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A reflexivity criterion for Hilbert
C∗-modules over commutative

C∗-algebras

Michael Frank, Vladimir Manuilov
and Evgenij Troitsky

Abstract. A C∗-algebra A is C∗-reflexive if any countably generated
Hilbert C∗-module M over A is C∗-reflexive, i.e., the second dual mod-
ule M ′′ coincides with M . We show that a commutative C∗-algebra A
is C∗-reflexive if and only if for any sequence Ik of mutually orthogo-
nal nonzero C∗-subalgebras, the canonical inclusion ⊕kIk ⊂ A doesn’t
extend to an inclusion of

Q
k Ik.
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1. Introduction

The aim of the present paper is to study the C∗-reflexivity property for
Hilbert C∗-modules over C∗-algebras. The motivation comes from three
sources. First, this property appears in our study of dynamical systems and
group actions, where it was shown that some information about orbits can be
detected from C∗-reflexivity of the corresponding Hilbert C∗-modules [3, 4].
Second, C∗-reflexive Hilbert C∗-modules are a natural setting for A-bilinear
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functions on them. Third, there was a series of papers providing various
sufficient [7, 13, 4] and necessary [9] conditions for Hilbert C∗-modules over
commutative C∗-algebras to be C∗-reflexive. The main result of this paper
is a criterion for C∗-reflexivity in the commutative case.

Let us recall some basic facts about the dual and the second dual of
a Hilbert C∗-module [9] (see also [6]). For a Hilbert C∗-module M over
a C∗-algebra A, the dual Banach module M ′ is defined [9] as the set of
all A-module bounded linear maps from M to A (such maps are called
functionals). Iterating this procedure, one gets the second dual module M ′′.

There are isometric inclusions M ⊂ M ′′ ⊂ M ′ for any Hilbert C∗-module
M . The identifications are defined as follows. First of all we have the map
M → M ′, m 7→ m̂, m̂(s) = 〈s,m〉 for any s ∈ M . Then we can define the
map M → M ′′, m 7→ ṁ, ṁ(f) = f(m) for any f ∈ M ′. Finally, M ′′ → M ′,
F 7→ F̃ is defined by F̃ (m) = F (m̂). The A-valued inner product of M can
be extended to M ′′ by the formula 〈F,G〉 = G(F̃ ) and thus M ′′ becomes a
Hilbert C∗-module [9].

A Hilbert C∗-module M is self-dual if M ′ = M . There are very few
C∗-algebras, for which all Hilbert C∗-modules are self-dual. Only finite-
dimensional C∗-algebras have this property [2]. C∗-reflexivity (i.e., M ′′ =
M) is a more common property. For example, all countably generated
Hilbert C∗-modules over the C∗-algebra of compact operators with adjoined
unit are C∗-reflexive [12].

Due to the Kasparov stabilization theorem [5], any countably generated
Hilbert C∗-module over a C∗-algebra A is C∗-reflexive if the standard Hilbert
A-module HA = l2(A) is C∗-reflexive. We call a C∗-algebra A C∗-reflexive
if HA is C∗-reflexive.

It was shown by Paschke [10] that infinite-dimensional von Neumann al-
gebras are not C∗-reflexive. On the positive, it is known that C(X) is
C∗-reflexive for nice spaces X.

Theorem 1.1. Let X be a compact metric space. Then C(X) is C∗-
reflexive.

The first version of a proof was given by Mishchenko [7]. Then Trofimov
[13] realized that the formulation in [7] was too general and provided a proof
for any compact X with a certain property L, which, in fact, is the same as
the property of being a Baire space. Although the main part of the proof
in [13] is correct, it was overlooked that implicitly X was assumed to be a
metric space. Trofimov’s proof was corrected in [4].

Many examples of C∗-reflexive modules arising from group actions were
obtained in our previous papers [3, 4].

The main result of this paper is the criterion for C∗-reflexivity for commu-
tative C∗-algebras, which is given in either topological or algebraic terms.
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2. Topological preliminaries: the Baire property and the
Stone–Čech compactification

Definition 2.1 ([8, p. 155]). A space X is said to be a Baire space if the
following condition holds: Given any countable collection {An} of closed
subsets of X each of which has empty interior in X, their union ∪An also
has empty interior in X.

Theorem 2.2 (Baire category theorem, see [8, Theorem 48.2]). If X is
a compact Hausdorff space or a complete metric space, then X is a Baire
space.

