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The λu-function in JB∗-algebras

Akhlaq A. Siddiqui

Abstract. Inspired by work of R. M. Aron and R. H. Lohman, Gert
K. Pedersen introduced a geometric function, which is defined on the
unit ball of a C∗-algebra and called the λu-function. Our goal here is
to extend the notion of a λu-function to the context of JB∗-algebras.
We study convex combinations of elements in a JB∗-algebra using the
λu-function and earlier results we have obtained on the geometry of JB∗-
algebras. A formula to compute λu-function is obtained for invertible
elements in a JB∗-algebra. In the course of our analysis, some C∗-
algebra results due to G. K. Pedersen, C. L. Olsen and M. Rørdam are
extended to general JB∗-algebras.
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1. Introduction and preliminaries

R. M. Aron and R. H. Lohman [2] studied a geometric function, called the
λ-function for normed spaces. Subsequently, G. K. Pedersen [11] introduced
a related function, namely, the λu-function, defined on the unit ball of a C∗-
algebra, where u is a unitary element of the algebra. In this article, we
study the λu-function in the general setting of JB∗-algebras. It may be
noted here that the study of the λu-function can not be further extended to
more general JB∗-triple systems (cf. [19] or [16]) which have no invertible
(hence, no unitary) elements.

The absence of associativity in JB∗-algebras causes great difficulties in
calculations. In [15], the author proved some fundamental results on unitary
isotopes of JB∗-algebras and by applying these we obtained various results
on representing elements as convex combinations of unitaries in a JB∗-
algebra (see [14, 16, 17, 18]); our approach also provides alternative proofs
to certain related results for C∗-algebras.
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We introduce below two special sets of real numbers S(x) and V(x) that
turn out to be intervals and are used to study certain convex combinations
of elements in JB∗-algebras. Using some of our earlier results from [15, 18],
we shall investigate the relationship between the intervals S(x), V(x) and
the λu-function for JB∗-algebras. In the process, we obtain extensions to
JB∗-algebras of some C∗-algebra results that appeared in [10, 11, 12]. In the
end, a formula to compute λu-function is obtained for invertible elements of
a JB∗-algebra.

Preliminaries. We begin by recalling that if x is an element in a Jordan
algebra J , then the x-homotope of J , denoted by J[x], is the Jordan algebra
consisting of the same elements and linear space structure as J but with a
different product, denoted by “ ·x”, defined by a ·x b = {axb} for all a, b in
J[x]. Here, {pqr} denotes the Jordan triple product and is defined in any
Jordan algebra by {pqr} = (p◦q)◦r− (p◦r)◦q+(q ◦r)◦p where “◦” stands
for the Jordan product in the original algebra. (See [5], for instance.)

The homotopes of interest here will be obtained when J has a unit e
and x is invertible: this means that there exists x−1 ∈ J , called the inverse
of x, such that x ◦ x−1 = e and x2 ◦ x−1 = x. The set of all invertible
elements of J will be denoted by Jinv. In this case, as x ·x−1 y = {xx−1y} =
y + (x−1 ◦ y) ◦ x − (x ◦ y) ◦ x−1 = y (see [8]), x acts as the unit for the
homotope J[x−1] of J .

If x ∈ Jinv then x-isotope of J , denoted by J [x], is defined to be the
x−1-homotope J[x−1] of J . We denote the multiplication “·x−1” of J [x]

by “ ◦x”. { , , }x, y−1x will stand for the Jordan triple product and the
multiplicative inverse (if it exists) of y in the isotope J [x], respectively.

Isotopy may produce essentially different Jordan algebras. The x-isotope
J [x] of a Jordan algebra J need not be isomorphic to J . For such exam-
ples see [9, 7]. However, some important features of Jordan algebras are
unaffected by isotopy (see [15, Lemma 4.2 and Theorem 4.6], for examples).

JB∗-algebras. A Jordan algebra J with product ◦ is called a Banach
Jordan algebra if there is a norm ‖.‖ on J such that (J , ‖.‖) is a Banach
space and ‖a ◦ b‖ ≤ ‖a‖‖b‖. If, in addition, J has unit e with ‖e‖ = 1 then
J is called a unital Banach Jordan algebra.

An important tool in Banach algebra theory is the spectrum of an element.
Let J be a complex unital Banach Jordan algebra with unit e and let x ∈ J .
The spectrum of x in J , denoted by σJ (x), is defined by

σJ (x) = {λ ∈ C : x− λe is not invertible in J }.

Here, C denotes the field of complex numbers. When no confusion can arise,
we shall write σ(x) in place of σJ (x).

