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Homotopy equivalence of isospectral
graphs

Terrence Bisson and Aristide Tsemo

Abstract. In previous work we defined a Quillen model structure, de-
termined by cycles, on the category Gph of directed graphs. In this pa-
per we give a complete description of the homotopy category of graphs
associated to our model structure. We endow the categories of N-sets
and Z-sets with related model structures, and show that their homotopy
categories are Quillen equivalent to the homotopy category Ho(Gph).
This enables us to show that Ho(Gph) is equivalent to the category
cZSet of periodic Z-sets, and to show that two finite directed graphs are
almost-isospectral if and only if they are homotopy-equivalent in our
sense.
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1. Introduction

Mathematicians often study complicated categories by means of invari-
ants (which are equal for isomorphic objects in the category). Sometimes
a complicated category can be replaced by a (perhaps simpler) homotopy
category which is better related to the various invariants used to study it.
In topology, this was first achieved by keeping track of when one continuous
mapping could be continuously deformed into another. But it was eventually
realized that most of the important features of this analysis are determined
by the class of homotopy equivalences in the category.

Received December 15, 2009.
2000 Mathematics Subject Classification. 05C20,18G55, 55U35.
Key words and phrases. category of directed graphs, topos, Quillen model structure,

homotopy category, cycles, algebraic graph theory, zeta function.

ISSN 1076-9803/2011

295

http://nyjm.albany.edu/nyjm.html
http://nyjm.albany.edu/j/2011/Vol17.htm


296 TERRENCE BISSON AND ARISTIDE TSEMO

Quillen [Q67] presented an abstraction of this method that applies to
many categories. A Quillen model structure on a category E works with
three classes of morphisms in the category, which are assumed to satisfy the
axioms described in Section 3 here. Quillen described the associated homo-
topy category Ho(E) as a localization or category of fractions with respect
to the class of weak equivalences for the model structure; he defined the
morphism sets for this homotopy category by using the classes of fibrations
and cofibrations for the model structure.

In Bisson and Tsemo [BT08] we gave a model structure for the category
Gph of directed and possibly infinite graphs, with loops and multiple arcs
allowed (we give a precise definition of Gph in Section 2 here). We fo-
cussed on invariants in Gph defined in terms of cycles, and defined the weak
equivalences for our model structure to be the Acyclics (graph morphisms
which preserve cycles). The cofibrations and fibrations for the model are
determined from the class of Whiskerings (graph morphisms produced by
grafting trees). We review this model structure in Section 3 here.

The main goal of the present paper is to prove that the homotopy category
Ho(Gph) for our model structure is equivalent to the category cZSet of
periodic Z-sets. The proof is in Section 5 here. This result is applied in
Section 6 to show that isospectral and almost-isospectral finite graphs are
homotopy equivalent for our model structure.

We use the fact that whiskered cycles (disjoint unions of cycles with trees
attached to them) are cofibrant objects in our model structure. These graphs
can also be described as Cayley graphs of N-sets, where N is the monoid of
the natural numbers under addition (with 1 as generator). Among these are
the disjoint union of cycles, the Cayley graphs of Z-sets. This is explained
in Sections 2 and 4.

Each of the categories Gph, NSet, and ZSet is a presheaf topos, and
there are adjoint functors relating them. By selecting appropriate adjoint
functors, we transport our model structure from Gph to the categories NSet
and ZSet. It turns out that Ho(ZSet) and Ho(NSet) are both equivalent to
Ho(Gph). We show this in Section 5 by using a further adjunction between
ZSet and the category cZSet of periodic Z-sets. In fact, we exhibit Quillen
equivalences between cZSet and ZSet, NSet, and Gph, where we use a trivial
model structure on cZSet.

Here is a more detailed outline of the sections of this paper.
In Section 2 we define the category Gph, which is a presheaf category, and

thus a topos. We define a subcategory NGph of Gph, which is equivalent
to the category NSet of actions of the additive monoid of natural numbers.
It follows that NGph is also a topos. Then we give a similar discussion
of ZGph (which is equivalent to the topos ZSet of actions of the additive
group of integers), and TGph (which is equivalent to the topos Set). We
observe, in passing, that these equivalences provide (very simple) examples
of Grothendieck’s version of Galois theory. We show that these subcategories
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are reflective and coreflective subcategories of Gph. The functors we need for
this are arising as “adjoint triples” (F,G,H) of functors between presheaf
categories. We establish our conventions for these functors at the end of
Section 2; these functors are used almost everywhere in the paper.

In Section 3 we recall the definitions of model structure and cofibrantly-
generated model structure. We recall our definitions of Surjecting, Whisker-
ing, and Acyclic graph morphisms from Bisson and Tsemo [BT08], and the
definition of our model structure on Gph. We show that our model struc-
ture is cofibrantly-generated, and use a general theorem on the transport of
cofibrantly-generated model structures to define model structures on NSet
and ZSet.

In Section 4, we analyze these new model structures on NSet and ZSet,
with especial attention to fibrant objects and cofibrant objects. Motivated
by this analysis, we develop a cofibrant replacement functor for the cate-
gory Gph. Our construction uses the coreflection functor H for ZGph as a
subcategory of Gph.

In Section 5 we give some background on homotopy functors and on
Quillen’s construction of the homotopy category Ho(E) associated to a model
structure on E , and on his construction of derived functors (for adjoint func-
tors satisfying appropriate conditions). We discuss examples of homotopy
functors on Gph, and give examples of functors which satisfy the Quillen
adjunction conditions. Most important for us is a particular adjunction re-
lating Gph and ZSet; its left adjoint is the functor H which assigns to each
graph the set of all its bi-infinite paths. We use this to show that Ho(Gph)
is equivalent to the category cZSet of periodic Z-sets.

In Section 6 we use the functor H to associate a zeta series ZX(u) to
each almost-finite graph X. This fits very well with work of Dress and
Siebeneicher [DS88] on the Burnside ring of the category of almost-finite
Z-sets. As a consequence of our calculation of Ho(Gph), we show that finite
graphs are almost-isospectral if and only if they are homotopy equivalent
(that is, isomorphic in the homotopy category).

2. Some subcategories of graphs

This paper is about Gph, a convenient category of graphs, precisely de-
scribed in the paragraph below. In Bisson and Tsemo [BT08] we introduced
a Quillen model structure on Gph. In this paper we show how to study
that structure, and the resulting homotopy category, by means of some of
its subcategories.

We define a graph to be a data-structure X = (X0, X1, s, t) with a set
X0 of nodes, a set X1 of arcs, and a pair of functions s, t : X1 → X0 which
specify the source and target node of each arc. We may say that a ∈ X1 is
an arc which leaves node s(a) and enters node t(a); and that a loop is an
arc a with s(a) = t(a). A graph morphism f : X → Y is a pair of functions
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f1 : X1 → Y1 and f0 : X0 → Y0 such that s ◦ f1 = f0 ◦ s and t ◦ f1 = f0 ◦ t.
This defines the particular category Gph that we study here.

In fact, Gph is the category of presheafs on a small category; see Lawvere
[L89] or Lawvere and Schanuel [LS97] for fascinating discussions. It follows
that Gph is a topos, and thus a category with many nice geometric and
algebraic and logical properties; see Mac Lane and Moerdijk [MM94], for
instance.

In this paper we want to consider some very special kinds of graphs, as
follows.

Definition. A graph X is:

a) an N-graph when each node of X has exactly one arc entering;
b) a Z-graph when each node of X has exactly one arc entering and

exactly one arc leaving;
c) a T-graph when each node of X has exactly one loop, and X has no

other arcs.

A T-graph might be called a terminal graph (or graph of loops), and a
Z-graph might be called a graph of cycles. An N-graph might be called a
graph of whiskered cycles.

Let NGph denote the full subcategory of Gph whose objects are the N-
graphs; this means that we take all graph morphisms between N-graphs as
the morphisms in NGph. Similarly, let ZGph denote the full subcategory
of Gph whose objects are the Z-graphs, and let TGph denote the full sub-
category of Gph whose objects are the terminal graphs. We have a chain of
subcategories

TGph ⊂ ZGph ⊂ NGph ⊂ Gph.

