Let X = FS(〈xn〉∞n=1). Notice that the sequence 〈3n〉∞n=1 shares the above
property with 〈xn〉∞n=1. That is, whenever F,H ∈ Pf (N), an ∈ {1, 2} for
each n ∈ F , bn ∈ {1, 2} for each n ∈ H, and

∑
n∈F an3n =

∑
n∈H bn3n,

one has F = H and an = bn for each n ∈ F . Consequently, the following
statements hold for any F,H,L,K ∈ Pf (N).

(1)
∑

n∈F xn +
∑

n∈H xn =
∑

n∈K xn +
∑

n∈L xn if and only if∑
n∈F 3n +

∑
n∈H 3n =

∑
n∈K 3n +

∑
n∈L 3n.

(2)
∑

n∈F xn −
∑

n∈H xn =
∑

n∈K xn −
∑

n∈L xn if and only if∑
n∈F 3n −

∑
n∈H 3n =

∑
n∈K 3n −

∑
n∈L 3n.

(3)
∑

n∈F xn −
∑

n∈H xn +
∑

n∈K xn =
∑

n∈L xn if and only if∑
n∈F 3n −

∑
n∈H 3n +

∑
n∈K 3n =

∑
n∈L 3n.

Indeed, both statements in (1) hold if and only if F 4H = K 4 L and
F∩H = K∩L; both statements in (2) hold if and only if F4L = H4K and
F∩L = H∩K; and both statements in (3) hold if and only if F4K = H4L
and F ∩K = H ∩ L.

By virtue of statement (2) we can define φ : X −X → Z by

φ(
∑

n∈F xn −
∑

n∈H xn) =
∑

n∈F 3n −
∑

n∈H 3n.

Note that φ[X] ⊆ N. For y ∈ G \ (X − X), define φ(y) = 0 (or any other

value). Let φ̃ : βGd → βZ be the continuous extension of φ.

We claim that φ̃(p) is strongly summable on N. To see this, let A ∈
φ̃(p). Then X ∩ φ−1[A] ∈ p so pick a sequence 〈yn〉∞n=1 in S such that
FS(〈yn〉∞n=1) ⊆ X ∩ φ−1[A] and FS(〈yn〉∞n=1) ∈ p. For each n ∈ N, pick
Fn ∈ Pf (N) such that yn =

∑
t∈Fn

xt. Given n 6= k in N, we have yn + yk ∈
FS(〈xn〉∞n=1) so

∑
t∈Fn

xt +
∑

t∈Fk
xt =

∑
t∈L xt for some L ∈ Pf (N), so

Fn ∩ Fk = ∅. Therefore we have that φ[FS(〈yn〉∞n=1)] = FS(〈φ(yn)〉∞n=1) so
FS(〈φ(yn)〉∞n=1) ∈ p and FS(〈φ(yn)〉∞n=1) ⊆ A.

Assume now that we have q, r ∈ βGd such that q+r = p. We need to show
that q, r ∈ G + p. We claim that we can make the additional assumption
that X ∈ r. To see this, since X ∈ p, {b ∈ G : −b + X ∈ r} ∈ q so pick
some b ∈ G such that −b + X ∈ r. If r′ = b + r and q′ = −b + q, then
q′ + r′ = p and X ∈ r′. If we show that q′, r′ ∈ G+ p it follows immediately
that q, r ∈ G+ p. So we assume that X ∈ r.

Next we show that:

(∗) If u, v, w ∈ βGd, u+ v = w, and v, w ∈ X, then X −X ∈ u.
(†) If u, v ∈ βGd, u+ v = p, X −X ∈ u, and X ∈ v, then

φ̃(u) + φ̃(v) = φ̃(p).
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To verify (∗), let B = {a ∈ G : −a+X ∈ v}. Since X ∈ w, we have that
B ∈ u. We claim that B ⊆ X −X. So let a ∈ B. Then (−a+X) ∩X ∈ v
so (−a+X) ∩X 6= ∅ and thus a ∈ X −X.

To verify (†), let A ∈ φ̃(p). We shall show that A ∈ φ̃(u) + φ̃(v). Let
B = X ∩ φ−1[A]. Then B ∈ p = u + v so {s ∈ G : −s + B ∈ v} ∈ u.
Let C = {s ∈ X − X : −s + B ∈ v}. Since X − X ∈ u, C ∈ u and so

φ[C] ∈ φ̃(u). We claim that φ[C] ⊆ {k ∈ Z : −k + φ[B] ∈ φ̃(v)}, so that

φ[B] ∈ φ̃(u)+φ̃(v) and therefore A ∈ φ̃(u)+φ̃(v) as required. Let s ∈ C. We

need to show that −φ(s) +φ[B] ∈ φ̃(v). Now X ∩ (−s+B) ∈ v so it suffices
to show that φ[X ∩ (−s + B)] ⊆ −φ(s) + φ[B]. So let w ∈ X ∩ (−s + B).
Then s+w ∈ B ⊆ X so by statement (3), φ(s) + φ(w) = φ(s+w) and thus
φ(w) ∈ −φ(s) + φ[B].

