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A sharp norm estimate for weighted
Bergman projections on the minimal ball

Jocelyn Gonessa and Kehe Zhu

Abstract. We show that, for 1 < p < ∞, the norm of the weighted

Bergman projection Ps,B∗ on Lp(B∗, |z • z|
p−2
2 dvs) is comparable to

csc(π/p), where B∗ is the minimal unit ball in Cn.
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1. Introduction

We consider the domain B∗ in Cn, n ≥ 2, defined by

B∗ = {z ∈ Cn : |z|2 + |z • z| < 1},

where

z • w =
n∑

j=1

zjwj

for z and w in Cn. This is the unit ball of Cn with respect to the norm

N∗(z) :=
√
|z|2 + |z • z|, z ∈ Cn.

The norm N := N∗/
√

2 was introduced by Hahn and Pflug in [1], where it
was shown to be the smallest norm in Cn that extends the euclidean norm
in Rn under certain restrictions.
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The domain B∗ has since been studied by Hahn, Mengotti, Oeljiklaus,
Pflug, Youssfi, and others. In particular, it is well known that the automor-
phism group of B∗ is compact and its identity component is

Aut0O(B∗) = S1 · SO(n, R),

where the S1-action is diagonal and the SO(n, R)-action is by matrix multi-
plication; see [5] for example. It is also well known that B∗ is a nonhomoge-
neous domain. Its singular boundary consists of all points z with z • z = 0,
and the regular part of the boundary of B∗ consists of strictly pseudoconvex
points.

As a nonhomogeneous domain, it is not surprising that B∗ exhibits cer-
tain exotic behavior. For example, it was recently used in [6] to construct
counterexamples to the Lu Qi-Keng conjecture. What is a bit unexpected
is that the norm of the Bergman projection on some Lp spaces on B∗ can be
estimated in such a way that resembles the situation on the Euclidean ball
in Cn. This constitutes the main result of the paper.

Theorem 1. For any s > −1 there exists a constant C > 0, depending only
on s and n but not on p, such that the norm ‖Ps,B∗‖p of the linear operator

Ps,B∗ : Lp
(
B∗, |z • z|

p−2
2 dvs

)
→ Lp

(
B∗, |z • z|

p−2
2 dvs

)
satisfies the estimates

C−1 csc(π/p) ≤ ‖Ps,B∗‖ ≤ C csc(π/p)

for all 1 < p < ∞.

A similar, optimal estimate for the Bergman projection on Lp spaces of the
Euclidean ball in Cn was obtained in [10]. So this paper can be considered
a sequel to [10]. On the other hand, it was shown in [3] that the operator
Ps,B∗ is bounded on Lp

(
B∗, |z • z|

p−2
2 dvs

)
for 1 < p < ∞. Thus our main

result here is a complement to [3].
This work was done while the first-named author was at the University of

Yaoundé I. He wishes to thank the Agence Universitaire de la Francophonie
for financial support.

2. Preliminaries

For each s > −1 we let vs denote the measure on B∗ defined by

dvs(z) := (1−N2
∗ (z))sdv(z),

where v denotes the normalized Lebesgue measure on B∗. For all 0 < p < ∞
we define

Ap
s(B∗) := H(B∗) ∩ Lp

(
B∗, |z • z|

p−2
2 dvs

)
,

where H(B∗) is the space of all holomorphic functions on B∗. Naturally, the
spaces Ap

s(B∗) are called weighted Bergman spaces of B∗.
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When p = 2, there exists an orthogonal projection from L2(B∗, dvs) onto
A2

s(B∗). This will be called the weighted Bergman projection and is denoted
by Ps,B∗ .

It is well known that Ps,B∗ is an integral operator on L2(B∗, dvs), namely,

Ps,B∗f(z) =
∫

B∗
Ks,B∗(z, w)f(w) dvs(w),

where

Ks,B∗(z, w) =
A(X, Y )

(n2 + n− s)vs(B∗)(X2 − Y )n+1+s

is the weighted Bergman kernel. Here

X = 1− z • w̄, Y = (z • z) w • w,

and A(X, Y ) is the sum
∞∑

j=0

cn,s,jX
n+s−1−2jY j

[
2(n + s)X− (n− 2j + s)(n + 1 + 2s)

n + s + 1
(X2−Y )

]
.

As usual,

cn,s,j =
(

n + s + 1
2j + 1

)
=

(n + s + 1)(n + s) · · · (n + s− 2j + 1)
(2j + 1)!

is the binomial coefficient and vs(B∗) is the weighted Lebesgue volume of B∗.
See [3] and [5] for these formulas and more information about the weighted
Bergman kernels.

