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The L∞-deformation complex of diagrams
of algebras

Yael Frégier, Martin Markl and Donald Yau

Abstract. The deformation complex of an algebra over a colored
PROP P is defined in terms of a minimal (or, more generally, cofibrant)
model of P. It is shown that it carries the structure of an L∞-algebra
which induces a graded Lie bracket on cohomology.

As an example, the L∞-algebra structure on the deformation complex
of an associative algebra morphism g is constructed. Another example is
the deformation complex of a Lie algebra morphism. The last example is
the diagram describing two mutually inverse morphisms of vector spaces.
Its L∞-deformation complex has nontrivial l0-term.

Explicit formulas for the L∞-operations in the above examples are
given. A typical deformation complex of a diagram of algebras is a
fully-fledged L∞-algebra with nontrivial higher operations.
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1. Introduction

In this paper, we construct the deformation complex (C∗
P(T ;T ), δP) of an

algebra T over a colored PROP P and observe that it has the structure of
an L∞-algebra. The cochain complex (C∗

P(T ;T ), δP) is so named because
its L∞-structure governs the deformations of T in the form of the Quantum
Master Equation (13) (Section 4.3).

The existence of an L∞-structure on the deformation complex of an al-
gebra over an operad was proved in 2002 by van der Laan [51]. Van der
Laan’s construction was later generalized, in [39], to algebras over proper-
ads. The present paper will, however, be based on the approach of the 2004
preprint [36].

Considering colored PROPs is necessary if one is to study L∞-deforma-
tions of, say, morphisms or more general diagrams of algebras over a PROP,
module-algebras, modules over an associative algebra, and Yetter–Drinfel’d
and Hopf modules over a bialgebra. For example, there is a 2-colored PROP
AsB→W whose algebras are of the form f : U → V , in which U and V are
associative algebras and f is a morphism of associative algebras (Exam-
ple 2.10). Likewise, there is a 2-colored PROP ModAlg whose algebras are
of the form (H,A), in which H is a bialgebra and A is an H-module-algebra
(Example 2.12). Other examples of colored PROP algebras are given at the
end of Section 9.

Let us sketch the construction of the deformation complex (C∗
P(T ;T ), δP),

with details given in Section 3. First we take a minimal model (Defini-
tion 3.4) α : (F(E), ∂) → P of the colored PROP P, which should be thought
of as a resolution of P. Given a P-algebra ρ : P → EndT , we define

C∗
P(T ;T ) = Der(F(E), E),

in which E = EndT is considered an F(E)-module via the morphism β =
ρα, and Der(F(E), E) denotes the vector space of derivations F(E) → E .
The latter has a natural differential δ that sends θ ∈ Der(F(E), E) to θ∂.
The reason why we require the minimality of resolutions whenever possible is
explained in the first paragraph of Section 3. As we will see in Section 9, the
construction sketched out above applies to more general cofibrant resolutions
as well.

The L∞-operations on C∗
P(T ;T ) are constructed using graph substitutions

(Section 4.4). The usefulness of this very explicit construction of the L∞-
operations on C∗

P(T ;T ) is first illustrated with the example of associative
algebra morphisms. For a morphism g : U → V of associative algebras,
considered as an algebra over the 2-colored PROP AsB→W, we are able to
write down explicitly all the L∞-operations lk on the deformation complex
of g (Theorem 5.5 for k = 1, Theorem 6.2 for k = 2, and Theorem 6.4 for k ≥
3). As expected, the underlying cochain complex of the deformation complex
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of g is isomorphic to the Gerstenhaber–Schack1 cochain complex [14, 15, 16]
of g (Theorem 5.5). Therefore, the latter also has an explicit L∞-structure.
See Section 5.1 for more discussion about this deformation complex.

A second example is given by the study of the case of Lie algebra mor-
phisms. As in the associative case, there exists a 2-colored PROP LieB→W

whose 2-colored algebras are morphism of Lie algebras. We obtain then an
explicit expression for the L∞-operations (Theorem 7.5 for k = 1, Theo-
rem 8.2 for k = 2, and Theorem 8.4 for k ≥ 3). In particular the first
operation l1 gives a complex isomorphic to the S-cohomology complex [9].
Hence this answers the question left open in [9] of the existence of such an
L∞-structure.

Another example of the L∞-deformation complex is given in Section 9.
There is a 2-colored operad Iso (Example 9.1) whose algebras are of the form
F : U � V : G, in which U and V are chain complexes and F and G are
mutually inverse chain maps. Using a modification of the results and con-
structions of earlier sections, we will write down explicitly the L∞-operations
on the deformation complex of a typical Iso-algebra T (Example 9.3).

Describing the L∞-deformation complex requires the knowledge of a res-
olution of the corresponding colored PROP. So, while it will be interesting
to work out the L∞-deformation complex for morphisms of bialgebras, a de-
scription of a resolution of the PROP BialgB→W for morphisms of bialge-
bras is missing, though the minimal model of the bialgebra PROP Bialg is
known [47].

Acknowledgment. We would like to thank Jim Stasheff and Bruno Val-
lette for reading the first version of the manuscript and many useful remarks.

2. Preliminaries on colored PROPs

Fix a ground field k, assumed to be of characteristic 0. This assumption
is useful in considering models for operads or PROPs since it guarantees the
existence of the ‘averagization’ of a nonequivariant map into an equivari-
ant one. The characteristic zero assumption also simplifies concepts of Lie
algebras and their generalizations.

In this section, we review some basic definitions about colored PROPs
(and colored operads as their particular instances), their algebras, colored
Σ-bimodules, and free colored PROPs. Examples of algebras over colored
PROPs can be found at the end of this section.

2.1. Colored Σ-bimodule. Let C be a nonempty set whose elements are
called colors. A Σ-bimodule is a collection E = {E(m,n)}m,n≥0 of k-modules
in which each E(m,n) is equipped with a left Σm and a right Σn actions
that commute with each other.

1Be careful with the possible confusion with the complex associated to bialgebras. Both
of these complexes share the same name.
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A C-colored Σ-bimodule is a Σ-bimodule E in which each E(m,n) admits
a C-colored decomposition into submodules,

(1) E(m,n) =
⊕

ci,dj∈C

E

(
d1, . . . , dm

c1, . . . , cn

)
,

that is compatible with the Σm-Σn-actions. Elements of E(m,n) are said
to have biarity (m,n). A morphism of C-colored Σ-bimodules is a linear
biequivariant map that respects the C-colored decompositions (1).

C-colored Σ-bimodules and their morphism are examples of C-colored ob-
jects; more examples will follow. If C has k elements, we will sometimes call
C-colored objects simply k-colored objects.

Definition 2.2. A C-colored PROP ([27, 28], [35, Section 8]) is a C-colored
Σ-bimodule P = {P(m,n)} (so each P(m,n) admits a C-colored decomposi-
tion (1)) that comes equipped with two operations: a horizontal composition

⊗ : P

(
d11, . . . , d1m1

c11, . . . , c1n1

)
⊗ · · · ⊗ P

(
ds1, . . . , dsms

cs1, . . . , csns

)
→

P

(
d11, . . . , dsms

c11, . . . , csns

)
⊆ P(m1 + · · · +ms, n1 + · · · + ns)

and a vertical composition

◦ : P

(
d1, . . . , dm

c1, . . . , cn

)
⊗ P

(
b1, . . . , bn
a1, . . . , ak

)
→ P

(
d1, . . . , dm

a1, . . . , ak

)
⊆ P(m,k),(2)

(x, y) �→ x ◦ y.
These two compositions are required to satisfy some associativity-type

axioms. There is also a unit element 1c ∈ P
(c
c

)
for each color c. Moreover,

the vertical composition x ◦ y in (2) is 0, unless

ci = bi for 1 ≤ i ≤ n.

Morphisms of C-colored PROPs are unit-preserving morphisms of the under-
lying Σ-bimodules that commute with both the horizontal and the vertical
compositions.