In fact, these Gph subcategories are equivalent to some well-known cate-
gories. Let G be a monoid, with associative binary operation G×G→ G :
(g, h) 7→ g∗h and with neutral element e; a G-set is a set S together with an
action µ : G× S → S such that µ(e, x) = x and µ(g, µ(h, x)) = µ(g ∗ h, x).

Consider the monoid N of natural numbers under addition, and the group
Z of integers under addition. A set S together with an arbitrary function
σ : S → S defines an action of N by µ(n, x) = σn(x) for n ∈ N . A set S
together with an arbitrary invertible function σ : S → S defines an action
of Z by µ(n, x) = σn(x) for n ∈ Z. This justifies the following description
of the categories of N-sets and Z-sets.

Definition. Let Set denote the category of sets. Let NSet denote the cate-
gory of N-sets; here an N-set is a pair (S, σ) with σ a function from S to S,
and a map of N-sets from (S, σ) to (S′, σ′) is a function f : S → S′ such that
σ′ ◦ f = f ◦ σ. Let ZSet denote the full subcategory of NSet with objects
(S, σ) where σ is a bijection.

For any N-set (S, σ), we define a graph X = G(S, σ) with nodes X0 = S
and arcs X1 = S, and with s, t : X1 → X0 given by s(x) = σ(x) and t(x) = x
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for each x ∈ S. Thus the elements in the N-set S give the nodes and the
arcs in the graph X, and each arc x has source σ(x) and target x. In the
N-set S we think of σ(x) as telling the unique “source” or “parent” of each
element x.

Note that we are directing our arcs opposite to the way that seems natural
in graphical representation of dynamical systems (see Lawvere and Schanuel
[LS97], for instance). But our convention is designed to fit the “whiskered
cycles” which are important in our model structure (see Sections 3 and 4
here).

Proposition 1. G is a functor from NSet to Gph; moreover:

a) the functor G gives an equivalence from the category NSet to the
subcategory NGph in Gph;

b) the restriction of G gives an equivalence from the category ZSet to
the subcategory ZGph in Gph;

c) the restriction of G gives an equivalence from the category Set to the
subcategory TGph in Gph.

Proof. If f : (S, σ) → (S′, σ′) is a map of N-sets, we define a graph mor-
phism G(f) : G(S, σ) → G(S′, σ′) by G(f)0(x) = G(f)1(x) = f(x) for x in
S. This preserves composition and gives a functor from NSet to Gph. We
note that G(S, σ) is an N-graph, and every N-graph has a unique isomor-
phism to a graph X in the image of G (where X0 = X1 and t is the identity).
If X is in NGph we define an N-set H(X) = (X0, σ) by σ(x) = s(a) where
a is the unique arc entering the node x, and a graph morphism g : X → Y
gives H(g) : H(X)→ H(Y ) by H(g)(x) = g0(x) for x ∈ X0. This preserves
composition and gives a functor from NGph to NSet. Thus we have

G : NSet→ NGph and H : NGph→ NSet.

Note that H(G(S, σ)) = (S, σ) and G(H(X)) = X. In fact, G and H give
inverse bijections between the set of N-set maps (S, σ) to (S′, σ′) and the set
of graph morphisms from G(S, σ) to G(S′, σ′). This says that the functor
G is full and faithful, with image equivalent to the category NGph. We can
carry out a similar analysis for the restriction of G to the subcategory ZSet,
and the restriction of H to the subcategory ZGph. The analysis for Set and
TGph is also similar (and rather trivial). �

Each part of the above proof exhibits an “adjoint pair” of functors (G,H)
(as discussed below), and shows that it gives an equivalence of categories.
The proof can also be understood as an example of (the representable case
of) Grothendieck’s Galois theory. The paper by Dubuc and de la Vega
[DV00] gives a self-contained exposition which seems relevant to our exam-
ples here.

In Section 3 we will use the fact that TGph and NGph and ZGph are
“reflective and coreflective subcategories” of Gph. Roughly speaking, a re-
flection from a category E into a subcategory E ′ assigns to each object X
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in E an object X ′ in E ′, and a morphism X → X ′ in E which is universal
in that any X → X ′′ with X ′′ in E ′ factors through a unique morphism
X ′ → X ′′ in E ′. Dually, a coreflection is a morphism X ′ → X in which is
couniversal in that any X ′′ → X with X ′′ in E ′ factors through a unique
morphism X ′′ → X ′ in E ′.

These notations are best made precise in the language of adjoint functors.
Here is a quick review of these standard definitions (see Mac Lane [M71],
for instance).

Definition. An adjunction between categories X and Y is a pair (L,R) of
functors L : X → Y and R : Y → X together with a natural bijection of
morphism sets Y(L(X), Y ) → X (X,R(Y )). In this case, we may say that
(L,R) is an adjoint pair, with L as the left adjoint and R as the right adjoint,
and denote this by

L : X 
 Y : R.

For any adjoint pair (L,R) we have a natural transformation X → RL(X),
called the unit of the adjunction; dually, there is a natural transformation
LR(Y ) → Y , called the counit of the adjunction. In particular, a subcate-
gory E ′ of E is a reflective subcategory when the inclusion functor G : E ′ → E
has a left adjoint functor F , with adjunction (F,G); then F is the reflec-
tion functor. Dually, E ′ is a coreflective subcategory of E when the inclusion
functor G : E ′ → E has a right adjoint functor H, with adjunction (G,H);
then H is the coreflection functor.

Proposition 2. TGph and NGph and ZGph are reflective and coreflective
subcategories of Gph, with

TGph ⊂ ZGph ⊂ NGph ⊂ Gph.

Proof. Let us start with the full subcategory TGph of terminal graphs,
those graphs which are disjoint unions of 1. This part is especially simple,
and sets the tone for the other parts of the proof.

The reflection is equivalent to an adjunction

F : Gph 
 Set : G.

Here G is the functor from Set to Gph which assigns to set S the terminal
graph with one loop for each element of S. The functor F assigns to each
graph X its set of components; this is the set of equivalence classes of nodes
of X, with respect to the equivalence relation generated by the relation
s(a) ∼ t(a) for each arc a in X (the coequalizer of the source and target
functions s, t : X1 → X0). We may use the notation F (X) = π0(X) and
G(S) =

∑
S 1. The unit of the adjunction X → GF (X) is universal among

graph morphisms from X to terminal graphs, as mentioned above. This
shows the desired adjunction. Note that the counit FG(S) → S of the
reflection is a bijection for every set S (as must happen for any full reflective
subcategory). The image of the functor GF : Gph → Gph is equivalent to
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the subcategory TGph of Gph; in fact, any terminal graph has a unique
isomorphism to a graph X with X0 = X1 and s and t as the identity.

The coreflection is equivalent to an adjunction

G : Set 
 Gph : H

where H(X) is the set of graph morphisms from 1 to X, the set of those
arcs of X which are loops. The counit of the adjunction GH(X) → X
is universal among morphisms from terminal graphs to X. This shows the
coreflection. Note that the unit S → HG(S) of the coreflection is a bijection
for every set S (as must happen for any full coreflective subcategory).

Now we give a similar treatment of NGph. Recall the definition of G :
NSet → Gph from the previous proposition. The reflection comes from an
adjunction

F : Gph 
 NSet : G

where we can describe the functor F as follows. Let P denote the unending
path graph; its nodes are the natural numbers, and there is one arc n→ n+1
for each n ≥ 0. Let σ : P → P be the graph morphism given on nodes by
σ(n) = n + 1. For any graph X, consider the set of connected components
of the graph P × X. Let F (X) denote the N-set (π0(P × X), σ), with
σ([n, x]) = [n+ 1, x], induced by the graph morphism σ× id from P×X to
itself. Let us sketch the bijection between graph morphisms f : X → G(S, σ)
and N-set maps g : F (X) → (S, σ). For any morphism f : X → G(S) in
Gph, we define a function from the nodes of P × X to S by (n, x) 7→
σn(f(x)). This is well defined on connected components of P×X since any
arc (n, x′) → (n + 1, x) in P × X implies the existence of an arc x′ → x
in X, which implies f(x′) = σ(f(x)) in S, so that σn(f(x′)) = σn+1(f(x)).
This gives an N-set map g : (π0(P × X), σ) → (S, σ), since g(σ[n, x]) =
g([n + 1, x]) = σn+1(f(x)) = σ(g([n, x]). This is bijective, and establishes
the adjunction.