Because of the infinite sum A(X, Y ), the formula for Ks,B∗ in the previous
paragraph is not really a closed form. As such, it is inconvenient for us to
do estimates for Ps,B∗ directly. Thus we employ a technique that was used
in [3]. More specifically, we relate the domain B∗ to the hypersurface M of
the Euclidean unit ball in Cn+1 defined by

M = {z ∈ Cn+1 \ {0} : z • z = 0, |z| < 1}.

If Pr : Cn+1 → Cn is defined by

Pr(z1, . . . , zn, zn+1) = (z1, . . . , zn),

and F = Pr|M, then F : M → B∗ − {0}.
Let

H = {z ∈ Cn+1 \ {0} : z • z = 0}.
It was proved in [5] that there is an SO(n+1, C)-invariant holomorphic form
α on H. Moreover, this form is unique up to a multiplicative constant. In
fact, after appropriate normalization, the restriction to H ∩ (C \ {0})n+1 of
this form is given by

α(z) =
n+1∑
j=1

(−1)j−1

zj
dz1 ∧ · · · ∧ d̂zj ∧ · · · ∧ dzn+1.
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Our norm estimates for the weighted Bergman projection Ps,B∗ on Lp

spaces will be based on the corresponding estimates on M. Therefore, we will
consider the spaces Lp

s(M) consisting of measurable complex-valued func-
tions f on M such that

‖f‖p
Lp

s(M)
=

∫
M
|f(z)|p(1− |z|2)s α(z) ∧ ᾱ(z)

C̃
< ∞,

where

C̃ := (−1)
n(n+1)

2 (2i)n.

We use Ap
s(M) to denote the subspace of all holomorphic functions in Lp

s(M).
The weighted Bergman projection Ps,M is then the orthogonal projection
from L2

s(M) onto A2
s(M). Again, it is well known that Ps,M is an integral

operator on L2
s(M) given by the formula

Ps,Mf(z) =
∫

M
Ks,M(z, w)f(w)(1− |w|2)s α(w) ∧ ᾱ(w)

C̃
,

where Ks,M is the corresponding Bergman kernel.
The starting point for our analysis is the following closed form of Ks,M,

which was obtained as Theorem 3.2 in [3].

Lemma 2. The weighted Bergman kernel Ks,M of A2
s(M) is given by

Ks,M(z, w) =
C

(
n− 1 + (n + 1 + 2s)z • w̄

)
(1− z • w̄)n+s+1

,

where C is a certain constant that depends on n and s.

Let f : B∗ → C be a measurable function. We define a function Tf on M
by

(Tf)(z) :=
zn+1

(2(n + 1)2)1/p
(f ◦ F)(z) =

zn+1f(z1, . . . , zn)
(2(n + 1)2)1/p

.

The operator T will also play a key role in our analysis. In particular, we
need the following result which was obtained as Lemma 4.1 in [3].

Lemma 3. For each p ≥ 1 and s > −1 the linear operator T is an isometry
from Lp

(
B∗, |z•z|

p−2
2 dvs

)
into Lp

s(M). Moreover, we have Ps,MT = TPs,B∗

on Lp
(
B∗, |z • z|

p−2
2 dvs

)
.

Theorem B of [3] states that the operator Ps,B∗ maps Lp
(
B∗, |z•z|

p−2
2 dvs

)
boundedly onto Ap

s(B∗) for all p > 1. Our goal is to obtain a sharp norm
estimate of Ps,B∗ on Lp

(
B∗, |z • z|

p−2
2 dvs

)
. To this end, we need to derive

an improved version of the classical Forelli–Rudin integral estimates in the
case of the minimal ball.
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3. Refined Forelli–Rudin type estimates

We use µ to denote the unique O(n + 1, R)-invariant measure on the
boundary ∂M of M that satisfies µ(∂M) = 1. For any integers n and k we
will need the following constant,

N(k, n) =
(2k + n− 1)(k + n− 2)!

k!(n− 1)!
.

Lemma 4. Let d be any nonnegative integer. For any T > 0 there exists a
constant C > 0, depending on n, T and d but not on t, such that∫

∂M

|z • ξ̄|2d

|1− z • ξ̄|n+t
dµ(ξ) ≤ CΓ(t)

(1− |z|2)t

for all z ∈ M and 0 < t < T .