Colored operads are particular cases of colored PROPs having the prop-
erty that P

(
d1,...,dm

a1,...,ak

)
= 0 for m ≥ 2. Note that colored PROPs can also

be defined as ordinary (1-colored) PROPs over the semisimple algebra K =
⊕c∈Ckc, where each kc is a copy of the ground field k [32, Section 2].

Example 2.3. The C-colored endomorphism PROP EndC
T of a C-graded

module T = ⊕c∈CTc is the C-colored PROP with

EndC
T

(
d1, . . . , dm

c1, . . . , cn

)
= Homk(Tc1 ⊗ · · · ⊗ Tcn , Td1 ⊗ · · · ⊗ Tdm).
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The horizontal composition is given by tensor products of k-linear maps.
The vertical composition is given by composition of k-linear maps with
matching colors.

Definition 2.4. For a C-colored PROP P, a P-algebra is a morphism of
C-colored PROPs

α : P → EndC
T

for some C-graded module T = ⊕c∈CTc. In this case, we say that T is
a P-algebra.

2.5. Pasting scheme for C-colored PROPs. For natural m,n ≥ 1, let
UGrC(m,n) be the set whose elements are pairs (G, ζ) such that:

(1) G ∈ UGr(m,n) is a directed (m,n)-graph [35, p. 38].
(2) For each vertex v ∈ Vert(G), the sets out(v) (outgoing edges from v)

and in(v) (incoming edges to v) are labeled 1, . . . , q and 1, . . . , p, re-
spectively, where #out(v) = q and #in(v) = p.

(3) ζ : edge(G) → C is a function that assigns to each edge in G a color
in C. For any edge l ∈ edge(G), ζ(l) ∈ C is called the color of l.

There is a C-colored decomposition

UGrC(m,n) =
∐

ci,dj∈C

UGrC
(
d1, . . . , dm

c1, . . . , cn

)
,

where (G, ζ) ∈ UGrC
(
d1,...,dm

c1,...,cn

)
if and only if the input legs {l1in, . . . lnin} of G

have colors c1, . . . , cn and the output legs {l1out, . . . , l
m
out} of G have colors

d1, . . . , dm.
As in [35], UGrC(m,n) and UGrC

(d1,...,dm

c1,...,cn

)
are the categories with color-

respecting isomorphisms as morphisms. Elements in UGrC(m,n) are called
C-colored directed (m,n)-graphs.

2.6. Decoration on colored directed graphs. Let E be a C-colored Σ-
bimodule and (G, ζ) be a C-colored directed (m,n)-graph. Define

(3) E(G, ζ) =
⊗

v∈Vert(G)

E

(
ζ(o1v), . . . , ζ(o

q
v)

ζ(iv1), . . . , ζ(ivp)

)
,

where in(v) = {iv1, . . . , ivp} and out(v) = {o1v , . . . , oq
v}. Its elements are called

E-decorated C-colored directed (m,n)-graphs.
For an element Γ = ⊗vev ∈ E(G, ζ), the element ev ∈ E

(ζ(o1
v),...,ζ(oq

v)
ζ(iv1),...,ζ(ivp)

)
corresponding to the vertex v ∈ Vert(G) is called the decoration of v.

In other words, E(G, ζ) is the space of decorations of the vertices of the
C-colored directed (m,n)-graph (G, ζ) with elements of E with matching
biarity and colors.
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2.7. Free colored PROP. Let E be a C-colored Σ-bimodule. For c1, . . . , cn,
d1, . . . , dm ∈ C, define the module

FC(E)
(
d1, . . . , dm

c1, . . . , cn

)
= colimE(G, ζ),

where the colimit is taken over the category UGrC
(d1,...,dm

c1,...,cn

)
. Then

FC(E) =

⎧⎨⎩FC(E)(m,n) =
⊕

ci,dj∈C

FC(E)
(
d1, . . . , dm

c1, . . . , cn

)⎫⎬⎭
is a C-colored PROP, in which the horizontal composition ⊗ is given by
disjoint union of E-decorated C-colored directed (m,n)-graphs. The vertical
composition ◦ in FC(E) is given by grafting of C-colored legs with matching
colors.

Note that there is a natural Z≥0-grading,

FC(E) =
⊕
k≥0

FC
k(E),

where FC
k(E) is the submodule generated by the monomials involving k ele-

ments in E.

Proposition 2.8 (= C-colored version of Proposition 57 in [35]). FC(E) =
{FC(E)(m,n)} is the free C-colored PROP generated by the C-colored Σ-
bimodule E. In other words, the functor FC is the left adjoint of the forgetful
functor from C-colored PROPs to C-colored Σ-bimodules.

In particular, elements in the free C-colored PROP FC(E) can be written
as sums of E-decorated C-colored directed graphs.

Convention 2.9. From now on, everything will be tacitly assumed to be C-
colored with a suitable set of colors C. When there is no danger of ambiguity,
we will, for brevity, suppress C from the notation.

Example 2.10 (Morphisms). Let P be an ordinary PROP (i.e., a 1-colored
PROP). Then there is a 2-colored PROP PB→W whose algebras are of the
form f : U → V , in which U and V are P-algebras and f is a morphism of
P-algebras [31, Example 1]. It can be constructed as the quotient

PB→W =
PB ∗ PW ∗ F(f)

(f⊗mxB = xWf⊗n for all x ∈ P(m,n))
,

where PB and PW are copies of P concentrated in the colors B and W, respec-
tively, xB and xW are the respective copies of x in PB and PW, and F(f) is the
free 2-colored PROP on the generator f : B → W. The star ∗ denotes the free
product (= the coproduct) of 2-colored PROPs.

In the case that P is the operad As for associative algebras, cohomology
of AsB→W-algebras (i.e., associative algebra morphisms) will be discussed in
details in Sections 5 and 6.
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Example 2.11 (Modules). There is a 2-colored operad AsMod whose al-
gebras are of the form (A,M), where A is an associative algebra and M is
a left A-module. It can be constructed as the quotient

AsMod =
F(μ, λ)

(μ(μ⊗ 1A) − μ(1A ⊗ μ), λ(μ⊗ 1M) − λ(1A ⊗ λ))
.

Here F(μ, λ) is the free 2-colored operad (with C = {A, M}) on the generators,

μ ∈ F(μ, λ)
(

A

A, A

)
and λ ∈ F(μ, λ)

(
M

A, M

)
,

which encode the multiplication in A and the left A-action on M , respec-
tively.

If we depict the multiplication μ as • and the module action λ as • ,
then the associativity of μ is expressed by the diagram

(4) •• = ••

and the compatibility between the multiplication and the module action by

(5) •• = •• .

The diagrams in the above two displays should be interpreted as elements
of the free colored PROP F(μ, λ), with the A-colored edges of the underlying
graph represented by simple lines , and the M-colored edges by the double
lines . We use the convention that the directed edges point upwards, i.e. the
composition is performed from the bottom up.

Example 2.12 (Module-algebras). Let H = (H,μH ,ΔH) be a (co)associa-
tive bialgebra. An H-module-algebra is an associative algebra (A,μA) that
is equipped with a left H-module structure such that the multiplication map
on A becomes an H-module morphism. In other words, the module-algebra
axiom

x(ab) =
∑
(x)

(x(1)a)(x(2)b)

holds for x ∈ H and a, b ∈ A, where ΔH(x) =
∑

(x) x(1) ⊗ x(2) using the
Sweedler’s notation for comultiplication.

This algebraic structure arises often in algebraic topology [2], quantum
groups [21], Lie and Hopf algebras theory [7, 40, 49], and group representa-
tions [1]. For example, in algebraic topology, the complex cobordism ring
MU∗(X) of a topological space X is an S-module-algebra, where S is the
Landweber–Novikov algebra [26, 43] of stable cobordism operations.