The coreflection comes from an adjunction

G : NSet 
 Gph : H

where we can describe the functor H as follows. Let Pop denote the graph
G(N,+1), and let σ : Pop → Pop be the graph morphism given on nodes
by σ(n) = n+ 1. Let H(X) be the set of graph morphisms from Pop to X,
viewed as an N-set with σ(f) = f ◦ σ. Then G is left adjoint to H.

It is easy to see ZSet as a reflective and coreflective subcategory of NSet.
Let Z denote the integers. The right adjoint to the inclusion assigns to an
N-set (S, σ) the set of functions f : Z → S such that f(n + 1) = σ(f(n))
for all n ∈ Z; then σ(f) = σ ◦ f is invertible. The left adjoint to the
inclusion assigns to an N-set (S, σ) the set (Z × S)/ ∼, for the equivalence
relation generated by (n + 1, x) ∼ (n, σ(x)) for all n ∈ Z and x ∈ S; then
σ(n, x) = (n, σ(x)) is invertible.

It follows that ZGph is a reflective and coreflective subcategory of NGph;
informally, the reflection combs any whiskers down along their source cycle,
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while the coreflection builds a ZGph from biinfinite walks. Since the com-
position of adjuctions is an adjunction (see Mac Lane [M71], for instance),
this also gives the reflection from Gph to ZGph. �

For any monoid G, the category of G-sets is a presheaf category, and
thus a Grothendieck topos, with all limits (products, pullbacks, etc) and
colimits (coproducts, pushouts, etc); see Mac Lane and Moerdijk [MM94],
for instance. In fact, since Gph, NSet, and ZSet are presheaf categories,
these categorical constructions can be performed “elementwise”. Here are
the simplest examples. The N-set (1, id) (the one point set with its identity
function) is a terminal object in NSet; this means that for every N-set there
is a unique N-set map (S, σ) → (1, id). The empty set with its identity
function is an initial object in NSet; this means that for every N-set there is
a unique N-set map (0, id)→ (S, σ). These objects 0 and 1 also provide the
initial and terminal objects for ZSet.

The calculation of products and coproducts is the same in each of the
subcategories

TGph ⊂ ZGph ⊂ NGph ⊂ Gph.

In fact, the inclusion functor G : NSet→ Gph preserves limits and colimits,
since it has left adjoint F and right adjoint H; and similarly for the other
G functors.

Note that in the above discussions we have actually used three func-
tors (F,G,H), made up of two overlapping adjunctions (F,G) and (G,H)
between presheaf categories. These adjunctions are coming from functors
between the sites for the presheaf categories, as follows. If C is a small
category then the topos of presheaves on C, which we may denote by CSet,
is the category of functors from Cop to Set. If φ : C → D is a functor, then
there is an adjoint triple (φ!, φ

∗, φ∗) with

φ! : CSet 
 DSet : φ∗ and φ∗ : DSet 
 CSet : φ∗.

See the analysis in Expose I.5 of Grothendieck [G72]. This concept is related
to that of “essential geometric morphism” φ : CSet⇒ DSet in topos theory;
see Mac Lane and Moerdijk [MM94], for instance. Almost all the adjunctions
used in this paper come from such adjoint triples (F,G,H) = (φ!, φ

∗, φ∗).

3. Quillen model structures

We review our model structure on the category Gph, and show that it
is cofibrantly generated. Then we establish related model structures on the
categories NSet and ZSet, for further analysis in the next two sections.

We start with some convenient notation, for our model category axioms.

Definition. Let ` : X → Y and r : A → B be morphisms in a category E .
We say that ` is weak orthogonal to r (abbreviated by ` † r) when, for all f
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and g,

if X

`
��

f // A

r
��

Y
g // B

commutes, then X

`
��

f // A

r
��

Y
g //

h
>>

B

commutes for some h.

Given a class F of morphisms we define

F† = {r : f † r, ∀f ∈ F} and †F = {` : ` † f, ∀f ∈ F}.
A weak factorization system in E is given by two classes L and R, such that
L† = R and L = †R and such that, for any morphism c in E , there exist
` ∈ L and r ∈ R with c = r ◦ `.

Using the above, we may express Quillen’s notion [Q67] of “model cat-
egory” via the following axioms, which we learned from Section 7 of Joyal
and Tierney [JT07].

Definition. Suppose that E is a category with finite limits and colimits. A
model structure on E is a triple (C,W,F) of classes of morphisms in E that
satisfies:

a) “three for two”: if two of the three morphisms a, b, a ◦ b belong to W
then so does the third;

b) the pair (C,F) is a weak factorization system (where C = C ∩W);
c) the pair (C,F) is a weak factorization system (where F =W ∩F).

The morphisms in W are called weak equivalences. The morphisms in C
are called cofibrations, and the morphisms in C are called acyclic cofibrations.
The morphisms in F are called fibrations, and the morphisms in F are called
acyclic fibrations.

In Bisson and Tsemo [BT08] we introduced a Quillen model structure on
Gph. Its description used three types of graph morphisms, which we called
Surjectings, Whiskerings, and Acyclics. They can be defined as follows.

• A graph morphism f : X → Y is Surjecting when the induced func-
tion f : X(x, ∗) → Y (f(x), ∗) is surjective for all x ∈ X0. Here, for
any graph Z and any node z, Z(z, ∗) denotes the set of arcs in Z
which have source z.
• A graph morphism f : X → Y is Acyclic when Cn(f) : Cn(X) →
Cn(Y ) is bijective for all n > 0. Here Cn is the (directed) cycle
graph, with the integers mod n as its nodes and its arcs, and with
s(i) = i + 1 and t(i) = i. Then Cn(X) denotes the set of graph
morphisms from Cn to X.
• A graph morphism f : X → Y is Whiskering when Y is formed by

attaching rooted trees to X. Here a rooted tree is a graph T with
a node r (its root) such that, for each each node x in T , there is
a unique (directed) path in T from r to x. Then “attaching” the
rooted tree T to X means identifying the root r with a node of X;
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this is forming the pushout of graph morphisms r → T and r → X,
where r is considered as a graph with one node and no arcs.

Here we will interpret these morphism classes, and describe our model
structure for Gph, in terms of “cofibrant generation” (see section 2.1 in
Hovey [H99], for instance). A model structure (C,W,F) is cofibrantly gen-
erated when there are sets I and J of morphisms such that J† = F and
I† = F , so that C = †(I†) and C = †(J†). In short, a cofibrantly-generated
model structure is a model structure given by weak factorization systems

(C,F) = (†(I†), I†) and (C,F) = (†(J†), J†).

We may say that J generates the acyclic cofibrations, and that I generates
the cofibrations. There is usually a “smallness” assumption mentioned, but
this smallness condition is vacuous in Gph: every object in Gph is small with
respect to every set of morphisms in Gph, since Gph is a presheaf category
on a small category. This follows from the proof at Example 2.1.5 in Hovey
[H99], for instance.

Let us describe sets I and J which generate our model structure for Gph.
Let s : D → A be the “source” graph morphism, which exhibits the “dot”
graph D as the source subgraph of the “arrow” graph A. More precisely, A
is the graph with two nodes, 0 and 1, and one arc a from 0 to 1; and s is the
inclusion of the subgraph D with one node 0 and no arcs. Let in : 0→ Cn

be the initial graph morphism, and let jn : Cn +Cn → Cn be the coproduct
graph morphism. Let J = {s}; let K = {in, jn : n > 0}; and let I = J ∪K.

Theorem 3. Gph has a cofibrantly-generated model structure with acyclic
cofibrations generated by J , and cofibrations generated by I, and with weak
equivalences W = K†.

Proof. We show that the morphism classes given above agree with the
model structure on Gph given in Bisson and Tsemo [BT08]; see the details
there. Consider F = J† and C = †(I†). The following three observations
follow directly from the definition of weak orthogonality:

a) K† is precisely the Acyclic graph morphisms;
b) J† is precisely the Surjecting graph morphisms;
c) I† = (J ∪K)† is precisely the Acyclic Surjecting graph morphisms.

