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Algebraic model structures

Emily Riehl

Abstract. We define a new notion of an algebraic model structure,
in which the cofibrations and fibrations are retracts of coalgebras for
comonads and algebras for monads, and prove “algebraic” analogs of
classical results. Using a modified version of Quillen’s small object ar-
gument, we show that every cofibrantly generated model structure in the
usual sense underlies a cofibrantly generated algebraic model structure.
We show how to pass a cofibrantly generated algebraic model structure
across an adjunction, and we characterize the algebraic Quillen adjunc-
tion that results. We prove that pointwise algebraic weak factorization
systems on diagram categories are cofibrantly generated if the original
ones are, and we give an algebraic generalization of the projective model
structure. Finally, we prove that certain fundamental comparison maps
present in any cofibrantly generated model category are cofibrations
when the cofibrations are monomorphisms, a conclusion that does not
seem to be provable in the classical, nonalgebraic, theory.

Contents

1. Introduction 174
2. Background and recent history 178

2.1. Weak factorization systems 178
2.2. Functorial factorization 179
2.3. Algebraic weak factorization systems 181
2.4. Limit and colimit closure 185
2.5. Composing algebras and coalgebras 187
2.6. Cofibrantly generated awfs 189

3. Algebraic model structures 192
3.1. Comparing fibrant-cofibrant replacements 194
3.2. The comparison map 196
3.3. Algebraic model structures and adjunctions 199
3.4. Algebraic Quillen adjunctions 200

4. Pointwise awfs and the projective model structure 202
4.1. Garner’s small object argument 203

Received August 22, 2010.
2000 Mathematics Subject Classification. 55U35, 18A32.
Key words and phrases. Model categories; factorization systems.
Supported by a NSF Graduate Research Fellowship.

ISSN 1076-9803/2011

173

http://nyjm.albany.edu/nyjm.html
http://nyjm.albany.edu/j/2011/Vol17.htm


174 EMILY RIEHL

4.2. Pointwise algebraic weak factorization systems 204
4.3. Cofibrantly generated case 205
4.4. Algebraic projective model structures 207

5. Recognizing cofibrations 209
5.1. Coalgebra structures for the comparison map 209
5.2. Algebraically fibrant objects revisited 215

6. Adjunctions of awfs 217
6.1. Algebras and adjunctions 217
6.2. Lax morphisms and colax morphisms of awfs 219
6.3. Adjunctions of awfs 221
6.4. Change of base in Garner’s small object argument 224

7. Algebraic Quillen adjunctions 228
References 230

1. Introduction

Weak factorization systems are familiar in essence if not in name to alge-
braic topologists. Loosely, they consist of left and right classes of maps in
a fixed category that satisfy a dual lifting property and are such that every
arrow of the category can be factored as a left map followed by a right one.
Neither these factorizations nor the lifts are unique; hence, the adjective
“weak.” Two weak factorization systems are present in Quillen’s definition
of a model structure [Qui67] on a category. Indeed, for any weak factor-
ization system, the left class of maps behaves like the cofibrations familiar
to topologists while the right class of maps behaves like the dual notion of
fibrations.

Category theorists have studied weak factorization systems in their own
right, often with other applications in mind. From a categorical point of
view, weak factorization systems, even those whose factorizations are de-
scribed functorially, suffer from several defects, the most obvious of which
is the failure of the left and right classes to be closed under all colimits and
limits, respectively, in the arrow category.

Algebraic weak factorization systems, originally called natural weak fac-
torization systems, were introduced in 2006 by Marco Grandis and Walter
Tholen [GT06] to provide a remedy. In an algebraic weak factorization
system, the functorial factorizations are given by functors that underlie a
comonad and a monad, respectively. The left class of maps consists of
coalgebras for the comonad and the right class consists of algebras for the
monad. The algebraic data accompanying the arrows in each class can be
used to construct a canonical solution to any lifting problem that is natural
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with respect to maps of coalgebras and maps of algebras. A classical con-
struction in the same vein is the path lifting functions which can be chosen
to accompany any Hurewicz fibration of spaces [May75].

More recently, Richard Garner adapted Quillen’s small object argument so
that it produces algebraic weak factorization systems [Gar07, Gar09], while
simultaneously simplifying the functorial factorizations so constructed. In
practice, this means that whenever a model structure is cofibrantly gen-
erated, its weak factorization systems can be “algebraicized” to produce
algebraic weak factorization systems, while the underlying model structure
remains unchanged.

The consequences of this possibility appear to have been thus far unex-
plored. This paper begins to do so, although the author hopes this will be
the commencement, rather than the culmination, of an investigation into the
application of algebraic weak factorization systems to model structures. At
the moment, we do not have particular applications in mind to justify this
extension of classical model category theory. However, these extensions feel
correct from a categorical point of view, and we are confident that suitable
applications will be found.

Section 2 contains the necessary background. We review the definition of
a weak factorization system and state precisely what we mean by a functo-
rial factorization. We then introduce algebraic weak factorization systems
and describe a few important properties. We explain what it means for a
algebraic weak factorization system to be cofibrantly generated and prove a
lemma about such factorization systems that will have many applications.
More details about Garner’s small object argument, including a comparison
with Quillen’s, are given later, as needed.

Section 3 is in many ways the heart of this paper. To begin, we define an
algebraic model structure, that is, a model structure built out of algebraic
weak factorization systems instead of ordinary ones. One feature of this
definition is that it includes a notion of a natural comparison map between
the two functorial factorizations. As an application, one obtains a natural
arrow comparing the two fibrant-cofibrant replacements of an object, which
can be used to construct a category of algebraically bifibrant objects in
our model structure. We prove that cofibrantly generated algebraic model
structures can be passed across an adjunction, generalizing a result due to
Daniel Kan.

The adjunction between the algebraic model structures in this situation
has many interesting properties, consideration of which leads us to define an
algebraic Quillen adjunction. For such adjunctions, the right adjoint lifts to
a functor between the categories of algebras for each pair of algebraic weak
factorization systems, which should be thought of as an algebraization of
the fact that Quillen right adjoints preserve fibrations and trivial fibrations.
Furthermore, the lifts for the fibrations and trivial fibrations are natural, in
the sense that they commute with the functors induced by the comparison
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maps. Dually, the left adjoint lifts to functor between the categories of
coalgebras and these lifts are natural. In order to prove that the adjunction
described above is an algebraic Quillen adjunction, we must develop a fair
bit of theory, a task we defer to later sections.

In Section 4, we describe the pointwise algebraic weak factorization system
on a diagram category and prove that it is cofibrantly generated whenever
the inducing one is. This result is only possible because Garner’s small object
argument allows the “generators” to be a category, rather than simply a
set. One place where such algebraic weak factorization systems appear is in
Lack’s trivial model structure on certain diagram 2-categories [Lac07], and
consequently, these algebraic model structures are cofibrantly generated in
the new sense, but not in the classical one. We then use the pointwise
algebraic weak factorization system together with the work of Section 3
to obtain a generalization of the projective model structure on a diagram
category.

In Section 5, we showcase some advantages of algebraicizing cofibrantly
generated model structures. Using the characterization of cofibrations and
fibrations as coalgebras and algebras, we have techniques for recognizing
cofibrations constructed as colimits and fibrations constructed as limits that
are not available otherwise. We use these techniques to prove the surprising
fact that the natural comparison map between the algebraic weak factoriza-
tion systems of a cofibrantly generated algebraic model category consists of
pointwise cofibration coalgebras, at least when the cofibrations in the model
structure are monomorphisms. We conclude by applying these techniques to
prove that the fibrant replacement monad in this setting preserves certain
trivial cofibrations, a fact relevant to the study of categories of algebraically
fibrant objects, some of which can be given their own lifted algebraic model
structure by recent work of Thomas Nikolaus [Nik10].

In Section 6, we begin to develop the theory necessary to prove the exis-
tence of an important class of algebraic Quillen adjunctions. First, we de-
scribe what happens when we have an adjunction between categories with
related algebraic weak factorization systems, such that the generators of the
one are the image of the generators of the other under the left adjoint, a
question that turns out to have a rather complicated answer. In this set-
ting, the right adjoint lifts to a functor between the categories of algebras
for the monads of the algebraic weak factorization systems and dually the
left adjoint lifts to a functor between the categories of coalgebras, though
the proof of this second fact is rather indirect. To provide appropriate
context for understanding this result and as a first step towards its proof,
we present three general categorical definitions describing comparisons be-
tween algebraic weak factorization systems on different categories. The first
two definitions, of lax and colax morphisms of algebraic weak factorization
systems, combine to give a definition of an adjunction of algebraic weak
factorization systems, which is the most important of these notions.



ALGEBRAIC MODEL STRUCTURES 177

The most expeditious proofs of these results make use of the fact that
the categories of algebras and coalgebras accompanying an algebraic weak
factorization system each have a canonical composition law that is natu-
ral in a suitable double categorical sense; in particular each algebraic weak
factorization system gives rise to two double categories, whose vertical mor-
phisms are either algebras or coalgebras and whose squares are morphisms
of such. This composition, introduced in Section 2, provides a recognition
principle that identifies an algebraic weak factorization system from either
the category of algebras for the monad or the category of coalgebras for the
comonad. As a consequence, it suffices in many situations to consider either
the comonad or the monad individually, which is particularly useful here.

The existence of adjunctions of cofibrantly generated algebraic weak fac-
torization systems demands an extension of the universal property of Gar-
ner’s small object argument. We conclude Section 6 with a statement and
proof of the appropriate change-of-base result, which we use to compare the
outputs of the small object argument on categories related by adjunctions.
This extension is not frivolous; a corollary provides exactly the result we
need to prove the naturality statement in the main theorem of the final
section.

In Section 7, we apply the results of the previous section to prove that
there is a canonical algebraic Quillen adjunction between the algebraic model
structures constructed at the end of Section 3. The data of this algebraiza-
tion includes five instances of adjunctions between algebraic weak factor-
ization systems. Two of these are given by the comparison maps for each
algebraic model structure. The other three provide an algebraic description
of the relationship between the various types of factorizations on the two
categories.

For convenience, we’ll abbreviate algebraic weak factorization system as
awfs, which will also be the abbreviation for the plural, with the correct
interpretation clear from context. Similarly, we write wfs for the singular
or plural of weak factorization system. The wfs mentioned in this paper
beyond Section 2.1 underlie some awfs and are therefore functorial.

Acknowledgments. The author would like to thank her advisors at Chi-
cago and Cambridge — Peter May and Martin Hyland — the latter for
introducing her to this topic and the former for many productive sessions
discussing this work as well as very helpful feedback on innumerable drafts
of this paper. The author is also grateful for several conversations with Mike
Shulman and Richard Garner, some of the results of which are contained in
Theorem 5.1 and Lemma 5.3. The latter also conjectured Lemma 6.9, which
enabled a simplification of the initial proof of Theorem 6.15, while the former
also commented on an earlier draft of this paper and suggested the definitions
of Section 6 and the statement and proof of Corollary 6.17. Anna Marie
Bohmann suggested the notation for the natural transformations involved in
an awfs. The author was supported by a NSF Graduate Research Fellowship.
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2. Background and recent history

There are many sources that describe the basic properties of weak factor-
ization systems of various stripes (e.g., [KT93] or [RT02]). We choose not to
give a full account here and only include the topics that are most essential.

First some notation. We write n for the category associated to the ordinal
n as a poset, i.e., the category with n objects 0, 1, . . ., n−1 and morphisms
i → j just when i ≤ j. Let d0, d1, d2 : 2 → 3 denote the three functors
which are injective on objects; the superscript indicates which object is not
contained in the image. Precomposition induces functors d0, d1, d2 : M3 →
M2 for any category M; where we write MA for the category of functors
A → M and natural transformations. We refer to d1 as the “composition
functor” because it composes the two arrows in the image of the generating
nonidentity morphisms of 3.

Definition 2.1. We are particularly interested in the category M2, some-
times known as the arrow category of M. Its objects are arrows of M,
which we draw vertically, and its morphisms (u, v) : f ⇒ g are commutative
squares1

· u //

f
��

·
g

��
·

v
// ·

There are canonical forgetful functors dom, cod: M2 → M that project to
the top and bottom edges of this square, respectively.

The material in Sections 2.1 and 2.2 is well-known to category theorists
at least, while the material in Sections 2.3–2.6 is fairly new. Naturally, we
spend more time in the latter sections than in the former.

2.1. Weak factorization systems. Colloquially, a weak factorization sys-
tem consists of two classes of arrows, the “left” and the “right”, that have a
lifting property with respect to each other and satisfy a factorization axiom.
The lifting property says that whenever we have a commutative square as
in (2.2) with l in the left class of arrows and r in the right, there exists an
arrow w as indicated so that both triangles commute.

Notation. When every lifting problem of the form posed by the commuta-
tive square

(2.2) ·
l
��

u // ·
r

��
·

w

@@�
�

�
�
v
// ·

1We depict morphisms of M2 with a double arrow because (u, v) is secretly a natural
transformation between the functors f, g : 2 → M, though we do not often think of it as
such.
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has a solution w, we write l � r and say that l has the left lifting property
(LLP) with respect to r and, equivalently, that r has the right lifting property
(RLP) with respect to l. If A is a class of arrows, we write A� for the class
of arrows with the RLP with respect to each arrow in A. Similarly, we write
�A for the class of arrows with the LLP with respect to each arrow in A.

In general, A ⊂ �B if and only if B ⊂ A�; in this situation, we write
A � B and say that A has the LLP with respect to B and, equivalently,
that B has the RLP with respect to A. The operations (−)� and �(−)
form a Galois connection with respect to the posets of classes of arrows of a
category, ordered by inclusion.

Definition 2.3. A weak factorization system (L,R) on a category M con-
sists of classes of morphisms L and R such that:

(i) Every morphism f in M factors as r · l, with l ∈ L and r ∈ R.
(ii) L = �R and R = L�.

Any class L that equals �R for some class R is saturated, which means
that L contains all isomorphisms and is closed under coproducts, pushouts,
transfinite composition, and retracts. The class R = L� has dual closure
properties, which again has nothing to do with the factorization axiom. The
following alternative definition of a weak factorization system is equivalent
to the one given above.

Definition 2.4. A weak factorization system (L,R) in a category M consists
of classes of morphisms L and R such that:

(i) Every morphism f in M factors as r · l, with l ∈ L and r ∈ R.
(ii) L � R.
(iii) L and R are closed under retracts.

Any model structure provides two examples of weak factorization sys-
tems: one for the trivial cofibrations and the fibrations and another for the
cofibrations and trivial fibrations. Indeed, a particularly concise definition
of a model structure on a complete and cocomplete category M is the fol-
lowing: a model structure consists of three class of maps C, F, W such that
W satisfies the 2-of-3 property and such that (C∩W,F) and (C,W∩F) are
wfs.2

2.2. Functorial factorization.

Definition 2.5. A functorial factorization is a functor ~E : M2 → M3 that
is a section of the “composition” functor d1 : M3 → M2.

Explicitly, a functorial factorization consists of a pair of functors

L,R : M2 → M2

2It is not immediately obvious that W must be closed under retracts but this does
follow by a clever argument the author learned from André Joyal [Joy08, §F].
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such that f = Rf ·Lf for all morphisms f ∈ M and such that the following
three conditions hold:

codL = domR, domL = dom, codR = cod.

Together, L = d2 ◦ ~E and R = d0 ◦ ~E contain all of the data of the functor
~E. The fact that L and R arise in this way implies all of the conditions
described above.

It will often be convenient to have notation for the functor M2 → M that
takes an arrow to the object it factors through, and we typically write E
for this, without the arrow decoration. With this notation, the functorial
factorization ~E : M2 → M3 sends a commutative square

(2.6)
· u //

f
��

·
g

��
·

v
// ·

to a commutative rectangle

· u //

Lf
��

·
Lg
��

Ef
E(u,v)//

Rf

��

Eg

Rg

��
·

v
// ·

We’ll refer to E : M2 → M as the functor accompanying the functorial fac-
torization (L,R).

Definition 2.7. A wfs is called functorial if it has a functorial factorization
with Lf ∈ L and Rf ∈ R for all f .

There is a stronger notion of wfs called an orthogonal factorization system,
abbreviated ofs, in which solutions to a given lifting problem are required
to be unique.3 These are sometimes called factorization systems in the
literature. It follows from the uniqueness of the lifts that the factorizations
of an ofs are always functorial. For this stronger notion, the left class is
closed under all colimits and the right under all limits, taken in the arrow
category.

Relative to orthogonal factorization systems, wfs with functorial factor-
izations suffer from two principal defects. The first is that a functorial wfs
on M does not induce a pointwise wfs on a diagram category MA, where
A is a small category. The functorial factorization does allow us to factor
natural transformations pointwise, but in general the resulting left factors
will not lift against the right ones, even though their constituent arrows sat-
isfy the required lifting property. This is because the pointwise lifts which
necessarily exist are not naturally chosen and so do not fit together to form
a natural transformation.