Proof. Let I denote the integral above and let λ = (n + t)/2. By the proof
of Lemma 5.1 in [3], we have

(1) I =
|z|2d

Γ2(λ)

∞∑
k=0

(
Γ(k + λ)
Γ(k + 1)

)2 |z|2k

N(k + d, n)
.

Since

(2)
1

(1− |z|2)t
=

1
Γ(t)

∞∑
k=0

Γ(k + t)
Γ(k + 1)

|z|2k.

Lemma 4 will be proved if we can show that there exists a constant C > 0,
depending only on n, T , and d, such that

(3)
Γ2(k + λ)

Γ2(k + 1)N(k + d, n)
≤ CΓ(k + t)

Γ(k + 1)
for k ∈ N.

Let

Ak(t) =
Γ2(k + λ)

Γ(k + 1)N(k + d, n)Γ(k + t)
.

By Stirling’s formula there exist two positive constants C1 and M such that

C−1
1 ≤ Γ(x)

xx− 1
2 e−x

≤ C1

for all x ≥ M . It follows that the constant N(k + d, n) is comparable to
kn−1. Moreover, there exist positive constants C2 and C3, depending only
on n, T , and d, such that

Ak(t) ≤ C2

(
(k + λ)k+λ− 1

2 e−k−λ
)2

(k + 1)k+1− 1
2 e−k−1kn−1(k + t)k+t− 1

2 e−k−t

≤ C3

[
1 +

λ

k

]n−1[
1 +

λ− t

k + t

]k+t[
1 +

λ− 1
k + 1

]k+1[k + 1
k + λ

] 3
2

.



106 JOCELYN GONESSA AND KEHE ZHU

By virtue of uniform convergence of the limit

(4) lim
θ→∞

(
1 +

x

θ

)θ
= ex

for x in any bounded interval, we have Ak(t) ≤ C, where C is a positive
constant independent of t and k. This proves the desired estimate (3). �

Lemma 5. Suppose T > 0, A > −1, and d is a nonnegative integer. Then
there exists a constant C > 0 (depending on d, T , and A, but not on t and
s) such that∫

M

|z • w̄|2d

|1− z • w̄|n+t+s+1
(1− |w|2)sα(w) ∧ ᾱ(w) ≤ CΓ(s + 1)Γ(t)

(1− |z|2)t

for all −1 < s < A, 0 < t < T , and z ∈ M.

Proof. Let J denote the integral above. According to Lemma 2.1 on page
506 in [3], we have

J =
∫ 1

0
(1− r2)sr2n−3

(∫
∂M

|(rz) • ξ̄|2d

|1− (rz) • ξ̄|n+t+s+1
dµ(ξ)

)
dr.

Using the binomial series and the orthogonality of the sequence of functions
ξ 7→ (z • ξ̄)k, k ∈ N, in L2(∂M, µ), we obtain

J =
Γ(s + 1)|z|2d

2Γ2(λ)

∞∑
k=0

Γ2(k + λ)Γ(n + k + d− 1)|z|2k

Γ2(k + 1)Γ(s + n + k + d)N(k + d, n)
,

where λ = (n + t + s + 1)/2.
As t goes from 0 to T , and s goes from −1 to A, the parameter λ goes

from n/2 to (n + T + A + 1)/2, so Γ2(λ) is bounded below away from 0 and
bounded above away from infinity.

Therefore, just like in the proof of Lemma 4, we only need to show that
there is a positive constant C, independent of k and t, such that Bk(t, s) ≤ C
for all k ≥ 0, 0 < t < T , and −1 < s < A, where

Bk(t, s) =
Γ(n + k + d− 1)
Γ(s + n + k + d)

Ak(t).

A little computing shows that the factor Γ(n+k+d−1)
Γ(s+n+k+d) is uniformly bounded

for s ∈ (−1, A). So, from estimate for Ak, there exists a positive constant
C = C(A, T, d) such that Bk(t, s) ≤ C2 for all k ≥ 0, t ∈ (0, T ), and
s ∈ (−1, A). This proves the desired estimate. �

4. An optimal pointwise estimate

The proof of our main result depends on two estimates. One is the refined
version of the Forelli–Rudin estimates obtained in the previous section. The
other is an optimal pointwise estimate for functions in weighted Bergman
spaces in our context. We refer the interested reader to [8] and [11] for similar
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estimates about functions in weighted Bergman spaces of the Euclidean ball
in Cn.