Another important example of a module-algebra arises in the theory of
Lie algebras. Finite-dimensional simple sl(2,C)-modules are, up to isomor-
phism, the highest weight modules V (n) (n ≥ 0) [20, Theorem 7.2]. There
is a U(sl(2,C))-module-algebra structure on the polynomial algebra C[x, y]
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such that the submodule C[x, y]n of homogeneous polynomials of degree n
is isomorphic to the highest weight module V (n) [21, Theorem V.6.4]. In
other words, all the finite-dimensional simple sl(2,C)-modules can be en-
coded inside a single U(sl(2,C))-module-algebra.

There is a 2-colored PROP ModAlg whose algebras are of the form
(H,A), where H is a (co)associative bialgebra and A is an H-module-
algebra. (The third author first learned about this fact from Bruno Vallette
in private correspondence.) It can be constructed as the quotient (with
C = {H, A})
(6) ModAlg = F(μH,ΔH, μA, λ)/I,

where F = F(μH,ΔH, μA, λ) is the free 2-colored PROP on the generators:

μH ∈ F

(
H

H, H

)
, ΔH ∈ F

(
H, H

H

)
, μA ∈ F

(
A

A, A

)
, and λ ∈ F

(
A

H, A

)
,

which encode the multiplication and comultiplication in H, the multiplica-
tion in A, and the H-module structure on A, respectively. The ideal I is
generated by the elements:

μH(μH ⊗ 1H) − μH(1H ⊗ μH) (associativity of μH),

(ΔH ⊗ 1H)ΔH − (1H ⊗ ΔH)ΔH (coassociativity of ΔH),

ΔHμH − μ⊗2
H (2 3)Δ⊗2

H (compatibility of μH and ΔH),

μA(μA ⊗ 1A) − μA(1A ⊗ μA) (associativity of μA),

λ(μH ⊗ 1A) − λ(1H ⊗ λ) (H-module axiom),

λ(1H ⊗ μA) − μAλ
⊗2(2 3)(ΔH ⊗ 1⊗2

A ) (module-algebra axiom).

Here (2 3) ∈ Σ4 is the permutation that switches 2 and 3.
If we draw the multiplication μH as • , the comultiplication ΔH as • ,

the multiplication μA as • , and the H-module action λ as • , then the
bialgebra axioms for H are expressed by

•• = •• , •• = •• and •• =
•
•

•
•

,

The associativity of μH is given by the obvious -colored version of (4), the
H-module axiom by (5), and the module-algebra axiom by

•• =
•

•• • .

Variants of module-algebras, including module-co/bialgebras and comod-
ule-(co/bi)algebras are algebras over similar 2-colored PROPs. Deforma-
tions, in the classical sense [13], of module-algebras and its variants were
studied in [53, 54].
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Example 2.13 (Entwining structures). An entwining structure [4, 6] is a
tuple (A,C,ψ), in which A = (A,μ) is an associative algebra, C = (C,Δ) is
a coassociative coalgebra, and ψ : C ⊗ A → A ⊗ C, such that the following
two entwining axioms are satisfied:

ψ(IdC ⊗μ) = (μ⊗ IdC)(IdA ⊗ψ)(ψ ⊗ IdA),

(IdA ⊗Δ)ψ = (ψ ⊗ IdC)(C ⊗ ψ)(Δ ⊗ IdA).
(7)

If we symbolize μ by • , Δ by • and ψ by • , then the entwining axioms
can be written as

•
• = ••• and •

• = ••
•

.

This algebraic structure arises in the study of coalgebra-Galois extension
and its dual notion, algebra-Galois coextension [5], generalizing the Hopf-
Galois extension of [23].

There is a 2-colored PROP Ent whose algebras are entwining structures.
It can be constructed as the quotient

Ent = F(μ,Δ, ψ)/I

of the free 2-colored PROP F = F(μ,Δ, ψ) (with C = {A, C}) on the genera-
tors:

μ ∈ F

(
A

A, A

)
, Δ ∈ F

(
C, C

C

)
, and ψ ∈ F

(
A, C

C, A

)
.

The ideal I is generated by the elements expressing the associativity of μ,
the coassociativity of Δ, and the two entwining axioms (7).

Example 2.14 (Yetter–Drinfel’d modules). A Yetter–Drinfel’d module [56]
(also called a crossed bimodule and quantum Yang–Baxter module) over a
(co)associative bialgebra (H,μ,Δ) is a vector space M together with a left
H-module action ω : H⊗M →M and a right H-comodule coaction ρ : M →
M ⊗H that satisfy the Yetter–Drinfel’d condition,

(IdM ⊗μ) ◦ (ρ⊗ IdH) ◦ τ ◦ (IdH ⊗ω) ◦ (Δ ⊗ IdM ) =(8)
(ω ⊗ μ) ◦ (IdH ⊗τ ⊗ IdH) ◦ (Δ ⊗ ρ),

where τ is the twist isomorphism H ⊗M ∼= M ⊗H. If we depict μ as • ,
Δ as • , ω as • , and ρ as • , then

• •

•• =
•
•

•
•

.

Yetter–Drinfel’d modules were introduced by Yetter [56], and are studied
further in [25, 44, 45, 46, 48], among others. If the bialgebra H is a finite-
dimensional Hopf algebra, then the left-modules over its Drinfel’d double
D(H) are exactly the Yetter–Drinfel’d modules over H. These objects play
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important roles in the theory of quantum groups and mathematical physics.
Indeed, a finite-dimensional Yetter–Drinfel’d module M gives rise to a so-
lution of the quantum Yang–Baxter equation [25, 45] (i.e., an R-matrix [21,
Chapter VIII]). Conversely, through the so-called FRT construction [8, 21],
every R-matrix on a finite-dimensional vector space gives rise to a Yetter–
Drinfel’d module over some bialgebra. Cohomology for Yetter–Drinfel’d
modules and their morphisms over a fixed bialgebra have been studied in
[44] and [55], respectively.

There is a 2-colored PROP YD whose algebras are of the form (H,M),
where H is a bialgebra and M is a Yetter–Drinfel’d module over H. It can
be constructed as the quotient

YD = F(μ,Δ, ω, ρ)/I

of the free 2-colored PROP F = F(μ,Δ, ω, ρ) (with C = {H, M}) on the
generators:

μ ∈ F

(
H

H, H

)
, Δ ∈ F

(
H, H

H

)
, ω ∈ F

(
M

H, M

)
, and ρ ∈ F

(
M, H

M

)
.

The ideal I is generated by elements expressing the bialgebra axioms for μ
and Δ, the left H-module axiom for ω, the right H-comodule axiom for ρ,
and the Yetter–Drinfel’d condition (8).

Example 2.15 (Hopf modules). A Hopf module over a bialgebra (H,μ,Δ)
is a vector space M together with a left H-module action ω : H ⊗M →M
and a right H-comodule coaction ρ : M → M ⊗ H that satisfy the Hopf
module condition:

(9) ρ ◦ ω = (ω ⊗ μ) ◦ (IdH ⊗τ ⊗ IdH) ◦ (Δ ⊗ ρ).

There is a 2-colored PROP HopfMod whose algebras are of the form
(H,M), in which H is a bialgebra and M is a Hopf module over H. It
admits the same construction as YD, except that the Yetter–Drinfel’d con-
dition (8) is replaced by the Hopf module condition (9) in the ideal I of
relations.

3. Minimal models and cohomology

In this section, we define (i) minimal models for colored PROPs and (ii)
cohomology for algebras over a colored PROP based on minimal models.
Since minimal models are (at least in most cases) known to be unique up to
isomorphism, the cohomology based on minimal models is unique already
on the chain level. We will therefore require minimality whenever possible,
though an arbitrary cofibrant resolution should give the same cohomology.
There are, however, important PROPs that do not have a minimal model,
as the colored operad Iso considered in Section 9.

