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On the radical of a perfect number

Florian Luca and Carl Pomerance

Abstract. In this note, we look at the radical (that is, the squarefree
kernel) of perfect numbers. We raise the question of whether large per-
fect numbers have the tendency to become far apart from each other
and prove several results towards this under the ABC conjecture.
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1. Introduction

A positive integer n is perfect if σ(n) = 2n, where σ is the sum-of-divisors
function. The two outstanding problems are whether there are infinitely
many even perfect numbers and whether there are any odd perfect numbers
at all. Studied since Pythagoras and Euclid, the subject has a colorful his-
tory. A conventional view is that the study of perfect numbers maintains a
certain isolation from the rest of mathematics and number theory. However,
looking deeper, one finds the introduction of finite fields to primality test-
ing (the Lucas–Lehmer test, culminating in the recent polynomial-time test
of Agrawal, Kayal, and Saxena), advances in factoring large numbers, the
study of primitive sequences in combinatorial number theory, distribution
functions in probabilistic number theory, and so on. In this note, we make
an attempt to relate the study of perfect numbers to the celebrated ABC
conjecture. We begin by proving an unconditional inequality bounding the
radical of a perfect number. We next show some consequences of this in-
equality under assumption of the ABC conjecture, and in particular show
that for each k there can be at most finitely many triples of perfect numbers
that can lie in some interval of length k.
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2. The radical of a perfect number

For a positive integer n we put

rad(n) =
∏
p|n

p,

where p runs over primes. The number rad(n) is called the radical of n, or
the squarefree kernel of n. Let x be a perfect number. If x is even, then by
a result of Euclid and Euler, x = 2p−1(2p − 1) for some prime p such that
2p − 1 is also prime. Thus,

(1) rad(x) = 2(2p − 1) <
√

8x.

Our first result in this note removes the restriction that x is even, at the
cost of a somewhat weaker inequality.

Proposition 1. The inequality

rad(x) < 2x17/26

holds for all perfect numbers x.

Proof. In light of inequality (1), we may assume that x is odd. It has been
known since Euler that x = qαm2, where q ≡ 1 (mod 4) is a prime, α ≡ 1
(mod 4), and m is coprime to q. Obviously

(2) rad(x) ≤ qm = q

(
x

qα

)1/2

= x1/2q1−α/2.

So, if α 6= 1, it then follows that rad(x) < x1/2. Assume now that α = 1,
therefore q‖x. By (2), we may also assume that q ≥ 4x4/13.

Since x is perfect, there is a prime power p2a‖x with q | σ(p2a). Write x
as qp2av2. Suppose that p - σ(q), so that qp2a | σ(p2av2). Thus,

qp2a < 2p2av2; that is, v > (q/2)1/2.

Also, since p is an odd prime,

q ≤ σ(p2a) <
3
2
p2a, so pa > (2q/3)1/2.

Thus,

(3) rad(x) ≤ x

p2a−1v
≤ x

pav
< 31/2 x

q
.

Next, consider the case when p | σ(q) = q+1. Then q ≡ −1 (mod p), and
since σ(p2a) ≡ 1 (mod p), we have σ(p2a) = qu, where u ≡ −1 (mod p). In
particular, this forces q, u ≥ 2p − 1 (and so a ≥ 2). In any event, we have
q ≤ σ(p2a)/(2p− 1) < p2a−1, so that

rad(x) ≤ x

p2a−1
<

x

q
,

and (3) holds in this case as well.
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By (3), we may assume that q is not too large, so that with our earlier
assumed lower bound for q, we have

(4) 4x4/13 ≤ q < x9/26.

Factor pav as nk where (n, k) = 1, n is squarefree, and k is squarefull (i.e.,
each prime dividing k appears with exponent at least 2). Thus, x = qn2k2.
It follows that n = (x/q)1/2k−1, so by (4),

rad(x) ≤ qnk1/2 = (qx)1/2k−1/2 < x35/52k−1/2.

Therefore, we are done unless

(5) k2 <
1
16

x1/13.

Since (5) implies σ(k2) < 1
8x1/13, we have q - σ(k2) by the lower bound in

(4). Thus, q | σ(n2); that is, p2a‖n2 and a = 1. By the observation above,
this forces p - σ(q).

Since (using p odd and (4))

(6) p2 >
2
3
σ(p2) ≥ 2

3
q ≥ 8

3
x4/13,

we have by (5) that p - σ(k2), so either
(i) p2 | σ(r2) for some prime r | n, or
(ii) p | σ(r2), p | σ(s2) for some primes r, s | n, r 6= s.

In case (i),

r2 >
2
3
σ(r2) ≥ 2

3
p2 ≥ 16

9
x4/13,

using (6). Then

qp2r2 > 4x4/13 · 8
3
x4/13 · 16

9
x4/13 =

512
27

x12/13,

so σ(x/qp2r2) < (27/256)x1/13 which is too small to be divisible by r. Thus,
qp2r2 | σ(qp2r2), which implies that σ(qp2r2)/qp2r2 is an integer in the
interval (1, 2]; that is, it is 2 and x = qp2r2 is perfect. But by a theorem of
Sylvester [4], each odd perfect number has at least 5 distinct prime factors.
Thus, case (i) does not occur.

