New York Journal of Mathematics

New York J. Math. 17 (2011) 139-147.

The λ_{u}-function in $J B^{*}$-algebras

Akhlaq A. Siddiqui

Abstract

Inspired by work of R. M. Aron and R. H. Lohman, Gert K. Pedersen introduced a geometric function, which is defined on the unit ball of a C^{*}-algebra and called the λ_{u}-function. Our goal here is to extend the notion of a λ_{u}-function to the context of $J B^{*}$-algebras. We study convex combinations of elements in a $J B^{*}$-algebra using the λ_{u}-function and earlier results we have obtained on the geometry of $J B^{*}$ algebras. A formula to compute λ_{u}-function is obtained for invertible elements in a $J B^{*}$-algebra. In the course of our analysis, some C^{*} algebra results due to G. K. Pedersen, C. L. Olsen and M. Rørdam are extended to general $J B^{*}$-algebras.

Contents

1. Introduction and preliminaries 139
2. λ_{u}-function 141

References 146

1. Introduction and preliminaries

R. M. Aron and R. H. Lohman [2] studied a geometric function, called the λ-function for normed spaces. Subsequently, G. K. Pedersen [11] introduced a related function, namely, the λ_{u}-function, defined on the unit ball of a C^{*} algebra, where u is a unitary element of the algebra. In this article, we study the λ_{u}-function in the general setting of $J B^{*}$-algebras. It may be noted here that the study of the λ_{u}-function can not be further extended to more general $J B^{*}$-triple systems (cf. [19] or [16]) which have no invertible (hence, no unitary) elements.

The absence of associativity in $J B^{*}$-algebras causes great difficulties in calculations. In [15], the author proved some fundamental results on unitary isotopes of $J B^{*}$-algebras and by applying these we obtained various results on representing elements as convex combinations of unitaries in a $J B^{*}$ algebra (see [14, 16, 17, 18]); our approach also provides alternative proofs to certain related results for C^{*}-algebras.

[^0]We introduce below two special sets of real numbers $\mathcal{S}(x)$ and $\mathcal{V}(x)$ that turn out to be intervals and are used to study certain convex combinations of elements in $J B^{*}$-algebras. Using some of our earlier results from [15, 18], we shall investigate the relationship between the intervals $\mathcal{S}(x), \mathcal{V}(x)$ and the λ_{u}-function for $J B^{*}$-algebras. In the process, we obtain extensions to $J B^{*}$-algebras of some C^{*}-algebra results that appeared in [10, 11, 12]. In the end, a formula to compute λ_{u}-function is obtained for invertible elements of a $J B^{*}$-algebra.

Preliminaries. We begin by recalling that if x is an element in a Jordan algebra \mathcal{J}, then the x-homotope of \mathcal{J}, denoted by $\mathcal{J}_{[x]}$, is the Jordan algebra consisting of the same elements and linear space structure as \mathcal{J} but with a different product, denoted by " $\cdot x$ ", defined by $a \cdot x b=\{a x b\}$ for all a, b in $\mathcal{J}_{[x]}$. Here, $\{p q r\}$ denotes the Jordan triple product and is defined in any Jordan algebra by $\{p q r\}=(p \circ q) \circ r-(p \circ r) \circ q+(q \circ r) \circ p$ where " \circ " stands for the Jordan product in the original algebra. (See [5], for instance.)

The homotopes of interest here will be obtained when \mathcal{J} has a unit e and x is invertible: this means that there exists $x^{-1} \in \mathcal{J}$, called the inverse of x, such that $x \circ x^{-1}=e$ and $x^{2} \circ x^{-1}=x$. The set of all invertible elements of \mathcal{J} will be denoted by $\mathcal{J}_{\text {inv }}$. In this case, as $x \cdot_{x^{-1}} y=\left\{x x^{-1} y\right\}=$ $y+\left(x^{-1} \circ y\right) \circ x-(x \circ y) \circ x^{-1}=y$ (see [8]), x acts as the unit for the homotope $\mathcal{J}_{\left[x^{-1}\right]}$ of \mathcal{J}.

If $x \in \mathcal{J}_{\text {inv }}$ then x-isotope of \mathcal{J}, denoted by $\mathcal{J}^{[x]}$, is defined to be the x^{-1}-homotope $\mathcal{J}_{\left[x^{-1}\right]}$ of \mathcal{J}. We denote the multiplication " x^{-1} " of $\mathcal{J}^{[x]}$ by " \circ_{x} ". $\{,,\}_{x}, y^{-1_{x}}$ will stand for the Jordan triple product and the multiplicative inverse (if it exists) of y in the isotope $\mathcal{J}^{[x]}$, respectively.

Isotopy may produce essentially different Jordan algebras. The x-isotope $\mathcal{J}^{[x]}$ of a Jordan algebra \mathcal{J} need not be isomorphic to \mathcal{J}. For such examples see [9, 7]. However, some important features of Jordan algebras are unaffected by isotopy (see [15, Lemma 4.2 and Theorem 4.6], for examples).
$\boldsymbol{J} \boldsymbol{B}^{*}$-algebras. A Jordan algebra \mathcal{J} with product \circ is called a Banach Jordan algebra if there is a norm $\|\cdot\|$ on \mathcal{J} such that $(\mathcal{J},\|\cdot\|)$ is a Banach space and $\|a \circ b\| \leq\|a\|\|b\|$. If, in addition, \mathcal{J} has unit e with $\|e\|=1$ then \mathcal{J} is called a unital Banach Jordan algebra.