The second defect is that the classes of a functorial wfs, as for a generic
wfs, fail in general to be closed under all the limits and colimits that one

3An example in Set takes the epimorphisms as the left class and the monomorphisms
as the right class. When we exchange these classes the result is a wfs.
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might expect. Specifically, we might hope that the left class would be closed
under all colimits in M2 and the right class would be closed under all limits.
As those who are familiar with working with cofibrations know, this is not
true in general.

These failings motivated Grandis and Tholen to define algebraic weak
factorization systems [GT06], which are functorial wfs with extra structure
that addresses both of these issues.

2.3. Algebraic weak factorization systems. Any functorial factoriza-
tion gives rise to two endofunctors L,R : M2 → M2, which are equipped with
natural transformations to and from the identity, respectively. Explicitly,
L is equipped with a natural transformation ~ε : L ⇒ id whose components

consist of the squares ~εf =
·

Lf
��

·
f
��

·
Rf
// ·

. We call ~ε the counit of the end-

ofunctor L and write εf := Rf for the codomain part of the morphism ~εf .
Using the notation of Definition 2.1, ~ε = (1, ε). The component ε : E ⇒ cod
is a natural transformation in its own right, where E is as in (2.6).

Dually, R is equipped with a natural transformation ~η : id ⇒ R whose

components are squares ~ηg =
·

g

��

Lg // ·
Rg

��
· ·

. We call ~η the unit of the end-

ofunctor R and write η = dom ~η for the natural transformation dom ⇒ E.
We write ~η = (η, 1) in the notation of Definition 2.1. We call a functor L
equipped with a natural transformation to the identity functor left pointed
and a functor R equipped with a natural transformation from the iden-
tity functor right pointed, though the directional adjectives may be dropped
when the direction (left vs. right) is clear from context.

Lemma 2.8. In a functorial wfs (L,R), the maps in R are precisely those
arrows which admit an algebra structure for the pointed endofunctor (R, ~η).
Dually, the class L consists of those maps that admit a coalgebra structure
for (L,~ε).

Proof. Algebras for a right pointed endofunctor are defined similarly to
algebras for a monad, but in the absence of a multiplication natural trans-
formation, the algebra structure maps need only satisfy a unit condition. If

g ∈ R then it lifts against its left factor as shown
·

Lg

��

·
g

��
·

t
@@�

�
�

�

Rg
// ·

. The arrow
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(t, 1) : Rg ⇒ g makes g an algebra for (R, ~η). Conversely, if g has an alge-

bra structure (t, s) then the unit axiom implies that
·

g

��

Lg // ·
Rg

��

t // ·
g

��
· ·

s
// ·

is

a retract diagram (hence, s = 1). Thus, g is a retract of Rg ∈ R, which is
closed under retracts. �

The notion of a algebraic weak factorization system is an algebraization
of the notion of a functorial wfs in which the above pointed endofunctors
are replaced with a comonad and a monad respectively.

Definition 2.9. An algebraic weak factorization system (originally, natural
weak factorization system) on a category M consists a pair (L,R), where
L = (L,~ε, ~δ) is a comonad on M2 and R = (R, ~η, ~µ) is a monad on M2,
such that (L,~ε) and (R, ~η) are the pointed endofunctors of some functorial
factorization ~E : M2 → M3. Additionally, the accompanying natural trans-
formation ∆: LR⇒ RL described below is required to be a distributive law
of the comonad over the monad.

Because the unit ~η arising from the functorial factorization necessarily

has the form ~ηf =
·

f
��

Lf // ·
Rf
��

· ·

, it follows from the monad axioms that

~µf =
·

R2f
��

µf // ·
Rf
��

· ·

where µ : ER ⇒ E is a natural transformation, with

E as in (2.6). Hence, R is a monad over cod: M2 → M, which means
that codR = cod, cod ~η = idcod and cod ~µ = idcod. This means that Rf
has the same codomain as f , and the codomain component of the natural
transformations ~η and ~µ is the identity.

Dually, L is a comonad over dom (in the sense that it is a comonad in the
2-category CAT/M on the object dom: M2 → M). We write δ : E ⇒ EL

for the natural transformation cod~δ analogous to µ = dom ~µ defined above.

As a consequence of the monad and comonad axioms,
·

LRf
��

δf // ·
RLf
��

·
µf

// ·

com-

mutes for all f . (Indeed, the common diagonal composite is the identity.)
These squares are the components of a natural transformation ∆: LR ⇒
RL, which is the distributive law mentioned above. In this context, the
requirement that ∆ be a distributive law of L over R reduces to a single
condition: δ ·µ = µL ·E(δ, µ) · δR. Because the components of ∆ are part of
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the data of L and R, this distributive law does not provide any extra struc-
ture for the awfs; rather it is a property that we ask that the pair (L,R)
satisfy.4

Given an awfs (L,R), we refer to the L-coalgebras as the left class and the
R-algebras as the right class of the awfs. Unraveling the definitions, an L-
coalgebra consists of a pair (f, s), where f is an arrow of M and (1, s) : f ⇒
Lf is an arrow in M2 satisfying the usual conditions so that this gives a
coalgebra structure with respect to the comonad L. The unit condition
says that s solves the canonical lifting problem of f against Rf . Dually,
an R-algebra consists of a pair (g, t) such that g is an arrow of M and
(t, 1) : Rg ⇒ g is an arrow in M2, where t lifts Lg against g.

The algebra structure of an element g of the right class of an awfs should
be thought of as a chosen lifting of g against any element of the left class.
Given an L-coalgebra (f, s) and a lifting problem (u, v) : f ⇒ g, the arrow
w = t · E(u, v) · s

(2.10) · u //

Lf
��

·
Lg

��
·
E(u,v)//___

Rf
��

·
Rg

��

t

OO�
�
�

·
s

OO�
�
�

v
// ·

is a solution to the lifting problem. In particular, all L-coalgebras lift against
all R-algebras.

If we let L and R denote the arrows in M that have some L-coalgebra
structure or R-algebra structure, respectively, then it is not quite true that
(L,R) is a wfs. This is because retracts of maps in L will also lift against
elements of R, but the categories of coalgebras for a comonad and algebras
for a monad are not closed under retracts. We write L for the retract closure
of L and similarly for R and refer to the wfs (L,R) as the underlying wfs of
(L,R). It is, in particular, functorial.

Remark 2.11. Because the class of L-algebras is not closed under retracts,
not every arrow in the left class of the underlying wfs (L,R) of the awfs
(L,R) will have an L-coalgebra structure. The same is true for the right
class. (But see Lemma 2.30!)

4Grandis and Tholen’s original definition did not include this condition, but Garner’s
does. Using Garner’s definition, awfs are bialgebras with respect to a two-fold monoidal
structure on the category of functorial factorizations (see [Gar07, §3.2]); the distributive
law condition says exactly that the monoid and comonoid structures fit together to form
a bialgebra. This category provides the setting for the proofs establishing the machinery
of Garner’s small object argument. We recommend that the first-time reader ignore these
details; to repeat a quote the author has seen attributed to Frank Adams, “to operate the
machine, it is not necessary to raise the bonnet.”
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However, as we saw in Lemma 2.8, every arrow of L will have a coalgebra
structure for the left pointed endofunctor (L,~ε) and conversely every coal-
gebra will be an element of L. It follows that coalgebras for the pointed
endofunctors underlying an awfs are closed under retracts; this can also be
proved directly. In fact, the coalgebras for the pointed endofunctor under-
lying a comonad are the retract closure of the coalgebras for the comonad.
The proof of this statement uses the fact that the map (1, s) : f ⇒ Lf makes
f a retract of its left factor Lf , which has a free coalgebra structure for the
comonad L. Similar results apply to the right class R.

Example 2.12. Any orthogonal factorization system (L,R) is an awfs. Or-
thogonal factorization systems are always functorial, with all possible choices
of functorial factorizations canonically isomorphic. The comultiplication
and multiplication natural transformations for the functors L and R are de-

fined to be the unique solutions to the lifting problems
·

L
��

LL // ·
RL
��

·
δ

@@�
�

�
� ·

and

·
LR
��

·
R
��

·

µ
@@�

�
�

�

RR
// ·

. Every element of R has a unique R-algebra structure and the

structure map is an isomorphism. Similarly, every element of L has a unique
L-coalgebra structure, with structure map an isomorphism. It follows that
the classes of R-algebras and L-coalgebras are closed under retracts. The
remaining details are left as an exercise.

In light of Remark 2.11, why does it make sense to use a definition of
awfs that privileges coalgebra structures for the comonad L over coalgebras
for the left pointed endofunctor (L,~ε), and similarly on the right? We sug-
gest three justifications. The first is that coalgebras for the comonad are
often “nicer” than coalgebras for the pointed endofunctor. In examples, the
former are analogous to “relative cell complexes” while the latter are the “re-
tracts of relative cell complexes.” A second reason is that we can compose
coalgebras for the comonad in an awfs, meaning we can give the composite
arrow a canonical coalgebra structure. This definition, which will be given
in Section 2.5, uses the multiplication for the monad explicitly, so is not
possible without this extra algebraic structure. Finally, and perhaps most
importantly, coalgebras for a comonad are closed under colimits, as we will
prove in Theorem 2.16. There is no analogous result for (L,~ε)-coalgebras.
The upshot is that when examining colimits, the extra effort to check that
a diagram lands in L-coalg is often worth it.

Remark 2.13. The original name natural weak factorization system is in
some sense a misnomer. In most cases, the lift of a map r in the right class
against its left factor is not natural ; it’s simply chosen and recorded in the
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fact that associate to the arrow r a piece of algebraic data. Solutions to lift-
ing problems of the form (2.2) are constructed by combining the coalgebraic
and algebraic data of l and r with a functorial factorization of the square.
These lifts are not natural with respect to all morphisms in the arrow cate-
gory. They are however natural with respect to morphisms of L-coalg and
R-alg, but that is true precisely because morphisms in a category of algebras
are required to preserve the algebraic structure.

In an important special case, however, there are natural lifts; namely, for
the free morphisms that arise as left and right factors of arrows. Hence,
the adjective “natural” appropriately describes these factorizations. The
multiplication of the monad R gives any arrow of the form Rf a natural R-
algebra structure µf . Similarly, the arrows Lf have a natural L-coalgebra
structure δf using the comultiplication of the comonad. Of course, it may
be that there are other ways to choose lifting data for these arrows, but the
natural choices provided by the comultiplication and multiplication have the
property that the map from Lf to Lg or Rf to Rg arising from any map
(u, v) : f ⇒ g preserves the lifting data.

We conclude this section with one final definition that will prove very
important in Section 3 and beyond.

Definition 2.14. A morphism of awfs ξ : (L,R) → (L′,R′) is a natural
transformation ξ : E ⇒ E′ that is a morphism of functorial factorizations,
i.e., such that