If we are in case (ii), then again by (6),

r2 >
2
3
σ(r2) ≥ 2

3
p and s2 >

2
3
σ(s2) ≥ 2

3
p, so r2s2 >

32
27

x4/13.

Hence, by (4) and (6),

qp2r2s2 > 4x4/13 · 8
3
x4/13 · 32

27
x4/13 =

1024
81

x12/13.

So σ(x/qp2r2s2) < (81/512)x1/13, which is too small to be divisible by r

or s, which are each larger than x1/13. Hence, qp2r2s2 | σ(qp2r2s2), which
implies as above that x = qp2r2s2 is perfect. This contradicts Sylvester’s
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theorem quoted above, so this case does not occur either. We conclude that
the proposition holds. �

3. The ABC conjecture and the distance between two
perfect numbers

Luca proposed as a problem (see [3]) to prove that two consecutive num-
bers cannot be both perfect. This raises the question of whether perfect
numbers should be far apart from each other. More formally, given k 6= 0,
is it true that the equation

(7) x− y = k

has only finitely many solutions in perfect numbers x and y? This is clear if
x and y are both even since even perfect numbers are, in particular, members
of a binary recurrent sequence so they increase at an exponential rate, but
what if one is even and one is odd, or if both are odd? In what follows,
we prove some conditional results on this problem. Recall that the ABC
conjecture asserts that for each ε > 0 there exists a constant Cε depending
only on ε such that whenever a, b and c are coprime nonzero integers with
a + b = c the inequality

max{|a|, |b|, |c|} ≤ Cεrad(abc)1+ε

holds.

Proposition 2. The ABC conjecture implies that for every odd integer k,
the equation

x− y = k

has only finitely many solutions in perfect numbers x and y.

Proof. Let us assume that there are solutions to the equation x− y = k in
perfect numbers x and y with an arbitrarily large x.

We use the following well-known consequence of the ABC conjecture: Let
f(X) ∈ Z[X] be a polynomial of degree d ≥ 1 without repeated roots. Fix
ε > 0. Then the ABC conjecture implies that

(8) rad(f(n)) � |n|d−1−ε.

The implied constant here depends on the polynomial f(X) and ε. For a
proof of this result, see [1] or [2]. 1

Since k is odd, if follows that one of the numbers x and y is odd and
the other is even. Up to changing k to −k, we may assume that x is even.
Assume that x = 2p−1(2p − 1). Let d be some fixed positive integer to be
chosen later. There are nonnegative integers a, t with a < d and p = a + dt.
Then

y = x− k = 22p−1 − 2p−1 − k = 22a−1m2d − 2a−1md − k,

1We recall that the expressions A� B and B � A are synonymous with A = O(B).
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where m := 2t. Let us take a look at the polynomial

f(X) = 22a−1X2d − 2a−1Xd − k.

We shall show that it has no repeated roots. Note that

f ′(X) = d22aX2d−1 − d2a−1Xd−1 = d2a−1Xd−1(2a+1Xd − 1).

Thus, assuming that z is a double root of f(X), we then get that

zd−1(2a+1zd − 1) = 0.

Clearly, z 6= 0 because f(0) = −k 6= 0. Thus, zd = 2−a−1, and now for such
z we have

f(z) = 2a−1zd(2azd − 1)− k = 2−2(2−1 − 1)− k = −2−3 − k 6= 0.

Thus, the polynomial f(X) has only simple roots. By (8) and x � m2d, it
follows that

(9) rad(y) = rad(f(m)) � m2d−1−ε = (m2d)1−1/2d−ε/2d � x1−1/2d−ε/2d.

However, assuming say that x > 2|k|, it follows that y � x, and by Propo-
sition 1, we get that

(10) rad(y) � y17/26 � x17/26.

Putting together relations (9) and (10), we get

x17/26 � x1−1/2d−ε/2d.

Taking d = 3 and ε = 1, we get that x = O(1), contradicting that x was
arbitrarily large. This completes the proof of Proposition 2. �

We give another result in the same spirit as Proposition 2.

Proposition 3. The ABC conjecture implies that for every nonzero integer
k, the equation

x− y = k

has only finitely many solutions in squarefull perfect numbers x and y.

Proof. Observe first that since even perfect numbers are never squarefull,
it follows that x and y are both odd. Without restricting the generality, we
may assume that k > 0 (otherwise we replace k by −k), and that y > k.
Thus, y < x < 2y. Observe that if x = p1+4apm2 and y = q1+4bqn2, then
ap ≥ 1 and bq ≥ 1. Write

(11) x = u2m1 and y = v2n1,

where u and v are squarefree and m1 and n1 are fourth power full, meaning
that whenever r is a prime factor of m1 (or n1), then r4 | m1 (or r4 | n1),
respectively. Observe that

rad(x) ≤ um
1/4
1 = u

( x

u2

)1/4
= u1/2x1/4,
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and similarly
rad(y) ≤ v1/2y1/4 � v1/2x1/4.