An important tool in Banach algebra theory is the spectrum of an element. Let \mathcal{J} be a complex unital Banach Jordan algebra with unit e and let $x \in \mathcal{J}$. The spectrum of x in \mathcal{J}, denoted by $\sigma_{\mathcal{J}}(x)$, is defined by

$$
\sigma_{\mathcal{J}}(x)=\{\lambda \in \mathbb{C}: x-\lambda e \text { is not invertible in } \mathcal{J}\}
$$

Here, \mathbb{C} denotes the field of complex numbers. When no confusion can arise, we shall write $\sigma(x)$ in place of $\sigma_{\mathcal{J}}(x)$.

We are interested in a special class of Banach Jordan algebras, called $J B^{*}$-algebras. A complex Banach Jordan algebra \mathcal{J} with involution $*$ is called a $J B^{*}$-algebra if $\left\|\left\{x x^{*} x\right\}\right\|=\|x\|^{3}$ for all $x \in \mathcal{J}$. It follows that
$\left\|x^{*}\right\|=\|x\|$ for all elements x of a $J B^{*}$-algebra (see [22], for instance). The class of $J B^{*}$-algebras was introduced by Kaplansky in 1976 and it includes all C^{*}-algebras as a proper subclass (cf. [20]).

As usual, an element x of a $J B^{*}$-algebra \mathcal{J} is said to be self-adjoint if $x^{*}=x$. A self-adjoint element x of \mathcal{J} is said to be positive in \mathcal{J} if its spectrum $\sigma_{\mathcal{J}}(x)$ is contained in the set of nonnegative real numbers. For basic theory of Banach Jordan algebras and $J B^{*}$-algebras, we refer to the sources $[1,4,13,19,20,21,22]$.

Unitary Isotopes of a $\boldsymbol{J} \boldsymbol{B}^{*}$-algebra. Let \mathcal{J} be a unital $J B^{*}$-algebra. An element $u \in \mathcal{J}$ is called unitary if $u^{*}=u^{-1}$. We shall denote the set of all unitary elements of \mathcal{J} by $\mathcal{U}(\mathcal{J})$ and its convex hull by $\operatorname{co\mathcal {U}}(\mathcal{J})$. If $u \in \mathcal{U}(\mathcal{J})$ then the isotope $\mathcal{J}^{[u]}$ is called a unitary isotope of \mathcal{J}.

It is well known (see [7, 3, 15]) that for any unitary element u of $J B^{*}$ algebra \mathcal{J}, the unitary isotope $\mathcal{J}^{[u]}$ is a $J B^{*}$-algebra with u as its unit with respect to the original norm and the involution $*_{u}$ defined as below:

$$
x^{*_{u}}=\left\{u x^{*} u\right\} .
$$

Like invertible elements [15, Theorem 4.2 (ii)], the set of unitary elements in the (unital) $J B^{*}$-algebra \mathcal{J} is invariant on passage to isotopes of $\mathcal{J}[15$, Theorem 4.6]. Moreover, every invertible element x of $J B^{*}$-algebra \mathcal{J} is positive in certain unitary isotope of \mathcal{J} [15, Theorem 4.12]; this is a tricky result and its proof (appeared in [15]) involves Stone-Weierstrass Theorem and standard functional calculus. In the sequel, we shall use these results as our main tools.

2. λ_{u}-function

The λ_{u}-function, defined on the unit ball of a C^{*}-algebra, was introduced by Pedersen [11] where u is some unitary element of the algebra. In this section, we study the λ_{u}-function for general $J B^{*}$-algebras; of course, this study can not be further extended to more general $J B^{*}$-triple systems (cf. [19] or [16]) that do not have unitary elements. In the sequel, we shall introduce two special classes of sets $\mathcal{V}(x)$ and $\mathcal{S}(x)$ of real numbers. Indeed, these sets are intervals and allow us to study some special convex combinations. We investigate relationships between intervals $\mathcal{S}(x), \mathcal{V}(x)$ and the λ_{u}-function. In doing this, some C^{*}-algebra results due to G. K. Pedersen, C. L. Olsen and M. Rørdam [10, 11, 12] will be extended to $J B^{*}$-algebras.