First we recall the notions of modules and derivations for colored PROPs.
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3.1. Modules. For a C-colored PROP P and a C-colored Σ-bimodule U , a
P-module structure on U [30, p. 203] consists of the following operations:

◦ = ◦l : P

(
d1, . . . , dm

c1, . . . , cn

)
⊗U

(
b1, . . . , bn
a1, . . . , ak

)
→ U

(
d1, . . . , dm

a1, . . . , ak

)
,

◦ = ◦r : U
(
d1, . . . , dm

c1, . . . , cn

)
⊗P

(
b1, . . . , bn
a1, . . . , ak

)
→ U

(
d1, . . . , dm

a1, . . . , ak

)
,

⊗ = ⊗l : P

(
d1, . . . , dm1

c1, . . . , cn1

)
⊗U

(
b1, . . . , bm2

a1, . . . , an2

)
→ U

(
d1, . . . , dm1 , b1, . . . , bm2

c1, . . . , cn1 , a1, . . . , an2

)
,

⊗ = ⊗r : U
(
d1, . . . , dm1

c1, . . . , cn1

)
⊗P

(
b1, . . . , bm2

a1, . . . , an2

)
→ U

(
d1, . . . , dm1 , b1, . . . , bm2

c1, . . . , cn1 , a1, . . . , an2

)
.

As usual, the vertical operations ◦l and ◦r are trivial unless bi = ci for
1 ≤ i ≤ n. The following compatibility axioms are also imposed on the four
operations:

f ◦ (g ◦ h) = (f ◦ g) ◦ h,
f ⊗ (g ⊗ h) = (f ⊗ g) ⊗ h,

(f1 ◦ f2) ⊗ (g1 ◦ g2) = (f1 ⊗ g1) ◦ (f2 ⊗ g2).

Here exactly one of f, g, and h lies in U and the other two lie in P. Likewise,
exactly one of f1, f2, g1, and g2 lies in U and the other three lie in P.

We note that P-modules can also be defined as abelian group objects in
the category PROP/P of C-colored PROPs over P.

For example, if β : P → Q is a morphism of C-colored PROPs, then Q
becomes a P-module via β in the obvious way.

3.2. Derivations. Given a P-module U , a derivation P → U is a C-colored
Σ-bimodule morphism d : P → U that satisfies the usual derivation property
with respect to both the vertical operations ◦ and the horizontal operations
⊗ [30, p. 204]. Denote by Der(P, U) the vector space of derivations P → U .

Proposition 3.3 (= C-colored version of Proposition 3 in [36]). Let U be an
FC(E)-module for some C-colored Σ-bimodule E. Then there is a canonical
isomorphism

(10) Der(FC(E), U) ∼= HomC
Σ(E,U),

where HomC
Σ(E,U) denotes the vector space of C-colored Σ-bimodule mor-

phisms E → U .

In one direction, isomorphism (10) takes a derivation θ ∈ Der(FC(E), U)
to its restriction θ|E to the space E of generators. In the other direc-
tion, it takes a map ϕ : E → U ∈ HomC

Σ(E,U) to its unique extension
Ex(ϕ) : FC(E) → U as a derivation such that Ex(ϕ)|E = ϕ.

Following [29, 34], we make the following definition.
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Definition 3.4. Let P be a C-colored PROP. A minimal model of P is a dif-
ferential graded C-colored PROP (FC(E), ∂) for some C-colored Σ-bimodule
E together with a homology isomorphism

ρ : (FC(E), ∂) → (P, 0)

such that the following minimality condition is satisfied:

∂(E) ⊆
⊕
k≥2

FC
k(E).

In other words, the image of E under ∂ consists of decomposables.

3.5. Cohomology. Here we define cohomology of an algebra over a colored
PROP following [30, 36].

Let P be a C-colored PROP, and let (FC(E), ∂)
ρ−→ (P, 0) be a minimal

model of P. Let P
α−→ EndC

T be a P-algebra structure on T = ⊕c∈CTc.
Consider EndC

T as an FC(E)-module via the morphism

β = αρ : FC(E) → EndC
T .

Then the map

Der(FC(E),EndC
T ) δ−→ Der(FC(E),EndC

T )
θ �→ θ∂

is well-defined and is a differential (δ2 = 0) because ∂2 = 0.

Definition 3.6. In the above setting, define the cochain complex

(11) C∗
P(T ;T ) = ↑ Der(FC(E),EndC

T )−∗,

where the degree +1 differential δP is induced by δ, ↑ denotes suspension,
and −∗ denotes reversed grading. We call (C∗

P(T ;T ), δP) the deformation
complex of T . Its cohomology,

H∗
P(T ;T ) = H(C∗

P(T ;T ), δP ),

is called the cohomology of T with coefficients in itself.

Note that if C = {∗}, i.e., P is an ordinary (1-colored) PROP, then
(C∗

P(T ;T ), δP) and H∗
P(T ;T ) defined above coincide with the definitions in

[30, 36].

4. L∞-structure on C∗
P(T ; T ) and deformations

In this section, we observe that the deformation complex (C∗
P(T ;T ), δP)

(Definition 3.6) of an algebra T over a colored PROP P has the natural
structure of an L∞-algebra (Theorem 4.2). The relationship between this
L∞-algebra and deformations of T is discussed in Section 4.3. An explicit
construction of the L∞-operations lk in (C∗

P(T ;T ), δP) is given in Section 4.4.
This construction will first be applied in Sections 5 and 6 to obtain very
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explicit formulas for the operations lk in the deformation complex of an
associative algebra morphism.

First we recall the notion of an L∞-algebra.

Definition 4.1 (Definition 2.1 in [24], Example 3.90 in [37]). An L∞-
structure on a Z-graded module V consists of a sequence of operations
(δ = l1, l2, l3, . . . ) with

ln : V ⊗n → V

of degree 2 − n such that each ln is anti-symmetric and the condition

(12)
∑

i+j=n+1

∑
σ

χ(σ)(−1)i(j−1)lj
(
li(xσ(1), ..., xσ(i)), xσ(i+1), ..., xσ(n)

)
= 0

holds for n ≥ 1. Here σ runs through all the (i, n − i)-unshuffles for i ≥ 1,
and

χ(σ) = sgn(σ) · ε(σ;x1, . . . , xn),

where ε(σ;x1, . . . , xn) is the Koszul sign given by

x1 ∧ · · · ∧ xn = ε(σ;x1, . . . , xn) · xσ(1) ∧ · · · ∧ xσ(n).

In this case, we call (V, δ, l2, l3, . . . ) an L∞-algebra. The anti-symmetry of
ln means that

ln(xσ(1), . . . , xσ(n)) = χ(σ)ln(x1, . . . , xn)

for σ ∈ Σn and x1, . . . , xn ∈ V .

Theorem 4.2. In the setting of §3.5, there exists an L∞-algebra structure
(δP, l2, l3, . . . ) on C∗

P(T ;T ) capturing deformations of colored P-algebras in
the sense of §4.3 below. This L∞-structure induces a graded Lie algebra
structure on the cohomology H∗

P(T ;T ).

Proof. This is the C-colored version of [36, Theorem 1], whose proof, with
some very minor modifications, applies to the C-colored setting as well. In
fact, Sections 3 and 4 in [36] (which contain the proof of Theorem 1 in
that paper) apply basically verbatim to the C-colored setting. An explicit
“graphical” construction of the operations lk will be given below (§4.4). �

4.3. Deformations of colored PROP algebras. Section 5 in [36] con-
cerning deformations of algebras over a PROP also applies to the C-colored
setting without change. In particular, deformations of an algebra T over a
C-colored PROP P (i.e., FC(E)-algebra structures on T ) correspond to ele-
ments κ ∈ C1

P(T ;T ) that satisfy the Quantum Master Equation [36, Eq.(4)]:

(13) 0 = δP(κ) +
1
2!
l2(κ, κ) − 1

3!
l3(κ, κ, κ) − 1

4!
l4(κ, κ, κ, κ) + · · · .