Let D := gcd(x, y). Then D | k, and

(12)
x

D
− y

D
=

k

D
.

The ABC conjecture applied to equation (12) shows that
x

k
≤ x

D
� (rad(x)rad(y))1+ε � (uv)1/2+εx1/2+ε � (uv)1/2x1/2+2ε,

where we used the fact that u ≤ x1/2 and v ≤ y1/2 � x1/2. Thus,

(13) x1−4ε � uv,

where the constant implied in the above Vinogradov symbol depends on
both ε and k.

We shall now choose ε > 0 in the following way. First choose a number
T so large that 3T > k. Next choose ε > 0 so small that 17 · 3T+1ε < 1/2.
From, now on, we will work under this assumption. Since both v � x1/2

and u ≤ x1/2 hold, from the above inequality (13) we read that

u � x1/2−4ε, and v � x1/2−4ε,

and by equations (11) we learn that m1 � x8ε and n1 � x8ε. Now

2u2m1 = 2x = σ(x) = σ(u2)σ(m1),

and σ(m1) ≤ 2m1 � x8ε. This shows that gcd(u2, σ(u2)) � x1−16ε. Simi-
larly, gcd(v2, σ(v2)) � x1−16ε. Write

U0 = gcd(u2, σ(u2)) =
t∏

i=1

pai
i , V0 = rad(U0)2, W0 =

x

V0
,

where ai ∈ {1, 2} for i = 1, . . . , t.
We next show that t ≥ T + 1 holds assuming that x is sufficiently large.

Indeed observe that V0 and W0 are coprime. Assume that there exists a
prime dividing gcd(U0, σ(W0)) which we take to be p1. Then

p1 ≤ σ(W0) ≤ 2W0 = 2x/V0 ≤ 2x/U0 < c1x
16ε,

where c1 > 0 is some constant depending on k and ε. Assuming that x is
sufficiently large, we have that max{p1,W0} < 2x17ε. Let

U1 =
U0

pa1
1

=
t∏

i=2

pai
i , V1 = rad(U1)2, W1 =

x

V1
= W0p

2
1 ≤ 23x51ε.

Assume next that there is a prime dividing gcd(U1, σ(W1)) which we take
to be p2. Then p2 ≤ 2W1 ≤ 24x51ε. Repeating the above construction, we
get

U2 =
U1

pa2
2

=
t∏

i=3

pai
i , V2 = rad(U2)2, W2 =

x

V2
= W1p

2
2 ≤ 211x153ε.
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Let us continue in this way. Then at step j, where 1 ≤ j ≤ t, we end up
with the three numbers

Uj =
t∏

i=j+1

pai
i , Vj = rad(Uj)2, Wj =

x

Vj
= Wj−1p

2
j ≤ 24·3j−1−1 · x17·3jε.

Assume that we have reached some j ≤ T +1 such that for i ∈ {j +1, . . . , t}
we have that no pi divides σ(Wj). Then since σ(VjWj) = σ(Vj)σ(Wj) =
2VjWj (observe that Vj and Wj are coprime), we get that each p2

i | σ(Vj).
This shows that Vj | σ(Vj). In particular, either Vj is perfect, which is
false since Vj = rad(Uj)2 is a square, and there are no “perfect squares”, or
Vj = 1, which is again false for large x because

Vj ≥ 2−4·3j−1−1x1−17·3jε ≥ 2−4·3T−1x1−17·3T+1ε ≥ 2−4·3T−1x1/2 > 1,

where the last inequality holds for large enough x. So, the conclusion is that
the above process must continue at least until j > T + 1 is reached. Thus,
ω(U0) = t ≥ j ≥ T + 1. Now every prime pi dividing U0 also divides σ(u2),
so it divides q2 + q + 1 for some prime q | u. Thus, either pi = 3, or pi ≡ 1
(mod 3). Thus, u has at least T distinct primes p ≡ 1 (mod 3) and such
that p2‖x; therefore 3T | σ(x) = 2x, so 3T | x.

A similar argument shows that 3T | y. Hence, 3T | (x− y) = k, which is
false, because 3T > k. �

Let (an)n≥1 be the increasing sequence of perfect numbers. While we
cannot prove in its full generality that for every fixed positive integer k the
equation

an+1 − an ≤ k

has only finitely many solutions, we can show that there are no three perfect
numbers close together infinitely often assuming again the ABC conjecture.

Proposition 4. Under the ABC conjecture, for every fixed positive integer
k the inequality

an+2 − an ≤ k

has only finitely many solutions n.

Proof. Assume that 2 ≤ k1 < k2 ≤ k are fixed and that an+1 = an + k1

and an+2 = an + k2. Let x := an. Consider the polynomial

f(X) = X(X + k1)(X + k2),

which obviously has only simple roots. By (8), we have that

rad(anan+1an+2) = rad(f(x)) � x2−ε.

On the other hand, by Proposition 1, we have that

rad(anan+1an+2) ≤ rad(an)rad(an+1)rad(an+2) ≤ 8x51/26.

Thus, x51/26 � x2−ε, and choosing ε = 1/27, we get that x = O(1). �
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