We define the set $\mathcal{V}(x)$, for each element x of the closed unit ball of a $J B^{*}$-algebra as follows:

Definition 2.1. Let \mathcal{J} be a unital $J B^{*}$-algebra.
(1) For each $\delta \geq 1$, we define $\cos _{\delta} \mathcal{U}(\mathcal{J}) \subseteq \operatorname{coU}(\mathcal{J})$ by

$$
\cos _{\delta} \mathcal{U}(\mathcal{J})=\left\{\delta^{-1} \sum_{i=1}^{n-1} u_{i}+\delta^{-1}(1+\delta-n) u_{n}: u_{j} \in \mathcal{U}(\mathcal{J}), j=1, \ldots, n\right\}
$$

where n is the integer given by $n-1<\delta \leq n$.
(2) For each $x \in(\mathcal{J})_{1}$, we define the set $\mathcal{V}(x)$ by

$$
\mathcal{V}(x)=\left\{\beta \geq 1: x \in \operatorname{co}_{\beta} \mathcal{U}(\mathcal{J})\right\} .
$$

Part (a) of the next theorem extends a C^{*}-algebra result due to Rørdam (see [12, Proposition 3.1]); the proof follows his argument with suitable changes necessitated by the nonassociativity of Jordan algebras.

Theorem 2.2. Let \mathcal{J} be a unital JB*-algebra and let $x \in(\mathcal{J})_{1}$.
(a) Let $\left\|\gamma x-u_{o}\right\| \leq \gamma-1$ for some $\gamma \geq 1$ and some $u_{o} \in \mathcal{U}(\mathcal{J})$. Let $\left(\alpha_{2}, \ldots, \alpha_{m}\right) \in \Re^{m-1}$ such that $0 \leq \alpha_{j}<\gamma^{-1}$ and $\gamma^{-1}+\sum_{j=2}^{m} \alpha_{j}=$ 1. Then there exist unitaries u_{1}, \ldots, u_{m} in \mathcal{J} such that

$$
\begin{equation*}
x=\gamma^{-1} u_{1}+\sum_{j=2}^{m} \alpha_{j} u_{j} . \tag{i}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
(\gamma, \infty) \subseteq \mathcal{V}(x) \tag{ii}
\end{equation*}
$$

(b) On the other hand, if (ii) holds then for all $r>\gamma$ there is $u_{1} \in \mathcal{U}(\mathcal{J})$ such that $\left\|r x-u_{1}\right\| \leq r-1$.

Proof. (a) If $\gamma=1$, then $\left\|\gamma x-u_{o}\right\| \leq \gamma-1$ means that $\gamma x=u_{o}$ and so there is nothing left to prove (i) in this case.

Now, assume $\gamma>1$ and put $y=(\gamma-1)^{-1}\left(\gamma x-u_{o}\right)$. Since $\left\|\gamma x-u_{o}\right\| \leq$ $\gamma-1,\|y\|=(\gamma-1)^{-1}\left\|\gamma x-u_{o}\right\| \leq(\gamma-1)^{-1}(\gamma-1)=1$ so that $y \in(\mathcal{J})_{1}$. Further, since $\gamma^{-1}+\sum_{j=2}^{m} \alpha_{j}=1$ and since $\gamma x-u_{o}-(\gamma-1) y=0$, we have

$$
\begin{equation*}
\gamma x=u_{o}+(\gamma-1) y=u_{o}+\gamma \sum_{j=2}^{m} \alpha_{j} y . \tag{iii}
\end{equation*}
$$

We note that $0 \leq \gamma \alpha_{j}<1$ since $0 \leq \alpha_{j}<\gamma^{-1}$ for all $j=2, \ldots, m$. Therefore, by [18, Theorem 3.6] there exist unitaries $v_{1}, \ldots, v_{m}, u_{2}, \ldots, u_{m}$ in \mathcal{J} such that $v_{1}=u_{o}$ and $v_{k-1}+\gamma \alpha_{k} y=v_{k}+\gamma \alpha_{k} u_{k}$ for $k=2, \ldots, m$. We put $v_{m}=u_{1}$. Then (iii) becomes that $\gamma x=v_{2}+\gamma \alpha_{2} u_{2}+\sum_{j=3}^{m} \gamma \alpha_{j} y=$ $\gamma \alpha_{2} u_{2}+v_{3}+\gamma \alpha_{3} u_{3}+\sum_{j=4}^{m} \gamma \alpha_{j} y=\cdots=u_{1}+\sum_{j=2}^{m} \gamma \alpha_{j} u_{j}$. This gives the representation (i) of x.

Now, let $\delta>\gamma$ and m, n be integers given by $m-2<\left(1-\gamma^{-1}\right) \delta \leq$ $m-1$ and $n-1<\delta \leq n$. Then $\left(1-\gamma^{-1}\right) \delta+1=\delta+\left(1-\gamma^{-1} \delta\right)<\delta$ so that $m \leq n$. Moreover, by setting $\alpha_{m}=1-\gamma^{-1}-(m-2) \delta^{-1}$, we have $0<\alpha_{m} \leq \delta^{-1}<\gamma^{-1}$. Since $\alpha_{m}+\gamma^{-1}+(m-2) \delta^{-1}=1$, by the first part of this proof we get the existence of unitaries w_{1}, \ldots, w_{n} in \mathcal{J} such that
(iv) $\sum_{j=1}^{n} \alpha_{j} u_{j}=x=\gamma^{-1} w_{1}+\delta^{-1} \sum_{k=2}^{m-1} w_{k}+\alpha_{m} w_{m}+0 w_{m+1}+\cdots+0 w_{n}$.