(2.15) ·
Lf

~~~~
~~

~~
~~ L′f

  A
AA

AA
AA

A

Ef
ξf //

Rf
  @

@@
@@

@@
@ E′f

R′f~~}}
}}

}}
}}

·

commutes, and such that the natural transformations (1, ξ) : L ⇒ L′ and
(ξ, 1) : R ⇒ R′ are comonad and monad morphisms, respectively, which
means that these natural transformations satisfy unit and associativity con-
ditions. It follows that a morphism of awfs ξ induces functors ξ∗ : L-coalg →
L′-coalg and ξ∗ : R′-alg → R-alg between the Eilenberg–Moore categories
of coalgebras and algebras.

2.4. Limit and colimit closure. It remains to explain how an awfs rec-
tifies the defects mentioned at the end of 2.2. We will speak at length about
induced pointwise awfs later in Section 4, but we can deal with colimit and
limit closure right now.

Let R-alg denote the Eilenberg–Moore category of algebras for the monad
R and let L-coalg similarly denote the category of coalgebras for L. It is
a well-known categorical fact that the forgetful functors U : R-alg → M2,
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U : L-coalg → M2 create all limits and colimits, respectively, that exist in
M2. It follows that the right and left classes of the awfs (L,R) are closed
under limits and colimits, respectively. We have proven the following result
of [GT06].

Proposition 2.16 (Grandis–Tholen). If M has colimits (respectively limits)
of a given type, then L-coalg (respectively R-alg) has them, formed as in
M2.

Remark 2.17. It is possible to interpret 2.16 too broadly. This does not say
that for any diagram in M2 such that the objects have a coalgebra structure,
the colimit will have a coalgebra structure. This conclusion will only follow
if the maps of the colimit diagram are arrows in L-coalg and not just in
M2.

However, we do now have a method for proving that a particular colimit
is a coalgebra: namely checking that the maps in the relevant colimiting
diagram are maps of coalgebras. While this can be tedious, it will allow us
to prove surprising results about cofibrations, which the author suspects are
intractable by other methods. (See, e.g., Theorem 5.1. It is also possible to
prove Corollary 6.16 directly in this manner.)

Example 2.18. An example will illustrate this important point, though
we have to jump ahead a bit. As a consequence of Garner’s small object
argument (see 2.28), there is an awfs on Top such that the left class of its
underlying wfs consists of the cofibrations for the Quillen model structure.
It is well-known that the pushout of cofibrations is not always a cofibration.
For example, the vertical maps of

(2.19) Dn+1 ∗

j

��

oo ∗

Dn+1 Sn //jn+1oo ∗

are all cofibrations and coalgebras in the Quillen model structure,5 but the
pushout Dn+1 � Sn+1 is not. This tells us that one of the squares of (2.19)
is not a map of coalgebras, and furthermore there are no coalgebra structures
for the vertical arrows such that both squares are maps of coalgebras.

5The arrow j inherits its cofibration structure as a pushout of the generating cofibration

jn as shown

Sn−1

jn

�� p

u // ∗

j

��
Dn

v
// Sn

. Explicitly, if cn : Dn → Qjn gives jn its coalgebra structure,

then the cone (Cj, Q(u, v) · cn) gives j its coalgebra structure, where Q is the functor
accompanying the functorial factorization of this awfs.
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By contrast, the pushout of

(2.20) Dn

iN
��

Sn−1

jn
��

//jnoo ∗

j

��
Sn Dn // //iSoo Sn

is a cofibration and a coalgebra because all three vertical arrows have a
coalgebra structure and the squares of (2.20) preserve them. (The maps
iN , iS : Dn → Sn include the disk as the northern or southern hemisphere
of the sphere.) Of course, this fact could be deduced directly because the
pushout Sn → Sn ∨ Sn is an inclusion of a sub-CW-complex, but in more
complicated examples this technique for detecting cofibrations will prove
useful.

2.5. Composing algebras and coalgebras. Unlike the situation for or-
dinary monads on arrow categories, the category of algebras for the monad
of an awfs (L,R) can be equipped with a canonical composition law, which
is natural in a suitable “double categorical” sense, described below. Further-
more, the comultiplication for the comonad L can be recovered from this
composition, so one can recognize an awfs by considering only the category
R-alg together with its natural composition law. Later, in Section 6.2, we
will extend this recognition principle to morphisms between awfs. In con-
crete applications, this allows us to ignore the category L-coalg, which we’ll
see can be a bit of a pain.

In this section, we give precise statements of these facts and describe their
proofs. Their most explicit appearance in the literature is [Gar10, §2], but
see also [Gar09, §A] or [Gar07, §6.3]. The dual statements also hold.

Recall that when R is a monad from an awfs (L,R), an R-algebra structure
for an arrow f has the form (s, 1) : Rf ⇒ f ; accordingly, we write (f, s) for
the corresponding object of R-alg. Let (f, s), (f ′, s′) ∈ R-alg. We say a
morphism (u, v) : f ⇒ f ′ in M2 is a map of algebras (with the particular
algebra structures s and s′ already in mind) when (u, v) lifts to a morphism
(u, v) : (f, s) ⇒ (f ′, s′) in R-alg. It follows from the definition that this
holds exactly when s′ · E(u, v) = u · s, where E : M2 → M is the functor
accompanying the functorial factorization of (L,R). This condition says
that the top face of the following cube, which should be interpreted as a
map from the algebra depicted on the left face to the algebra on the right
face, commutes.

·
E(u,v) //

s

��=
==

==
==

Rf

��

·
s′

��=
==

==
==

Rf ′

��

· u //

f

��

·

f ′

��

·

==
==

==
=

==
==

==
= v

// ·

==
==

==
=

==
==

==
=

·
v

// ·
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Definition 2.21. Let (f, s), (g, t) ∈ R-alg with codf = domg. Then gf has
a canonical R-algebra structure

E(gf)
δgf // EL(gf)

E(1,t·E(f,1)) // Ef
s // domf

where δ : E ⇒ EL is the natural transformation arising from the comulti-
plication of the comonad L.

Write (g, t)•(f, s) = (gf, t•s) for this composition operation. It is natural
in the following sense.

Lemma 2.22. Let (u, v) : (f, s) ⇒ (h, s′) and (v, w) : (g, t) ⇒ (k, t′) be
morphisms in R-alg. Then (u,w) : (gf, t • s) ⇒ (kh, t′ • s′) is a map of
R-algebras.

· u //

f
��

·
h
��

·
v
//

g
��

·
k
��

·
w
// ·

Proof. The proof is an easy diagram chase. �

Remark 2.23. It follows from Lemma 2.22 that algebras for a monad aris-
ing from an awfs (L,R) form a (strict) double category AlgR: objects are
objects of M, horizontal arrows are morphisms in M, vertical arrows are R-
algebras, and squares are morphisms of algebras. The content of Lemma 2.22
is that morphisms of algebras can be composed vertically as well as horizon-
tally. It remains to check that composition of algebras is strictly associative,
but this is a straightforward exercise.

Lemma 2.22 has a converse, which provides a means for recognizing awfs
from categories of algebras.

Theorem 2.24 (Garner). Suppose R is a monad on M2 over cod : M2 → M.
Specifying a natural composition law on R-alg is equivalent to specifying an
awfs (L,R) on M.

Proof. Because R is a monad over cod, the components of its unit define a
functorial factorization on M (see the beginning of Section 2.3). In partic-
ular, the functor L and counit ~ε have already been determined. It remains
to define δ : E ⇒ EL so that ~δ = (1, δ) : L ⇒ L2 makes L = (L,~ε, ~δ) into a
comonad satisfying the distributive law with respect to R.

Given a natural composition law on the category of R-algebras and a
morphism f ∈ M, we define δf : Ef → ELf to be

δf := Ef
E(L2f,1)// E(Rf ·RLf)

µf•µLf // ELf ,
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where µf • µLf is the algebra structure for the composite of the free alge-
bras (RLf, µLf ) and (Rf, µf ). Equivalently, δf is defined to be the domain
component of the adjunct to the morphism

·
f
��

L2f // ·
Rf ·RLf=U(Rf ·RLf,µf•µLf )

��
· ·

with respect to the (monadic) adjunction R-alg
U
//⊥ M2

Foo
.

By taking adjuncts of the unit and associativity conditions for a comonad,
it is easy to check that such δ makes L a comonad. The distributive law can
be verified using the fact that µf •µLf is, as an algebra structure, compatible
with the multiplication for the monad R. We leave the verification of these
diagram chases to the reader; see also [Gar10, Proposition 2.8]. �

2.6. Cofibrantly generated awfs. There are a few naturally occurring
examples of awfs where the familiar functorial factorizations for some wfs
underlie a comonad and a monad. One toy example is the so-called “graph”
factorization of an arrow through the product of its domain and codomain.
There are more serious examples, including the wfs from the Quillen model
structure on ChR and the folk model structure on Cat. However, the ex-
amples topologists find in nature are less obviously “algebraic,” and conse-
quently awfs have not generated a lot of interest among topologists.

Recently, Garner has developed a variant of Quillen’s small object argu-
ment, modeled upon a familiar transfinite construction from category theory,
that produces cofibrantly generated awfs. In any cocomplete category sat-
isfying an appropriate smallness condition, general enough to include the
desired examples, Garner’s small object argument can be applied in place
of Quillen’s, and the resulting awfs have the same underlying wfs as those
produced by the usual small object argument. The functorial factorizations
are different but also arguably better than Quillen’s in that the objects con-
structed are somehow “smaller” (in the sense that superfluous “cells” are
not multiply attached) and also the transfinite process by which they are
constructed actually converges, rather than terminating arbitrarily at some
chosen ordinal. Furthermore, Garner’s small object argument can be run for
a generating small category, not merely for generating sets, a generalization
whose power will become apparent in Section 4.

In this section, we explain in detail the defining properties of cofibrantly
generated awfs, produced by Garner’s small object argument. A more de-
tailed overview of his construction is given in Section 4, where it will first
be needed. See also [Gar07] or [Gar09].

First, we extend the notation (−)� to categories over M2, as opposed to
mere sets of arrows.
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Definition 2.25. We define a pair of functors

(−)� : CAT/M2 //
⊥ (CAT/M2)op : �(−)oo

that are mutually right adjoint. If J is a category over M2, the objects of
J� are pairs (g, φ), where g is an arrow of M and φ is a lifting function that

assigns each square
·

j

��

u // ·
g

��
·

v
// ·

with j ∈ J a lift φ(j, u, v) that makes the

usual triangles commute. We also require that φ is coherent with respect
to morphisms in J. Explicitly, given (a, b) : j′ ⇒ j in J, we require that
φ(j′, ua, vb) = φ(j, u, v)·b, which says that the triangle of lifts in the diagram
below commutes.

·
j′

��

a // ·
j

��

u // ·
g

��
·

b
//

77ppppppp ·
v
//

@@�
�

�
� ·

Morphisms (g, φ) → (g′, φ′) of J� are arrows in M2 that preserve the
lifting functions. The category J� is equipped with an obvious forgetful
functor to M2 that ignores the lifting data. When J is a set, the image of
J� under this forgetful functor is the set J� defined in Section 2.1.

Garner provides two definitions of a cofibrantly generated awfs [Gar09],
though his terminology more closely parallels the theory of monads. An
awfs (L,R) is free on a small category J : J → M2 if there is a functor

(2.26) J
λ //

J %%LL
LLL

L L-coalg

Uyyr
rrr

M
2

that is initial with respect to morphisms of awfs among functors from J to
categories of coalgebras of awfs. A stronger notion is of an algebraically-free
awfs, for which we require that the composite functor

(2.27) R-alg lift−→ (L-coalg)� λ�
−→ J�

is an isomorphism of categories. The functor “lift” uses the algebra and coal-
gebra structures of R-algebras and L-coalgebras to define lifting functions
via the construction of 2.10. The isomorphism (2.27) should be compared
with the isomorphism of sets R ∼= J�, which is the usual notion of a cofi-
brantly generated wfs (L,R).

We will say that the awfs produced by Garner’s small object argument
are cofibrantly generated. Garner proves that these awfs are both free and
algebraically-free; we will find occasion to use both defining properties.

Theorem 2.28 (Garner). Let M be a cocomplete category satisfying either
of the following conditions.
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(∗) Every X ∈ M is αX-presentable for some regular cardinal αX .
(†) Every X ∈ M is αX-bounded with respect to some proper, well-

copowered orthogonal factorization system on M, for some regular
cardinal αX .

Let J : J → M2 be a category over M2, with J small. Then the free awfs on
J exists and is algebraically-free on J.

We won’t define all these terms here. What’s important is to know that
the categories of interest satisfy one of these two conditions. Locally pre-
sentable categories, such as sSet, satisfy (∗). Top, Haus, and TopGp all
satisfy (†). We say a category M permits the small object argument if it is
cocomplete and satisfies either (∗) or (†).

Remark 2.29. This notion of cofibrantly generated is broader than the
usual one — see Example 4.4 for a concrete example — as ordinary cofi-
brantly generated wfs are generated by a set of maps, rather than a category.
We will refer to this as the “discrete case”, discrete small categories being
simply sets.

As is the case for ordinary wfs, cofibrantly generated awfs behave better
than generic ones. We conclude this introduction with an easy lemma, which
will prove vital to proofs in later sections.

Lemma 2.30. If an awfs (L,R) on M is cofibrantly generated, then the
class R of arrows that admit an R-algebra structure is closed under retracts.

Proof. When (L,R) is generated by J, we have an isomorphism of categories
R-alg ∼= J� over M2. The forgetful functor U : R-alg → M2 sends (g, φ) ∈
J� to g. We wish to show that its image is closed under retracts. Suppose
h is a retract of g as shown

·
h
��

i1 // ·
g

��

r1 // ·
h
��

·
i2
// ·

r2
// ·

Define a lifting function ψ for h by

ψ(j, u, v) := r1 · φ(j, i1 · u, i2 · v).
The equations from the retract diagram show that ψ is indeed a lifting
function. It remains to check that ψ is coherent with respect to morphisms
(a, b) : j′ ⇒ j of J. We compute

ψ(j′, u·a, v ·b) = r1 ·φ(j′, i1 ·u·a, i2 ·v ·b) = r1 ·φ(j, i1 ·u, i2 ·v)·b = ψ(j, u, v)·b,
as required. �

The upshot of Lemma 2.30 is that every arrow in the right class of the
ordinary wfs (L,R) underlying a cofibrantly generated awfs (L,R) has an
R-algebra structure. When our awfs is cofibrantly generated, we emphasize
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this result by writing (L,R) for the underlying wfs. We will also refer to a
lifting function φ associated to an element of g ∈ J� as an algebra structure
for g, in light of (2.27) and this result.

Remark 2.31. Garner proves the discrete version of Lemma 2.30 in [Gar09]:
when the generating category J is discrete, R is closed under retracts and
the wfs (L,R) is cofibrantly generated in the usual sense by this set of maps.
As a consequence, the new notion of “cofibrantly generated” agrees with the
usual one, in the case where they ought to overlap.

As a final note, the composition law for the algebras of a cofibrantly
generated awfs is particularly easy to describe using the isomorphism (2.27).

Example 2.32. Suppose (L,R) is an awfs on M generated by a category
J. Suppose (f, φ), (g, ψ) ∈ J� ∼= R-alg are composable objects, i.e., suppose
cod f = dom g. Their canonical composite is (gf, ψ • φ) where

ψ • φ(j, a, b) := φ(j, a, ψ(j, f · a, b)),
and this is natural in the sense described by Lemma 2.22.

In the remaining sections, we will present new results relating awfs to
model structures, taking frequent advantage of the machinery provided by
Garner’s small object argument.

3. Algebraic model structures

The reasons that most topologists care (or should care) about weak fac-
torizations systems is because they figure prominently in model categories,
which are equipped with an interacting pair of them. Using Garner’s small
object argument, whenever these wfs are cofibrantly generated, they can be
algebraicized to produce awfs. This leads to the question: is there a good
notion of an algebraic model structure? What is the appropriate definition?

Historically, model categories arose to enable computations in the homo-
topy category defined for a pair (M,W), where W is a class of arrows of M

called the weak equivalences that one would like to manipulate as if they
were isomorphisms. But with all of the subsequent development of the the-
ory of model categories, this philosophy that the weak equivalences should
be of primary importance is occasionally lost. With this principle in mind,
the author has decided that an algebraic model structure is something one
should give a pair (M,W), rather than a category M; that is to say, one
ought to have a particular class of weak equivalences in mind already. This
suggests the following “minimalist” definition.

Definition 3.1. An algebraic model structure on a pair (M,W), where M

is a complete and cocomplete category and W is a class of morphisms satis-
fying the 2-of-3 property, consists of a pair of awfs (Ct,F) and (C,Ft) on M

together with a morphism of awfs

ξ : (Ct,F) → (C,Ft)
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such that the underlying wfs of (Ct,F) and (C,Ft) give the trivial cofibra-
tions, fibrations, cofibrations, and trivial fibrations, respectively, of a model
structure on M, with weak equivalences W. We call ξ the comparison map.

The comparison map ξ gives an algebraic way to regard a trivial cofi-
bration as a cofibration and a trivial fibration as a fibration. We will say
considerably more about this in a moment.

Let Ct denote the underlying class of maps with a Ct-coalgebra structure
and define C, Ft, and F likewise. By definition (Ct,F) and (C,Ft) are the
underlying wfs of (Ct,F) and (C,Ft), respectively, where the bar denotes
retract closure. The triple (C,F,W) arising from an algebraic model struc-
ture gives a model structure on M in the ordinary sense; we call this the
underlying ordinary model structure on M.

We say that an algebraic model structure is cofibrantly generated if the
two awfs are cofibrantly generated, in the sense described in Section 2.6. In
this case, F = F and Ft = Ft by Lemma 2.30.

It is convenient to have notation for the two functorial factorizations. Let
Q = codC = domFt be the functor M2 → M accompanying the functorial
factorization of (C,Ft), i.e., the functor that picks out the object that an
arrow factors through. Let R be the analogous functor for (Ct,F). This
notation is meant to suggest cofibrant and fibrant replacement, respectively.

With this notation, the comparison map ξ : (Ct,F) → (C,Ft) consists of
natural arrows ξf for each f ∈ M2 such that

(3.2) dom f
Ctf

{{xxxxxxxx
Cf

##G
GGGGGGG

Rf
ξf //

Ff ##F
FFFFFFF

Qf

Ftf{{wwwwwwww

cod f

commutes. Because ξ is a morphism of awfs, it induces functors

ξ∗ : Ct-coalg → C-coalg and ξ∗ : Ft-alg → F-alg,

which provide an algebraic way to regard a trivial cofibration as cofibration
and a trivial fibration as a fibration. These maps have the following property.
Given a lifting problem between a trivial cofibration j and a trivial fibration
q, there are two natural ways to solve it: regard the trivial cofibration as
a cofibration and use the awfs (C,Ft) or regard the trivial fibration as a
fibration and use the awfs (Ct,F).6 In figure (3.3) below, the former option

6The map ξ assigns C-coalgebra structures to Ct-coalgebras. Similarly, ξ maps the
trivial cofibrations which are merely coalgebras for the pointed endofunctor underlying Ct

to coalgebras for the pointed endofunctor of C, which we saw in Remark 2.11 suffices to
construct lifts (2.10), which have the naturality property of (3.3). Similar remarks apply
to the fibrations.
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solves the lifting problem (u, v) : j ⇒ q by tracing the path around the
middle of the back of the cube, while the latter option traces along the front
of the cube. Naturality of ξ says that the lifts constructed by each method
are the same!

(3.3) ·

u

��@
@@

@@
@@

@@
@@

@@
@@

Cj ��
·

Q(u,v)
??

??
?

??
??

  A
AA

Ftj ��
·
��

j ∼

��

·

~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~

u

��@
@@

@@
@@

@@
@@

@@
@@

Ctj
��

·

v @@
@@

@@
@

>>>

  A
AA

·
Cq

��

·

q∼

����

·
}}}

ξj����

??������

R(u,v)
@@

@@
@@

@

��@
@@

@@
@@

Fj ��

·
Ftq
��

t

>>}}}}}}}

·

s
>>}}}}}}} ·

}}}}}}

��� ���

~~~~~~~

~~~~~~~

v

��@
@@

@@
@@

@@
@@

@@
@@

·

~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~

Ctq

��

· ·

·

ξq~~~~~~~~

??~~~~~

Fq

��
·

~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~

3.1. Comparing fibrant-cofibrant replacements. Any algebraic model
structure induces a fibrant replacement monad R and a cofibrant replacement
comonad Q on the category M (as opposed to the arrow category M2 on
which the monads and comonads of the awfs act). The monad R arises as
follows. The category M includes into M2 by sending an object X to the
unique arrow from X to the terminal object. This inclusion is a section to
the functor dom: M2 → M. Because the monad F is a monad over cod, it
induces a monad R = (R, η, µ) on M which we call the fibrant replacement
monad. The functor R is obtained from the previous functor R : M2 → M

accompanying the functorial factorization of (Ct,F) by precomposing R by
this inclusion. We regret that our notation is somewhat ambiguous. The
domain of R should be apparent from whether an object in the image of R
is the image of an object or arrow of M. The arrows in the image of the two
functors are related as follows: Rf = R(f, 1∗), where 1∗ denotes the identity
at the terminal object.

Dually, we can include M into M2 by slicing under the initial object. Using
this inclusion, the comonad C induces a comonad Q = (Q, ε, δ) on M which
we call the cofibrant replacement comonad. Once again, the functor Q : M →
M is obtained from the previous functor Q : M2 → M by precomposing Q
by this inclusion. Algebras for R are called algebraically fibrant objects and
coalgebras for Q are called algebraically cofibrant objects.

Another application of the natural lift illustrated in (3.3) is in comparing
fibrant-cofibrant replacements of an object. Let M be a category with an
algebraic model structure and let X ∈ M. We can define its fibrant-cofibrant



ALGEBRAIC MODEL STRUCTURES 195

replacement to be either RQX or QRX, both of which are weakly equivalent
to X. Classically, there is no natural comparison between these choices, but
in any algebraic model structure there is a natural arrow RQX → QRX
built out of the comparison map together with the components of the awfs.

Lemma 3.4. Let M be a category with an algebraic model structure and let
R and Q be the induced fibrant and cofibrant replacement on M. Then there
is a canonical natural transformation χ : RQ⇒ QR.

Proof. Classically, one obtains a map RQX → QRX by first lifting i
against q and j against p, as in the figure on the left below. Because the
maps i, j, p, and q are all obtained by factoring, they have free coalgebra or
algebra structures for the awfs (Ct,F) or (C,Ft). Thus, each of these lifting
problems has a natural solution (see Remark 2.13). After a diagram chase,
we can write the solution to the first lifting problem as QηX and the second
as RεX , using the unit and counit of the monad R and the comonad Q.

∅zz
i

zzvvv
vvv

vv
$$

$$HH
HHH

HHH

QX
��

ηQX=j ∼

��

∼
εX

$$ $$I
II

II
II

I
QηX //________ QRX

q=εRX∼

����

QX
��

∼ηQX=j

��

QηX // QRX

∼ q=εRX

����

X $$

∼
ηX

$$I
IIIIII

RQX

$$ $$I
IIIIIII RεX

//________ RX

pzzzzuuu
uuu

uuu
RQX

χX

;;x
x

x
x

x
x

x
x

x

RεX

// RX

∗
The arrows QηX and RεX present a lifting problem between j and q that

can be solved naturally using either awfs, as depicted in figure (3.3). The
solutions to these lifting problems are the components of a natural transfor-
mation RQ⇒ QR comparing the two fibrant-cofibrant replacements. �

This natural map is particularly well-behaved; hence the following theo-
rem.

Theorem 3.5. The functor Q lifts to a cofibrant replacement comonad on
the category R-alg of algebraically fibrant objects. Dually, the functor R lifts
to a fibrant replacement monad on the category Q-coalg of algebraically
cofibrant objects. The Eilenberg–Moore categories for this lifted comonad
and lifted monad are isomorphic and give a notion of “algebraically bifibrant
objects.”

Proof. By a well-known categorical result [PW02], it suffices to find a natu-
ral transformation χ : RQ⇒ QR that is a distributive law of the monad over
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the comonad, a lax morphism of monads and a colax morphism of comon-
ads (see Section 6.1). The natural map of Lemma 3.4 satisfies the desired
property: The defining lifting problem shows that χ is compatible with the
unit and counit for R and Q. It remains to show that χ is compatible with
the multiplication, i.e., that

RQR
χR

##G
GG

GG
GG

GG

R2Q

Rχ
;;wwwwwwwww

µQ
��4

44
44

4
QR2

Qµ
��










RQ
χ // QR

commutes, and a dual condition for the comultiplication. The necessary
diagram chase uses the fact that the awfs (Ct,F) satisfies the distributive
law and the fact that the comparison map ξ induces a monad morphism.
We leave the remaining details to the reader. �

Unless we are talking about fibrant or cofibrant replacement specifically, R
and Q will be functors M2 → M accompanying the functorial factorizations
of an algebraic model structure.

3.2. The comparison map. The least familiar component of the defini-
tion of an algebraic model structure given above is the comparison map. In
figure (3.3), Lemma 3.4, and Theorem 3.5, we saw some of its useful prop-
erties, but the question remains: in what circumstances might one expect
a comparison map to exist? We discuss several answers to this question in
this section.

Remark 3.6. Let J be the generating category for the awfs (Ct,F) and let
(C,Ft) be an awfs on the same category. A comparison map between (Ct,F)
and (C,Ft) exists if and only if there is a functor ζ : J → C-coalg over M2.
This is because Garner’s small object argument produces a canonical map
λ : J → Ct-coalg in CAT/M2 that is universal among arrows from J to
categories of coalgebras for the left half of an awfs on M, in the sense that
every such morphism ζ factors uniquely as ξ∗ ◦ λ, where ξ is a morphism of
awfs. See [Gar09, §3].

As far as the author is aware, model category theorists have not written
about the issue of comparing the two wfs provided by an ordinary model
structure, a fact that first came to her attention through discussions with
Martin Hyland. But the existence of such a comparison map is more rea-
sonable than one might expect: Peter May notes [MP11] that the universal
property of the colimits in Quillen’s small object argument gives such a
natural transformation, provided we assume that the generating trivial cofi-
brations J are contained in the generating cofibrations I.
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In many cases, this admittedly untraditional assumption is quite reason-
able: the generating trivial cofibrations are of course cofibrations, so includ-
ing them with the generators does not change the resulting model structure.
In the setting of algebraic model structures, this inclusion takes the form of
a functor J → I over M2, which induces a comparison map by the universal
property of the “free” awfs generated by J (see Section 2.6). When such
a functor exists, “the” comparison map always refers to this one, though a
priori some other might exist. In some of the results that follow, we require
that there be a functor J → I between the generating categories of a cofi-
brantly generated algebraic model structure without feeling too badly about
it.

The following remark supports our Definition 3.1.

Remark 3.7. Any ordinary cofibrantly generated model structure on a cat-
egory that permits the small object argument can be made into an algebraic
model structure by replacing the generating cofibrations I by I ∪ J and ap-
plying Garner’s small object argument in place of Quillen’s. The underlying
ordinary model structure of the resulting algebraic model structure is the
same as before, by which we mean that the classes C, F, and W are un-
changed. Thus, the abundance of cofibrantly generated model structures
(in the ordinary sense) gives rise to an abundance of examples of algebraic
model structures, which are then of course cofibrantly generated.

While altering the generating cofibrations does not change the underlying
model structure, it does change the cofibration-trivial fibration factorization.
Given that the generating cofibrations are often more natural than the gen-
erating trivial cofibrations,7 we provide the following alternative method
for obtaining a comparison map for a cofibrantly generated algebraic model
structure by altering J as opposed to I, vis-à-vis a theorem inspired by
[Hir03, 11.2.9]. As will become clear in the proof below, this method only
applies in the case where the trivial cofibrations are generated by a set, as
opposed to a category.

In the following proof even though J is discrete, we regard it as a category
over M2 with an injection J

J→ M2. With this perspective, we need a
technical note. While Garner’s small object argument works for any small
category J : J → M2 above the arrow category, in practice, the functor J
is injective, and we can identify J with its image and think of it as a set of
arrows together with some coherence conditions in the form of morphisms
between these arrows. As stated, Theorem 3.8 requires that J be injective,
though one could imagine that more careful wording would allow us to drop
this assumption. We chose this simplification because we cannot think of
any applications where this restriction is prohibitive.

7Indeed, in many Bousfield localizations, the generating trivial cofibrations are not
known explicitly.
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Theorem 3.8. Suppose J is a set and I is a category over M2 such that the
underlying wfs (Ct,F) and (C,Ft) of the awfs (Ct,F) and (C,Ft) that they
generate give a model structure on (M,W), in the ordinary sense. Then J

can be replaced by a set J′ over M2 such that:

(i) There is a functor J′� → J� over M2, necessarily faithful, that is
bijective on the underlying classes of arrows. It follows that J′ and
J generate the same underlying wfs.

(ii) There is a functor ζ : J′ → C-coalg over M2.

The set J′ generates an awfs (C′
t,F′). It follows from the universal property

of the functor J′ → C′
t-coalg that I and J′ generate an algebraic model

structure on M2 with the same underlying model structure (C,F,W).

Proof. Define J′
J ′→ M2 to be the composite J

J→ M2 C→ M2 where C is the
comonad generated by I. For each j ∈ J, the corresponding element of J′

is its left factor Cj. We claim that J′ = {Cj | j ∈ J} satisfies conditions
(i) and (ii) above. For (ii), define ζ to be the map that assigns each Cj its
canonical free coalgebra structure (Cj, δj).

For (i), note that for each j ∈ J the lifting problem
· Cj //

j

��

·
Ftj

��
·

s
@@�

�
�

� ·

has a

solution s, which gives us a retract diagram
·

j

��

·
Cj

��

·
j

��
·

s
// ·

Ftj
// ·

. We use this

to define a functor J′� → J� as in the proof of Lemma 2.30. On objects,
define

J′� 3 (g, ψ) 7→ (g, φ) ∈ J�,

where φ(j, u, v) := ψ(Cj, u, v · Ftj) · s for all lifting problems (u, v) : j ⇒ g.
Because J is discrete, the lifting function φ need not satisfy any coherence
conditions. Given a morphism (h, k) : (g, ψ) → (g′, ψ′) in J′�, it follows that

φ′(j, h · u, k · v) = ψ′(Cj, h · u, k · v · Ftj) · s
= h · ψ(Cj, u, v · Ftj) · s
= h · φ(j, u, v),

which says precisely that (h, k) : (g, φ) → (g′, φ′) is a morphism in J�. So
J′� → J� is a functor over M2.

It remains to show that this functor is surjective on the underlying arrows
of J′� and J�. Let j ∈ J and (g, φ) ∈ J�; by definition g ∈ F. By the 2-of-3
property, Cj ∈ C ∩W ⊂ Ct, so Cj � g. As J′ is discrete, any choice of lifts
against the Cj can be used to define a lifting function ψ so that (g, ψ) ∈ J′�.
Of course the functor defined above need not map (g, ψ) to (g, φ) but it does
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mean that g is in the image when we forget down to M2, which is all that
we claimed. �

Remark 3.9. We also have a faithful functor J� → J′� over M2 that is
bijective on the underlying classes of arrows; this one, however, takes a bit
more effort to define. Define J′′

J ′′→ M2 to be the composite J′
J ′→ M2 Ct→ M2.

We have a functor λ : J′′ → Ct-coalg over M2 that assigns each arrow its
free coalgebra structure. Mirroring the argument above, elements of J′ are
retracts of elements of J′′, so we have J′′� → J′� over M2. Our desired
functor is the composite

J� ∼= F-alg lift−→ (Ct-coalg)� λ�
−→ J′′� −→ J′�

defined with help from the functor of 2.25 and the isomorphism (2.27). Note
that these functors are not inverse equivalences.

The upshot is that we can get an algebraic model structure from an ordi-
nary cofibrantly generated model structure without changing the generating
cofibrations. This argument does not appear to extend to nondiscrete cate-
gories J because, in absence of a comparison map, the F-algebra structures
of the Ftj are chosen and not natural with respect to morphisms in J; see
Remark 2.13. Note, the proof of Theorem 3.8 did not require that the awfs
(C,Ft) is cofibrantly generated, though in examples this is typically the case.

In Section 5, we will show that the components of the comparison map in
a cofibrantly generated algebraic model structure satisfying additional, rela-
tively mild, hypotheses are themselves C-coalgebras and hence cofibrations.

3.3. Algebraic model structures and adjunctions. Many cofibrantly
generated model structures are produced from previously known ones by
passing the generating sets across an adjunction. We repeat this trick for
cofibrantly generated algebraic model structures, extending a well-known
theorem due to Kan [Hir03, 11.3.2].

An adjunction T : M
//

⊥ K : Soo lifts to an adjunction on the arrow cat-
egories M2 and K2, which we also denote by T a S. In particular, a small
category J : J → M2 over M2 becomes a small category TJ : J → K2 over
K2. Because our notation has usually described the generating category as
opposed to its functor to M2, we write TJ to mean the category J that maps
to K2 via the functor TJ .

Theorem 3.10. Let M have an algebraic model structure, generated by I

and J and with weak equivalences WM. Let T : M
//

⊥ K : Soo be an adjunc-
tion. Suppose K permits the small object argument and also that

(††) S maps arrows underlying the left class of the awfs cofibrantly gen-
erated by TJ into WM.

Then TJ and T I generate an algebraic model structure on K with WK =
S−1(WM). Furthermore, T a S is a Quillen adjunction for the underlying
ordinary model structures.
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In the literature, (††) is known as the acyclicity condition because the
arrows underlying the left class of the awfs generated by TJ are the proposed
acyclic (trivial) cofibrations for the model structure on K.

Proof of Theorem 3.10. By the small object argument, TJ and T I gen-
erate awfs (Ct,F) and (C,Ft) with underlying wfs (Ct,F) and (C,Ft). With
this notation, the condition (††) says that S(Ct) ⊂ WM.

When the comparison map of the algebraic model structure on M arises
from a functor J → I over M2, composing with T induces a functor J →
I over K2, which gives the comparison map between the resulting awfs.
In the general case, the comparison map on M specifies a functor J →
CM-coalg to the category of coalgebras for the awfs on M generated by I.
In Corollary 6.16, a significant result whose proof is deferred to Section 6,
we will prove that there is a functor CM-coalg → C-coalg lifting T . This
gives rise to a functor J → C-coalg lifting T , or equivalently a functor
TJ → C-coalg over K2. The comparison map (Ct,F) → (C,Ft) for K

is then induced by the universal property of the functor TJ → Ct-coalg
produced by Garner’s small object argument.

The class WK is retract closed by functoriality of S. It remains to show
that Ct = C∩WK and Ft = F∩WK. In fact, by [Hir03, 11.3.1] we need only
verify three of the four relevant inclusions.

The inclusion Ct ⊂ C is immediate, since the comparison map explicitly
provides each trivial cofibration with a cofibration structure; taking retract
closures Ct ⊂ C. The hypothesis (††) says that Ct ⊂ WK and WK is retract
closed by functoriality of S, so Ct ⊂ WK. Hence, Ct ⊂ C ∩WK.

Similarly, the comparison map guarantees that Ft ⊂ F. If g ∈ Ft then
it has some algebra structure (g, φ) ∈ T I� by Lemma 2.30. By adjunction
(Sg, φ]) ∈ I�, where the arrows of φ] are the adjuncts of the corresponding
arrows of φ. So Sg is a trivial fibration for the model structure on M. In
particular, Sg ∈ WM, which says that g ∈ WK. So Ft ⊂ F ∩WK.

It remains to show that F ∩WK ⊂ Ft; we will appeal to Lemma 2.30 on
two occasions. Suppose f ∈ F ∩WK. By Lemma 2.30, f has some algebra
structure (f, ψ) ∈ TJ� and by adjunction (Sf, ψ]) ∈ J�. As f ∈ WK, Sf is
a trivial fibration in the algebraic model structure on M; by Lemma 2.30,
it follows that there is some algebra structure ζ such that (Sf, ζ) ∈ I�. By
adjunction, (f, ζ[) ∈ T I�, where ζ[ denotes the adjunct of ζ, which says
that f ∈ Ft, as desired.

The above argument showed that S preserves fibrations and trivial fibra-
tions. Hence, T a S is a Quillen adjunction. �

3.4. Algebraic Quillen adjunctions. Given the close connection between
the algebraic model structures of Theorem 3.10, it is not surprising that
quite a lot more can be said about the nature of the Quillen adjunction
between them. This leads to the notion of an algebraic Quillen adjunction,
of which the adjunction of Theorem 3.10 will be an example. We preview