The Surjectings form the class F of fibrations for our model structure. The
Acyclics form the classW of weak equivalences for our model structure. The
Acyclic Surjectings form the class W ∩ F = F of acyclic fibrations for our
model structure. Then †(I†) = †(W ∩F). So †(I†) = C, the cofibrations for
our model structure. �

The following standard notions will help us state a general theorem about
“transporting” Quillen model structures to related categories. See section
2.1 in Hovey [H99] for discussion of pushouts, transfinite compositions, re-
tracts in the morphism category, etc. Let E be a category with all limits
and colimits. For a set H of morphisms in E , let cell(H) denote the class
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of all transfinite compositions of pushouts of elements in H. Morphisms in
cell(H) are called relative H-cell complexes; a graph X is called an H-cell
complex if 0 → X is a relative H-cell complex. All this is suggested by the
notion in topology of building up a space by attaching cells.

Here are some examples in the category Gph, where we take J = {s} and
K = {in, jn : n > 0} and I = J ∪K.

Proposition 4. The morphisms in cell(J) are the Whiskerings, the acyclic
cofibrations for our model structure. Moreover, cell(J) = †(J†).

Proof. Each pushout of s attaches a single arc as a Whisker. Attaching
a rooted tree corresponds to a composition of these; and the Whiskerings
are exactly the class of all transfinite compositions of pushouts of elements
in J . We showed in Bisson and Tsemo [BT08] that the Whiskerings are
closed with respect to retracts in the morphism category of Gph. To prove
the second statement, we use this, together with some general facts from
Hovey. We always have H ⊆ cell(H) ⊆ †(H†). Suppose that “the domains
of morphisms in H are small with respect to cell(H)”. Then Hovey uses a
general version of the small object argument (based on Lemma 3 of Chapter
II.3 in Quillen [Q67] ) to show that any morphism in †(H†) is the retract,
in the category of morphisms of E , of some morphism in cell(H). But every
object in Gph is small with respect to every set of morphisms in Gph, as
mentioned above, so the smallness condition here is vacuous in Gph. �

Proposition 5. If C is a disjoint union of cycle graphs, then every inclusion
X → X + C is in cell(K). Every graph morphism between disjoint unions
of cycle graphs is in cell(K).

Proof. For any graph X, the morphism X → X + Cn is a pushout of in;
if C is any disjoint union of cycle graphs, then X → X + C is a transfinite
composition of pushouts of in for n > 0. For the second statement, let
πn,k : Cnk → Cn (for n > 0 and k > 0) denote the graph morphism given
on nodes by πn,k(i) = i mod n. We can exhibit πn,k as a pushout of jnk, as
follows. Consider the graph morphism f : Cnk +Cnk → Cnk given on nodes
by f(i, 0) = i+n and f(i, 1) = i, where we think of graph Cnk + Cnk as the
product of Cnk and the set {0, 1}. Then πn,k is the pushout of f and jnk.
Any graph morphism between disjoint unions of cycle graphs is a pushout
of such maps (up to isomorphisms). �

Since cell(K) ⊆ cell(I) ⊆ C, these propositions are describing some of the
cofibrations for our model structure on Gph. But here are some examples
of morphisms which are not cofibrations for our model structure. We let Z
denote the graph with the integers as its nodes and arcs, and s(n) = n and
t(n) = n+ 1.

a) The graph morphism πn : Z→ Cn, given by reduction mod n on nodes,
is not a cofibration. We may show this by constructing an explicit Acyclic
Surjecting graph morphism g : X → Y such that the weak orthogonality
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πn † g fails. Let Y = Cn and let X = CnP, the graph formed by attaching
the root of the unending path P at the 0 node in Cn (recall that we defined
P in Section 2 here). Let f : Z → CnP be the graph morphism given on
nodes by m 7→ m mod n for m ≥ 0 and m 7→ −m for m ≤ 0. Then the
commutative square with horizontal arrows f : Z→ CnP and id : Cn → Cn

has no lifting. It follows that πn is not a cofibration for our model structure.
b) Also, 0→ Z is not a cofibration, since it is an Acyclic Surjecting graph

morphism, and it is not weakly orthogonal to itself.
c) Also, Z+Z→ Z is not a cofibration, since it is is an Acyclic Surjecting

graph morphism which is not weakly orthogonal to itself.
We want to use our model structure on Gph to define model structures on

NSet and ZSet. We will use a general result, referred to as “creating model
structures along a right adjoint” (by Hirschhorn, Hopkins, Beke, etc), or
as “transferring model structures along adjoint functors” (by Crans, etc).
According to Berger and Moerdijk [BM03]: “Cofibrantly generated model
structures may be transferred along the left adjoint functor of an adjunction.
The first general statement of such a transfer in the literature is due to
Crans.” The reference is to Crans [C95]. Here is a statement of this “transfer
principle” (from Berger and Moerdijk [BM03]).

Transport Theorem. Let E be a model category which is cofibrantly gen-
erated, with cofibrations generated by I and acyclic cofibrations generated by
J . Let E ′ be a category with all limits and colimits, and suppose that we
have an adjunction

L : E 
 E ′ : R with R(cell L(J)) ⊆ W.

Also, assume that the sets L(I) and L(J) each permit the small object ar-
gument. Then there is a cofibrantly generated model structure on E ′ with
generating cofibrations L(I) and generating acyclic cofibrations L(J). More-
over, the model structure (C′,W ′,F ′) satisfies f ∈ W ′ iff R(f) ∈ W, and
f ∈ F ′ iff R(f) ∈ F .

As mentioned before, the smallness conditions are automatically satisfied
in our presheaf categories. So, in our examples, the main hypothesis for the
theorem is: f ∈ cell L(J) implies R(f) ∈ W.

Let us translate some definitions from Gph into NSet. For an NSet map
f : (S, σ)→ (T, σ) we say that:

a) f is Acyclic when Cn(f) : Cn(S, σ) → Cn(T, σ) is a bijection for
every n > 0. Here Cn(S, σ) = {x ∈ S : σn(x) = x} (we could call
these the n-periodic points).

b) f is Surjecting when f : σ−1(x)→ σ−1(f(x)) is a surjection for every
x in S.

c) f is Whiskering when f is an injective function such that for every
x ∈ T has σn(x) ∈ f(S) for some natural number n.

Proposition 6. There is a Quillen model structure on NSet with
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a) weak equivalences W given by the Acyclic NSet maps,
b) fibrations F given by the Surjecting NSet maps,
c) cofibrations C = †F , where F =W ∩F .

Moreover, the acyclic cofibrations C are given by the Whiskering NSet maps.

Proof. We create a model structure on NSet by applying the Transport
Theorem to the adjunction

F : Gph 
 NSet : G.

We must check that G(cell(FJ)) ⊆ W. But J contains just the single graph
morphism s : D → A. We calculate that F (D) = (π0(P ×D), σ) = (N, σ)
and F (A) = (π0(P ×A), σ) = (N, σ); and the NSet map F (s) : (N, σ) →
(N, σ) is given by the successor function σ : N → N . Here are the details.
The graph P×D has no arcs and nodes n for n ≥ 0; the graph P×A has
nodes (n, 0) and (n, 1) for n ≥ 0, and an arc (n, 0) → (n + 1, 1) for each
n ≥ 0; and s : P ×D → P ×A is given on nodes by s(n) = (n, 0). Then
π0(P×D) has elements n for n ≥ 0 and π0(P×A) has elements [m, 1] for
m ≥ 0; but on components we have s(n) = [n, 0] = [n+ 1, 1].