For (ii), we only have to show that $\delta \in \mathcal{V}(x)$. For this, we must find unitaries $w_{1}^{\prime}, \ldots, w_{n}^{\prime}$ in \mathcal{J} such that

$$
\begin{equation*}
x=\delta^{-1} \sum_{j=1}^{n-1} w_{j}^{\prime}+\delta^{-1}(\delta+1-n) w_{n}^{\prime}=\sum_{j=1}^{n} \gamma_{j} w_{j}^{\prime} \tag{v}
\end{equation*}
$$

with $\gamma_{1}=\cdots=\gamma_{n-1}=\delta^{-1}$ and $\gamma_{n}=\delta^{-1}(\delta+1-n)$; recall that $n-1<\delta \leq n$. The existence of such unitaries $w_{1}^{\prime}, \ldots, w_{n}^{\prime}$ in \mathcal{J} follows from [18, Theorem 5.5] if the n-tuple $\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \operatorname{co}\left\{\left(\alpha_{\pi(1)}, \ldots, \alpha_{\pi(n)}\right): \pi \in S_{n}\right\}$, where S_{n} denotes the group of all permutations on the set $\{1, \ldots, n\}$; or equivalently, if $\sum_{j=1}^{k} \gamma_{j} \leq \sum_{j=1}^{k} \alpha_{j}$ for all $k=1, \ldots, n-1$ because $0 \leq \gamma_{n} \leq \gamma_{n-1}=$ $\cdots=\gamma_{1}$ since $\delta \leq n$ by (see [18, Lemma 5.4]). However, by (iv) and (v), for $k<m, \sum_{j=1}^{k} \gamma_{j}=k \delta^{-1} \leq \gamma^{-1}+(k-1) \delta^{-1}=\sum_{j=1}^{k} \alpha_{j}$ since $\delta^{-1}<\gamma^{-1}$. Also, for $k \geq m, \sum_{j=1}^{k} \gamma_{j} \leq 1=\sum_{j=1}^{k} \alpha_{j}$.
(b) We suppose $(\gamma, \infty) \subseteq \mathcal{V}(x)$. If $r>\gamma$ then $x \in \operatorname{co}_{r} \mathcal{U}(\mathcal{J})$ so that $x=$ $r^{-1}\left(u_{1}+\cdots+u_{n-1}+(1+r-n) u_{n}\right)$ for some unitaries $u_{1}, \ldots, u_{n} \in \mathcal{U}(\mathcal{J})$ and integer n with $n-1<r \leq n$; hence, $\left\|r x-u_{1}\right\| \leq n-2+(1+r-n)=r-1$.
Corollary 2.3. For any unital $J B^{*}$-algebra $\mathcal{J}, \operatorname{co}_{\gamma} \mathcal{U}(\mathcal{J}) \subseteq \cos _{\delta} \mathcal{U}(\mathcal{J})$ whenever $1 \leq \gamma \leq \delta$. In particular, for each $x \in(\mathcal{J})_{1}, \mathcal{V}(x)$ is either empty or equal to $[\gamma, \infty)$ or (γ, ∞) for some $\gamma \geq 1$.

Proof. This follows directly from Theorem 2.2 and constructions of sets $\cos _{\delta} \mathcal{U}(\mathcal{J}), \operatorname{co}_{\gamma} \mathcal{U}(\mathcal{J})$ and $\mathcal{V}(x)$.

Next, we define another set $\mathcal{S}(x)$ and the λ_{u}-function:
Definition 2.4. Let \mathcal{J} be a unital $J B^{*}$-algebra. For each $x \in(\mathcal{J})_{1}$, we define

$$
\mathcal{S}(x)=\left\{0 \leq \lambda \leq 1: x=\lambda v+(1-\lambda) y \text { with } v \in \mathcal{U}(\mathcal{J}), y \in(\mathcal{J})_{1}\right\} .
$$

and the λ_{u}-function by

$$
\lambda_{u}(x)=\sup \mathcal{S}(x)
$$

We observe some interesting relationships between the sets $\mathcal{S}(x)$ and $\mathcal{V}(x)$:
Theorem 2.5. Let \mathcal{J} be a unital $J B^{*}$-algebra and let $x \in(\mathcal{J})_{1}$.
(i) If $\lambda \in \mathcal{S}(x)$ and $\lambda>0$ then $\left(\lambda^{-1}, \infty\right) \subseteq \mathcal{V}(x)$.
(ii) If $\delta \in \mathcal{V}(x)$ then $\delta^{-1} \in \mathcal{S}(x)$.
(iii) $\lambda_{u}(x)=0$ if and only if $\mathcal{V}(x)=\emptyset$.
(iv) If $\lambda_{u}(x)>0$ then $\mathcal{S}(x)=\left[0, \lambda_{u}(x)\right)$ or $\left[0, \lambda_{u}(x)\right]$.
(v) If $\lambda_{u}(x)>0$ and if $0<\lambda<\lambda_{u}(x)$ then $\lambda^{-1} \in \mathcal{V}(x)$.
(vi) If $\lambda_{u}(x)>0$ then $(\inf \mathcal{V}(x))^{-1}=\lambda_{u}(x)$.
(vii) If $\inf (\mathcal{V}(x)) \in \mathcal{V}(x)$ then $\lambda_{u}(x) \in \mathcal{S}(x)$.