We are interested in a special class of Banach Jordan algebras, called
JB∗-algebras. A complex Banach Jordan algebra J with involution ∗ is
called a JB∗-algebra if ‖{xx∗x}‖ = ‖x‖3 for all x ∈ J . It follows that
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‖x∗‖ = ‖x‖ for all elements x of a JB∗-algebra (see [22], for instance). The
class of JB∗-algebras was introduced by Kaplansky in 1976 and it includes
all C∗-algebras as a proper subclass (cf. [20]).

As usual, an element x of a JB∗-algebra J is said to be self-adjoint if
x∗ = x. A self-adjoint element x of J is said to be positive in J if its
spectrum σJ (x) is contained in the set of nonnegative real numbers. For
basic theory of Banach Jordan algebras and JB∗-algebras, we refer to the
sources [1, 4, 13, 19, 20, 21, 22].

Unitary Isotopes of a JB∗-algebra. Let J be a unital JB∗-algebra. An
element u ∈ J is called unitary if u∗ = u−1. We shall denote the set of all
unitary elements of J by U(J ) and its convex hull by coU(J ). If u ∈ U(J )
then the isotope J [u] is called a unitary isotope of J .

It is well known (see [7, 3, 15]) that for any unitary element u of JB∗-
algebra J , the unitary isotope J [u] is a JB∗-algebra with u as its unit with
respect to the original norm and the involution ∗u defined as below:

x∗u = {ux∗u}.
Like invertible elements [15, Theorem 4.2 (ii)], the set of unitary elements

in the (unital) JB∗-algebra J is invariant on passage to isotopes of J [15,
Theorem 4.6]. Moreover, every invertible element x of JB∗-algebra J is
positive in certain unitary isotope of J [15, Theorem 4.12]; this is a tricky
result and its proof (appeared in [15]) involves Stone–Weierstrass Theorem
and standard functional calculus. In the sequel, we shall use these results
as our main tools.

2. λu-function

The λu-function, defined on the unit ball of a C∗-algebra, was intro-
duced by Pedersen [11] where u is some unitary element of the algebra. In
this section, we study the λu-function for general JB∗-algebras; of course,
this study can not be further extended to more general JB∗-triple systems
(cf. [19] or [16]) that do not have unitary elements. In the sequel, we shall
introduce two special classes of sets V(x) and S(x) of real numbers. Indeed,
these sets are intervals and allow us to study some special convex combi-
nations. We investigate relationships between intervals S(x), V(x) and the
λu-function. In doing this, some C∗-algebra results due to G. K. Pedersen,
C. L. Olsen and M. Rørdam [10, 11, 12] will be extended to JB∗-algebras.

We define the set V(x), for each element x of the closed unit ball of a
JB∗-algebra as follows:

Definition 2.1. Let J be a unital JB∗-algebra.
(1) For each δ ≥ 1, we define coδU(J ) ⊆ coU(J ) by

coδU(J ) =

{
δ−1

n−1∑
i=1

ui + δ−1(1 + δ − n)un : uj ∈ U(J ), j = 1, . . . , n

}
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where n is the integer given by n− 1 < δ ≤ n.
(2) For each x ∈ (J )1, we define the set V(x) by

V(x) = {β ≥ 1 : x ∈ coβU(J )}.

Part (a) of the next theorem extends a C∗-algebra result due to Rørdam
(see [12, Proposition 3.1]); the proof follows his argument with suitable
changes necessitated by the nonassociativity of Jordan algebras.

Theorem 2.2. Let J be a unital JB∗-algebra and let x ∈ (J )1.
(a) Let ‖γx − uo‖ ≤ γ − 1 for some γ ≥ 1 and some uo ∈ U(J ). Let

(α2, . . . , αm) ∈ <m−1 such that 0 ≤ αj < γ−1 and γ−1 +
∑m

j=2 αj =
1. Then there exist unitaries u1, . . . , um in J such that

(i) x = γ−1u1 +
m∑

j=2

αjuj .

Moreover,

(ii) (γ , ∞) ⊆ V(x).

(b) On the other hand, if (ii) holds then for all r > γ there is u1 ∈ U(J )
such that ‖rx− u1‖ ≤ r − 1.

Proof. (a) If γ = 1, then ‖γx− uo‖ ≤ γ− 1 means that γx = uo and so
there is nothing left to prove (i) in this case.

Now, assume γ > 1 and put y = (γ − 1)−1(γx − uo). Since ‖γx − uo‖ ≤
γ − 1, ‖y‖ = (γ − 1)−1‖γx − uo‖ ≤ (γ − 1)−1(γ − 1) = 1 so that y ∈ (J )1.
Further, since γ−1 +

∑m
j=2 αj = 1 and since γx−uo− (γ− 1)y = 0, we have

(iii) γx = uo + (γ − 1)y = uo + γ

m∑
j=2

αjy.