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the definition and corresponding theorem below, but postpone the proofs,
which are categorically intensive, to Sections 6 and 7. These sections are not
dependent on the intermediate material, so a categorically inclined reader
may wish to skip there directly.

Morphisms of awfs provide a means of comparing awfs on the same cat-
egory, but as far as the author is aware, there are no such comparisons for
awfs on different categories in the literature. We define three useful types
of morphisms precisely in Section 6, but here are the main ideas.

Let (C,F) and (L,R) be awfs on M and K respectively. A colax morphism
of awfs (C,F) → (L,R) is a functor T : M → K together with a specified
lifting of T to a functor T̃ : C-coalg → L-coalg satisfying one additional
requirement. By a categorical result [Joh75], the lift T̃ is determined by
a characterizing natural transformation; together T and this natural trans-
formation is called a colax morphism of comonads or simply a comonad
morphism. We ask that the natural transformation characterizing T̃ also
determines an extension of T to a functor T̂ : Kl(F) → Kl(R) between the
Kleisli categories of the monads.

The Kleisli category of a monad R is the full subcategory of R-alg on
the free algebras, which are the objects in the image of the (monadic) free-
forgetful adjunction. Kl(R) is initial in the category of adjunctions deter-
mining that monad; the Eilenberg–Moore category R-alg is terminal. At
the moment, the only justification we can give for this additional require-
ment, beyond the fact that it holds in important examples, is that colax
morphisms of awfs should interact with both sides of the awfs. A more
convincing justification is Lemma 6.9.

Dually, a lax morphism of awfs (L,R) → (C,F) is a functor S : K → M

together with a specified lift S̃ : R-alg → F-alg such that the natural trans-
formation characterizing S̃ must determine an extension of S to a functor
between the coKleisli categories of L and C. When the functor S or T is
the identity, both lax and colax morphisms of awfs are exactly morphisms
of awfs, which is another clue that these are reasonable notions.

Combining these, we arrive at the notion of adjunction of awfs, which is
the most relevant to this context. An adjunction of awfs (T, S) : (C,F) →
(L,R) consists of an adjoint pair of functors T : M

//
⊥ K : Soo such that

T : (C,F) → (L,R) is a colax morphism of awfs, S : (L,R) → (C,F) is a lax
morphism of awfs, and the characterizing natural transformations for these
morphisms are related in a suitable fashion.

Adjunctions of awfs over identity adjunctions are exactly morphisms of
awfs, with both characterizing natural transformations equal to the natural
transformation of Definition 2.14. Note, adjunctions of awfs can be canoni-
cally composed. We can now define algebraic Quillen adjunctions.

Definition 3.11. Let M have an algebraic model structure ξM : (Ct,F) →
(C,Ft) and let K have an algebraic model structure ξK : (Lt,R) → (L,Rt).
An adjunction T : M

//
⊥ K : Soo is an algebraic Quillen adjunction if there

exist adjunctions of awfs
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(Ct,F)

(T,S)
PPPP

((PPPP

(T,S) //

ξM

��

(Lt,R)

ξK

��
(C,Ft)

(T,S)
// (L,Rt)

such that both triangles commute.

Note the left adjoint of an adjunction of awfs preserves coalgebras and
hence (trivial) cofibrations and dually the right adjoint preserves algebras
and hence (trivial) fibrations. In particular, an algebraic Quillen adjunction
is a Quillen adjunction, in the ordinary sense. As we shall prove in Section 7,
the naturality condition of the definition of algebraic Quillen adjunction is
equivalent to the condition that the lifts depicted below commute.
(3.12)

Rt-alg
S̃t //

(ξK)∗

##G
GGGG

��
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(ξM)∗

""F
FFFF

��

Ct-coalg
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S̃ // F-alg

{{xxxxx
and C-coalg
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T̃ // L-coalg

xxrrrrrrr

K2
S

// M2 M2
T

// K2

Similarly, the corresponding extensions to Kleisli and coKleisli categories
commute.

Somewhat surprisingly due to the numerous conditions required by their
components, algebraic Quillen adjunctions exist in familiar situations.

Theorem 3.13. Let T : M
//

⊥ K : Soo be an adjunction. Suppose M has
an algebraic model structure, generated by I and J, with comparison map
ξM. Suppose K has the algebraic model structure, generated by T I and TJ,
with canonical comparison map ξK. Then T a S is canonically an algebraic
Quillen adjunction.

The proof is deferred to Section 7.

4. Pointwise awfs and the projective model structure

One of the features of an awfs that is not true of an ordinary wfs or even
of a functorial wfs is that an awfs on a category M induces an awfs on the
diagram category MA for any small category A, where the factorizations
are defined pointwise. The comultiplication and multiplication maps are
precisely what is needed to define natural transformations that ensure that
the left and right factors have the desired lifting properties. Furthermore,
and completely unlike the nonalgebraic situation, such pointwise awfs are
cofibrantly generated if the original awfs is. After proving this result, we will
give an example of a class of cofibrantly generated algebraic model structures
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whose underlying ordinary model structures are not cofibrantly generated
in the classical sense.

We then construct a projective algebraic model structure on MA from
a cofibrantly generated algebraic model structure on M. The awfs in the
projective model structure will not be the pointwise awfs, though these awfs
will make an appearance in the proof establishing this model structure.

We first take a detour to describe Garner’s small object argument in more
detail, as these details will be used in the proofs in this section and the next.

4.1. Garner’s small object argument. Like Quillen’s, Garner’s small
object argument produces a functorial factorization through a colimiting
process that takes many steps, a key difference being that the resulting
functorial factorization canonically underlies an awfs. Each step gives rise
to a functorial factorization in which the left functor is a comonad. At the
final step, the right functor is also a monad.

At step zero, Quillen’s small object argument forms a coproduct over all
squares from the generating cofibrations to the arrow f . In Garner’s small
object argument, this coproduct is replaced by a left Kan extension of the
functor J : J → M2 along itself. Write L0f = LanJJ(f) for the step zero
comonad, called the density comonad in the literature. When J is discrete,
L0f is the usual coproduct. In the general case, this arrow is a quotient of
the usual coproduct.

The step-one factorization of both small object arguments is obtained the
same way: by factoring the counit of the density comonad as a pushout
followed by a square with an identity arrow on top.

(4.1) ·
L0f
��

//

p

·
L1f
��

·
f
��

· // ·
R1f
// ·

Concretely, L1f is the pushout of L0f along the canonical arrow from the
domain of L0f to the domain of f . The arrow f and the arrow from the
codomain of L0f to the codomain of f form a cone under this pushout
diagram; the unique map given by the universal property is R1f . By the
universal property of the pushout (4.1), specifying an (R1, ~η1)-algebra struc-
ture for f , i.e., solving the lifting problem in the right-hand square above,
is equivalent to specifying a lifting function φ such that (f, φ) ∈ J�.

The most significant difference between Garner’s and Quillen’s small ob-
ject argument appears in the inductive steps that follow. For Quillen’s small
object argument the above processes are repeated with the arrow Rαf in
place of f . We take the left Kan extension (coproduct over squares) and
then pushout to obtain an arrow that is composed with the preceding left
factors to obtain Lα+1f . The map induced by the universal property is
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Rα+1f . Transfinite composition is used to obtain Lα and Rα for limit or-
dinals. We choose to halt this process at some predetermined “sufficiently
large” ordinal, yielding the final functorial factorization.

For Garner’s small object argument, this process is modified to include
additional quotienting. At step two and all subsequent steps, the beginning
is the same. We pushout L0R1f along the canonical arrow to obtain L1R1f .
But then L2f is defined to be L1f composed with the coequalizer of two
arrows from L1f to L1R1f . As in previous steps, this is a quotient of
Quillen’s definition. In the language of cell complexes, the arrow L1R1f
freely attaches new “cells” to the “spheres” in the domain of R1f , while L1f
includes those “cells” attached to “spheres” in the domain of f into their
image in the domain of R1f . The coequalizer then avoids redundancy by
identifying those “cells” attached to the same “spheres” in different stages.

Unlike Quillen’s small object argument, this quotienting means that when
the category M permits the small object argument this process converges;
there is no need for an artificial termination point. The resulting object
through which the arrow f factors is in some sense “smaller” than for the
factorizations produced by Quillen’s small object argument because cells are
attached only once, not repeatedly. The monad R is algebraically-free on
the pointed endofunctor R1, which says that R-alg ∼= (R1, ~η1)-alg ∼= J�.

4.2. Pointwise algebraic weak factorization systems. We now turn
our attention to pointwise awfs. Because CAT is cartesian closed, we have
isomorphisms (MA)2 ∼= MA×2 ∼= (M2)A, which we use to regard a natural
transformation α as a functor α : A → M2. On objects, this functor picks
out the constituent morphisms of α; the image of a morphism in A is the
corresponding naturality square. Morphisms (φ, ψ) : α⇒ β in the category
of functors A → M2 consist of a pair of morphisms φ, ψ in MA such that
the vertical composites βφ and ψα are equal.

Given an awfs (L,R) on M, we use these isomorphisms to define LA to
be the functor

(MA)2 ∼= (M2)A (L)∗−→ (M2)A ∼= (MA)2

induced by post-composition by L; similarly for RA. We define the natural
transformations ~εA, ~δA, ~ηA, ~µA that make LA and RA into a comonad and
monad as follows. Given an object α of (MA)2 regarded as a functor A →
M2, the arrow ~εAα is obtained by “whiskering” ~ε with α, as depicted below.

A M2 M2α //

L

��
~ε
��
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All of the other natural transformations are defined similarly. It is easy
to see that LA = (LA,~εA, ~δA) and RA = (RA, ~ηA, ~µA) define an awfs be-
cause pointwise each definition is given by simply post-composing a natural
transformation with the old comonad and monad.

Remark 4.2. Note however that the underlying wfs of the pointwise awfs
(LA,RA) is not itself given pointwise by the underlying wfs of (L,R). This
is because, unlike the case for the left and right factors, generic pointwise
maps will not have natural lifts. This is one area where awfs behave better
than ordinary wfs.

4.3. Cofibrantly generated case. Given a cofibrantly generated awfs
(L,R) on M, is the resulting pointwise awfs (LA,RA) on MA cofibrantly
generated? There are many reasons to suspect that this is not the case.
For example, there is an awfs on Set generated by J = {∅ → 1} for which
the right class is the epimorphisms. The right class of the pointwise awfs
on SetA consists of epis with a natural section. If this awfs is cofibrantly
generated, it means that this class can be characterized by a lifting property.
While right lifting properties can be used to specify additional structure on a
class of maps, they are not typically known to impose coherence conditions.

Despite this worry, the answer is yes, the pointwise awfs is always cofi-
brantly generated when the original one is. In retrospect, the solution to the
above concern is obvious: the generating category JA for the pointwise awfs
will not be discrete (unless A is)! This is the first example known to the
author where the extra generality allowed in Garner’s small object argument
is useful.

Theorem 4.3. Let J : J → M2 be a small category over M2, where M

permits the small object argument, and let (L,R) be the awfs generated by
J. Let JA be the category Aop × J equipped with the functor

Aop × J
y×J−→ SetA ×M2 −·−−→ (MA)2,

where y denotes the Yoneda embedding and −·− denotes the copower8 (ten-
sor) of an arrow in M by a Set-valued functor from A. Then the pointwise
awfs (LA,RA) is generated by JA.

In keeping with the previous notational conventions, we regard JA as the
category with objects A(a,−) · j for a ∈ A and j ∈ J. Morphisms are
generated by maps A(a,−) · j ⇒ A(a,−) · j′ for every j ⇒ j′ in J and by
maps f∗ : A(b,−) · j ⇒ A(a,−) · j for every f : a → b in A. We prefer to
write JA : JA → (MA)2 for the composite functor defined above.

Proof of Theorem 4.3. We don’t know a priori whether MA permits the
small object argument, but we can begin to apply that construction to the

8The copower S · j of a set S with an object j of M2 is the coproduct of copies of j
indexed by the set S. When S is instead a set-valued functor, the copower S ·j is a natural
transformation with each constituent arrow having the description just given.
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category JA over (MA)2 nonetheless. We will show that the functors (LA)0,
(LA)1, (RA)1, (LA)2, (RA)2, etc that arise at each step agree with the
functors L0, L1, R1, etc pointwise. It will follow that our construction on
(MA)2 converges to the awfs (LA,RA), which is therefore generated by JA.

The beginning stage of the small object argument computes the step-zero
comonad (LA)0 as the left Kan extension of JA : JA → (MA)2 along itself.
Note that (MA)2 is cocomplete, since M is. The familiar formula for Kan
extensions gives

(LA)0α =
∫ (a,j)∈JA

∼=Aop×J

Hom(MA)2(A(a,−) · j, α) · (A(a,−) · j).

The natural transformation A(a,−) · j is the image of j under a functor
M2 → (MA)2 that is left adjoint to evaluation at a. By this adjunction, the
above coend equals

=
∫ JA

∼=Aop×J

HomM2(j, αa) · (A(a,−) · j)

=
∫ JA

∼=Aop×J

Sq(j, αa) · (A(a,−) · j)

where we’ve written “Sq” to indicate that morphisms from j to αa in M2 are
commutative squares. By Fubini’s theorem and cocontinuity of the copower,
we can use the isomorphism JA

∼= Aop×J to compute the coend over J first,
yielding

=
∫ Aop

A(a,−) ·

(∫ J

Sq(j, αa) · j

)

=
∫ Aop

A(a,−) · L0αa

where L0 is the step-zero comonad for J. We now express this coend as a
coequalizer

= coeq

 ∐
f : a→b

A(b,−) · L0αa ⇒
∐
a

A(a,−) · L0αa


where the top arrow is induced by f∗ : A(b,−) → A(a,−) and the bottom
arrow is induced by L0 applied to the naturality square for f , which is a
morphism from αa to αb in M2. We compute this coequalizer pointwise; by
inspection at an object c ∈ A, the coequalizer in M2 is L0αc with A(a, c) ·
L0αa ⇒ L0αc given by the evaluation map. This object and morphism
satisfy the required universal property: the map out of L0αc can be found
by restricting to the identity component of the copower A(c,−) · L0αc.
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The remaining steps in the small object argument are constructed from
previous ones by applying the comonad (LA)0 and taking pushouts, co-
equalizers, and transfinite composites, which are all computed pointwise.
As we’ve shown that (LA)0 is also computed pointwise, we are done. Be-
cause M permits the small object argument, this process will converge for
each arrow αa at some time (ordinal) β, which means that the naturally
constructed arrows from step β to step β + 1 are isomorphisms. It follows
that there is a natural isomorphism from step β on (MA)2 to step β + 1,
which tells us that the construction converges. This completes the proof
that Garner’s small object argument applied to JA will give the pointwise
monad and comonad of (LA,RA). Hence, (LA,RA) is the awfs generated by
JA. �

Example 4.4. When A is a small category, the awfs of Lack’s trivial model
structure on the 2-category CatA are pointwise awfs. In the case A = 2,
Lack proves [Lac07, Proposition 3.19] that his trivial model structure is not
cofibrantly generated in Quillen’s sense. By contrast, Theorem 4.3 can be
used to show that this is an algebraic model structure, which is cofibrantly
generated in Garner’s sense.

4.4. Algebraic projective model structures. Using Theorem 3.10 and
the pointwise algebraic weak factorization system described above, we can
prove that any cofibrantly generated algebraic model structure on a cate-
gory M induces a cofibrantly generated projective algebraic model structure
on the diagram category MA. The awfs of this model structure are not
the pointwise awfs on MA; instead, the generating categories are discrete,
at least when the original generators I and J are. The underlying model
structure agrees with the usual projective model structure on a diagram
category: weak equivalences are pointwise weak equivalences and fibrations
are pointwise fibrations.

The generating categories Iproj and Jproj for the projective model structure
look familiar; in the case where I and J are discrete these are the usual
generating sets in the classical theory. Objects of Iproj are functors A(a,−)·i,