Theorem 2.3 ([8, Theorem 48.5]). Let X be a space; let (Y, d) be a metric
space. Let fn : X → Y be a sequence of continuous functions such that
fn(x) → f(x) for all x ∈ X, where f : X → Y . If X is a Baire space, the
set of points at which f is continuous is dense in X.

Proofs of the statements of the following theorem can be found, e.g., in
[1, Sect. 3.6].

Theorem 2.4. Suppose, X is a compact Hausdorff space with a dense subset
Y . Then the following properties are equivalent:

(1) X is the Stone–Čech compactification βY .
(2) Any bounded continuous function on Y can be extended to a contin-

uous function on X.

3. Hilbert C∗-modules preliminaries

Recall that the standard Hilbert C∗-module HA = l2(A) is the set of all
sequences (a1, a2, . . .), a1, a2, . . . ∈ A, such that the series

∑∞
i=1 a∗i ai is norm

convergent in A.
For HA = l2(C(X)) the dual module can be described as follows (see,

e.g., [6], Prop. 2.5.5):

(1) H ′
A =

{
f = (f1, f2, . . . ) : fi ∈ C(X), sup

N

∥∥∥ N∑
i=1

f∗i fi

∥∥∥ < ∞

}
,

‖f‖2 = supN

∥∥∥∑N
i=1 f∗i fi

∥∥∥, where ‖ · ‖ denotes the sup norm on X.
Unfortunately, there is no similar description of the second dual module

H ′′
A for general A, but in the commutative case we have some results on

elements of H ′′
A. The proof of the following statement is close to an argument

of [13].

Lemma 3.1. Suppose (F1, F2, . . . ) ∈ H ′
A represents an element F ∈ H ′′

A.
Let E be the continuity set of the point-wise limit Φ(x) :=

∑
i F

∗
i (x)Fi(x).

Then, for any x0 ∈ E and any f ∈ H ′
A, the limit of

∑
i F

∗
i (x0)fi(x0) equals

the value of the continuous function F (f) at this point.

Remark 3.2. By Theorem 2.3 the set E is dense in X.
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Proof. Take x0 ∈ E and ε > 0. Choose a neighborhood U0 3 x0 such that
|Φ(x)− Φ(x0)| < ε2 for any x ∈ U0. Choose N such that

∞∑
i=N+1

F ∗
i (x0)Fi(x0) < ε2.

Choose a neighborhood U1 ⊂ U0 of x0 such that∣∣∣∣∣
N∑

i=1

F ∗
i (x)Fi(x)−

N∑
i=1

F ∗
i (x0)Fi(x0)

∣∣∣∣∣ < ε2 ∀x ∈ U1

(this is possible because of continuity of this finite sum of continuous func-
tions). Then, for any x ∈ U1,∣∣∣∣∣

∞∑
i=N+1

F ∗
i (x)Fi(x)

∣∣∣∣∣ =
∣∣∣∣∣Φ(x)−

N∑
i=1

F ∗
i (x)Fi(x)

∣∣∣∣∣
≤ |Φ(x)− Φ(x0)|+

∣∣∣∣∣Φ(x0)−
N∑

i=1

F ∗
i (x0)Fi(x0)

∣∣∣∣∣
+

∣∣∣∣∣
N∑

i=1

F ∗
i (x)Fi(x)−

N∑
i=1

F ∗
i (x0)Fi(x0)

∣∣∣∣∣ < 3 ε2.

Because of the isometric embedding H ′′
A ⊂ H ′

A (cf. [9]) this means that, for
any continuous function λ : X → [0, 1] with supp λ ⊂ U1 and λ(x0) = 1, we
have the following estimate of the norm of an element of H ′′

A:∥∥∥∥∥λ F −
N∑

i=1

λF ∗
i êi

∥∥∥∥∥ <
√

3ε,

where êi are the images of the standard basis elements under the natural
isometric inclusion HA ⊂ H ′′

A. For any f ∈ H ′
A

√
3ε ‖f‖ >

∣∣∣∣∣
(

λ F −
N∑

i=1

λF ∗
i êi

)
(f)
∣∣∣
x0

∣∣∣∣∣
=

∣∣∣∣∣F (f)(x0)−
N∑

i=1

F ∗
i (x0)fi(x0)

∣∣∣∣∣. �

Lemma 3.3. A sequence (F1, F2, . . . ) ∈ H ′
A defines an element F of H ′′

A if
and only if for each f ∈ H ′

A, there exists a continuous function αf such that
the point-wise limit of the series

∑
i F

∗
i fi coincides with αf on the dense set

E of continuity points of
∑

i F
∗
i Fi. In this case F (f) = αf .