In other words, the L∞-algebra

(C∗
P(T ;T ), δP, l2, l3, . . . )
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in Theorem 4.2 controls the deformations of T as a P-algebra. As ex-
plained in [36, Introduction], this L∞-algebra is an L∞-version of the Deligne
groupoid [18, 19] governing deformations that are described by the usual
Master Equation (also known as the Maurer–Cartan Equation):

0 = dκ+
1
2
[κ, κ].

When P is a properad [50], there is another approach to studying L∞-
deformations of P-algebras due to Merkulov and Vallette [39]. Their ap-
proach is based on a generalization of Van der Laan’s homotopy (co)operads
[51] to homotopy (co)properads. They show that the deformation complex
(C∗

P(T ;T ), δP) inherits a L∞-algebra structure from a homotopy properad
(Theorem 28 of [39]). Vallette recently informed the third author in pri-
vate correspondence that the paper [39] can also be extended to the colored
setting.

4.4. Construction of the operations lk on C∗
P(T ;T ). Here we describe

how the operations lk in Theorem 4.2 are constructed, again following [36,
Section 2] closely.

Suppose that F1, . . . , Fk ∈ HomC
Σ(E,EndC

T ) and that Γ ∈ E(G, ζ) is an
E-decorated C-colored directed (m,n)-graph (3) with underlying C-colored
graph (G, ζ) ∈ UGrC(m,n). Let v1, . . . , vk ∈ Vert(G) be k distinct vertices
in G. Consider the EndC

T -decorated C-colored directed (m,n)-graph

Γ{v1,...,vk}
{β} [F1, . . . , Fk] ∈ EndC

T (G, ζ)

obtained from Γ by:

(1) replacing the decoration evi ∈ E of the vertex vi by Fi(evi) ∈ EndC
T

for 1 ≤ i ≤ k, and
(2) replacing the decoration ev ∈ E of any vertex v �∈ {v1, . . . , vk} by

β(ev) = αρ(ev).

The graph Γ{v1,...,vk}
{β} [F1, . . . , Fk] is visualized in Figure 1 which is a colored

version of a picture taken from [36]. Using the C-colored PROP structure on
EndC

T (Example 2.3), the graph Γ{v1,...,vk}
{β} [F1, . . . , Fk] produces an element

γ
(
Γ{v1,...,vk}
{β} [F1, . . . , Fk]

)
∈ EndC

T

(
ζ(l1out), . . . , ζ(l

m
out)

ζ(l1in), . . . , ζ(l
n
in)

)
⊆ EndC

T (m,n).

Here {l1out, . . . , l
m
out} and {l1in, . . . , lnin} are the output and input legs, respec-

tively, of (G, ζ).
Now pick cochains f1, . . . , fk ∈ C∗

P(T ;T ) corresponding to F1, . . . , Fk ∈
HomC

Σ(E,EndC
T ) under the isomorphism (10):

(14) C∗
P(T ;T ) = ↑ Der(FC(E),EndC

T )−∗ ∼= ↑ HomC
Σ(E,EndC

T )−∗.
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· · ·

· · ·

β
...

...
•

β
...

...
•

β
...

...
•

Fk...

...
•

F2...

...
•

F3...

...
•

F1...

...
•

���

���

Figure 1. EndC
T -decorated graph Γ{v1,...,vk}

{β} [F1, . . . , Fk].
Vertices labelled Fi are decorated by Fi(evi), 1 ≤ i ≤ k,
the remaining vertices are decorated by β(ev).

If ξ ∈ E
(d1,...,dm

c1,...,cn

)
, then ∂(ξ) ∈ FC(E)

(d1,...,dm

c1,...,cn

)
can be written as a finite sum

∂(ξ) =
∑
s∈Sξ

Γs,

where each Γs ∈ E(G, ζ) for some (G, ζ) ∈ UGrC
(d1,...,dm

c1,...,cn

)
. Define

lk(f1, . . . , fk)(ξ) ∈ EndC
T

(
d1, . . . , dm

c1, . . . , cn

)
to be the element

(15) lk(f1, . . . , fk)(ξ)
def= (−1)ν(f1,...,fk)

∑
s∈Sξ

∑
(v1,...,vk)

γ
(
Γ{v1,...,vk}

s,{β} [F1, . . . , Fk]
)
,

where (v1, . . . , vk) runs through all the k-tuples of distinct vertices in the
underlying graph of Γs. The sign on the right-hand side of (15) is given by

(16) ν(f1, . . . , fk)
def= (k − 1)|f1| + (k − 2)|f2| + · · · + |fk−1|.

Since ξ is arbitrary, (15) specifies an element

(17) lk(f1, . . . , fk) ∈ HomC
Σ(E,EndC

T ) ∼= C∗
P(T ;T ).

The arguments in Sections 3-4 in [36] ensure that (17) is indeed well-
defined. We note that the L∞ axiom (12) for the operations lk constructed
above is a consequence of ∂2 = 0. Also, an obvious modification of the above
construction applies to free cofibrant, not necessarily minimal, models as
well. We will see an instance of such a generalization in Section 9.
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5. Deformation complex of an associative algebra
morphism

In this section and Section 6, we illustrate the L∞-deformation theory
of colored PROP algebras (Section 4) in the case of associative algebra
morphisms. Let g : U → V be an associative algebra morphism, and set T =
U⊕V as a 2-colored graded module. Let AsB→W denote the 2-colored operad
encoding associative algebra morphisms (Example 2.10). The morphism
g : U → V can be regarded as an AsB→W-algebra structure on T .

The purposes of this section are (i) to express the differential δAsB→W in
C∗

AsB→W
(T ;T ) (11) in terms of the Hochschild differential (Theorem 5.5), and

(ii) to observe that the cochain complex (C∗
AsB→W

(T ;T ), δAsB→W) is isomor-
phic to the Gerstenhaber–Schack cochain complex (C∗+1

GS (g; g), dGS ) of the
morphism g [14, 15, 16] (Theorem 5.5). This isomorphism allows us to trans-
fer the L∞-structure on (C∗

AsB→W
(T ;T ), δAsB→W) to the Gerstenhaber–Schack

cochain complex (C∗+1
GS (g; g), dGS ) (Corollary 5.6).

The materials in this section and Section 6 can be easily dualized to
obtain an explicit L∞-structure on the deformation complex of a morphism
of coassociative coalgebras. The associated deformation theory of coalgebra
morphisms is the one constructed in [52].

5.1. Background. Deformation of an associative algebra morphism g, in
the classical sense of Gerstenhaber [13], was studied by Gerstenhaber and
Schack in [14, 15, 16]. In the case of a single associative algebra A, the
deformation complex is the Hochschild cochain complex C∗(A;A) of A with
coefficients in itself, which has the structure of a differential graded Lie
algebra [12]. On the other hand, the work of Gerstenhaber and Schack
[14, 15, 16] left open the question of what structure the deformation complex
(C∗

GS(g; g), dGS ) of g possesses. Borisov answered this question in [3] by
showing that (C∗

GS(g; g), dGS ), while not a differential graded Lie algebra, is
isomorphic to the underlying cochain complex of an L∞-algebra.

With our approach based on minimal models, we are able to write down
all the L∞-operations lk on C∗

AsB→W
(T ;T ) explicitly (with l1 in Theorem 5.5

and lk (k ≥ 2) in Section 6). In particular, all the higher lk (k ≥ 3) can
be written in terms of a certain generalized “comp” operation (28), which
extends the classical ◦i operation in the Hochschild cochain complex [12].
As far as we know, these higher operations lk have never been explicitly
written down before. We believe that this example of associative algebra
morphisms will serve as a guide for obtaining explicit formulas for the L∞-
operations in the deformation complexes of other kinds of morphisms and
general diagrams.