for all a ∈ A and i ∈ I. Each morphism i⇒ i′ in I gives rise to a morphism
A(a,−) · i ⇒ A(a,−) · i′ in Iproj; there are no others. The category Jproj is
defined similarly.

Theorem 4.5. Let M have an algebraic model structure, generated by I and
J, with weak equivalences WM. Then the categories Iproj and Jproj give rise
to a cofibrantly generated algebraic model structure on MA, which we will
call the projective algebraic model structure.

Proof. Write A0 for the discrete subcategory of objects of A. We first show
that the algebraic model structure on M induces a model structure on the
diagram category MA0 . We then use an adjunction to pass this across to
the projective model structure on MA.
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Arrows of MA0 are natural transformations with no naturality conditions,
i.e., collections α of morphisms αa in M for each a ∈ A0. The categories I

and J induce a pair of pointwise awfs on MA0 . By Theorem 4.3, these awfs
are generated by IA0 and JA0 .

9 The comparison map of the algebraic model
structure on M gives the elements of J coalgebra structures for the comonad
generated by I that are natural with respect to morphisms in J. Pointwise,
this functor can be used to define a functor from JA0 to the category of
coalgebras for the comonad induced by IA0 . By Remark 3.6, this induces a
comparison map between the awfs generated by JA0 and IA0 .

We quickly prove that this gives an algebraic model structure. As in the
proof of Theorem 3.10, the existence of this comparison map implies that
trivial cofibrations are cofibrations and trivial fibrations are fibrations. Let
W0 be the class of morphisms of MA0 that are pointwise weak equivalences.
With this definition it is clear that trivial cofibrations and trivial fibrations
are weak equivalences. So to show that IA0 and JA0 give rise to an alge-
braic model structure, it remains only to show that fibrations that are weak
equivalences are trivial fibrations.

More precisely, we need to show is that algebras for the monad induced
by JA0 that are pointwise weak equivalences have an algebra structure for
the monad induced by IA0 . Since the category A0 is discrete, a collection α
of morphisms αa has an algebra structure for the monad induced by JA0 just
when each αa is an algebra for the monad induced by J. Here, each αa is a
trivial fibration for the algebraic model structure on M; by Lemma 2.30 this
means that it has an algebra structure for the monad induced by I. Again
because A0 is discrete, this means that the collection α has an algebra
structure for the monad induced by IA0 , which is what we wanted to show.
So the categories IA0 and JA0 generate an algebraic model structure on MA0 .

Let i : A0 ↪→ A be the canonical inclusion. Then left Kan extension along
i gives rise to an adjunction

Lani : MA0
//

⊥ MA : i∗oo

Here i∗ might be thought of as an “evaluation” map; it takes a functor
G : A → M to the collection of objects in its image and a natural transfor-
mation α to its collection of constituent arrows. Using the usual formula
for left Kan extensions, the left adjoint takes an arrow α ∈ MA0 to the
disjoint union tc∈A0A(c,−) ·αc. Objects in IA0 are natural transformations
A0(a,−) · i for some a ∈ A and i ∈ I. As A0 is discrete, this natural trans-
formation consists of the arrow i at the component for a and the identity
arrow at the initial object of M at all other objects of A. The image of this
object under Lani is A(a,−) · i, by the above formula. It follows that

Lani IA0 = Iproj and Lani JA0 = Jproj.

9Of course, it is also possible to prove this directly as an easier special case of that
theorem.
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In order to apply Theorem 3.10 and conclude that MA has an algebraic
model structure generated by Iproj and Jproj, we must show that the right
adjoint i∗ takes the underlying maps of the coalgebras for the comonad
generated by Jproj to weak equivalences in MA0 . In other words, we must
show that the coalgebras for the comonad generated by Jproj are pointwise
weak equivalences.

Coalgebras for the comonad generated by Jproj are in the left class of the
underlying wfs that this category generates, that is, they are arrows satisfy-
ing the LLP with respect to the underlying class of J�

proj. From the adjunc-
tion, we know that the underlying class of J�

proj = (Lani JA0)
� = (i∗)−1(J�

A0
)

is the class of pointwise algebras for the original monad generated by J on
M2.

Let α be an element of the left class generated by Jproj and factor α using
the pointwise awfs (CA

t ,FA) on MA, not the awfs generated by Jproj. The
components of the right factor FAα are algebras for the monad F generated
by J because FAα is an algebra for the monad FA. So FAα ∈ J�

proj and hence
α lifts against FAα, which means that α is a retract of CA

t α. The constituent
maps (CA

t α)a = Ct(αa) are coalgebras for the comonad on M2 generated by
J; in particular they are weak equivalences, since J is the generating category
of trivial cofibrations. So pointwise the arrows of α are retracts of weak
equivalences; hence α consists of pointwise weak equivalences. Theorem 3.10
may now be used to establish the projective algebraic model structure. �

5. Recognizing cofibrations

In previous sections, we have seen that cofibrantly generated model struc-
tures can be “algebraicized,” so that the constituent wfs are in fact awfs.
This gives all fibrations the structure of algebras for a monad and some
cofibrations the structure of coalgebras for a comonad. This extra algebraic
structure is unobtrusive, in the sense that it can be forgotten at any point
to yield an ordinary notion of a model structure, with the added benefit
that the factorizations constructed by Garner’s small object argument are
somehow “smaller.”

However, we have not yet given a convincing argument that this extra al-
gebra structure is useful, allowing us to prove theorems that were intractable
otherwise. In this section, we will provide the first such examples, illustrat-
ing the following point: one pleasant feature of this algebraic data is it gives
a technique for proving that certain maps are cofibrations.

5.1. Coalgebra structures for the comparison map. One such exam-
ple is the following theorem, which is joint work with Richard Garner and
Mike Shulman. In this theorem, we will require that the comparison map
arise from a functor τ : J → I over M2 of a particularly nice form. Firstly,
we require that it be a full inclusion (full, faithful, and injective on objects).
Secondly, we require that I decompose as a coproduct τ(J) t I′, i.e., that



210 EMILY RIEHL

there are no morphisms from objects in the image of τ to objects not in
the image.10 Note that when J and I are sets, these requirements simply
mean that the generating trivial cofibrations J are a subset of the generating
cofibrations I.

Theorem 5.1. Let J and I be categories that generate an algebraic model
structure on M and such that we have an inclusion τ : J → I over M2 of the
form described above. Suppose also that the cofibrations are monomorphisms
in M. Then the components of the comparison map ξ : (Ct,F) → (C,Ft) pro-
duced by Garner’s small object argument are cofibrations and, furthermore,
coalgebras for the comonad C.

Let us provide some intuition for this result. Given an arrow f , we con-
struct Qf from Rf by attaching more “cells.” Because the cofibrations are
monomorphisms, the “cells” we had attached previously to form Rf are not
killed by the quotienting involved in the construction of Qf . Hence the
arrow ξf : Rf → Qf is itself a cofibration, and furthermore, because it was
constructed cellularly, ξf is a C-coalgebra.

It takes some effort to describe the comparison map explicitly and accord-
ingly it will take some work to translate the above intuition into a rigorous
argument. When the awfs are cofibrantly generated, the comparison map
ξ : (Ct,F) → (C,Ft) is induced by the cone produced by the right-hand fac-
torization over the colimits of the left-hand factorization. These are each
constructed by various colimiting processes at a number of stages, and the
proof will accordingly involve a transfinite induction corresponding to each
stage.

Specifically, for each ordinal α, the small object argument produces func-
torial factorizations (Cαt , F

α) and (Cα, Fαt ). Let Qα, Rα : M2 → M de-
note the functors accompanying each functorial factorization, i.e., so that
f : X → Z factors as

X
Cα

t f

}}zz
zz

zz
zz Cαf

!!D
DD

DD
DD

D

Rαf
ξα
f //

Fαf !!D
DD

DD
DD

D
Qαf

Fα
t f}}zz

zz
zz

zz

Z

with ξα, the component at f of the step-α comparison map, as depicted.
Recall, the step-one factorization (C1

t , F
1) is constructed by factoring the

counit of the density comonad of J : J → M2 as a pushout followed by a

10We suspect that this second condition is unnecessary but include it to simplify the
arguments given below.
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square with domain equal to the identity, as indicated below.

(5.2) · //

C0
t f

�� p

X

C1
t f
��

X

f

��
· // R1f

F 1f
// Z

In the familiar case when J is discrete, C0
t f =LanJJ(f) is the coproduct

of elements j ∈ J over commutative squares from j to f , and the top and
bottom horizontal composites are the canonical arrows induced from these
coproducts.

A key step in the proof of Theorem 5.1 is the following lemma, which will
imply that the step-one comparison map ξ1f : R1f → Q1f is a C-coalgebra.
The general form of this lemma will enable multiple applications.

Lemma 5.3. Let J and I be small categories with an inclusion J → I over
M2 as described above and let (C1

t , F
1) and (C1, F 1

t ) be the step-one factor-
izations they produce. Given any commutative triangle

X // h //

f   @
@@

@@
@@

Y

g��~~
~~

~~
~

Z

such that h is a cofibration and a monomorphism, then the map ξ1 : R1f →
Q1g induced by the colimit is a cofibration. If furthermore h is a C-coalgebra,
then so is ξ.

Remark 5.4. The proof of Lemma 5.3 will require some basic facts about
coalgebras for a comonad. We say a morphism (u, v) : f ⇒ g in M2 is a
map of C-coalgebras if it lifts to the category C-coalg (where we usually
have particular coalgebra structures for f and g in mind). In particular, if
f has a coalgebra structure and g is a pushout of f , the pushout square is a
map of coalgebras, when g is given the canonical coalgebra structure of the
pushout. (See the example in Footnote 5.) Similarly, if g is a colimit of any
diagram in M2 whose objects are coalgebras and whose arrows are maps
of coalgebras, then g inherits a canonical coalgebra structure such that the
legs of the colimit cone are maps of coalgebras. (This is a consequence of
Theorem 2.16.) Finally, when C is the comonad of an awfs, C-coalgebras
are closed under composition, as we saw in Lemma 2.22, in such a way that
(1, g) : f ⇒ gf is a map of coalgebras if f and g are coalgebras.

We will use all of these facts in the proofs that follow.
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Proof of Lemma 5.3. The defining pushouts for the arrows C1
t f and C1g

are the top and bottom faces of the cube below.

(5.5) ·

iS

��

e //
��

C0
t f

����
��

��
��

p

X
}}

C1
t f

}}{{
{{

{{
{ ��

h

��

· p //

iD

��

R1f

ξ1

���
�
�
�
�
�
�

·
��C0g

����
��

��
� e′

//

p

Y
}}

C1g}}{{
{{

{{
{

W
p′

// Q1g

The notation (iS , iD) is meant to evoke the inclusions of the indexing sets
for the coproducts of spheres and disks, with the familiar generating set of
cofibrations {Sn−1 → Dn} in mind. The map ξ1 is induced by the universal
property of the top pushout.

We begin by defining the pushout in the right face of the cube (5.5).

R1f

ξ1

��

��
l

��7
77

77
77

77
X

C1
t foo

��

h

��

q
P 1g

w||y
y

y

Q1g Y

k
ffMMMMMMMMM

C1g
oo

Because h is a cofibration, l is as well. If h is a coalgebra, then l inherits
a canonical coalgebra structure as a pushout of h. Because cofibrations
and coalgebras for the comonad of an awfs are closed under composition,
it suffices to show that w is a cofibration, and a coalgebra whenever h is a
coalgebra. Actually w is always a coalgebra. We will use:

Lemma 5.6. Given a commutative cube in which the top and bottom faces
are pushouts, form the pushouts in the left and right faces, as in the diagram
below.

· //

��~~
~~

~~
~~

~~
~~

��

q

p

·

��~~
~~

~~
~~

~~
~~

��

q

·

��

//

��.
..

..
..

·

��

��.
..

..
..

·
yyrrrrrr

//

��
�

����
��

��
��

p

·
yyrrrrrr

����
��

��
��

��
��

�

·

���
�

�
_____ //__ ·

���
�

�

· // ·
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Then the square created by these pushouts (with three edges dotted in the
diagram) is itself a pushout square.

Proof. Easy diagram chase. �

By Lemma 5.6, w is a pushout of the map c in the diagram below,

·

iD

��

��

��1
11

11
11

1
·

C0
t foo

iS

��

q
P

c���
�

�

· ·
ff

ffMMMMMMMM
oo

C0g
oo

so it remains to show that this is a cofibration and coalgebra.
In the case where J and I are discrete, C0

t f is the disjoint union of arrows
j of J over commutative squares from j to f , and C0g is the disjoint union
of arrows i of I over squares from i to g. The square (iS , iD) maps the
first coproduct into the second, sending j to its image under the functor
τ : J → I and a square from j to f to the composite of this square with
(h, 1) : f ⇒ g. As h is monic, (iS , iD) is an inclusion, so we can separate
the coproduct C0g into the image of this inclusion and the rest. If we write
h∗ : Sq(J, f) → Sq(I, g) for the (injective) function that takes a square from
j to f for some j ∈ J and composes with (h, 1) to get a square from τj to
g, then

C0g =

 ⊔
Sq(J,f)

τj

 t

 ⊔
Sq(I,g)\imh∗

i


With this notation, C0g factors through P as the composite of first the
arrow ⊔

Sq(J,f)

τj

 t

 ⊔
Sq(I,g)\imh∗

1domi

 then

 ⊔
Sq(J,f)

1codτj

 t

 ⊔
Sq(I,g)\imh∗

i

 .

This second arrow is c, which gets a canonical C-coalgebra structure as a
coproduct of arrows in I with identities, which are always coalgebras.

The proof of the general case where J and I are not discrete is similar.
In this case, C0

t f is a quotient of the disjoint union described above, and
similarly for C0g. But C0g can still be separated into the disjoint union
of the image of (iS , iD) and its complement by the hypotheses we made on
the inclusion J → I. So c has essentially the same description as above,
except it is a quotient of a coproduct. This time, c is a colimit of a diagram
whose objects are either identities or generating cofibrations, so to prove
c is a coalgebra we must check that the maps of the diagram are maps of
coalgebras. This is true because the morphisms in the formula for a coend



214 EMILY RIEHL

are either arrows of I, which are canonically coalgebra maps, or they are
coproduct inclusions, which are always coalgebra maps. In any case, the
above conclusion still stands: c is canonically a coalgebra, so w is as well.
Hence ξ1 is a cofibration, and a C-coalgebra when h is. �

Remark 5.7. It is possible to prove directly that ξ1 is a cofibration by
showing that it lifts against all trivial fibrations. But this proof can only
show ξ1 is a cofibration, not that it has a C-coalgebra structure when h does,
and it is this stronger fact that we will need in the proof of Theorem 5.1.

Remark 5.8. The argument of Lemma 5.3 holds more generally than
stated. In particular, it is not necessary that the arrows in the positions
of C0

t f and C0g be coends over all possible squares. As long as these ar-
rows are constructed as coends over some squares such that (iS , iD) is an
inclusion, the conclusion follows. In applications, we will often require this
slightly more general result, for reasons that will become clear in a moment.

We will now use Lemma 5.3 to prove Theorem 5.1. Our proof used a
modified version of the small object argument, suggested by Richard Garner
in private communication, that can be used whenever the elements of the
left class of the underlying wfs are monomorphisms. Steps zero and one,
as depicted in (5.2) are the same as before. At this point, Quillen’s small
object argument has us freely attach “cells” to fill “spheres” in the object
R1f by repeating steps zero and one for the map F 1f . Garner’s small object
argument does the same thing, but then takes a coequalizer to identify the
“cells” in the “spheres” that were filled twice, once in step one and once
in step two. In the modified version, we never attach these extraneous
“cells” at all; instead, we only attach “cells” to fill “spheres” in R1f that
weren’t filled already in step one. For this modification to work, it is essential
that the cofibrations are monomorphisms; otherwise, “cells” that are needed
to fill “spheres” at some intermediate stage may become redundant later.
With this modification, solutions to lifting problems J �Ff factor uniquely
through a minimal stage; colloquially every “sphere” that is filled in the
object Rf is filled at some minimal step and is filled uniquely at this step.
This gives a new form of the small object argument that produces the same
factorizations as in Garner’s version but with no need for taking coequalizers,
which are the most difficult to manipulate. This modification of the small
object argument was independently suggested by [RB99] in the special case
of fibrant replacement.

Proof of Theorem 5.1. We use the preceding lemma and transfinite in-
duction. Applying Lemma 5.3 in the case h = 1X and f = g shows that