Remark 3.4. The mentioned point-wise limit always exists because at a
point all our sequences become l2(C)-sequences.
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Proof. The “only if” statement was proved in Lemma 3.1.
Conversely, let us define a functional F by the formula F (f) = αf . Evi-

dently, it is an A-functional defined on H ′
A. It is bounded by the Cauchy–

Buniakovskiy inequality. It remains to show that, for the natural isometric
embedding H ′′

A ↪→ H ′
A, F 7→ F̃ , the element F̃ corresponds to (F1, F2, . . . ),

i.e., F̃ (ei) = F ∗
i . Indeed, F̃ (ei) = F (êi) =

∑
k F ∗

k (êi)k = F ∗
i , because in this

case the point-wise limit is everywhere continuous. Here (êi)k denotes the
k-component of êi. �

4. A sufficient property for l2(C(X)) to be C∗-reflexive

We start with a proof of a stronger version of [13] (see [4] for a corrected
version of [13]).

Theorem 4.1. Suppose a compact Hausdorff space X does not contain a
copy of the Stone–Čech compactification βN of natural numbers N as a closed
subset. Then l2(C(X)) is C∗-reflexive.

Proof. Denote for brevity A := C(X), HA := l2(C(X)). Since H ′′
A ⊂ H ′

A,
its elements are represented by series as in (1). Such an element is in HA if
and only if this series is norm-convergent.

Let F = (F1, F2, . . . ) ∈ H ′′
A and set

KF = inf
k

sup
m>k

sup
x∈X

m∑
i=k

|Fi(x)|2 = inf
k

sup
m>k

∥∥∥∥∥
m∑

i=k

|Fi|2
∥∥∥∥∥.

Obviously, KF ≤ ‖F‖2, where ‖F‖2 is the least number C such that

sup
x∈X

∞∑
i=1

|Fi(x)|2 ≤ C.

By the Cauchy criterion, KF = 0 if and only if (F1, F2, . . . ) ∈ HA.
We will argue as follows: we will suppose that H ′′

A 6= HA and will prove
that βN ⊂ X. So we have an element (F1, F2, . . . ) ∈ H ′′

A such that KF > 0.
There exists a number m(1) such that the estimate

m(1)−1∑
i=1

|Fi(x)|2 > ‖F‖2 −KF /3

holds for at least one x ∈ X.
Set

U1 =

{
x ∈ X :

m(1)−1∑
i=1

|Fi(x)|2 > ‖F‖2 −KF /3

}
⊂ X.

Set F (1) = F , F (2) = (0, . . . , 0, Fm(1), Fm(1)+1, . . .), where the first m(1)−1
terms are zeroes. Then F (2) ∈ H ′′

A \HA and KF (2) = KF ≤ ‖F (2)‖2.
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There exists a number m(2) > m(1) such that the estimate
m(2)−1∑
i=m(1)

|Fi(x)|2 > ‖F (2)‖2 −KF /3

holds for at least one x ∈ X.
Set

U2 =

{
x ∈ X :

m(2)−1∑
i=m(1)

|Fi(x)|2 > ‖F (2)‖2 −KF /3

}
⊂ X.

Proceeding as above, we get an increasing sequence of numbers m(k) and
a sequence of nonempty open sets Uk ⊂ X such that

Uk =

{
x ∈ X :

m(k)−1∑
i=m(k−1)

|Fi(x)|2 > ‖F (k)‖2 −KF /3

}
.

Suppose that U j ∩ U l 6= ∅ for some j, l, j < l. Take x0 ∈ U j ∩ U l. Then

(2)
m(j)−1∑

i=m(j−1)

|Fi(x0)|2 ≥ ‖F (j)‖2 −KF /3;

(3)
m(l)−1∑

i=m(l−1)

|Fi(x0)|2 ≥ ‖F (l)‖2 −KF /3 ≥ KF −KF /3 = 2KF /3.

Summing up (2) and (3), we get

‖F (j)‖2 ≥
m(l)−1∑

i=m(j−1)

|Fi(x0)|2 ≥ ‖F (j)‖2 −KF /3 + 2KF /3

= ‖F (j)‖2 + KF /3.

The obtained contradiction proves that the open sets Uk, k ∈ N, (and
their closures) do not intersect. Choose a sequence of points xk ∈ Uk.

If E ⊂ X is the (dense) set of continuity points of
∑

i F
∗
i Fi then one can

assume also that xk ∈ E for each k.
Let N := {x1, x2, . . . }. We wish to show that the closure N of N in X is

homeomorphic to βN. This is equivalent (see Theorem 2.4) to the following
property: any bounded function on N can be extended to a continuous
function on N.