Let us show that cell(FJ) is given by the Whiskering NSet maps. The
functor G, which establishes the equivalence between NSet and NGph, pre-
serves limits and colimits, so that G(cell(FJ)) = cell(GFJ). Recall that
Whiskerings in Gph are attaching rooted trees, with arcs leaving the root;
but a rooted tree is not in NGph, because the root is a node with no arcs
entering. To stay within NGph, we attach a taprooted tree, which is a
rooted tree with a copy of the N-graph Pop (an infinite sequence of arcs
and nodes leading into the node 0) attached to it by identifying its root
with the 0 node. The graph morphisms in G(cell(FJ)) all come from at-
taching “taprooted forests” in NGph; via the functor G, these correspond
to the Whiskering NSet maps. Since every graph morphism in G(cell(FJ))
is thus an Acyclic, the hypothesis of the Transport Theorem is met. It fol-
lows that F and F in NSet are defined in terms of the functor G, which is
the inclusion of NSet as the full subcategory NGph in Gph. If X = G(S, σ)
then Cn(S, σ) = Cn(X). Thus the weak equivalences in NSet are the Acyclic
NSet maps. Also, we have σ−1(x) = X(x, ∗), the arcs leaving node x, so
G(f) : G(S, σ)→ G(S′, σ) is a Surjecting graph morphism if and only if f is
a Surjecting NSet map. Thus the fibrations in NSet are the Surjecting NSet
maps. �

We define the Acyclic ZSet maps and the Surjecting ZSet maps by exactly
copying the definitions used for NSet. But these definitions simplify quite a
bit in the category ZSet.

Proposition 7. All ZSet maps are Surjecting.

Proof. In any ZSet (S, σ), the function σ is invertible, so σ−1(x) has exactly
one element for every x ∈ S. Consider any ZSet map f : (S, σ) → (T, σ).
For every x ∈ S we restrict f to give f : σ−1(x) → σ−1(f(x)), and any
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function between one element sets is surjective; thus every ZSet map is
Surjecting. �

We can use the following definition to describe the Acyclic ZSet maps.
For any ZSet (S, σ), let j(S, σ) = {x ∈ S : ∃n > 0, σn(x) = x}.

We may call j(S, σ) the periodic part of the Z-set (S, σ). Any ZSet map
f : (S, σ)→ (T, σ) restricts to give j(f) : j(S, σ)→ j(T, σ), since if σn(x) =
x for some x ∈ S, then σn(f(x)) = f(x) in T .

Proposition 8. A ZSet map f is Acyclic if and only if j(f) is a bijection.

Proof. Suppose that f : (S, σ) → (T, σ) is Acyclic. We want to show that
j(f) is a bijection. Certainly, j(f) is a surjection, since for every y ∈ jT
we have y ∈ Cn(T ) for some n > 0, and Cn(S) → Cn(T ) is bijective by
assumption. So there is a unique x ∈ Cn(S) with f(x) = y. Suppose that
j(f) is not an injection; then there exists some y ∈ jT with more than one
preimage in jS. We know that y ∈ Cn(T ) for some n > 0; let n be the
smallest such. Then there is a unique x ∈ Cn(S) with f(x) = y. We have
assumed there is another element x′ ∈ jS with f(x′) = y. So x′ /∈ Cn(S),
and x′ ∈ Cm(S) for some m > 0 with m 6= n. But then f(x′) = y must
be in Cm(T ), and it follows that m is a proper multiple of n. Then we
have x, x′ ∈ Cm(S), both mapping to y ∈ Cm(T ). But Cm(f) is a bijection.
Contradiction. �

Corollary 9. There is a Quillen model structure on ZSet with

a) the Acyclic ZSet maps as the weak equivalences W,
b) all ZSet maps as the fibrations F ,
c) cofibrations C = †F = †W.

Proof. Consider the adjoint functors

F : Gph 
 ZSet : G.

We use these to transport our model structure on Gph to ZSet. Note that
F (s) : (Z, σ) → (Z, σ) is the successor function σ : Z → Z, which is an
isomorphism. This implies that every morphism in cell(FJ) is an isomor-
phism, so the hypothesis for the Transport Theorem is satisfied. Note that
F =W ∩F =W, since F is all ZSet maps; thus C = †W. �

We may summarily describe the above model structure on ZSet by

(C,F) = (iso, all) and (C,F) = (C,W).

Note that not every Acyclic ZSet map is an isomorphism. For instance,
let Z = (Z,+1) denote the integers viewed as a Z-set; any set A gives a ZSet∑

a∈A Z = A×Z (viewing the set A as a Z-set with trivial action, and taking
the product of Z-sets). If A and B are sets then any function f : A → B
gives an ZSet map f × Z : A × Z → B × Z, by (f × Z)(a, n) = (f(a), n)
for a ∈ A and n ∈ Z. Then f × Z is always Acyclic, but is usually not an
isomorphism.
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Let us say that an element x in a Z-set (S, σ) is free when σn(x) = x
implies n = 0. Let us say that a ZSet map f : (S, σ) → (T, σ) maps the
free elements bijectively when f maps the free elements of S bijectively to
the free elements of T . It turns out that f is a cofibration for our model on
ZSet if and only if f maps the free elements bijectively; since we will not
need this result, the proof is left to the reader.

4. Fibrant graphs and cofibrant graphs

A Quillen model structure on a category determines some important
classes of objects: the fibrant objects, the cofibrant objects, and the fibrant-
cofibrant objects. In Section 5 we will describe how these help to establish
a well-behaved theory of homotopy classes of morphisms in the category. In
this section we investigate these objects for our model structures on Gph,
NSet, and ZSet. Then we describe a functor to “replace” any graph by a
related cofibrant graph.

Definition. Let (C,W,F) be a model structure on a category E , and let X
be an object in E . We say that X is fibrant when X → 1 is in F (where 1
is a terminal object); we say that X is cofibrant when 0→ X is in C (where
0 is an initial object). We say that X is fibrant-cofibrant when it is both
fibrant and cofibrant.

Let us see how this works in our model structures on Gph, NSet, and
ZSet. We start by introducing some terminology specialized to these differ-
ent categories.

• For any graph X, a dead-end in X is a node with no arc leaving it.
• For any N-set (S, σ), the trajectory N(x) of any element x in S is the

set {σn(x) : n ≥ 0}. We may say that an element x is periodic when
σn(x) = x for some n > 0. We may say that x is eventually periodic
when x has finite trajectory, since x has finite trajectory if and only
if σk(x) = σn+k(x) for some n and k (so that σk(x) is periodic).
• For any Z-set (S, σ), the orbit Z(x) for x in S is the set of elements
σn(x) as n ranges over the integers.

Note that we define the trajectory of an element in any N-set, but the
orbit of an element only makes sense in a Z-set, since the definition involves
the inverse function of σ. An element in a Z-set is periodic if and only if it
has a finite orbit. In a Z-set, every element is either periodic (finite orbit)
or free (infinite orbit). But in an N-set, an element with a finite trajectory
may fail to be periodic.

Proposition 10 (Gph). A graph X is fibrant if and only if X has no dead-
ends. A graph X is cofibrant if and only if X is a disjoint union of whiskered
finite-cycle graphs. A graph X is fibrant-cofibrant if and only if X is a
disjoint union of whiskered finite-cycle graphs in which the whiskers have no
dead-ends.
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Proof. A graph X is fibrant if and only if the morphism X → 1 is Surject-
ing; but this is true if and only if X has at least one arc leaving each of its
nodes. A graph X is cofibrant if and only if 0→ X is in C = †(I†), the class
of retracts (in the morphisms category) of morphisms in cell(I). If graph X
is a disjoint union of whiskered finite-cycle graphs, then 0→ X is in cell(I);
and every cofibrant graph is of this form, because the only way to get the
empty graph 0 as domain in cell(I) is to use a transfinite composition of
pushouts of the in, and taking retracts can’t introduce any new morphisms
with domain an empty graph. The description of fibrant-cofibrant graphs
follows. �

It follows that the fibrant graphs are exactly those in which every path
can be continued forever; this fits well with the terminology “no dead-ends”.
This can also be expressed by saying that any path Pn → X (for any length
n ≥ 0) can be extended to an infinite path P → X. Such graphs are
convenient for the study of symbolic dynamics (see Lind and Marcus [LM95],
for instance).

Note that every cofibrant graph is in NGph, but Z is a N-graph which is
not a cofibrant graph. Also, not every fibrant graph is in NGph.

Proposition 11 (NSet). An N-set (S, σ) is fibrant if and only if σ is sur-
jective. An N-set (S, σ) is cofibrant if and only if each element in S has
finite trajectory.