By (∗), X−X ∈ q and by (†), φ̃(q) + φ̃(r) = φ̃(p) so by Theorem 1.5 pick

m ∈ Z such that φ̃(r) = m + φ̃(p). Now φ[X] ∈ φ̃(r) and φ[X] ∈ φ̃(p) so
m ∈ φ[X] − φ[X] = φ[X − X]. Pick c ∈ X − X such that m = φ(c). We
claim that r = c+ p. To show this we let A ∈ r and show that −c+A ∈ p,
for which it suffices that −c + (A ∩ X) ∈ p. Now φ[A ∩ X] ∈ φ̃(r) =

φ(c) + φ̃(p) so −φ(c) + φ[A ∩X] ∈ φ̃(p). Pick B ∈ p with B ⊆ X such that
φ[B] ⊆ −φ(c) + φ[A ∩X]. We claim that B ⊆ −c + A so let d ∈ B. Then
φ(c)+φ(d) ∈ φ[A∩X] so pick h ∈ A∩X such that φ(c)+φ(d) = φ(h). Then
by statement (2), c+d = h so d ∈ −c+A as required. Thus r = c+p ∈ G+p.

Finally, let q′ = c + q. By [7, Theorem 6.54], the center of βGd is G so
q′ + p = c + q + (−c) + r = q + r = p. Thus by (∗), X −X ∈ q′ and so by

(†), φ̃(q′) + φ̃(p) = φ̃(p). So φ̃(q′) = φ̃(p). (By Theorem 1.5 φ̃(q′) = n+ φ̃(p)

for some n ∈ Z. but then φ̃(p) = φ̃(q′) + φ̃(p) = n+ φ̃(p) + φ̃(p) = n+ φ̃(p),

and thus n = 0.) By statement (2), φ is injective on X −X so φ̃ is injective
on X −X and thus q′ = p. That is, q = −c+ p. �

Corollary 4.9. Let S be a countable subsemigroup of
⊕∞

n=1 T, let p be a
nonprincipal, strongly summable ultrafilter on S, and let G = S − S. If
{x ∈ S : πmin(x)(x) 6= 1

2} ∈ p, q, r ∈ βGd, and q + r = p, then q, r ∈ G+ p.

Proof. Theorems 4.5 and 4.8. �

Question 4.10. Can it be shown in ZFC that there is an infinite group G
and an idempotent in G∗ which can only be expressed trivially as a product
in G∗?

Question 4.11. Does every strongly summable ultrafilter on a countable
abelian group G have the property that it can only be expressed trivially as
a product in G∗?

Let G =
⊕∞

n=1 Z2. Then any strongly summable ultrafilter on G fails to
satisfy the hypotheses of Theorem 4.5. And, in fact, there does not exist
a sequence in G satisfying strong uniqueness of finite sums. On the other
hand by [8, Theorem 2.8] Martin’s Axiom does imply the existence of sparse
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strongly summable ultrafilters on G. (And [8, Theorem 3.6] establishes that
one cannot prove in ZFC the existence of strongly summable ultrafilters on
G.) In the originally submitted version of this paper we asked whether it is
consistent with ZFC that there is a nonsparse strongly summable ultrafilter
on G? This question has now been answered in the negative by David
FernándezBretón [4] who showed that every strongly summable ultrafilter
on G is sparse.

Question 4.12. Is every strongly summable ultrafilter on a countable abelian
group sparse?

References

[1] Blass, Andreas. Ultrafilters related to Hindman’s finite-unions theorem and its
extensions. Logic and combinatorics, 89–124. Contemporary Math., 65, Amer.
Math. Soc., Providence, RI, 1987. MR0891244 (88g:04002), Zbl 0634.03045,
doi: 10.1090/conm/065.

[2] Blass, Andreas; Hindman, Neil. On strongly summable ultrafilters and union ul-
trafilters. Trans. Amer. Math. Soc. 304 (1987), no. 1, 83–97. MR0906807 (88i:03080),
Zbl 0643.03032, doi: 10.1090/S0002-9947-1987-0906807-4.

[3] Ellis, Robert. Distal transformation groups. Pacific J. Math. 8 (1958), 401–405.
MR0101283 (21 #96), Zbl 0092.39702.

[4] FernándezBretón, D. Every strongly summable ultrafilter on
⊕

n<ω Z2 is sparse.
Manuscript.

[5] Hindman, Neil. The existence of certain ultrafilters on N and a conjecture of Graham
and Rothschild. Proc. Amer. Math. Soc. 36 (1972), 341–346. MR0307926 (46 #7041),
Zbl 0259.10046.

[6] Hindman, Neil. Finite sums from sequences within cells of a partition of N. J. Comb.
Theory (Series A) 17 (1974), 1–11. MR0349574 (50 #2067), Zbl 0285.05012.

[7] Hindman, Neil; Strauss, Dona. Algebra in the Stone-Čech compactification. The-
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