Our functional F should be able to be evaluated on elements of H ′
A. In

particular, take any bounded sequence {λk}, λk ∈ C. Choose functions
gk : X → [0, 1], supp gk ⊂ Uk, gk(xk) = 1. Then the sequence

(f1, f2, . . . ) = (λ1|F1(x1)|g1, . . . , λ1|Fm(1)(x1)|g1,

λ2|Fm(1)+1(x2)|g2, . . . , λ2|Fm(2)(x2)|g2, . . . )
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belongs to H ′
A. By Lemma 3.1, the series

∑
i F

∗
i fi converges over N point-

wise to a continuous function F (f) ∈ C(X). In our case,

F (f)(xk) = λk ·
m(k+1)−1∑

i=m(k)

F ∗
i (xk)Fi(xk).

Thus, varying the sequence {λk}, we can obtain any bounded sequence
of complex numbers, as the sequence of values F (f)(xk). Therefore, any
bounded function on N, which is automatically continuous on N, should be
extendable to a contuinuous function on N ⊂ X and on entire X. �

5. A criterion for C∗-reflexivity

A more careful analysis of the argument in the previous theorem implies
that instead of embedding N (and then βN), we should embed something
coarsely equivalent to N, but more compatible with the topology on X.

Recall that if {Ak} is a sequence of Banach spaces then one can form their
direct product

∏
k Ak (resp. direct sum ⊕kAk), which is the Banach space

of all bounded sequences (a1, a2, . . .), ak ∈ Ak, (resp. of all sequences with
limk→∞ ‖ak‖ = 0) with the norm ‖(a1, a2, . . .)‖ = supk ‖ak‖. If all Ak are
C∗-algebras then both ⊕kAk and

∏
k Ak are C∗-algebras.

Let U ⊂ X be an open subset. Then there is a canonical inclusion of
C0(U) = Ker

(
C(X) → C(X \U)

)
into C(X). For a sequence {Uk}, Uk ⊂ X,

k ∈ N, of open disjoint sets, there is always a canonical inclusion⊕kC0(Uk) ⊂
C(X). Sometimes this canonical inclusion can be extended to an inclusion
of
∏

k C0(Uk) into C(X). In this case we call such inclusion canonical as
well.

Existence of such inclusion of ideals can be expressed in topological terms:
the canonical inclusion of tkUk in X extends to the canonical inclusion of
the Gelfand spectrum Y of

∏
k C0(Uk) into X.

Example 5.1. Suppose, X = [0, 1] and Uk = ( 1
2k+1 , 1

2k ). Then the inclusion
⊕kC0(Uk) ⊂ C(X) doesn’t extend to an inclusion of

∏
k C0(Uk). Indeed, if

we take fk ∈ C0(Uk) with ‖fk‖ = 1 then the function on X that coincides
with fk on each Uk is not continuous on X.

Example 5.2. Let X = βN, Uk = {k} ⊂ N. Then C0(Uk) = C, and there is
a canonical inclusion of

∏
k C0(Uk) into l∞ = C(βN) (in fact, they coincide).

Lemma 5.3. Let C(X) be not C∗-reflexive. Then there exists a sequence
{Uk} of disjoint open subsets of X such that

∏
k C0(Uk) is canonically in-

cluded into C(X).

Proof. Let (F1, F2, . . .) ∈ H ′′
A \ HA. As in the proof of Theorem 4.1, one

can construct
• a number K > 0 (one can take K = 2KF /3);
• an increasing sequence {m(k)}k∈N of integers;
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• a sequence U1, U2, . . . of open subsets of X

such that:
(1) U i ∩ U j = ∅ if i 6= j;
(2) K <

∑m(k+1)−1
i−m(k) F ∗

i (x)Fi(x) ≤ ‖F‖2 for any x ∈ Uk.

Let λk ∈ C0(Uk). Note that λk · F ∈ C0(Uk) ⊂ C(X) for any F ∈ C(X).
Note that the function gk(x) =

∑m(k+1)−1
i−m(k) F ∗

i (x)Fi(x) is invertible on Uk.
For a sequence λ = (λ1, λ2, . . .), set

fλ = (f1, f2, . . .)

= (λ1F1g
−1
1 , . . . , λ1Fm(1)g

−1
1 , λ2Fm(1)+1g

−1
2 , . . . , λ2Fm(2)g

−1
2 , . . .).

If the sequence λ is bounded (i.e., lies in
∏

k C0(Uk)) then fλ ∈ H ′
A.