Proof. Recall the adjunctions F : Gph 
 NSet : G. By the transport
theorem used to define the model structure on NSet, f is a fibration in
NSet if and only if G(f) is a fibration in Gph. The first statement of the
proposition follows from this, since the graph corresponding to an N-set
(S, σ) has a dead-end if and only if σ is not surjective. The transport
theorem also says that the set F ({s} ∪ K) generates the cofibrations of
NSet, where K = {in, jn : n > 0}. Note that GF (in) = in and GF (jn) = jn.
Also, GF (s) (is a whiskering which) attaches an arc to the zero node of the
N-graph Pop; its pushouts are attaching taprooted forests, in terminology
from the previous section. Since G is a left adjoint, it preserves colimits,
and the class of N-set maps generated by F (K) corresponds to the class
of graph morphisms generated by K. Since the graph corresponding to an
N-set (S, σ) is a disjoint union of whiskered finite-cycle graphs if and only
if each element in S is eventually periodic, in that each trajectory in S is
finite, the second statement of the proposition follows. �

Proposition 12 (ZSet). Every Z-set is fibrant. A Z-set (S, σ) is cofibrant
if and only if each element in S has finite orbit.

Proof. Every ZSet map is a fibration. Also, the graph corresponding to a Z-
set is cofibrant if and only if all of its connected components are finite-cycle
graphs. The rest of the proof follows that of the previous proposition. �
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Definition. A cofibrant replacement for an object X in a model category E
is a weak equivalence f : X ′ → X where X ′ is cofibrant. We will say that f
is a nice cofibrant replacement when we also have f ∈ F . Dually, a fibrant
replacement of an object Y is a weak equivalence f : Y → Y ′ where Y ′ is
fibrant; and f is a nice fibrant replacement if also f ∈ C.

Each object X in E has at least one cofibrant replacement, since 0 → X
has a (C,F) factorization with 0 → X ′ in C and f : X ′ → X in F ; so this
is actually a nice cofibrant replacement. Dually, we have the existence of
(nice) fibrant replacements. If X ′ is cofibrant and g : X ′ → X ′′ is a nice
fibrant replacement, then X ′′ is fibrant-cofibrant, since C = †F is closed
under composition (0→ X ′ in C and g in C implies 0→ X ′′ in C). Thus any
nice fibrant replacement of a cofibrant object is fibrant-cofibrant, Dually, a
nice cofibrant replacement of a fibrant object is fibrant-cofibrant.

Let us define a special cofibrant replacement for our model structure on
Gph. Recall, from the end of Section 2, the adjoint pair

G : ZSet 
 Gph : H.

Here H is given by the natural Z-action on the set of graph morphisms from
the line graph Z to the graph X; and G can be thought of as a Cayley graph
construction (this is equivalent to the inclusion of ZGph as a subcategory
of Gph). The adjoint pair (G,H) has counit G(H(X)) → X. Recall that
for any Z-set (S, σ) we have defined j(S, σ) as the set of all elements x ∈ S
such that σn(x) = x for some n > 0. Since σ carries jS into itself, we have
a functor j : ZSet→ ZSet, and we may define c(X) = G(jH(X)). We may
refer to c(X) as the cycle resolution of X. For example, c(Cn) = Cn, and
c(X) = 0 if X is an acyclic graph.

Applying G to jH(X) ⊆ H(X) gives a natural graph morphism

c(X) = G(jH(X))→ G(H(X))→ X.

We have the following:

Proposition 13. For every graph X, the graph morphism c(X) → X is a
cofibrant replacement (although not in general a nice cofibrant replacement).

Proof. We must show that c(X) is cofibrant and that c(X) → X is an
Acyclic graph morphism. Note that c(X) is always isomorphic to a disjoint
union of finite cycle graphs, and is thus a cofibrant graph. Clearly jH(X)→
H(X) is an Acyclic ZSet map, so applying G to it gives an Acyclic graph
morphism. It remains to show that h : GH(X) → X is an Acyclic graph
morphism; in other words, that C∗(h) is a bijection. Any Cn → X is the
image under Cn(h) of the graph morphism Cn = G(H(Cn)→ G(H(X)), so
C∗(h) is surjective.

Conversely, for any α : Cn → GH(X) consider h◦α : Cn → X. Applying
the functor GH gives GH(h ◦ α) = GH(h) ◦ GH(α). But GH(Cn) = Cn

and GHGH(X) = X (since HG is the identity on any Z-set). Making these
identifications in GH(α) : GH(Cn) → GHGH(X), we have GH(h ◦ α) =
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α. It follows that C∗(h) is injective, so C∗(h) is a bijection. To see that
c(X) → X is not in general a nice cofibrant replacement, we consider the
graph X with two nodes, 0 and 1, and two arcs, ` : 0 → 0 and a : 0 → 1.
Then c(X) = 1 and the cofibrant replacement c(X)→ X is not Surjecting,
and is thus not in F . �

Definition. Let cZSet denote the full subcategory of ZSet with objects
those Z-sets with every element periodic.

Let i denote the inclusion of cZSet as full subcategory of ZSet. We may
reinterpret j (described above) as the left adjoint in the adjoint pair of
functors

i : cZSet 
 ZSet : j.

The functor i ◦ j from ZSet to ZSet (with image cZSet) is a “comonad” on
ZSet, and cZset is isomorphic to the topos of “coactions” for this comonad.
This exhibits cZSet as a “quotient topos” of ZSet. See Mac Lane and Mo-
erdijk [MM94] for a discussion of these concepts.

Let Gi = G◦ i and jH = j ◦H, with adjoint pair Gi : cZSet 
 Gph : jH,
which results from the composition of the two adjoint pairs

i : cZSet 
 ZSet : j and G : ZSet 
 Gph : H.

We may interpret the cofibrant replacement functor c : Gph → Gph as
c = Gi ◦ jH, which is the counit of the adjoint pair (Gi, jH), from the
composition of adjoint functors

cZSet 
 ZSet 
 NSet 
 Gph.

5. Homotopy categories

Quillen [Q67] introduced model categories as a framework for defining
and working with homotopy categories. We discuss homotopy functors in
general, then Quillen’s definition of the homotopy category as a category of
fractions, and then Quillen adjunctions and equivalences. Finally, we put
these ideas to work in showing that our homotopy category of graphs is
equivalent to cZSet.

Suppose that we are given a model structure (C,W,F) on a category
E . Recall that the morphisms in W are called weak equivalences. In the
homotopy category, these should all become isomorphisms. Let us sneak
up on this idea. We will say that a functor with domain E is a homotopy
functor when it takes every f ∈ W to an isomorphism.

We want to understand the homotopy functors for our model structure
on Gph. Consider functors from Gph to Set, for example. Recall the adjoint
triple (F,G,H), with F (X) = π0(X) and H(X) = C1(X). Then:

Proposition 14. H is a homotopy functor, and F is not a homotopy func-
tor.
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Proof. The functor H is clearly a homotopy functor, since C1(f) is a bi-
jection for every graph morphism in W. For the second part, the following
example, where D is the “dot” with one node and no arcs, shows that F
is not a homotopy functor: the graph morphism f : 0 → D is in W since
Cn(f) is the bijection ∅ → ∅ for all n > 0. But π0(f) is ∅ → 1, which is not
a bijection of sets. �

Recall the related adjoint triples (F,G,H) relating Gph with NSet and
with ZSet. We will use subscripts to distinguish the cases.

Proposition 15. The functors FN, HN : Gph → NSet and the functors
FZ, HZ : Gph→ ZSet are not homotopy functors.

Proof. The functor π0 is a composition of the reflection functors

F : Gph→ NSet→ ZSet→ Set

including FN and FZ. It follows that neither FN nor FZ is a homotopy
functor, since if F1 : Gph→ A is a homotopy functor, and F2 : A → B is any
functor, then F2 ◦F1 : Gph→ B must be a homotopy functor. The following
example shows that neither of the H functors is a homotopy functor. Let Z
denote the graph G(Z,+1). the graph morphism f : 0 → Z is in W since
Cn(f) is the bijection ∅ → ∅ for all n > 0. But HN(Z) = HZ(Z) = Z, and
HN(f) = HZ(f) is ∅ → Z, which is not a bijection. �

In the discussion below we will show that jH : Gph → cZSet is a ho-
motopy functor. This result underlies our calculation of the homotopical
algebra of graphs.

Quillen [Q67] showed how to use a model structure to avoid set theoretic
difficulties in the construction of a “category of fractions”, which universally
inverts the morphisms in W so that they become isomorphisms.