5.2. The Gerstenhaber–Schack complex (C∗
GS(g; g), dGS). Here we

recall the Gerstenhaber–Schack cochain complex (C∗
GS(g; g), dGS ) [14, 15,

16]. Fix a morphism g : U → V of associative algebras. We also consider V
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as a U -bimodule via g. Then

(18) Cn
GS(g; g) def= Hom(U⊗n, U) ⊕ Hom(V ⊗n, V ) ⊕ Hom(U⊗n−1, V )

for n ≥ 1. A typical element in Cn
GS(g; g) is denoted by (xU , xV , xg) with

xU ∈ Hom(U⊗n, U), xV ∈ Hom(V ⊗n, V ), and xg ∈ Hom(U⊗n−1, V ). Its
differential is defined as

dn
GS(xU , xV , xg)

def= (bxU , bxV , gxU − xV g
⊗n − bxg),

where b denotes the Hochschild differential in Hom(U⊗∗, U), Hom(V ⊗∗, V ),
or Hom(U⊗∗, V ).

5.3. The minimal model of AsB→W. Here we recall from [31, 32] the min-
imal model of the 2-colored operad AsB→W that encodes associative algebra
morphisms. The 2-colored operad AsB→W can be represented as (Exam-
ple 2.10)

AsB→W =
AsB ∗AsW ∗F(f)

(fμ = νf⊗2)
,

where μ and ν denote the generators in AsB(1, 2) and AsW(1, 2), respectively,
which encode the multiplications in the domain and the target.

Let E be the 2-colored Σ-bimodule with the following generators:

μn : B⊗n → B of degree n− 2 and biarity (1, n) (n ≥ 2),

νn : W⊗n → W of degree n− 2 and biarity (1, n) (n ≥ 2), and

fn : B⊗n → W of degree n− 1 and biarity (1, n) (n ≥ 1).

Then the minimal model for AsB→W is

(F(E), ∂) α−→ AsB→W,

where

α(μn) =

{
μ if n = 2,
0 otherwise,

α(νn) =

{
ν if n = 2,
0 otherwise,

and

α(fn) =

{
f if n = 1,
0 otherwise.

The differential ∂ is given by:

∂(μn) =
∑

i+j =n+1
i,j ≥ 2

n−j∑
s=0

(−1)i+s(j+1)μi ◦s+1 μj,(19a)

∂(νn) =
∑

i+j =n+1
i,j ≥ 2

n−j∑
s=0

(−1)i+s(j+1)νi ◦s+1 νj,(19b)
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(s + 1)th input

· · ·

· · · · · ·
•μj

•μi

Figure 2. The graph corresponding to μi ◦s+1 μj .

∂(fn) = −
n∑

l=2

∑
r1+···+rl=n

(−1)
P

1≤i<j≤l ri(rj+1)νl(fr1 ⊗ · · · ⊗ frl
)(19c)

−
∑

i+j =n+1
i≥ 1, j ≥ 2

n−j∑
s=0

(−1)i+s(j+1)fi ◦s+1 μj.

Here

(20) μi ◦s+1 μj
def= μi

(
1⊗s
B ⊗ μj ⊗ 1⊗i−s−1

B

)
,

which “plugs” μj into the (s+ 1)st input of μi (see Figure 2), and similarly
for νi ◦s+1 νj and fi ◦s+1 μj.

5.4. The cochain complex (C∗
AsB→W

(T ; T ), δAsB→W). Suppose that T =
U ⊕ V as a 2-colored graded module and that g : U → V is a morphism
of associative algebras represented by the morphism ρ : AsB→W → EndT of
2-colored operads. Then the canonical isomorphism (14) says in this case,

C∗
AsB→W

(T ;T ) = ↑ Der(F(E),EndT )−∗ ∼= ↑ Hom{B,W}
Σ (E,EndT )−∗.

Under this isomorphism, an element θ ∈ Cn
AsB→W

(T ;T ) is uniquely deter-
mined by the tuple

(21) (θU , θV , θg)
def= (θ(μn+1), θ(νn+1), θ(fn)) ∈ Cn+1

GS (g; g).

This establishes a linear isomorphism

Cn
AsB→W

(T ;T ) ∼= Cn+1
GS (g; g),

θ ↔ (θU , θV , θg) .

Denote by δGS the differential on the graded module C∗
GS(g; g) induced

by δAsB→W . The identification (21) provides an isomorphism

(C∗
AsB→W

(T ;T ), δAsB→W)
∼=−→ (C∗+1

GS (g; g), δGS )

of cochain complexes.

Theorem 5.5. For θ ∈ Cn−1
AsB→W

(T ;T ), we have

δGS (θU , θV , θg) =(22) (
(−1)n+1bθU , (−1)n+1bθV , gθU − θV g

⊗n − (−1)nbθg

)
,
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in which b denotes the appropriate Hochschild differential. In particular,
there is a cochain complex isomorphism

(23)
(
C∗−1

AsB→W
(T ;T ), δAsB→W

) ∼= (C∗
GS(g; g), dGS )

given by

θ ∈ Cn−1
AsB→W

(T ;T ) �→
(
(−1)

n(n+1)
2 θU , (−1)

n(n+1)
2 θV , (−1)

(n−1)n
2 θg

)
.

Since (C∗
AsB→W

(T ;T ), δAsB→W = l1, l2, l3, . . . ) is, by Theorem 4.2, an L∞-
algebra, we can use the cochain complex isomorphism (23) to transfer the
higher brackets lk (k ≥ 2) to (C∗+1

GS (g; g), dGS ).

Corollary 5.6. There is an L∞-algebra structure (dGS = l1, l2, l3, . . . ) on
C∗+1

GS (g; g) governing deformations of the associative algebra morphism g.

Proof of Theorem 5.5. Since δAsB→W = l1 in the L∞-algebra and since the
degree of l1 is +1, we have

δGS (θU , θV , θg) = (l1(θ)(μn+1), l1(θ)(νn+1), l1(θ)(fn))

by the identification (21). Therefore, to prove (22), it suffices to show:

l1(θ)(μn+1) = (−1)n+1bθU ,

l1(θ)(νn+1) = (−1)n+1bθV , and

l1(θ)(fn) = gθU − θV g
⊗n − (−1)nbθg.

(24)

From the description (15) of lk, the computation of l1(θ)(μn+1) starts
with ∂(μn+1) (19a). As an E-decorated 2-colored directed (1, n+ 1)-graph,
the term μi ◦s+1 μj in ∂(μn+1) has two vertices, whose decorations are μi

and μj, see Figure 2. Therefore, the expression (15), when applied to the
current situation, gives

l1(θ)(μn+1) =(25) ∑
i+j =n+2

i,j ≥ 2

n+1−j∑
s=0

(−1)i+s(j+1) {θ(μi) ◦s+1 β(μj) + β(μi) ◦s+1 θ(μj)} .

Note that, since θ ∈ Cn−1
AsB→W

(T ;T ),

θ(μi) =

{
0 if i �= n,

θU if i = n,
and β(μj) = ρ(α(μj)) =

{
0 if j �= 2,
μU if j = 2,



372 Y. Frégier, M. Markl and D. Yau

where μU : U⊗2 → U is the multiplication on U . It follows that (25) re-
duces to

l1(θ)(μn+1) =
n−1∑
s=0

(−1)n+s(2+1)θU ◦s+1 μU +
1∑

s=0

(−1)2+s(n+1)μU ◦s+1 θU

= (−1)n+1μU(−, θU ) + μU (θU ,−)

+ (−1)n+1
n∑

s=1

(−1)sθU(Id⊗s−1
U ⊗μU ⊗ Id⊗n−s

U )

= (−1)n+1bθU ,

which is the first condition in (24).
The previous paragraph applies verbatim to l1(θ)(νn+1) (with νl replacing

μl everywhere), since the definition of ∂(ν∗) (19b) admits the same formula
as that of ∂(μ∗). Therefore, it remains to show the last condition in (24).