We note that 0 ≤ γαj < 1 since 0 ≤ αj < γ−1 for all j = 2, . . . ,m.
Therefore, by [18, Theorem 3.6] there exist unitaries v1, . . . , vm, u2, . . . , um

in J such that v1 = uo and vk−1 + γαky = vk + γαkuk for k = 2, . . . ,m.
We put vm = u1. Then (iii) becomes that γx = v2 + γα2u2 +

∑m
j=3 γαjy =

γα2u2 + v3 + γα3u3 +
∑m

j=4 γαjy = · · · = u1 +
∑m

j=2 γαjuj . This gives the
representation (i) of x.

Now, let δ > γ and m, n be integers given by m − 2 < (1 − γ−1)δ ≤
m − 1 and n − 1 < δ ≤ n. Then (1 − γ−1)δ + 1 = δ + (1 − γ−1δ) < δ so
that m ≤ n. Moreover, by setting αm = 1 − γ−1 − (m − 2)δ−1, we have
0 < αm ≤ δ−1 < γ−1. Since αm + γ−1 + (m− 2)δ−1 = 1, by the first part of
this proof we get the existence of unitaries w1, . . . , wn in J such that

(iv)
n∑

j=1

αjuj = x = γ−1w1 + δ−1
m−1∑
k=2

wk + αmwm + 0wm+1 + · · ·+ 0wn.
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For (ii), we only have to show that δ ∈ V(x). For this, we must find
unitaries w′1, . . . , w

′
n in J such that

(v) x = δ−1
n−1∑
j=1

w′j + δ−1(δ + 1− n)w′n =
n∑

j=1

γjw
′
j

with γ1 = · · · = γn−1 = δ−1 and γn = δ−1(δ+1−n); recall that n−1 < δ ≤ n.
The existence of such unitaries w′1, . . . , w

′
n in J follows from [18, Theorem

5.5] if the n-tuple (γ1, . . . , γn) ∈ co{(απ(1), . . . , απ(n)) : π ∈ Sn}, where Sn

denotes the group of all permutations on the set {1, . . . , n}; or equivalently,
if

∑k
j=1 γj ≤

∑k
j=1 αj for all k = 1, . . . , n − 1 because 0 ≤ γn ≤ γn−1 =

· · · = γ1 since δ ≤ n by (see [18, Lemma 5.4]). However, by (iv) and (v),
for k < m,

∑k
j=1 γj = kδ−1 ≤ γ−1 + (k− 1)δ−1 =

∑k
j=1 αj since δ−1 < γ−1.

Also, for k ≥ m,
∑k

j=1 γj ≤ 1 =
∑k

j=1 αj .
(b) We suppose (γ,∞) ⊆ V(x). If r > γ then x ∈ corU(J ) so that x =

r−1(u1+ · · ·+un−1+(1+r−n)un) for some unitaries u1, . . . , un ∈ U(J ) and
integer n with n−1 < r ≤ n; hence, ‖rx−u1‖ ≤ n−2+(1+r−n) = r−1. �

Corollary 2.3. For any unital JB∗-algebra J , coγU(J ) ⊆ coδU(J ) when-
ever 1 ≤ γ ≤ δ. In particular, for each x ∈ (J )1, V(x) is either empty or
equal to [γ,∞) or (γ,∞) for some γ ≥ 1.

Proof. This follows directly from Theorem 2.2 and constructions of sets
coδU(J ), coγU(J ) and V(x). �

Next, we define another set S(x) and the λu-function:

Definition 2.4. Let J be a unital JB∗-algebra. For each x ∈ (J )1, we
define

S(x) = {0 ≤ λ ≤ 1 : x = λv + (1− λ)y with v ∈ U(J ), y ∈ (J )1}.

and the λu-function by
λu(x) = supS(x)

We observe some interesting relationships between the sets S(x) and V(x):

Theorem 2.5. Let J be a unital JB∗-algebra and let x ∈ (J )1.
(i) If λ ∈ S(x) and λ > 0 then (λ−1 , ∞) ⊆ V(x).
(ii) If δ ∈ V(x) then δ−1 ∈ S(x).
(iii) λu(x) = 0 if and only if V(x) = ∅.
(iv) If λu(x) > 0 then S(x) = [0 , λu(x)) or [0 , λu(x)].
(v) If λu(x) > 0 and if 0 < λ < λu(x) then λ−1 ∈ V(x).
(vi) If λu(x) > 0 then (inf V(x))−1 = λu(x).
(vii) If inf(V(x)) ∈ V(x) then λu(x) ∈ S(x).