Let Y = tkUk \ tkUk. Then X \ Y is dense in X and, for any x ∈ X \ Y ,
the series

∑
i F

∗
i (x)fi(x) converges either to 0, if x ∈ X \tkUk, or to λk(x),

if x ∈ Uk.
Define a map

∏
k C0(Uk) → C(X) by λ 7→ F (fλ). It is well-defined due

to continuity of F (f) for each f ∈ H ′
A. And it is obviously injective and

coincides with the canonical inclusion of each C0(Uk) into C(X). �

Lemma 5.4. Let there exist a sequence {Ik} of nontrivial left ideals in a
C∗-algebra A such that:

(1) I∗kIl = 0 whenever k 6= l.
(2)

∏
k Ik canonically embeds into A.

Then A is not C∗-reflexive.

Proof. Take ak ∈ Ik such that ‖ak‖ = 1. Let F = (a1, a2. . . .). As the
series

∑
k a∗kak doesn’t converge in norm, F /∈ HA = l2(A). Let us show

that F ∈ H ′′
A. Take some f = (f1, f2, . . .) ∈ H ′

A. Then we can define F (f)
as F (f) =

∑
k a∗kfk := (a∗1f1, a

∗
2f2, . . .). As Ik is a left ideal, so a∗kfk ∈ Ik.

As f ∈ H ′
A, so the sequence (a∗1f,a

∗
2f2, . . .) is bounded, hence lies in

∏
k Ik,

hence, by assumption, in A. Thus F (f) ∈ A is well-defined. �

So, we have proved the following theorem.

Theorem 5.5. The module l2(C(X)) is not C∗-reflexive if and only if there
exists a sequence {Uk} of open pairwise nonintersecting nonempty sets in X
such that ∏

k

C0(Uk) ⊂ C(X).

Proof. This follows from the two preceding lemmas. If A = C(X) then
C0(Uk) are the (left) ideals required in the second Lemma. �

Now, keeping in mind the Kasparov stabilization theorem and some evi-
dent topological argument, we can reformulate this theorem in the following
way.
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Theorem 5.6. Any countable generated Hilbert C∗-module over C(X) is
C∗-reflexive if and only if there does not exist any sequence of orthogonal
ideals Ik ∈ C(X) such that

∏
k Ik ⊂ C(X).

We conjecture that the same condition gives a criterion for C∗-reflexivity
for general (noncommutative) C∗-algebras.

6. An example

Let A be the C∗-subalgebra of l∞ that consists of all sequences {an}n∈N
such that limn→∞ |an+1 − an| = 0. This C∗-algebra is the algebra of all
continuous functions on the Higson compactification νN of N [11].

Theorem 6.1. The C∗-algebra A = C(νN) is C∗-reflexive.

Proof. Assume the contrary. Then there exist disjoint open subsets Uk,
k ∈ N, of νN such that

∏
k C0(Uk) ⊂ A. Being an open set of νN, each Uk

contains at least one point of N. Let nk ∈ Uk be such a point. Each point
of N is also an open set of νN, and C ∼= C0({nk}) ⊂ C0(Uk). Therefore,∏

k C0({nk}) ⊂ A. Take an arbitrary sequence

{an}n∈N ∈
∏
k

C0({nk}).

Set M = N \ ∪k{nk} = {m1,m2, . . .}. As {an}n∈N ∈
∏

k C0({nk}), so
an = 0 for any n ∈ M.

If M is finite then the sequence {an}n∈N ∈
∏

k C0({nk}) is (modulo sev-
eral first terms) an arbitrary bounded sequence, which contradicts that this
sequence lies in A. If M is infinite then for each n there is a number m > n
such that one can find integers k1 and k2 such that nk1 > m, mk2 > m and
|nk1 − mk2 | = 1. As amk2

= 0 and ank1
may take an arbitrary value, so

we get a contradiction with the condition limn→∞ |an+1 − an| = 0. Getting
contradictions in both cases, we conclude that our assumption was false. �

Remark 6.2. Note that there exists a (noncanonical) inclusion βN ⊂ νN.
Indeed, let {nk}k∈N be an increasing sequence of integers such that

lim
k→∞

nk+1 − nk = ∞.

Set bk = ank
. The map {an}n∈N 7→ {bk}k∈N gives a ∗-homomorphism from

A to l∞, and an easy check shows surjectivity of this map. Therefore, the
map k 7→ nk extends to a continuous injective map βN → νN.

This shows that our sufficient condition from Section 4 is not a necessary
condition.
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