In ∂(fn) (19c), the term νl(fr1 ⊗ · · · ⊗ frl
) (respectively, fi ◦s+1 μj) is

an E-decorated 2-colored directed (1, n)-graph with l + 1 (respectively, 2)
vertices. Since

β(fj) = ρ(α(fj)) =

{
g : U → V if j = 1,
0 otherwise,

the same kind of analysis as above gives

l1(θ)(fn) = −θV g
⊗n − (−1)(n−1)(1+1)μV (θg ⊗ g) − (−1)n−1+1μV (g ⊗ θg)

−
n−2∑
s=0

(−1)n−1+s(2+1)θg ◦s+1 μU − (−1)1+0gθU

= gθU − θV g
⊗n

− (−1)n
{
μV (g ⊗ θg) + (−1)nμV (θg ⊗ g) +

n−1∑
s=1

(−1)sθg ◦s μU

}
= gθU − θV g

⊗n − (−1)nbθg.

Here μV : V ⊗2 → V denotes the multiplication on V . This establishes the
last condition in (24) and finishes the proof of Theorem 5.5. �

6. The higher brackets in C∗
AsB→W

(T ; T )

We keep the same setting and notations as in the previous section. The
purpose of this section is to describe the L∞-operations lk on C∗

AsB→W
(T ;T )

for k ≥ 2. The cases k = 2 (Theorem 6.2) and k ≥ 3 (Theorem 6.4)
are treated separately. As an immediate consequence of our explicit for-
mula for lk (k ≥ 3), we observe that, when applied to the tensor powers of
C≤q

AsB→W
(T ;T ) for some fixed q ≥ 0, only δAsB→W(T ;T ) = l1, l2, . . . , lq+2 can

be nontrivial (Corollary 6.5).
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6.1. The operation l2. First we deal with the case k = 2. Pick elements
θ ∈ Cn−1

AsB→W
(T ;T ) and ω ∈ Cm−1

AsB→W
(T ;T ). Under the identification (21), θ

and ω correspond to

(θU , θV , θg) ∈ Cn
GS(g; g) and (ωU , ωV , ωg) ∈ Cm

GS(g; g),

respectively.
Since l2 has degree 0, the element l2(θ, ω) lies in C(n+m−1)−1

AsB→W
(T ;T ). Under

the identification (21), l2(θ, ω) is uniquely determined by

(l2(θ, ω)(μn+m−1), l2(θ, ω)(νn+m−1), l2(θ, ω)(fn+m−2)) ∈ Cn+m−1
GS (g; g).

Theorem 6.2. With the notations above, we have

l2(θ, ω)(μn+m−1) =(26a)

−
n∑

s=1

(−1)(s+1)(m+1)θU ◦s ωU − (−1)n+m
m∑

s=1

(−1)(s+1)(n+1)ωU ◦s θU ,

l2(θ, ω)(νn+m−1) =(26b)

−
n∑

s=1

(−1)(s+1)(m+1)θV ◦s ωV − (−1)n+m
m∑

s=1

(−1)(s+1)(n+1)ωV ◦s θV ,

l2(θ, ω)(fn+m−2) =(26c)

−
n−1∑
s=1

(−1)(s+1)(m+1)θg ◦s ωU − (−1)n+m
m−1∑
s=1

(−1)(s+1)(n+1)ωg ◦s θU

+(−1)n
n∑

i=1

(−1)(i−1)mθV ◦i ωg +
m∑

j=1

(−1)jnωV ◦j θg

+(−1)nm+n+mθg � ωg + (−1)nmωg � θg.

In the above theorem, the notation is as in (20) and (21), except that

θV ◦i ωg = θV (g⊗i−1 ⊗ ωg ⊗ g⊗n−i),

ωV ◦j θg = ωV (g⊗j−1 ⊗ θg ⊗ g⊗m−j),

θg � ωg = μV (θg ⊗ ωg),

(27)

and similarly for ωg � θg, θg ◦s ωU , and ωg ◦s θU . In other words, θV ◦i ωg

is obtained by plugging ωg into the ith input of θV and g into the other
(n − 1) inputs of θV . Likewise, θg � ωg is simply the usual cup-product of
θg and ωg.

The proof will be given at the end of this section. Note that Gersten-
haber and Schack did construct a bracket [−,−] on their cochain complex
(C∗

GS(g; g), dGS ) (see, e.g., the graded commutator bracket of the operation
[14, p. 11 (9)] or [16, pp. 158-159]). It is straightforward to check that the
linear isomorphism (23) is compatible with [−,−] and l2 as well.
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6.3. The operations lk for k ≥ 3. Now consider the cases k ≥ 3. Pick
elements θs ∈ Cns−1

AsB→W
(T ;T ) (1 ≤ s ≤ k). Each θs corresponds, via the

identification (21), to the tuple

(θs,U , θs,V , θs,g) = (θs(μns), θs(νns), θs(fns−1)) ∈ Cns
GS(g; g).

Since lk has degree 2 − k, the element lk(θ1, . . . , θk) lies in Ct−1
AsB→W

(T ;T ),
where

t = 3 − 2k +
k∑

s=1

ns.

Under the identification (21), lk(θ1, . . . , θk) is uniquely determined by

(lk(θ1, . . . , θk)(μt), lk(θ1, . . . , θk)(νt), lk(θ1, . . . , θk)(ft−1)) ∈ Ct
GS(g; g).

Now we extend the first ◦i operation in (27) as follows. Fix s ∈ {1, . . . , k}.
Let

a = (a1, . . . , âs, . . . , ak)

be a (k − 1)-tuple of distinct points in the set {1, . . . , ns}. Then we define

(28) θs,V ◦a (θ1,g, . . . , θ̂s,g, . . . , θk,g) ∈ Hom(U⊗t−1, V )

to be the element obtained by plugging θj,g (1 ≤ j ≤ k, j �= s) into the ajth
input of θs,V and g into the other (ns − (k − 1)) inputs of θs,V . Also define
the sign

(−1)a = (−1)
P

1≤i<j≤ns
ri(rj+1),

where

ra =

{
|θj | = nj − 1 if a = aj ∈ {a1, . . . , âs, . . . , ak},
1 otherwise.

Theorem 6.4. For k ≥ 3 and notations as above, we have

lk(θ1, . . . , θk)(μt) = 0,(29a)

lk(θ1, . . . , θk)(νt) = 0, and(29b)

lk(θ1, . . . , θk)(ft−1) =(29c)

− (−1)ν(θ1,...,θk)
k∑

s=1

∑
a

(−1)a θs,V ◦a (θ1,g, . . . , θ̂s,g, . . . , θk,g).

Here ν(θ1, . . . , θk) is defined in (16) and, for each s, a = (a1, . . . , âs, . . . , ak)
runs through all the (k − 1)-tuples of distinct points in the set {1, . . . , ns}.
Corollary 6.5. Suppose that k ≥ 3 and that θs ∈ Cns−1

AsB→W
(T ;T ), 1≤s≤k. If

ns < k − 1 for 1 ≤ s ≤ k,

then
lk(θ1, . . . , θk) = 0.
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In other words, for each q ≥ 0 and any k ≥ q + 3, the operation

lk :
(
C≤q

AsB→W
(T ;T )

)⊗k → C∗
AsB→W

(T ;T )

is trivial.

Proof of Theorem 6.2. To prove (26a), first note that

∂(μn+m−1) =
∑

i+j = n+m
i,j ≥ 2

n+m−1−j∑
s=0

(−1)i+s(j+1)μi ◦s+1 μj.