More precisely, Quillen used a model structure (C,W,F) for a category
E to describe a particular category Ho(E), together with a functor γ : E →
Ho(E) which is initial among homotopy functors on E . This means that γ
is a homotopy functor and that any homotopy functor Φ : E → D factors
uniquely through γ, in that Φ = Φ′ ◦γ for a unique functor Φ′ : Ho(E)→ D.

For example, if we use the trivial model structure (all, iso, all) on E , then
Ho(E) is isomorphic to E . This will apply to our model structure on cZSet,
and will help us describe Ho(Gph).

In Quillen’s description, the objects of the category Ho(E) are the ob-
jects of E . Together with the universal definition, this determines Ho(E) up
to isomorphism of categories. The category Ho(E) is called the homotopy
category for the model structure.

The universal definition of Ho(E) does not involve the fibrations and cofi-
brations, but these are used in Quillen’s description of the set of morphisms
from X to Y in Ho(E), for objects X and Y in E . We may denote this
homotopy morphism set by Ho(X,Y ).
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Here is a sketch of Quillen’s description of Ho(X,Y ) for any objects X
and Y in E . It uses the fibrations F and the cofibrations C as a kind of
“scaffolding”. Suppose that X ′ → X and Y ′ → Y are nice cofibrant re-
placements, and that X ′ → X ′′ and Y ′ → Y ′′ are nice fibrant replacements.
Note that X ′′ and Y ′′ are objects which are both fibrant and cofibrant. Then
any f : X → Y can be factored by f ′ : X ′ → Y ′, which can be factored by
some f ′′ : X ′′ → Y ′′. Quillen defines a “homotopy” equivalence relation ∼
on E(X ′′, Y ′′), and uses the fibrant, cofibrant scaffolding to formally define
Ho(X,Y ) = E(X ′′, Y ′′)/ ∼. Quillen shows that this definition supports a
well-defined composition (which is independent of the choice of scaffolding),
and that this gives the desired category Ho(E) with functor γ : E → Ho(E).

The functor γ : E → Ho(E) gives a function γ : E(X,Y )→ Ho(X,Y ); we
may denote γ(f) by [f ]. However, the function γ is not always surjective; in
general morphisms in Ho(E) are zig-zag compositions of homotopy classes
of morphisms in E , as we see from the use of replacements in the above
discussion.

We say that two objects in E are homotopy-equivalent when they become
isomorphic in Ho(E). Suppose that E1 and E2 are Quillen model categories,
with model structures (Ci,Wi,Fi) for Ei (i = 1, 2). If F : E1 → E2 satisfies
F (W1) ⊆ W2, then γ ◦ F : E1 → Ho(E2) is a homotopy functor, and thus
factors through a unique Ho(E1)→ Ho(E2). Most functors we consider don’t
satisfy such a strong condition. But Quillen gave a notion of derived functor
suitable for homotopical algebra, as follows.

Suppose that (L,R) is an adjoint pair of functors

L : E1 
 E2 : R

between Quillen model categories E1 and E2. We say that (L,R) is a Quillen
adjunction when we have L(C1) ⊆ C2 and L(C1) ⊆ C2. It turns out to
be equivalent to have R(F2) ⊆ F1 and R(F2) ⊆ F1 (see Hovey [H99], for
instance). A Quillen adjunction L : E1 
 E2 : R between model cate-
gories leads to an adjunction between the respective homotopy categories,
by means of derived functors. More precisely, Quillen described a (total)
left derived functor L′ associated to L, and a (total) right derived functor R′

associated to R, giving an adjunction

L′ : Ho(E1) 
 Ho(E2) : R′.

Here is a sketch of L′. Suppose we choose a nice cofibrant replacement
X ′ → X for each object X. We can define L′(X) = L(X ′); and we can de-
fine L′([f ]) = [f ′] for any f : X → Y , where X ′ → X and Y ′ → Y are nice
cofibrant replacements and f ′ : X ′ → Y ′ is a lifting of f . This definition of
L′ extends uniquely to all morphisms in Ho(E1). The functor L′ comes with
a natural transformation ε : L′ ◦γ → γ ◦L, and it is final (closest on the left)
among all such factorizations through γ (see Proposition 1 of Chapter I.4 in
Quillen [Q67]). This means that there is a unique L′′ → L′ for any natural
transformation ε′ : L′′ ◦ γ → γ ◦ L. This universal condition determines the
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left derived functor L′ up to natural isomorphism of functors. The descrip-
tion of R′ is dual to this, using nice fibrant replacements, and has a dual
universal property (initial, or closest on the right among all factorizations
through γ). See Chapter I.4 in Quillen [Q67] for more details.

Here are some examples of derived functors on Gph. Recall from Section 2
the adjoint pair

F : Gph 
 Set : G

with F (X) = π0(X) and G(S) =
∑

S 1. Consider our model structure on
Gph and the trivial model structure on Set.

Proposition 16. (F,G) is a Quillen adjunction, with derived adjunction
F ′ : Ho(Gph) 
 Ho(Set) : G′ having G′(S) = G(S) and F ′(X) = π0(c(X)).

Proof. We use the trivial model structure (all, iso, all) on Set, and our model
structure (C,W,F) on Gph. It is easy to see that G(f) ∈ C for any function
f , and G(h) ∈ C for any bijection h; so the adjunction (F,G) satisfies the
Quillen conditions. In fact, G is clearly a homotopy functor, so we may take
G′ ◦ γ = G. We claim that we can take F ′(X) = F (c(X)) in the left derived
functor, despite the fact that c(X)→ X is not a nice cofibrant replacement.
This will become easy to verify when we have finished our calculation of
Ho(Gph) by the end of this section. �

It is not hard to show that the reflections

F : Gph 
 NSet : G and F : Gph 
 ZSet : G

are also Quillen adjunctions; but we get more complete results by working
instead with the coreflection adjoint pairs

GZ : ZSet 
 Gph : HZ and i : cZSet 
 ZSet : j.

Their derived functors are actually equivalences of categories, and this leads
to a complete description of Ho(Gph). Here is the idea. Recall that an
equivalence of categories is just a special kind of adjunction. A Quillen
adjunction (L,R) for which (L′, R′) is an equivalence is called a Quillen
equivalence. We will use the following standard characterization of Quillen
equivalence (see Hovey [H99], for instance).

Quillen Equivalence Theorem. A Quillen adjunction (L,R) is a Quillen
equivalence if and only if for all cofibrant X in E1 and all fibrant Y in E2
we have LX → Y in W2 if and only if X → RY in W1.

We apply this to the following situation. We have described a model
structure for each of the categories Gph, ZSet, and cZSet. We have an
adjoint pair (i, j) relating cZSet and ZSet. We have adjoint pairs (G,H)
and (Gi, jH) relating ZSet and cZSet with Gph.

Theorem 17. The homotopy categories Ho(Gph) and Ho(ZSet) are each
equivalent to cZSet. More precisely:

a) The adjunction G : ZSet 
 Gph : H is a Quillen equivalence.
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b) The adjunction i : cZSet 
 ZSet : j is a Quillen equivalence.
c) The adjunction Gi : cZSet 
 Gph : jH is a Quillen equivalence.
d) The homotopy map γ : Ho(cZSet) → cZSet is an isomorphism of

categories.

Proof. For a) we use the second characterization of Quillen adjunctions,
and check the behavior of H on fibrations and acyclic fibrations. But, every
Z-set map is a fibration; and f is an acyclic fibration in Gph implies H(f) is
an acyclic fibration in ZSet, since Cn(X) = Cn(H(X) for any graph X. The
Quillen equivalence condition is satisfied, since S cofibrant in ZSet means
S and G(S) are disjoint unions of cycles, so G(S) → X in Gph preserves
cycles if and only if S → H(X) in ZSet preserves periodic elements.

Recall that cZSet is the full subcategory of Z-sets in which every element
is periodic. We are using the trivial model structure on cZSet; this shows
d), as discussed in Section 4.