More specifically, we will obtain an optimal pointwise estimate for the
functions in Ap

s(M). To this end, we consider the following commutative
diagram

M ∪ {0} φ−−−−→ M ∪ {0}

i

y yi

Bn+1
ϕz−−−−→ Bn+1

where Bn+1 is the unit ball in Cn+1, z ∈ M, ϕz is the involutive automor-
phism determined by z (see [11], for example, for more information about
these automorphisms), i is the identity map, and φ is given by i◦φ = ϕz ◦ i.
Thus M is invariant by the mapping ϕz so that one indeed can define the
inverse mapping i−1.

For any s > −1 we consider the measure

dλs(z) =
Γ(n + s)

2ω(∂M)Γ(n− 1)Γ(s + 1)
(1− |z|2)s α(z) ∧ ᾱ(z)

on M, where ω is the (2n− 1)-form on ∂M defined by

ω(z)(V1, . . . , V2n−1) = α(z) ∧ ᾱ(z)(z, V1, . . . , V2n−1).

Proposition 6. Suppose 1 ≤ p < ∞ and −1 < s < ∞. Then

|g(z)|p ≤ 1
(1− |z|2)n+1+s

∫
M
|g(w)|p dλs(w)

for all g ∈ Ap
s(M) and z ∈ M.

Proof. Let g ∈ Ap
s(M). By the mean value property for holomorphic func-

tions,

g(z) =
∫

∂M
g(z + rξ)dµ(ξ)

for all z ∈ M and 0 ≤ r < 1 − |z|. By Lemma 2.1 in [3] and Hölder’s
inequality,

|g(z)|p ≤
∫

M
|g(z + rw)|p dλs(w).

Moreover, from Lemma 3.2 in [2], g can be uniquely extented to the complex
hypersurface M∪{0}. Let z → 0 and r → 1− in the above inequality. Then

(5) |g(0)|p ≤
∫

M
|g(w)|p dλs(w).

More generally, for g ∈ Ap
s(M) and z ∈ M, we consider the function

defined on M by

F (w) = g ◦ i−1 ◦ ϕz ◦ i(w)
(1− |z|2)(n+1+s)/p

(1− w • z̄)2(n+1+s)/p
.
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It can be checked that

(6)
∫

M
|F (w)|p dλs(w) =

∫
M
|g(w)|p dλs(w).

In fact, if we let

X = {(x, y) ∈ Rn+1 × Rn+1 : x • x = y • y = 1, x • y = 0},

then it is clear that the mapping

(x, y) 7→ z =
x + iy√

2

injects X into Cn+1 and the image is ∂M. It follows from the O(n + 1)-
invariance of X (see [7] for example) and Lemma 1.7 in [11] that∫

∂M
|F (rξ)|pdµ(ξ) =

∫
X
|g(rζ)|pdv(ζ),

where dv is the normalized Lebesgue measure on Cn+1. Using Lemma 2.1
in [3] again, we obtain (6).

The proposition is proved if we combine the estimates in (5) and (6). �

5. Proof of the main result

The following result is a standard boundedness criterion for integral op-
erators on Lp-spaces and is usually referred to as Schur’s test.

Lemma 7. Suppose H(x, y) is a positive kernel and

Tf(x) =
∫

X
H(x, y)f(y) dν(y)

is the associated integral operator. Let 1 < p < ∞ with 1
p + 1

q = 1. If there
exists a positive function h(x) and positive constants C1 and C2 such that∫

X
H(x, y)(h(y))q dν(y) ≤ C1(h(x))q, x ∈ X

and ∫
X

H(x, y)(h(x))p dν(x) ≤ C1(h(y))p, y ∈ X.

Then the operator T is bounded on Lp(X, dν). Moreover, the norm of T on

Lp(X, dν) does not exceed C
1
q

1 C
1
p

2 .

Proof. See [11]. �

We can now prove the main result of the paper.

Theorem 8. For any s > −1 there exists a constant C > 0 (depending only
on s and n but not on p) such that the norm ‖Ps,M‖p of the linear operator

Ps,M : Lp
s(M) → Ap

s(M)
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satisfies the estimates

C csc(π/p) ≤ ‖Ps,M‖p ≤ C csc(π/p)

for all 1 < p < ∞, where Ps,M denotes the orthogonal projection from L2
s(M)

onto A2
s(M).

Proof. Fix 1 < p < ∞ and let q be the conjuguate exponent, namely,
1/p + 1/q = 1. Consider the function

h(z) = (1− |z|2)−(s+1)/(pq), z ∈ M.