Proof. (i) This follows from Theorem 2.2.
(ii) Immediate from the definitions.
(iii) Suppose $\lambda_{u}(x)=0$ and $\mathcal{V}(x) \neq \emptyset$. Then there is at least one (in fact, infinitely many by Corollary 2.3) $\delta \in \mathcal{V}(x)$, so $\delta^{-1} \in \mathcal{S}(x)$ by part (ii) Hence, $\lambda_{u}(x) \geq \delta^{-1}>0$; a contradiction. Conversely, suppose $\mathcal{V}(x)=\emptyset$. If $\lambda_{u}(x) \neq 0$, there exists at least one $\lambda \in \mathcal{S}(x)$ with $\lambda>0$. Hence, by part (i), $\left(\lambda^{-1}, \infty\right) \subseteq \mathcal{V}(x)$. In particular, $\mathcal{V}(x) \neq \emptyset$; a contradiction.
(iv) By definition, $0 \in \mathcal{S}(x)$. Let $\lambda \in\left(0, \lambda_{u}(x)\right)$. By definition of $\lambda_{u}(x)$, there exists an increasing sequence $\left(\lambda_{n}\right)$ in $\mathcal{S}(x)$ such that $\lim _{n \rightarrow \infty} \lambda_{n}=$ $\lambda_{u}(x)$. As $\lambda<\lambda_{u}(x)$, there exists integer N such that when $n \geq N, \lambda_{n}>\lambda$. Hence, by part (i), $\lambda^{-1} \in\left(\lambda_{n}^{-1}, \infty\right) \subseteq \mathcal{V}(x)$ so $\lambda \in \mathcal{S}(x)$ by part (ii) So $\left[0, \lambda_{u}(x)\right) \subseteq \mathcal{S}(x) \subseteq\left[0, \lambda_{u}(x)\right]$ as $\lambda_{u}(x)=\sup \mathcal{S}(x)$. Thus $\mathcal{S}(x)=\left[0, \lambda_{u}(x)\right)$ or $\left[0, \lambda_{u}(x)\right]$.
(v) Let $\lambda \in\left(0, \lambda_{u}(x)\right)$. Let $\lambda_{1}=\frac{1}{2}\left(\lambda+\lambda_{u}(x)\right)$. Then $\lambda<\lambda_{1}<\lambda_{u}(x)$, and so by part (vi), $\lambda_{1} \in \mathcal{S}(x)$. Hence, $\lambda^{-1} \in\left(\lambda_{1}^{-1}, \infty\right) \subseteq \mathcal{V}(x)$.
(vi) Let $\lambda \in\left(0, \lambda_{u}(x)\right)$. Then by part (v), $\lambda^{-1} \in \mathcal{V}(x)$ so $\lambda^{-1} \geq \inf \mathcal{V}(x)$. Therefore, $\lambda \leq(\inf \mathcal{V}(x))^{-1}$ and so $(\inf \mathcal{V}(x))^{-1}$ is an upper bound for $\left(0, \lambda_{u}(x)\right)$. Hence, $\lambda_{u}(x) \leq(\inf \mathcal{V}(x))^{-1}$. Next, suppose $\lambda_{u}(x)<\delta<$ $(\inf \mathcal{V}(x))^{-1}$. Then $\delta^{-1}>\inf \mathcal{V}(x)$ so $\delta^{-1} \in \mathcal{V}(x)$ by Corollary 2.3. Hence by part (ii), $\delta \in \mathcal{S}(x)$; a contradiction. Thus $\lambda_{u}(x)=(\inf \mathcal{V}(x))^{-1}$.
(vii) Follows immediately from the parts (iii), (vi) and (ii).

Corollary 2.6. For any $x \in(\mathcal{J})_{1} \backslash \mathcal{J}_{\text {inv }}$, the following statements are equivalent:
(i) $\operatorname{dist}\left(x, \mathcal{J}_{\text {inv }}\right)<1 \Rightarrow \mathcal{V}(x) \neq \emptyset$.
(ii) $\lambda_{u}(x)=0 \Rightarrow \operatorname{dist}\left(x, \mathcal{J}_{\text {inv }}\right)=1$.
(iii) $\operatorname{dist}\left(x, \mathcal{J}_{\text {inv }}\right)<1 \Rightarrow \lambda_{u}(x)>0$.

Proof. Immediate from Theorem 2.5(iii).
We now look for the elements with $\mathcal{V}(x) \cap[1,2) \neq \emptyset$.
Theorem 2.7. Let $0 \leq \alpha<\frac{1}{2}$. Let \mathcal{J} be a unital $J B^{*}$-algebra and let $x \in(\mathcal{J})_{1}$. Then the following statements are equivalent:
(i) $\operatorname{dist}(x, \mathcal{U}(\mathcal{J})) \leq 2 \alpha$.
(ii) $x \in \alpha \mathcal{U}(\mathcal{J})+(1-\alpha) \mathcal{U}(\mathcal{J})$.
(iii) $(1-\alpha)^{-1} \in \mathcal{V}(x)$.
(iv) $(1-\alpha) \in \mathcal{S}(x)$.