For b), we compare this with our model structure on ZSet, as described
in Section 3. The functor j : ZSet → cZSet is given by j(S, σ) = (jS, σ),
and the functor i : cZSet → ZSet is just the inclusion of the subcategory.
In Section 4 we showed that they form an adjoint pair (i, j). To check
the behavior of i on cofibrations (and acyclic cofibrations), it suffices to
note that i(f) is a cofibration in ZSet for every f in cZSet (and use that the
acyclic cofibrations in cZSet are the isomorphisms). The Quillen equivalence
condition follows from the fact that C in cZSet is a disjoint union of cycles,
so that C → j(S) is acyclic if and only if i(C) → S is acyclic, for any S in
ZSet.

For c), just consider the composition of (i, j) with the coreflection adjoint
pair (G,H) between ZSet and Gph. �

A similar argument shows that Ho(NSet) is equivalent to Ho(ZSet), but
we do not need this here.

6. Isospectral graphs

It seems that our homotopy category of graphs fits well with algebraic
graph theory and other parts of combinatorics. Let us illustrate this by
connecting the treatment of zeta series in Bisson and Tsemo [BT08] with
that in Dress and Siebeneicher [DS88] and [DS89].

There they work with Burnside rings of Z-sets and actions of profinite
groups, and show how this algebra is mirrored in theories of zeta series and
Witt vectors. Recall that a Z-set is a set S together with an invertible
function σ : S → S. For example, the integers modulo n form a Z-set by
taking σ(i) = i + 1 mod n; let us denote this Z-set by Z/n. For Z-sets S
and T , let [S, T ] denote the set of Z-set maps from S to T . Let Z(x) denote
the orbit of an element x in a Z-set. Recall that we say that an element x
in a Z-set is periodic when Z(x) is finite.
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Definition (Dress and Siebeneicher). A Z-set S is essentially-finite when
[Z/n, S] is finite for all n > 0. The zeta series of an essentially-finite Z-set
S is defined by

ZS(u) = exp

( ∞∑
n=1

cn
un

n

)
,

where cn is the cardinality of [Z/n, S], for all n > 0. An almost-finite Z-set
is an essentially-finite Z-set for which every element is periodic.

Recall that j : ZSet → cZSet is given by taking the periodic part of a
Z-set, so that j(S) is the set of periodic elements in S. Note that if S is
essentially-finite then j(S) is almost-finite. In fact, S and j(S) have the same
zeta series: by definition, two essentially-finite Z-sets S and T have the same
zeta series if and only if [Z/n, S] and [Z/n, T ] have the same cardinality for
all n > 0; but the following result is noted in Dress and Siebeneicher [DS89]
(without proof).

Proposition 18. Two almost-finite Z-sets S and T have the same zeta
series if and only if S and T are isomorphic as Z-sets.

Proof. Let Z/(n) denote the finite cyclic group of order n. If S is an almost
finite Z-set, then let Sn = {x : |Z(x)| = n}. So S is the disjoint union of the
Sn, and each Sn is a finite and free Z/(n)-set. Let snZ/n denote the sum
( disjoint union) of sn copies of the Z-set Z/n, where sn = |Sn|/n. Thus
Sn is isomorphic to snZ/n as Z-sets. This shows that S is isomorphic to∑

n>0 snZ/n. It suffices to show that the numbers (cn : n > 0) determine
the numbers (sn : n > 0). This is true because the “triangular” system of
equations cn =

∑
k|n ksk has a unique solution. �

This result shows that assigning a zeta series to each almost-finite Z-set
gives an isomorphism between the Burnside ring of almost-finite Z-sets and
the universal Witt ring (with integer coefficients). See Dress and Siebene-
icher [DS88] for details.

Let us lift some of these definitions to the category Gph, by using our
functor H : Gph→ ZSet; recall that H(X) is the Z-set given by the natural
“shift” on the set of all graph morphisms from Z to X.

Definition. A graph X is essentially-finite if H(X) is an essentially-finite
Z-set. The zeta series of an essentially-finite graph X is the formal power
series ZX(u) = ZH(X)(u). A graph X is almost-finite when H(X) is an
almost-finite Z-set.

For example, the graph Z is an essentially-finite graph which is not almost-
finite. Note that a graph X is essentially finite if and only if Cn(X) is finite
for all n > 0. Also, a graph X is essentially-finite if and only if jH(X) is an
almost-finite Z-set.

Let us review a few concepts from algebraic graph theory, with terminol-
ogy as in Bisson and Tsemo [BT08]. A finite graph X is one with finitely
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many nodes and arcs. The characteristic polynomial of a finite graph X is
defined as a(x) = det(xI − A), the characteristic polynomial of the adja-
cency operator A for X. If X has n nodes, then a(x) is a monic polynomial
of degree n, and the reversed characteristic polynomial of X is defined to be
una(u−1) = det(I − uA). The roots of the characteristic polynomial of X
form the spectrum of X (the eigenvalues of the adjacency operator for X).
This motivates the following.

Definition. Two finite graphs X and Y are isospectral if they have the same
characteristic polynomial. Two finite graphs X and Y are almost-isospectral
if they have the same reversed characteristic polynomial.

Loosely speaking, X and Y are almost-isospectral if and only if they have
the same non-zero eigenvalues, since u = z is a root of det(I − uA) if and
only if z 6= 0 and x = z−1 is a root of det(xI −A).

We give a proof in Bisson and Tsemo [BT08] of the following (folk) result
on directed graphs.

Proposition 19. Two finite graphs X and Y are almost-isospectral if and
only if ZX(u) = ZY (u).

Note that every finite graph is almost-finite. We say that two graphs are
homotopy equivalent when they become isomorphic in Ho(Gph).

Theorem 20. Two finite graphs X and Y are almost-isospectral if and only
if they are homotopy-equivalent.

Proof. If X is a finite graph, then ZX(u) = ZH(X)(u) = ZjH(X)(u). In
Section 5 we showed that jH : Gph→ cZSet is a homotopy functor. So there
is a unique functor H ′′ : Ho(Gph) → cZSet such that H ′′ ◦ γ1 = jH where
γ1 : Gph→ Ho(Gph). In fact, γ ◦H ′′ is the total left derived functor of the
Quillen equivalence jH, where γ2 : cZSet → Ho(cZSet) is an isomorphism
of categories. So H ′′ is an equivalence of categories.

Suppose that X and Y are almost-isospectral. Then ZX(u) = ZY (u).
So ZjH(X)(u) = ZjH(Y )(u). But jH(X) and jH(Y ) are almost-finite Z-
sets. So by the Dress-Siebeneicher Proposition above, jH(X) and jH(Y )
are isomorphic in cZSet. So H ′′(γ1(X)) and H ′′(γ1(Y )) are isomorphic in
cZSet. But H ′′ is an equivalence of categories, so γ1(X) and γ1(Y ) are
isomorphic in Ho(Gph); so X and Y are homotopy equivalent.

Conversely, suppose that X and Y are homotopy equivalent. This means
that γ1(X) and γ1(Y ) are isomorphic. SoH ′′(γ1(X)) = jH(X) is isomorphic
to H ′′(γ1(Y )) = jH(Y ) in cZSet. So jH(X) and jH(Y ) have the same zeta
series. So X and Y have the same zeta series, so X and Y are almost-
isospectral. �

Corollary 21. Two finite graphs have the same zeta series if and only if
they are homotopy-equivalent in our model stucture for Gph.



HOMOTOPY EQUIVALENCE OF ISOSPECTRAL GRAPHS 319

Example. Consider the graph with vertices 0, 1, 2, 3, 4 and arcs (0, i) and
(i, 0) for i = 1, 2, 3, 4; we will call it the Cross. Let UC4 be the undirected
cycle, with nodes the integers mod 4, with arcs (i, i+ 1) and (i, i− 1) for all
i mod 4, and with source and target given by s(i, j) = i and t(i, j) = j. The
characteristic polynomial of UC4 is x4 − 4x2; the characteristic polynomial
of the Cross is x5 − 4x3. So they have the same reversed characteristic
polynomial 1− 4u2, and thus the same zeta series

Z(u) = (1− 4u2)−1 =
∑
n≥0

22nu2n = exp

(∑
n>0

22n+1u
2n

2n

)
.

So UC4 and the Cross are almost-isospectral, and thus must be homotopi-
cally equivalent for our model structure for Gph.

We note in passing that the formula for Z(u) says that there are no graph
morphisms from an odd cycle to either graph, and that there are exactly
22n+1 graph morphisms from C2n to each graph (since c2n = 22n+1).
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