ξ1f : R1f → Q1f is a cofibration and a C-coalgebra. Because the cofibra-
tions are assumed to be monomorphisms, we may use the modified version
of Garner’s small object argument described above. In the modified version,
step two applies factorizations that are similar to the step one factorizations
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to each of the vertical morphisms in the triangle

(5.9) Rβf //
ξβ
f //

Fβf !!C
CC

CC
CC

C
Qβf

Fβ
t f}}{{

{{
{{

{{

Y

with ordinal β = 1 in this case. The difference between these factorizations
and the step one factorizations is that some squares are left out of the step
zero coproducts. By Remark 5.8, we nonetheless deduce that ξ2f is a C-
coalgebra. Likewise, applying Lemma 5.3 to the triangles (5.9) produced
at each stage, we conclude that each map ξβ+1

f : Rβ+1f → Qβ+1f is a C-

coalgebra, assuming ξβf is.
For limit ordinals α, the maps Rαf → Qαf are created as colimits of the

diagrams of the ξβf : Rβf → Qβf for ordinals β < α, which by the inductive
hypothesis are cofibrations and C-coalgebras. As usual, we must check that
the morphisms ξβf ⇒ ξβ+1

f in this diagram are maps of coalgebras. When

we apply Lemma 5.3 to (5.9), the square ξβf ⇒ ξβ+1
f is the right face of the

cube (5.5), reproduced below

·

ξβ+1

��

��
l

��/
//

//
//

/
·coo
��

ξβ

��

q·
w���

�
�

· ·

k
ffMMMMMMMMM

d
oo

The arrow l inherits its coalgebra structure as a pushout of ξβ, and this
construction makes (c, k) a map of coalgebras. Similarly, ξβ+1 inherits its
coalgebra structure as a composite of the coalgebras l and w, and this con-
struction makes (1, w) a map of coalgebras. The morphism (c, d) : ξβf ⇒ ξβ+1

f

is a composite of maps of coalgebras, and hence a map of coalgebras. Hence
the colimit ξαf has a canonical coalgebra structure created by this diagram.
By transfinite induction, the comparison map ξ is a pointwise cofibration
with each component a C-coalgebra. �

5.2. Algebraically fibrant objects revisited. One consequence of Lem-
ma 5.3 and the proof of Theorem 5.1 is the following corollary, which says
that fibrant replacement monads that are constructed algebraically preserve
certain trivial cofibrations, assuming the trivial cofibrations are monomor-
phisms.

Corollary 5.10. Let M be a category that permits the small object argu-
ment equipped with a model structure such that the trivial cofibrations are
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monomorphisms. Suppose there exists a category J of trivial cofibrations
that detects algebraically fibrant objects, in the sense that an object X is
fibrant if and only if X → ∗ underlies some object of J�, and let R be the
fibrant replacement monad on M induced from the awfs (Ct,F) generated by
J. Then if f : X → Z is a Ct-coalgebra, Rf : RX → RZ is a Ct-coalgebra.

Proof. The arrow Rf is constructed by an inductive process, analogous to
the construction of the comparison map, that begins by applying Lemma 5.3
to the triangle

X // f //

  @
@@

@@
@@

Z

����
��

��
�

∗

with both awfs taken to be (Ct,F). Hence this result. �

The algebras for the monad R are precisely the “algebraically fibrant
objects” of M, i.e., objects with chosen lifts against the generators, subject
to any coherence conditions imposed by morphisms in the category J. By
Lemma 2.30 every fibrant object has some algebra structure making it an
algebraically fibrant object. It always suffices to take J to be the generating
trivial cofibrations, assuming they exist, but in some examples it is preferable
to use a smaller generating category.

As for any category of algebras for a monad, we have an adjunction

M
T //
⊥ R-alg
U
oo

where T takes an object X ∈ M to the free R-algebra (RX,µX). In practice,
the category R-alg may fail to be cocomplete, in which case it is not a suit-
able category for a model structure. But when R-alg is cocomplete, as is the
case when M is locally presentable and R arises from a cofibrantly generated
awfs for example, Corollary 5.10 provides some hope that one could build
a model structure on R-alg such that T a U is a Quillen adjunction. One
feature of such a model structure is that its objects would all be fibrant. In
fact, it follows easily that any such Quillen adjunction is in fact a Quillen
equivalence.

One such example is the Quillen model structure on ChA, the category
of chain complexes of A-modules for some commutative ring A, though this
example is rather unsatisfactory because the objects of ChA are already fi-
brant. More interestingly, Thomas Nikolaus has proven that the categories
of algebraic Kan complexes and algebraic quasi-categories can be given a
model structure, lifted in the first case from Quillen’s and the second from
Joyal’s model structure on simplicial sets [Nik10]. For the latter case, we
prefer to let the set J in Corollary 5.10 be the inner horn inclusions, rather
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than the generating trivial cofibrations. For all of these examples, Theo-
rems 3.10 and 3.13 imply that the resulting model structures are algebraic
and the Quillen equivalences are algebraic Quillen adjunctions.

6. Adjunctions of awfs

We now return to the material previewed in Section 3.4. In this section, we
study adjunctions of awfs, which we define precisely below. To motivate this
definition, we consider an important class of examples: suppose J generates
an awfs (C,F) on M and TJ generates an awfs (L,R) on K, where T : M → K

is the left adjoint of a specified adjunction. A main task of this section is to
prove Theorem 6.15, which says that there is a canonical adjunction of awfs
in this situation.

A direct proof is possible but technically difficult. Instead, we present a
more conceptual, though somewhat circuitous argument, that is nonetheless
shorter. After preliminary explorations, we reintroduce the three notions
of morphisms between awfs on different categories, each extending Defini-
tion 2.14. In order to prove Theorem 6.15, we use Theorem 2.24, which says
that an awfs (L,R) is equivalently characterized by a natural composition
law on the category of algebras for a monad over cod. We prove a lemma that
allows us to use this recognition principle to easily identify lax morphisms
of awfs, which for categorical reasons, suffices to prove Theorem 6.15.

However, Theorem 6.15 is not quite strong enough to prove Theorem 3.13,
establishing the existence of an important class of algebraic Quillen adjunc-
tions. In order to prove the naturality component of this result, we must
show that the “unit” functors (2.26) constructed in Garner’s small object ar-
gument satisfy a stronger universal property than was previously known. In
[Gar09], Garner shows that these functors are universal among morphisms
of awfs. In Section 6.4, we show that they are universal among all adjunc-
tions of awfs, a result that should be of independent categorical interest.
In particular, it follows that two canonical methods of assigning coalgebra
structures to generating cofibrations in the image of a left adjoint are the
same.

6.1. Algebras and adjunctions. Consider an adjunction

T : M
//

⊥ K : Soo

where J generates an awfs (C,F) on M and TJ generates an awfs (L,R) on
K. If (C,F) is the wfs underlying (C,F) and (L,R) is the wfs underlying
(L,R), then

T (C) ⊂ L and S(R) ⊂ F

because the defining lifting properties are adjunct.
The next few sections work towards an algebraization of this result. Be-

cause the awfs are cofibrantly generated, it will be considerably easier to
prove statements involving the categories of algebras.
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Theorem 6.1. For any adjunction T : M
//

⊥ K : Soo where a small cate-
gory J generates an awfs (C,F) on M and TJ generates an awfs (L,R) on
K, the right adjoint S lifts to a functor

R-alg S̃ //___

U
��

F-alg

U
��

K2 S // M2.

Proof. Because the awfs are cofibrantly generated, we have isomorphisms
R-alg ∼= TJ� and F-alg ∼= J� that commute with the forgetful functors to
the underlying arrow categories. Using the notation of the proof of The-
orem 3.10, let (f, ψ) ∈ TJ� and define S̃(f, ψ) := (Sf, ψ]) ∈ J�. Given
(u, v) : (f, ψ) → (g, φ) ∈ TJ�,

S̃(u, v) := (Su, Sv) : (Sf, ψ]) → (Sg, φ])

is a morphism in J� by naturality of the adjunction. This defines the desired
lift. �

There is a well-known categorical result [Joh75, Lemma 1], which says
that lifts of S to functors S̃ : R-alg → F-alg are in bijective correspondence
with natural transformations ~ρ : FS ⇒ SR satisfying

(6.2)
S

~ηS

}}||
||

||
|| S~η

!!B
BB

BB
BB

B

FS
~ρ // SR

and

FSR
~ρR

$$J
JJJJJJJJ

FFS

F~ρ
::ttttttttt

~µS ��7
77

77
77

SRR

S~µ����
��
��
�

FS
~ρ // SR

A pair (S, ~ρ) satisfying these conditions is called a lax morphism of monads.
Let Q : M2 → M and E : K2 → K be the functors accompanying the func-

torial factorizations of (C,F) and (L,R), respectively. Because F and R are
monads over cod, ~ρ = (ρ, 1) where ρ : QS ⇒ SE is a natural transformation
satisfying

(6.3)
domS

CS
��

SL // SE

SR
��

QS

ρ

::uuuuuuuuu

FS
// codS

and

QSR
ρR

$$I
IIIIIIII

QFS

Q(ρ,1)
::uuuuuuuuu

µS
��6

66
66

6 SER

Sµ
����

��
��

�

QS
ρ // SE

The functor S̃ is defined by mapping the R-algebra (g, t : Eg → dom g) to
the F-algebra (Sg, St · ρg : QSg → dom, Sg).
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If the direction of ρ is reversed, a pair (S, (ρ, 1)) satisfying diagrams anal-
ogous to (6.2) is called a colax morphism of monads. If the monads are
replaced by their corresponding comonads and the direction of ρ is un-
changed, a pair (S, (1, ρ)) satisfying diagrams analogous to (6.2) is called
a lax morphism of comonads. If the direction of ρ is reversed as well, the
pair (S, (1, ρ)) is called a colax morphism of comonads. This last type of
morphism is in bijective correspondence with lifts of S to a functor between
the categories of coalgebras for the comonads by the dual of the lemma
mentioned above.

For the lift S̃ of Theorem 6.1, it is not easy to describe ρ explicitly be-
cause we cannot easily write down the inverse to the isomorphism (2.27).
Surprisingly, in light of the definitions of the next sections, this will be no
great obstacle.

6.2. Lax morphisms and colax morphisms of awfs. The statement
analogous to Theorem 6.1 for the left adjoint and categories of coalgebras
is considerably harder to prove. In fact, we will prove a stronger result and
deduce this as a corollary. First, we establish the relevant terminology, which
extends the lax and colax morphisms of monads and comonads, introduced
in the last section.

For the following definitions let (C,F) be an awfs on a category M with
Q : M2 → M the functor accompanying its functorial factorization, and
let (L,R) be an awfs on K with E : K2 → K accompanying its functorial
factorization.

Definition 6.4. A lax morphism of awfs (S, ρ) : (L,R) → (C,F) consists of
a functor S : K → M and a natural transformation ρ : QS ⇒ SE such that
(1, ρ) : CS ⇒ SL is a lax morphism of comonads and (ρ, 1) : FS ⇒ SR is a
lax morphism of monads, i.e., such that the following commute:
(6.5)

domS

CS
��

SL // SE

SR
��

QS

ρ

::uuuuuuuuu

FS
// codS

QS
ρ //

δS

��		
		

		
SE

Sδ

��5
55

55
55

QCS
Q(1,ρ)

##H
HH

HH
HH

HH
SEL

QSL

ρL

;;wwwwwwwww

QSR
ρR

##H
HHHHHHHH

QFS

Q(ρ,1)
;;vvvvvvvvv

µS
��5

55
55

5 SER

Sµ
��		

		
		

	

QS
ρ // SE

Lax morphisms of monads (ρ, 1) are in bijection with lifts of S to functors
S̃ : R-alg → F-alg. Lax morphisms of comonads (1, ρ) are in bijection with
extensions of S to functors Ŝ : coKl(L) → coKl(C).

Definition 6.6. A colax morphism of awfs (T, γ) : (C,F) → (L,R) consists
of a functor T : M → K and a natural transformation γ : TQ ⇒ ET such
that (1, γ) : TC ⇒ LT is a colax morphism of comonads and (γ, 1) : TF ⇒
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RT is a colax morphism of monads, i.e., such that the following commute:
(6.7)

domT

TC
��

LT // ET

RT
��

TQ

γ

::uuuuuuuuu

TF
// codT

TQ
γ //

Tδ

����
��

��
ET

δT

��5
55

55
55

TQC
γC

$$I
IIIIIIII ELT

ETC

E(1,γ)
::uuuuuuuuu

ETF
E(γ,1)

$$I
IIIIIIII

TQF

γF

::uuuuuuuuu

Tµ ��6
66

66
6 ERT

µT
����

��
��

�

TQ
γ // ET

Colax morphisms of comonads (1, γ) are in bijection with lifts of T to
functors T̃ : C-coalg → L-coalg. Colax morphisms of monads (γ, 1) are in
bijection with extensions of T to functors T̂ : Kl(F) → Kl(R).

Example 6.8. A morphism of awfs ρ : (C,F) → (L,R), defined in 2.14, is
simultaneously a lax morphism of awfs (1, ρ) : (L,R) → (C,F) and a colax
morphism of awfs (1, ρ) : (C,F) → (L,R). Conversely, every lax or colax
morphism of awfs over an identity functor is a morphism of awfs.

Lax and colax morphisms of awfs can be identified by the following recog-
nition principle, which extends the material of Section 2.5.

Lemma 6.9. Suppose (L,R) and (C,F) are awfs and (S, ~ρ) : R → F is a lax
morphism of monads corresponding to a lift S̃ : R-alg → F-alg of S. Then
(S, ρ) : (L,R) → (C,F) is a lax morphism of awfs if and only if S̃ preserves
the canonical composition of algebras. Dually, a colax morphism between
the comonads of awfs is a colax morphism of awfs if and only if the lifted
functor preserves the canonical composition of coalgebras.

Proof. Suppose (S, ρ) is a lax morphism of awfs and let (f, s) and (g, t) be
composable R-algebras. By definition

S̃(g, t) • S̃(f, s) = (Sg · Sf, (St · ρg) • (Ss · ρf ))
= (S(gf), Ss · ρf ·Q(1, St · ρg ·Q(Sf, 1)) · δS(gf)),

while

S̃((g, t) • (f, s)) = S̃(gf, s · E(1, t · E(f, 1)) · δgf )
= (S(gf), Ss · SE(1, t · E(f, 1)) · Sδgf · ρgf ).

The diagram

SEgf
Sδgf // SELgf

SE(1,t·E(f,1))

$$I
IIIIIIII

QSgf

ρgf

99sssssssss

δS(gf) %%KKKKKKKKK
QSLgf

ρLgf

99rrrrrrrrrr

Q(1,St·SE(f,1))

%%LLLLLLLLLL
SEf

QCSgf
Q(1,St·SE(f,1)·ρgf )

//

Q(1,ρgf )
99rrrrrrrrrr

QSf

ρf

::uuuuuuuuu
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which commutes by (6.5) and naturality of ρ shows that both algebra struc-
tures are the same.

Conversely, we must show that the center diagram of (6.5) commutes if
the functor S̃ defined via ρ preserves composition of algebras. The proof
requires a straightforward diagram chase:

Sδ · ρ
= S(µ • µL) · SE(L2, 1) · ρ definition of δ

= S(µ • µL) · ρR·RL ·Q(SL2, 1) naturality of ρ

= ((Sµ · ρR) • (SµL · ρRL)) ·Q(SL2, 1) S̃ preserves composition

= SµL · ρRL ·Q(1, Sµ) ·Q(1, ρR)

·Q(1, Q(SRL, 1)) · δSR·SRL ·Q(SL2, 1) defn. of comp. in F-alg

= SµL · ρRL ·Q(1, Sµ) ·Q(1, ρR)

·Q(1, Q(SL, 1)) ·Q(SL2, 1) · δS nat. of δ; functoriality of Q

= SµL · ρRL ·Q(1, Sµ) ·Q(1, SE(L, 1))

·Q(SL2, 1) ·Q(1, ρ) · δS nat. of ρ; functoriality of Q

= SµL · ρRL ·Q(SL2, 1) ·Q(1, ρ) · δS monad triangle identity

= SµL · SE(L2, 1) · ρL ·Q(1, ρ) · δS naturality of ρ

= ρL ·Q(1, ρ) · δS monad triangle identity. �

6.3. Adjunctions of awfs. The notions of lax and colax morphisms of
awfs are closely related. In fact, given a lax morphism

(S, ρ) : (L,R) → (C,F)

of awfs and an adjunction (T, S, ι, ν) where T a S and ι and ν are the
unit and counit, there is a canonical natural transformation γ : TQ ⇒ ET
such that (T, γ) : (C,F) → (L,R) is a colax morphism of awfs. The dual
result holds as well. Combining the data of the corresponding lax and colax
morphisms of awfs we obtain the concept of an adjunction of awfs, defined
below. But first, we need the following categorical concept to explain the
relationship between ρ and γ.

Given functors as in the diagram

A

F
��
a

I // C

H
��
a

B

G

OO

J
// D

K

OO
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with η and ε the unit and counit for F a G and ι and ν the unit and counit
for H a K, there is a bijection between natural transformations

A

F
��

I // C
α

{� ~~
~~

~~
~

~~
~~

~~
~

H
��

B
J
// D

and
A

I //

β

�#
@@

@@
@@

@

@@
@@

@@
@ C

B
J
//

G

OO

D

K

OO

given by the formulae

β = KJε ·KαG · ιIG and α = νJF ·HβF ·HIη.

The corresponding natural transformations α and β are called mates [KS74].

Definition 6.10. An adjunction of awfs (T, S, γ, ρ) : (C,F) → (L,R) con-
sists of an adjoint pair of functors T a S together with mates γ and ρ such
that (T, γ) : (C,F) → (L,R) is a colax morphism of awfs and (S, ρ) : (L,R) →
(C,F) is a lax morphism of awfs.

The natural transformations γ and ρ should be mates with respect to the
functors

(6.11) M2

T
��
a

Q // M

T
��
a

K2

S

OO

E
// K

S

OO

As alluded to above, the criteria on γ and ρ in Definition 6.10 are overde-
termined:

Lemma 6.12. Suppose we have an adjunction

(T, S, ι, ν) : M //
Koo

where M has an awfs (C,F) and K has an awfs (L,R). Let γ and ρ be mates
with respect to the functors of (6.11). Then (S, ρ) : (L,R) → (C,F) is a lax
morphism of awfs if and only if (T, γ) : (C,F) → (L,R) is a colax morphism
of awfs, in which case (T, S, γ, ρ) is an adjunction of awfs.

Proof. Each diagram of Definition 6.4 is satisfied by ρ if and only if its mate
γ satisfies the corresponding diagram of Definition 6.6, as can be verified by
a diagram chase. Or see [Kel74]. �

Remark 6.13. The proof of Lemma 6.12 implies a conclusion slightly
stronger than the statement. Given mates ρ and γ as above with respect to
T a S, to show that (T, S, γ, ρ) is an adjunction of awfs, it suffices to show
that either ρ is a lax or γ is a colax morphism of monads and that either ρ
is a lax or γ is a colax morphism of comonads.
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Example 6.14. In any category with an algebraic model structure, the