Proof. (i) \Rightarrow (ii): See the proof of [18, Corollary 4.4].
(ii) \Rightarrow (iii): If $x=\alpha u_{1}+(1-\alpha) u_{2}$ where $u_{1}, u_{2} \in \mathcal{U}(\mathcal{J})$ then as $\alpha<\frac{1}{2}$ we have $1 \leq(1-\alpha)^{-1}<2$. Therefore, $x=(1-\alpha) u_{2}+(1-\alpha)\left(1+\frac{1}{1-\alpha}-2\right) u_{1}$ so that $(1-\alpha)^{-1} \in \mathcal{V}(x)$.
(iii) \Rightarrow (iv): Clear from part (ii) of Theorem 2.5.
(iv) \Rightarrow (i): Suppose $x=(1-\alpha) u_{1}+\alpha y_{1}$ where $u_{1} \in \mathcal{U}(\mathcal{J})$ and $y_{1} \in(\mathcal{J})_{1}$.

Then $\left\|x-u_{1}\right\|=\alpha\left\|y_{1}-u_{1}\right\| \leq 2 \alpha$. Hence, $\operatorname{dist}(x, \mathcal{U}(\mathcal{J})) \leq 2 \alpha$.
Corollary 2.8. Let \mathcal{J} be a unital $J B^{*}$-algebra and $x \in(\mathcal{J})_{1}$.
(a) The following statements are equivalent:
(i) x is invertible.
(ii) $x \in \alpha \mathcal{U}(\mathcal{J})+(1-\alpha) \mathcal{U}(\mathcal{J})$ for some $0 \leq \alpha<\frac{1}{2}$.
(iii) $\operatorname{dist}(x, \mathcal{U}(\mathcal{J})) \leq 2 \alpha$ for some $0 \leq \alpha<\frac{1}{2}$.
(iv) $(1-\alpha) \in \mathcal{S}(x)$ for some $0 \leq \alpha<\frac{1}{2}$.
(v) $(1-\alpha)^{-1} \in \mathcal{V}(x)$ for some $0 \leq \alpha<\frac{1}{2}$.
(vi) $\lambda \in \mathcal{V}(x)$ for some $1 \leq \lambda<2$.
(b) Moreover, if x is invertible then $\inf \mathcal{V}(x)=2\left(1+\left\|x^{-1}\right\|^{-1}\right)^{-1}$ and $\mathcal{V}(x)=\left[2\left(1+\left\|x^{-1}\right\|^{-1}\right)^{-1}, \infty\right)$
Proof. (a) By Theorem 2.7, (ii) $\Leftrightarrow($ iii $) \Leftrightarrow$ (iv) \Leftrightarrow (v) with the same α.
(i) \Rightarrow (ii): x being invertible is positive in some unitary isotope $\mathcal{J}^{[u]}$ of \mathcal{J} by [15, Theorem 4.12], and $\sigma(x) \subseteq[-1,1] \backslash(2 \alpha-1,1-2 \alpha)$ for some $\alpha>0$ as $0 \notin \sigma(x)$. Then by [18, Lemma 3.4], $x \in \alpha \mathcal{U}\left(\mathcal{J}^{[u]}\right)+(1-\alpha) \mathcal{U}\left(\mathcal{J}^{[u]}\right)$ and hence $x \in \alpha \mathcal{U}(\mathcal{J})+(1-\alpha) \mathcal{U}(\mathcal{J})$ by [15, Theorem 4.6].
(ii) \Rightarrow (i): Follows from [15, lemmas $2.2(\mathrm{iii})$ and $4.2(\mathrm{ii})]$.
(v) $\Leftrightarrow\left(\right.$ vi): Follows from the fact that $0 \leq \alpha<\frac{1}{2}$ iff $1 \leq(1-\alpha)^{-1}<2$.
(b) By [15, Theorem 14.2], x being invertible is positive invertible in certain unitary isotope $\mathcal{J}^{[u]}$. Hence by [18, Lemma 3.4] and [15, Theorem 4.2], for any $0 \leq \beta<\frac{1}{2}$,

$$
x \in \beta \mathcal{U}(\mathcal{J})+(1-\beta) \mathcal{U}(\mathcal{J}) \quad \text { iff } \quad \inf \sigma_{\mathcal{J}^{[u]}}(x) \geq 1-2 \beta .
$$

By [15, Lemma 4.2(iii)], $x^{-1_{u}}=\left\{u x^{-1} u\right\}$. Since $x^{-1}=\left\{u^{*}\left\{u x^{-1} u\right\} u^{*}\right\}$ and $\left\|x^{-1}\right\|=\left\|\left\{u^{*}\left\{u x^{-1} u\right\} u^{*}\right\}\right\| \leq\left\|\left\{u x^{-1} u\right\}\right\| \leq\left\|x^{-1}\right\|$, it follows that $\left\|x^{-1_{u}}\right\|=\left\|x^{-1}\right\|$. Thus, by the functional calculus for positive elements,

$$
\inf \sigma_{\mathcal{J}[u]}(x)=\left\|x^{-1_{u}}\right\|^{-1}=\left\|x^{-1}\right\|^{-1} .
$$