Proof. (i) This follows from Theorem 2.2.
(ii) Immediate from the definitions.
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(iii) Suppose λu(x) = 0 and V(x) 6= ∅. Then there is at least one (in
fact, infinitely many by Corollary 2.3) δ ∈ V(x), so δ−1 ∈ S(x) by part (ii)
Hence, λu(x) ≥ δ−1 > 0; a contradiction. Conversely, suppose V(x) = ∅. If
λu(x) 6= 0, there exists at least one λ ∈ S(x) with λ > 0. Hence, by part
(i), (λ−1,∞) ⊆ V(x). In particular, V(x) 6= ∅; a contradiction.

(iv) By definition, 0 ∈ S(x). Let λ ∈ (0, λu(x)). By definition of λu(x),
there exists an increasing sequence (λn) in S(x) such that limn→∞ λn =
λu(x). As λ < λu(x), there exists integer N such that when n ≥ N , λn > λ.
Hence, by part (i), λ−1 ∈ (λ−1

n ,∞) ⊆ V(x) so λ ∈ S(x) by part (ii) So
[0, λu(x)) ⊆ S(x) ⊆ [0, λu(x)] as λu(x) = supS(x). Thus S(x) = [0, λu(x))
or [0, λu(x)].

(v) Let λ ∈ (0, λu(x)). Let λ1 = 1
2(λ+λu(x)). Then λ < λ1 < λu(x), and

so by part (vi), λ1 ∈ S(x). Hence, λ−1 ∈ (λ−1
1 ,∞) ⊆ V(x).

(vi) Let λ ∈ (0, λu(x)). Then by part (v), λ−1 ∈ V(x) so λ−1 ≥ inf V(x).
Therefore, λ ≤ (inf V(x))−1 and so (inf V(x))−1 is an upper bound for
(0, λu(x)). Hence, λu(x) ≤ (inf V(x))−1. Next, suppose λu(x) < δ <
(inf V(x))−1. Then δ−1 > inf V(x) so δ−1 ∈ V(x) by Corollary 2.3. Hence
by part (ii), δ ∈ S(x); a contradiction. Thus λu(x) = (inf V(x))−1.

(vii) Follows immediately from the parts (iii), (vi) and (ii). �

Corollary 2.6. For any x ∈ (J )1 \Jinv, the following statements are equiv-
alent:

(i) dist(x,Jinv) < 1 ⇒ V(x) 6= ∅.
(ii) λu(x) = 0 ⇒ dist(x,Jinv) = 1.
(iii) dist(x,Jinv) < 1 ⇒ λu(x) > 0.

Proof. Immediate from Theorem 2.5(iii). �

We now look for the elements with V(x) ∩ [1, 2) 6= ∅.

Theorem 2.7. Let 0 ≤ α < 1
2 . Let J be a unital JB∗-algebra and let

x ∈ (J )1. Then the following statements are equivalent:
(i) dist(x,U(J )) ≤ 2α.
(ii) x ∈ αU(J ) + (1− α)U(J ).
(iii) (1− α)−1 ∈ V(x).
(iv) (1− α) ∈ S(x).

Proof. (i)⇒(ii): See the proof of [18, Corollary 4.4].
(ii)⇒(iii): If x = αu1 + (1− α)u2 where u1, u2 ∈ U(J ) then as α < 1

2 we
have 1 ≤ (1− α)−1 < 2. Therefore, x = (1− α)u2 + (1− α)(1 + 1

1−α − 2)u1

so that (1− α)−1 ∈ V(x).
(iii)⇒(iv): Clear from part (ii) of Theorem 2.5.
(iv)⇒(i): Suppose x = (1− α)u1 + αy1 where u1 ∈ U(J ) and y1 ∈ (J )1.

Then ‖x− u1‖ = α‖y1 − u1‖ ≤ 2α. Hence, dist(x,U(J )) ≤ 2α. �

Corollary 2.8. Let J be a unital JB∗-algebra and x ∈ (J )1.
(a) The following statements are equivalent:
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(i) x is invertible.
(ii) x ∈ αU(J ) + (1− α)U(J ) for some 0 ≤ α < 1

2 .
(iii) dist(x,U(J )) ≤ 2α for some 0 ≤ α < 1

2 .
(iv) (1− α) ∈ S(x) for some 0 ≤ α < 1

2 .
(v) (1− α)−1 ∈ V(x) for some 0 ≤ α < 1

2 .
(vi) λ ∈ V(x) for some 1 ≤ λ < 2.