comparison map ξ : (Ct,F) → (C,Ft) specifies an adjunction of awfs, where
the adjunction is the trivial one with functors, unit, and counit all identities.
In this case, ξ is its own mate and the requirements that (1, ξ) : (Ct,F) →
(C,Ft) is a colax morphism of awfs and that (1, ξ) : (C,Ft) → (Ct,F) is a
lax morphism of awfs are equivalent.

Less trivially, there exists a canonical adjunction of awfs (C,F) → (L,R)
whenever (C,F) is generated by J and (L,R) is generated by TJ for some
adjunction T a S. By Theorem 6.1, there exists a natural transformation
ρ : QS ⇒ SE such that (ρ, 1) is a lax morphism of monads. We will show
that (S, ρ) : (L,R) → (C,F) is a lax morphism of awfs. It follows from
Lemma 6.12 that this situation gives rise to an adjunction of awfs (T, S, γ, ρ),
where γ is the mate of ρ, proving the following theorem.

Theorem 6.15. Consider an adjunction T : M
//

⊥ K : Soo where J gener-
ates an awfs (C,F) on M and TJ generates an awfs (L,R) on K. Let ρ be
the natural transformation determined by Theorem 6.1 and let γ be its mate.
Then (T, S, γ, ρ) : (C,F) → (L,R) is an adjunction of awfs.

First, we must show that (S, ρ) is a lax morphism of awfs. Doing so
directly is possible but quite hard, because a concrete understanding of ρ
is only obtained by laboriously computing γ, vis-à-vis running through the
details of the small object argument. We use Lemma 6.9 instead.

Proof of Theorem 6.15. By Lemma 6.9, it suffices to show that the func-
tor S̃ defined in the proof of Theorem 6.1 preserves the canonical composition
of algebras. Then Lemma 6.12 implies that (T, S, γ, ρ) is an adjunction of
awfs, where γ is the mate of ρ.

Suppose (f, φ) and (g, ψ) are composable objects of TJ�. By definition,
the functor S̃ takes the composite, described in Example 2.32, to the mor-
phism S(gf) with the lifting function:

(ψ • φ)](j, a, b) = Sφ(Tj, ν · Ta, ψ(Tj, f · ν · Ta, ν · Tb)) · ι

where ι and ν are the unit and counit of T a S. By contrast

ψ] • φ](j, a, b) = φ](j, a, ψ](j, Sf · a, b))
= Sφ(Tj, ν · Ta, ν · TSψ(Tj, ν · TSf · Ta, ν · Tb) · Tι) · ι
= Sφ(Tj, ν · Ta, ψ(Tj, f · ν · Ta, ν · Tb) · νT · Tι) · ι,

which is the same as above, after application of a triangle identity for the
adjunction T a S. �

Theorem 6.15 extends Theorem 6.1 and the corresponding result for coal-
gebras, which we note, for completeness sake, as an immediate corollary.
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Corollary 6.16. For any adjunction T : M
//

⊥ K : Soo where a small cat-
egory J generates an awfs (C,F) on M and TJ generates an awfs (L,R) on

K, the left adjoint T lifts to a functor
C-coalg T̃ //___

U
��

L-coalg

U
��

M2 T // K2

It is an easy exercise to check that adjunctions of awfs are composable,
i.e., given adjunctions of awfs (C,F) → (L′,R′) and (L′,R′) → (L,R), the
composite adjoint pair of functors and pasted natural transformations form
an adjunction of awfs (C,F) → (L,R). Hence, the following corollary com-
bines Example 6.14 and Theorem 6.15 to find adjunctions of awfs in a weaker
situation, opening up an array of potential examples.

Corollary 6.17. Suppose we have an adjunction T : M
//

⊥ K : Soo where
J generates an awfs (C,F) on M and K has an awfs (L,R), not necessarily
cofibrantly generated. Suppose also that K permits the small object argument
and that we have a functor J → L-coalg lifting T . Then T and S give rise
to an adjunction of awfs (C,F) → (L,R).

Proof. By Theorem 2.28, there exists an awfs (L′,R′) on K that is cofi-
brantly generated by TJ. By Theorem 6.15, T and S give rise to an ad-
junction of awfs (C,F) → (L′,R′). The functor J → L-coalg lifting T is
equivalently described as a functor TJ → L-coalg over K2. By the univer-
sal property of TJ → L′-coalg, there exists a morphism of awfs (L′,R′) →
(L,R), which is equivalently an adjunction of awfs (L′,R′) → (L,R) over
the identity functors on K2. We obtain the desired adjunction of awfs
(C,F) → (L,R) by composing the above two. �

6.4. Change of base in Garner’s small object argument. In the sit-
uation of Theorem 6.15, there are two canonical methods for assigning L-
coalgebra structures to the objects Tj of the generating category TJ. One
method applies the functor T to the canonical C-coalgebra structure for j
and then composes with the natural transformation γ accompanying the lift
T̃ : C-coalg → L-coalg. The other simply assigns Tj the canonical coalge-
bra structure given by Garner’s small object argument via the functor (2.26).
We might hope that the two results are the same. This is the content of an
immediate corollary to the main theorem of this section.

Corollary 6.18. Given an adjunction T a S between categories M and
K, consider a category J which generates an awfs (C,F) on M and such
that TJ generates an awfs (L,R) on K. Then the functor T̃ arising from
the canonical adjunction of awfs (C,F) → (L,R) commutes with the units



ALGEBRAIC MODEL STRUCTURES 225

exhibiting the “freeness” of cofibrantly generated awfs, i.e., the diagram

(6.19) J

��

λM

$$I
IIIIII λK

))
C-coalg T̃ //

zzuuu
uuu

L-coalg

zzvvv
vvv

M2
T

// K2

commutes.

Given a category M that permits the small object argument, Garner’s
construction produces a reflection of any small category J over M2 along
the so-called “semantics” functor
(6.20)

G = AWFS(M)
G1 // LAWFS(M)

G2 // Cmd(M2)
G3 // CAT/M2

(C,F) � // (C, Q) � // C � // C-coalg

from the category of awfs on M and morphisms of awfs to the slice category
over M2 [Gar09, §4]. Here, Cmd(M2) is the category of comonads on
M2 and comonad morphisms and LAWFS(M) is the full subcategory of
comonads over dom, or equivalently the category of functorial factorizations,
whose left functor is a comonad.

The component of the unit of this reflection at a small category J gener-
ating an awfs (C,F) is the functor J → C-coalg over M2 of (2.26), which is
universal with respect to morphisms of awfs. We prove that these maps are
universal with respect to all adjunctions of awfs. To find an appropriate cat-
egorical context for the statement and proof of this result, we must enlarge
the categories of (6.20). The new domain is the category AWFSladj, whose
objects are awfs and whose morphisms are adjunctions of awfs. In analogy
with (6.20), there is a forgetful functor to CAT/(−)2ladj, whose objects are
categories sliced over arrow categories, whose morphisms are adjunctions
between the base categories (before applying (−)2) together with a chosen
lift of the left adjoint to the fibers. This “semantics” functor factors as:
(6.21)

Gladj = AWFSladj

Gladj
1 // LAWFSladj

Gladj
2 // Cmd(−)2ladj

Gladj
3 // CAT/(−)2ladj

Here, Cmd(−)2ladj is the category of comonads on arrow categories and
colax morphisms of comonads whose functor is the left adjoint of a specified
adjunction, and LAWFSladj is the full subcategory of comonads over dom.

When restricted to objects whose base categories are cocomplete, each
category in (6.21) is cofibered over CAT2

ladj, the category of arrow cate-
gories and adjunctions of underlying categories, regarded as morphisms in
the direction of the left adjoint. The fibers over the identity arrows are
exactly the categories of (6.20). For AWFSladj, we perhaps need to insist
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that the categories be locally finitely presentable, in which case this state-
ment says that any awfs can be lifted along an adjunction, even if it is not
cofibrantly generated. This decidedly nontrivial result is due to Richard
Garner.

In [Gar09], Garner shows that when M permits the small object argu-
ment, any small category can be reflected along (6.20). We show that this
construction gives a reflection of these objects along (6.21), which is precisely
what is needed for the desired corollary.

Theorem 6.22. For any small category J over the arrow category of a cate-
gory M that permits the small object argument, the unit functor constructed
by Garner’s small object argument is universal among adjunctions of awfs.

Proof. It suffices to show that such J can be reflected along each of the
G

ladj
i , i.e., the unit functor constructed at each step in [Gar09, §4] satisfies

the appropriate universal property.
The reflection of J along G

ladj
3 is its density comonad C0, i.e., the left Kan

extension of J : J → M2 along itself. If T : M → K is a left adjoint and
L is an arbitrary comonad on K2, functors J → L-coalg lifting T are in
bijection with natural transformations TJ ⇒ LTJ , which are in bijection
with natural transformations TC0 ⇒ LT because left adjoints preserve left
Kan extensions. By the universal property of the density comonad, or alter-
natively, by a straightforward diagram chase, such natural transformations
are always comonad morphisms [Dub70, Chapter II]. This shows that the
unit J → C0-coalg is universal with respect to comonad morphisms lifting
left adjoints and hence gives a reflection of J along G

ladj
3 .

The refection of C0 along G
ladj
2 is given by an ofs (see Example 2.12) on

arrow categories, which factors a given morphism (a square in the underlying
category) as a pushout square followed by a square whose domain component
is an identity. Explicitly, the reflection C1 is obtained by factoring the counit
of C0 as depicted below:

·
C0f
��

//

p

·
C1f
��

·
f
��

· // · // ·

Let ψ : C0 ⇒ C1 be the natural transformation whose component at f is
the left-hand square depicted above. Given a colax morphism of comonads
(T : M → K, γ : TC0 ⇒ LT ) where T is a left adjoint and L is a comonad
on K2 over dom: K2 → K, we have a commutative square

TC0
γ //

Tψ
��

LT

εT

��
TC1

Tε
// T
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because γ is a comonad morphism and the lower left composite is T applied
to the counit of C0. The left arrow Tψ is in the left class of the ofs described
above because T , as a left adjoint between the underlying categories, pre-
serves pushouts, and so the components of Tψ are pushout squares. The
right arrow is in the right class because L was assumed to be a comonad over
dom. The ofs described above, this time on K, solves the lifting problem to
obtain the components of a unique natural transformation γ′ : TC1 ⇒ LT .
By setting up appropriate lifting problems and using the fact that any so-
lutions that exist must be unique, we can easily check that γ′ is a comonad
morphism, as desired. This shows that the unit functor C0-coalg→ C1-
coalg is universal with respect to colax morphisms of comonads over dom
that lift a left adjoint; hence, it exhibits C1 as the reflection of C0 along
G

ladj
2 .
It remains only to consider the reflection of C1 along G

ladj
1 . For each

category M, there is a strict two-fold monoidal category FF(M) of func-
torial factorizations of M (see [Gar07, Gar09] and [BFSV03]), for which
LAWFS(M) is the category of �-comonoids and AWFS(M) is the cate-
gory of ⊗,�-bialgebras. The product ⊗ (resp. �) uses the second awfs to
re-factor the right (resp. left) half of the factorization produced by the first
awfs. To reflect from �-comonoids into bialgebras, Garner uses Max Kelly’s
construction of the free ⊗-monoid on a pointed object [Kel80], in this case
the unique arrow I → ~Q1 from the unit for ⊗, which is initial in FF(M), to
the functorial factorization of C1.

Let FFladj be the category of functorial factorizations over an arbitrary
base whose morphisms are colax morphisms of functorial factorizations lift-
ing left adjoints. If ~X is a functorial factorization on M and ~Y is a func-
torial factorization on K, then a morphism φ : ~X → ~Y lifting a left adjoint
T : M → K is a natural transformation φ : TX ⇒ Y T such that the two tri-
angles analogous to the left-hand diagram of (6.7) commute. This category
is not two-fold monoidal, as we have no way to combine objects in different
fibers. However, given objects ~X and ~Z in the fiber over M and ~Y and ~W in
the fiber over K together with morphisms φ : ~X → ~Y and ψ : ~Z → ~W lifting
the same left adjoint T : M → K, we do obtain lifts φ⊗ψ : ~X ⊗ ~Z → ~Y ⊗ ~W

and φ� ψ : ~X � ~Z → ~Y � ~W of T .
Furthermore, if φ and ψ are �-comonoid morphisms, then so is φ ⊗ ψ.

The proof uses the fact that � distributes over ⊗ in each fiber [Gar07, §3.2],
and the canonical arrows α exhibiting this distributivity are natural with
respect to colax morphisms of functorial factorizations:

( ~X � ~X ′)⊗ (~Z � ~Z ′)
α //

(φ�φ′)⊗(ψ�ψ′)
��

( ~X ⊗ ~Z)� ( ~X ′ ⊗ ~Z ′)

(φ⊗ψ)�(φ′⊗ψ′)
��

(~Y � ~Y ′)⊗ ( ~W � ~W ′) α
// (~Y ⊗ ~W )� ( ~Y ′ ⊗ ~W ′)
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In other words, if φ and ψ are morphisms in LAWFSladj, so is φ ⊗ ψ.
This is all the structure we need to prove the unit satisfies the desired
universal property; we need not consider the inner workings of the category
LAWFSladj any further.

Given a morphism from a pointed object I → ~X in the fiber over M to a
⊗-monoid ~Y in the fiber over K, we inductively obtain morphisms from the
colimits involved in Kelly’s transfinite construction to ~Y ⊗ ~Y and thus to ~Y
by applying the multiplication µ : ~Y ⊗~Y → ~Y . By the universal property, the
resulting morphism from the free ⊗-monoid on I → ~X to ~Y is a ⊗-monoid
morphism in the category of �-comonoids and �-comonoid morphisms, and
is unique. Applying this to the situation at hand, a colax morphism of
comonads (C1, Q1) → (L, E) lifting the left adjoint of a specified adjunction
and whose target underlies an awfs (L,R) factors through a unique colax
morphism of awfs (C,F) → (L,R). By Lemma 6.12, this determines a
unique adjunction of awfs. Hence, the unit of this reflection satisfies the
desired universal property, completing the proof. �

The desired corollary now follows immediately from the universal property
of λM. We will need this result in the next section.

7. Algebraic Quillen adjunctions

We can now prove that the adjunction between the algebraic model struc-
tures of Theorem 3.10 is canonically an algebraic Quillen adjunction.

Recall the following definition.

Definition 3.11. Let M have an algebraic model structure ξM : (Ct,F) →
(C,Ft) and let K have an algebraic model structure ξK : (Lt,R) → (L,Rt).
An adjunction T : M

//
⊥ K : Soo is an algebraic Quillen adjunction if there

exist natural transformations γt, γ, ρt, and ρ determining five adjunctions
of awfs

(7.1) (Ct,F)

(T,S,γ·TξM,SξK·ρ)
RRRRRRR

))RRRRRRR

(T,S,γt,ρ) //

(1,1,ξM,ξM)

��

(Lt,R)

(1,1,ξK,ξK)

��
(C,Ft)

(T,S,γ,ρt)
// (L,Rt)

such that both triangles commute.

Theorem 3.13. Let T : M
//

⊥ K : Soo be an adjunction. Suppose M has
an algebraic model structure, generated by I and J, with comparison map
ξM. Suppose K has the algebraic model structure, generated by T I and TJ,
with canonical comparison map ξK. Then T a S is canonically an algebraic
Quillen adjunction.
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Proof. Write Qt, Q, Et, and E for the functors accompanying the functorial
factorizations of the awfs (Ct,F), (C,Ft), (Lt,R), and (L,Rt), respectively.
Then by Theorem 6.15 the natural transformations

γt : TQt ⇒ EtT, γ : TQ⇒ ET, ρ : QtS ⇒ SEt, and ρt : QS ⇒ SE

arising from the canonical lifts of S give rise to adjunctions of awfs

(T, S, γt, ρ) : (Ct,F) → (Lt,R) and (T, S, γ, ρt) : (C,Ft) → (L,Rt).

Composing the left-hand adjunction with ξK and the right-hand adjunction
with ξM, which we saw in Example 6.14 are themselves adjunctions of awfs,
we obtain two canonical adjunctions of awfs

(7.2) (Ct,F)
(T,S,ξKT ·γt,SξK·ρ) //

(T,S,γ·TξM,ρt·ξMS)

// (L,Rt).

We’ll show that the corresponding natural transformations are the same.
By the correspondence between colax morphisms of comonads and natural

transformations [Joh75], to show that

(7.3) TQt
γt //

TξM

��

EtT

ξKT

��
TQ

γ
// ET

commutes, it suffices to show that both composites correspond to the same
lift of T to a functor Ct-coalg → L-coalg.

Let T̃t : Ct-coalg → Lt-coalg and T̃ : C-coalg → L-coalg denote the lifts
of T corresponding to γt and γ, respectively. We must show the the right-
hand diagram of (3.12) commutes. By the definition of ξK in the proof of
Theorem 3.10, the outer rectangle of

J

��

λM
// Ct-coalg

(ξM)∗ //

T̃t

��

C-coalg

T̃
��

TJ
λK
// Lt-coalg

(ξK)∗

// L-coalg

commutes. By Corollary 6.18, the left-hand square commutes. By Theo-
rem 6.22, the unit λM is universal among adjunctions of awfs, which implies
that the right-hand square commutes.

The other half of the proof now follows formally, using the fact that the
natural transformations ρ and ρt defining the lifts S̃ and S̃t of (3.12) are
mates of the natural transformations γt and γ defining the lifts T̃t and T̃ . If
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ι and ν are the unit and counit of T a S, the commutative diagram

(7.4) QtS

ξMS
��

ιQtS // STQtS

STξMS
��

SγtS // SEtTS

SξKTS

��

SEt(ν,ν) // SEt

SξK

��
QS

ιQS
// STQS

SγS
// SETS

SE(ν,ν)
// SE

says that SξK ·ρ = ρt ·ξMS. This tells us that the diagram of functors on the
left-hand side of (3.12) commutes, which proves that the two adjunctions
(7.2) are the same and that T a S is an algebraic Quillen adjunction. �

Note that a diagram like (7.4), which shows that the natural transforma-
tions γ ·TξM : TQt ⇒ ET and SξK ·ρ : QtS ⇒ SE are mates, appears in the
proof that adjunctions of awfs can be composed. In light of Corollary 6.17,
we expect that many other naturally occurring examples of Quillen adjunc-
tions can be algebraicized to give algebraic Quillen adjunctions.
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