By Lemmas 2 and 5, the integral

I =
∫

M
|Ks,M(z, w)|hq(w)(1− |w|2)s α(w) ∧ ᾱ(w)

C̃

satisfies the following estimates,

I ≤ C1

∫
M

(1− |w|2)−
s+1

p
+s

|1− z • w|n+s+1
α(w) ∧ ᾱ(w)

= C1

∫
M

(1− |w|2)−
s+1

q
−1

|1− z • w|n+ s+1
q
−1+ s+1

p
+1

α(w) ∧ ᾱ(w)

≤
C2 Γ( s+1

p )Γ( s+1
q )

(1− |z|2)
s+1

p

= C2 Γ
(

s + 1
p

)
Γ

(
s + 1

q

)
hq(z),

where C1 and C2 are positive constants independent of p.
Similary, the integral

J =
∫

M
|Ks,M(z, w)|hp(z)(1− |z|2)s α(z) ∧ ᾱ(z)

C̃

satisfies

J ≤ C3 Γ
(

s + 1
p

)
Γ

(
s + 1

q

)
hp(w),

where C3 is a positive constant independent of p. It follows from Lemma 7
that the norm of the operator Ps,M on Lp

s(M) does not exceed

C4 Γ
(

s + 1
p

)
Γ

(
s + 1

q

)
,

where C4 is a positive constant independent of p. So the norm estimate
‖Ps,M‖p ≤ C csc(π/p) follows from the following well-known property of the
gamma function:

Γ
(

s + 1
p

)
Γ

(
s + 1

q

)
≤ C

sin(π/p)
,

where C is a positive constant independent of p; see [10].
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Observe that csc(π/p) is comparable to p when p is away from 0. There-
fore, to prove that the above estimate for ‖Ps,M‖p is sharp, we only need
to establish the norm estimate ‖Ps,M‖p ≥ pC−1 for all p > 2. The case
1 < p < 2 will follow from duality and the symmetry of the sine function.

So we assume p > 2 and consider the function

f(z) = log
(

1√
2
− z1

)
− log

(
1√
2
− z1

)
, z = (z1, z2, . . . , zn) ∈ B∗.

Alternatively,

f(z) = 2iArg

(
1√
2
− z1

)
,

with

−π < Arg

(
1√
2
− z1

)
< π.

Thus the norm of f on Lp(B∗, |z •z|
p−2
2 dvs) does not exceed 2πC

−1/p
s , where

Cs is a positive constant that only depends on s and n.
By Proposition 6, we have

(7) |g(z)| ≤
C
−1/p
s ‖g‖Ap

s(M)

(1− |z|2)
n+s+1

p

for all g ∈ Ap
s(M) and z ∈ M. We now take g = Ps,MTf = TPs,B∗f and

z =
(

r√
2
, 0, . . . , 0, i

r√
2

)
in (7) with 0 < r < 1. Using the definition of T, the fact that T is an
isometry, and the formula

Ps,B∗f(z) = log
(

1√
2
− z1

)
,

we obtain

‖Ps, B∗f‖Ap
s(B∗) ≥

C
1/p
s r(1− r)

n+s+1
p

(2(n + 1)2)1/p
√

2
log

√
2

1− r
.

In particular, if r = 1− e−p, then

‖Ps, B∗f‖Ap
s(B∗) ≥

(log
√

2 + p)(1− e−p)e−(n+s+1)C
1/p
s

(2(n + 1)2)1/p
√

2
.

This shows that there exists a positive constant C, independent of p, such
that

(8) ‖Ps,B∗‖p ≥ Cp, 2 < p < ∞.

Since Ps,MT = TPs,B∗ and since T is an isometry, we have ‖Ps,M‖ ≥
‖Ps,B∗‖. Combining this with (8) we obtain the desired lower estimate for
‖Ps,M‖. �
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Our main result, Theorem 1, is now a consequence of Theorem 8 above.
In fact, it follows from Lemma 3 that

(9) ‖Ps,B∗f‖p = ‖TPs,B∗f‖p = ‖Ps,MTf‖p

for all f ∈ Lp(B∗, |z • z|
p−2
2 dvs). Using the upper bound for the operator

Ps,M from Theorem 8 and Lemma 3 again, we obtain

‖Ps,B∗f‖p ≤ C csc(π/p)‖Tf‖p = C csc(π/p)‖f‖p

for all f ∈ Lp(B∗, |z•z|
p−2
2 dvs), where C is a constant indepndent of p. This

shows that ‖Ps,B∗‖p ≤ C csc(π/p) for all 1 < p < ∞.
On the other hand, it follows from (8) that ‖Ps,B∗‖p ≥ C csc(π/p) for all

p ≥ 2. By duality, this holds for 1 < p ≤ 2 as well, which completes the
proof of Theorem 1.
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