Therefore, $x \in \beta \mathcal{U}(\mathcal{J})+(1-\beta) \mathcal{U}(\mathcal{J})$ if and only if $\left\|x^{-1}\right\|^{-1} \geq 1-2 \beta$. However, by part (a) (as x is invertible) there exists $\lambda \in \mathcal{V}(x)$ with $1 \leq \lambda<2$ so that $\left(1-\lambda^{-1}\right) \in \mathcal{V}(x)$ with $0<\lambda^{-1}<\frac{1}{2}$, hence by Theorem 2.7 we get $x \in \alpha \mathcal{U}(\mathcal{J})+(1-\alpha) \mathcal{U}(\mathcal{J})$ with $\alpha=1-\lambda^{-1}$. It follows that $\left\|x^{-1}\right\|^{-1} \geq$ $1-2 \alpha=2 \lambda^{-1}-1$. Hence $\inf \mathcal{V}(x) \geq 2\left(1+\left\|x^{-1}\right\|^{-1}\right)^{-1}$.

Since x is positive in $\mathcal{J}^{[u]}$, setting $\alpha=1-\frac{1}{2}\left(1+\inf \sigma_{\mathcal{J}[u]}(x)\right)$ we have $0 \leq \alpha<\frac{1}{2}$ and $\inf \sigma_{\mathcal{J}[u]}(x)=1-2 \alpha$ so that $\sigma_{\mathcal{J}[u]}(x) \subseteq[1-2 \alpha, 1]$. Hence by [18, Lemma 3.4] and [15, Theorem 4.6], $x \in \alpha \mathcal{U}(\mathcal{J})+(1-\alpha) \mathcal{U}(\mathcal{J})$. Thus, by Theorem 2.7, $2\left(1+\left\|x^{-1}\right\|^{-1}\right)^{-1}=(1-\alpha)^{-1} \in \mathcal{V}(x)$.
Corollary 2.9. Let \mathcal{J} be a unital $J B^{*}$-algebra and for $1 \leq \delta<2$, the set $K=\left\{x \in(\mathcal{J})_{1} \cap \mathcal{J}_{\text {inv }}:\left\|x^{-1}\right\| \leq\left(2 \delta^{-1}-1\right)^{-1}\right\}$. Then $\cos _{\delta} \mathcal{U}(\mathcal{J})=K$ and K is closed.

Proof. The first part is immediate from Corollary 2.8. For the other part, let $\left\{y_{n}\right\}$ be a sequence in K which converges to $y \in \mathcal{J}$. Clearly, $y \in(\mathcal{J})_{1}$. By part (ai), $\delta \in \mathcal{V}\left(y_{n}\right)$ for all n. Let $\alpha=1-\delta^{-1}$. Then $0 \leq \alpha<\frac{1}{2}$ and $\operatorname{dist}\left(y_{n}, \mathcal{U}(\mathcal{J})\right) \leq 2 \alpha$ for all n by Corollary 2.8(a). Hence by the continuity of the distance, we $\operatorname{get} \operatorname{dist}(y, \mathcal{U}(\mathcal{J})) \leq 2 \alpha$. Therefore, y is invertible and hence $\left\|y^{-1}\right\|=\lim _{n \rightarrow \infty}\left\|y_{n}^{-1}\right\| \leq\left(2 \delta^{-1}-1\right)^{-1}$.

Corollary 2.10. Let \mathcal{J} be a unital $J B^{*}$-algebra and $x \in(\mathcal{J})_{1}$ be invertible. Then $\lambda_{u}(x)=\frac{1}{2}\left(1+\left\|x^{-1}\right\|^{-1}\right)$ and there exist unitaries u_{1}, u_{2} in $\mathcal{U}(\mathcal{J})$ such that $x=\lambda_{u}(x) u_{1}+\left(1-\lambda_{u}(x)\right) u_{2}$.

Proof. By Corollary 2.8(b), inf $\mathcal{V}(x)=2\left(1+\left\|x^{-1}\right\|^{-1}\right)^{-1} \in \mathcal{V}(x)$. So, by Theorem 2.5, $\lambda_{u}(x)=\frac{1}{2}\left(1+\left\|x^{-1}\right\|^{-1}\right)$ and $\frac{1}{2}<\lambda_{u}(x) \leq 1$. Thus, $0 \leq 1-\lambda_{u}(x)<\frac{1}{2}$, so there exist unitaries u_{1}, u_{2} in $\mathcal{U}(\mathcal{J})$ such that $x=$ $\lambda_{u}(x) u_{1}+\left(1-\lambda_{u}(x)\right) u_{2}$, by Theorem 2.7.

Acknowledgements. Author is indebted to Dr. Martin A. Youngson for his help and encouragement and also to Professor Ismat Beg for useful discussions and criticism during this work.