(b) Moreover, if x is invertible then inf V(x) = 2(1 + ‖x−1‖−1)−1 and
V(x) = [2(1 + ‖x−1‖−1)−1, ∞).

Proof. (a) By Theorem 2.7, (ii)⇔(iii)⇔(iv)⇔(v) with the same α.
(i)⇒(ii): x being invertible is positive in some unitary isotope J [u] of J

by [15, Theorem 4.12], and σ(x) ⊆ [−1, 1] \ (2α− 1, 1− 2α) for some α > 0
as 0 6∈ σ(x). Then by [18, Lemma 3.4], x ∈ αU(J [u]) + (1− α)U(J [u]) and
hence x ∈ αU(J ) + (1− α)U(J ) by [15, Theorem 4.6].

(ii)⇒(i): Follows from [15, lemmas 2.2(iii) and 4.2(ii)].
(v)⇔(vi): Follows from the fact that 0 ≤ α < 1

2 iff 1 ≤ (1− α)−1 < 2.
(b) By [15, Theorem 14.2], x being invertible is positive invertible in

certain unitary isotope J [u]. Hence by [18, Lemma 3.4] and [15, Theorem
4.2], for any 0 ≤ β < 1

2 ,

x ∈ βU(J ) + (1− β)U(J ) iff inf σJ [u](x) ≥ 1− 2β .

By [15, Lemma 4.2(iii)], x−1u = {ux−1u}. Since x−1 = {u∗{ux−1u}u∗}
and ‖x−1‖ = ‖{u∗{ux−1u}u∗}‖ ≤ ‖{ux−1u}‖ ≤ ‖x−1‖, it follows that
‖x−1u‖ = ‖x−1‖. Thus, by the functional calculus for positive elements,

inf σJ [u](x) = ‖x−1u‖−1 = ‖x−1‖−1.

Therefore, x ∈ βU(J ) + (1 − β)U(J ) if and only if ‖x−1‖−1 ≥ 1 − 2β.
However, by part (a) (as x is invertible) there exists λ ∈ V(x) with 1 ≤ λ < 2
so that (1 − λ−1) ∈ V(x) with 0 < λ−1 < 1

2 , hence by Theorem 2.7 we get
x ∈ αU(J ) + (1 − α)U(J ) with α = 1 − λ−1. It follows that ‖x−1‖−1 ≥
1− 2α = 2λ−1 − 1. Hence inf V(x) ≥ 2(1 + ‖x−1‖−1)−1.

Since x is positive in J [u], setting α = 1 − 1
2(1 + inf σJ [u](x)) we have

0 ≤ α < 1
2 and inf σJ [u](x) = 1− 2α so that σJ [u](x) ⊆ [1− 2α, 1]. Hence by

[18, Lemma 3.4] and [15, Theorem 4.6], x ∈ αU(J ) + (1 − α)U(J ). Thus,
by Theorem 2.7, 2(1 + ‖x−1‖−1)−1 = (1− α)−1 ∈ V(x). �

Corollary 2.9. Let J be a unital JB∗-algebra and for 1 ≤ δ < 2, the set
K = {x ∈ (J )1 ∩ Jinv : ‖x−1‖ ≤ (2δ−1 − 1)−1}. Then coδU(J ) = K and K
is closed.

Proof. The first part is immediate from Corollary 2.8. For the other part,
let {yn} be a sequence in K which converges to y ∈ J . Clearly, y ∈ (J )1.
By part (ai), δ ∈ V(yn) for all n. Let α = 1 − δ−1. Then 0 ≤ α < 1

2 and
dist(yn,U(J )) ≤ 2α for all n by Corollary 2.8(a). Hence by the continuity
of the distance, we get dist(y,U(J )) ≤ 2α. Therefore, y is invertible and
hence ‖y−1‖ = limn→∞ ‖y−1

n ‖ ≤ (2δ−1 − 1)−1. �
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Corollary 2.10. Let J be a unital JB∗-algebra and x ∈ (J )1 be invertible.
Then λu(x) = 1

2(1 + ‖x−1‖−1) and there exist unitaries u1, u2 in U(J ) such
that x = λu(x)u1 + (1− λu(x))u2.

Proof. By Corollary 2.8(b), inf V(x) = 2(1 + ‖x−1‖−1)−1 ∈ V(x). So,
by Theorem 2.5, λu(x) = 1

2(1 + ‖x−1‖−1) and 1
2 < λu(x) ≤ 1. Thus,

0 ≤ 1 − λu(x) < 1
2 , so there exist unitaries u1, u2 in U(J ) such that x =

λu(x)u1 + (1− λu(x))u2, by Theorem 2.7. �
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