References

[1] Alfsen, Erik M.; Shultz, Frederic W.; Størmer, Erling. A Gelfand-Naimark theorem for Jordan algebras. Adv. in Math. 28 (1978), 11-56. MR482210 (58:2292), Zbl 0397.46065.
[2] Aron, Richard M.; Lohman, Robert H. A geometric function determined by extreme points of the unit ball of a normed space. Pacific J. Math. 127 (1987), 209-231. MR0881756 (88f:46031), Zbl 0662.46020.
[3] Braun, Robert; Kaup, Wilhelm; Upmeier, Harald. A holomorphic characterization of Jordan C^{*}-algebras.Math. Z. 161 (1978), 277-290. MR493373 (58:12398), Zbl 0385.32002.
[4] DevaPakkiam, C. Viola. Jordan algebras with continuous inverse. Math. Jap. 16 (1971), 115-125. MR297830 (45 \#6882), Zbl 0246.17015.
[5] Jacobson, Nathan. Structure and representations of Jordan algebras. American Mathematical Society Colloquium Publications, 39. American Mathematical Society, Providence, R.I., 1968. x+453 pp. MR251099 (40 \#4330), Zbl 0218.17010.
[6] Kadison, Richard V.; Pedersen, Gert K. Means and convex combinations of unitary operators. Math. Scand. 57 (1985), 249-266. MR832356 (87g:47078), Zbl 0573.46034.
[7] Kaup, Wilhelm; Upmeier, Harald. Jordan algebras and symmetric Siegel domains in Banach spaces. Math. Z. 157 (1977), 179-200. MR492414 (58 \#11532), Zbl 0357.32018.
[8] McCrimmon, Kevin. Macdonald's theorem with inverses. Pacific J. Math. 21 (1967), 315-325. MR0232815 (38 \#1138), Zbl 0166.04001.
[9] McCrimmon, Kevin. Jordan algebras and their applications. Bull. Amer. Math. Soc. 84 (1978), 612-627. MR0466235 (57 \#6115), Zbl 0421.17010.
[10] Olsen, Catherine L.; Pedersen, Gert K. Convex combinations of unitary operators in von Neumann algebras. J. Funct. Anal. 66 (1986), 365-380. MR839107 (87f:46107), Zbl 0597.46061.
[11] Pedersen, Gert K. λ-function in operator algebras. J. Operator Theory 26 (1991), 345-381. MR1225521 (94j:46056), Zbl 0784.46043.
[12] RøRDAm, MikaEl. Advances in the theory of unitary rank and regular approximations. Ann. of Math. 128 (1988), 153-172. MR951510 (90c:46072), Zbl 0659.46052.
[13] Shultz, Frederic W. On normed Jordan algebras which are Banach dual spaces. J. Funct. Anal. 31 (1979), 360-376. MR531138 (80h:46096), Zbl 0421.46043.
[14] Siddiqui, Akhlaq A. Self-adjointness in unitary isotopes of $J B^{*}$-algebras. Arch. Math. 87 (2006), 350-358. MR2263481 (2007g:46082), Zbl 1142.46020.
[15] Siddiqui, Akhlaq A. $J B^{*}$-algebras of topological stable rank 1. International Journal of Mathematics and Mathematical Sciences 2007, Article ID 37186, 24 pp. doi:10.1155/2007/37186. MR2306360 (2008d:46074), Zbl 1161.46041.
[16] Siddiqui, Akhlaq A. Average of two extreme points in $J B W^{*}$-triples. Proc. Japan Acad. Ser. A Math. Sci. 83 (2007), 176-178. MR2376600 (2009m:46081), Zbl 05309659.
[17] Siddiqui, Akhlaq A. A proof of the Russo-Dye theorem for $J B^{*}$-algebras. New York J. Math 16 (2010), 53-60. Zbl pre05759884.
[18] Siddiqui, Akhlaq A. Convex combinations of unitaries in $J B^{*}$-algebras. New York J. Math. 17 (2011), 127-137.
[19] Upmeier, Harald. Symmetric Banach manifolds and Jordan C^{*}-algebras. NorthHolland Mathematics Studies, 104. North-Holland Publishing Co., Amsterdam, 1985. xii+444 pp. ISBN: 0-444-87651-0. MR776786 (87a:58022), Zbl 0561.46032.
[20] Wright, J. D. Maitland. Jordan C^{*}-algebras. Mich. Math. J. 24 (1977), 291-302. MR0487478 (58 \#7108), Zbl 0384.46040.
[21] Wright, J. D. Maitland; Youngson, M. A. On isometries of Jordan algebras. J. London Math. Soc. (2) $\mathbf{1 7}$ (1978), 339-344. MR482212 (58\#2294), Zbl 0384.46041.
[22] Youngson, M. A. A Vidav theorem for Banach Jordan algebras. Math. Proc. Camb. Phil. Soc. 84 (1978), 263-272. MR0493372 (58 \#12397), Zbl 0392.46038.

Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh-11451, Kingdom of Saudi Arabia.
asiddiqui@ksu.edu.sa
This paper is available via http://nyjm.albany.edu/j/2011/17-7.html.

[^0]: Received January 31, 2010.
 2000 Mathematics Subject Classification. 17C65, 46L05, 46H70.
 Key words and phrases. C^{*}-algebra; $J B^{*}$-algebra; unit ball; invertible element; spectrum; unitary element; unitary isotope; convex hull; λ_{u}-function.