Since the E-decorated 2-colored directed (1, n+m− 1)-graph μi ◦s+1 μj has
two vertices, we have
l2(θ, ω)(μn+m−1)

= (−1)|θ|
∑

i+j =n+m
i,j ≥ 2

n+m−1−j∑
s=0

(−1)i+s(j+1){θ(μi)◦s+1ω(μj) + ω(μi)◦s+1θ(μj)}

= (−1)n−1

(
n−1∑
s=0

(−1)n+s(m+1)θU ◦s+1ωU +
m−1∑
s=0

(−1)m+s(n+1)ωU ◦s+1θU

)
.

This is exactly (26a) after a shift of the summation indexes.
Since ∂(νn+m−1) has the same defining formula as ∂(μn+m−1) (with νl re-

placing μl everywhere), the reasoning in the previous paragraph also applies
to l2(θ, ω)(νn+m−1) to establish (26b).

To prove (26c), first note that

∂(fn+m−2) = −
n+m−2∑

l=2

∑
r1+···+rl = n+m−2

(−1)
P

1≤i<j≤l ri(rj+1)νl(fr1⊗· · ·⊗frl
)(30)

−
∑

i+j =n+m−1
i≥1, j≥2

n+m−2−j∑
s=0

(−1)i+s(j+1)fi ◦s+1 μj.

An argument essentially identical to the first paragraph of this proof can be
applied to the terms fi ◦s+1 μj . This gives rise to the sums

(31) −
n−1∑
s=1

(−1)(s+1)(m+1)θg ◦s ωU − (−1)n+m
m−1∑
s=1

(−1)(s+1)(n+1)ωg ◦s θU

in l2(θ, ω)(fn+m−2).
In (30), the E-decorated 2-colored directed (1, n + m − 2)-graph Γ =

νl(fr1 ⊗ · · ·⊗ frl
) has l+1 vertices, say, vtop, v1

bot, . . . , v
l
bot, with decorations

νl, fr1, . . . , frl
, respectively. In this graph Γ, the only pairs of distinct ver-

tices are (vtop, v∗bot), (v∗bot, vtop), and (vi
bot, v

j
bot) (i �= j). The corresponding

elements in l2(θ, ω)(fn+m−2) (without the signs) are:
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(1) θ(νl)(β(fr1) ⊗ · · · ⊗ ω(fri) ⊗ · · · β(frl
)) (1 ≤ i ≤ l), which is 0 unless

l = n, ri = m− 1, and all the other r∗ = 1;
(2) ω(νl)(β(fr1)⊗· · ·⊗θ(frj)⊗· · ·⊗β(frl

)) (1 ≤ j ≤ l), which is 0 unless
l = m, rj = n− 1, and all the other r∗ = 1;

(3) β(νl)(β(fr1) ⊗ · · · ⊗ θ(fri) ⊗ · · · ⊗ ω(frj) ⊗ · · · ⊗ β(frl
)), which is 0

unless l = 2 and (r1, r2) = (n − 1,m− 1);
(4) β(νl)(β(fr1) ⊗ · · · ⊗ ω(fri) ⊗ · · · ⊗ θ(frj) ⊗ · · · ⊗ β(frl

)), which is 0
unless l = 2 and (r1, r2) = (m− 1, n− 1).

Taking all the signs into account, we obtain in l2(θ, ω)(fn+m−2) the following
sums:

− (−1)|θ|
n∑

i=1

(−1)(i−1)(m−1+1)θV (g⊗i−1 ⊗ ωg ⊗ g⊗n−i)

− (−1)|θ|
m∑

j=1

(−1)(j−1)(n−1+1)ωV (g⊗j−1 ⊗ θg ⊗ g⊗m−j)

+ (−1)|θ|(−1)(n−1)(m−1) {(−1)nμV (θg ⊗ ωg) + (−1)mμV (ωg ⊗ θg)} .

(32)

The required result (26c) is now obtained by combining (31) and (32). This
finishes the proof of Theorem 6.2. �

Proof of Theorem 6.4. The computation of lk(θ1, . . . , θk)(μt) involves the
choice of k ≥ 3 distinct vertices in the graphs μi ◦s+1 μj, each of which has
only two vertices. It follows that

lk(θ1, . . . , θk)(μt) = 0,

which is (29a). The same argument establishes (29b). Moreover, the same
reasoning also shows that the terms fi ◦s+1 μj in ∂(ft−1) cannot contribute
nontrivially to lk(θ1, . . . , θk)(ft−1).

The remaining statement (29c) is now proved by an argument very similar
to the last paragraph in the proof of Theorem 6.2. There is one major
difference: In order for the term νl(fr1 ⊗ · · · ⊗ frl

) in ∂(ft−1) to contribute
nontrivially to lk(θ1, . . . , θk)(ft−1), the vertex vtop (with decoration νl) must
be chosen as one of the k distinct vertices because k ≥ 3 and β(νl) = 0 for
l ≥ 3. It follows that each nontrivial term in lk(θ1, . . . , θk)(ft−1) has the
form (28), except for the sign, which is

−(−1)ν(θ1,...,θk)(−1)a.

The desired condition (29c) now follows. �

7. Deformation complex of a Lie algebra
morphism

In this section and Section 8, we give a second illustration of the L∞-
deformation theory of colored PROP algebras (Section 4) in the case of Lie
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algebra morphisms. The parallelism of the analysis in the associative and
Lie cases shows the unifying character of this approach.

Let g : U → V be a Lie algebra morphism, and set T = U ⊕ V as a 2-
colored graded module. Let LieB→W denote the 2-colored operad encoding
Lie algebra morphisms. The purposes of this section are (i) to express the dif-
ferential δLieB→W

in C∗
LieB→W

(T ;T ) (11) in terms of the Chevalley–Eilenberg
differential (Theorem 7.5), and (ii) to observe that the cochain complex
(C∗

LieB→W
(T ;T ), δLieB→W

) is isomorphic to the S-cohomology cochain com-
plex (Λ∗(U, V ),Δ∗) of the morphism g [9, 17] (Corollary 7.6). This isomor-
phism allows us to transfer the L∞-structure on (C∗

LieB→W
(T ;T ), δLieB→W

)
to the S-cohomology cochain complex (Λ∗(U, V ),Δ∗) (Corollary 7.7).

7.1. Background. The question of deformation of morphisms of Lie alge-
bras was treated for the first time by Nijenhuis and Richardson in [42]. The
approach chosen was not the classical method of Gerstenhaber [13], but the
use of the formalization of deformation theory in terms of graded algebras
on the space of cochains developed by Nijenhuis and Richardson in [41]. The
starting point was then the graded Lie algebra on cochains and the differen-
tial which were guessed, the deformation theory being only a corollary. As
drawbacks, the algebras were not allowed to be deformed and the notion of
equivalent deformations was not natural. In order to cure these two prob-
lems, the first author reexamined this problem from the classical point of
view of Gerstenhaber and introduced in [9] the S-cohomology, concluding
his work by addressing the question of the description of a structure for its
deformation complex. Later, in [17], Gerstenhaber, Giaquinto and Schack
showed that this construction is completely parallel to the one given in [14]
which leads to Diagram cohomology of associative algebras, and hence gave
the diagrammatic description of S-cohomology.

7.2. The S-Cohomology complex (Λn(U, V ), Δn). Here we recall the
S-cochain complex (Λ∗(U, V ),Δ∗) [9]. We modify slightly the notations from
[9] to be coherent with the present notations.

Fix a morphism g : U → V of Lie algebras. We also consider V as a left
U -module via g. Then

Λn(U, V ) def= Hom(U∧n, U) ⊕ Hom(V ∧n, V ) ⊕ Hom(U∧n−1, V )

for n ≥ 1. We will also denote a typical element in Λn(U, V ) by (xU , xV , xg)
with xU ∈ Hom(U∧n, U), xV ∈ Hom(V ∧n, V ), and xg ∈ Hom(U∧n−1, V ).
Its differential is defined as

(33) Δn(xU , xV , xg)
def= (bxU , bxV , (−1)n−1gxU − (−1)n−1xV g

⊗n + bxg),

where b denotes the Chevalley–Eilenberg differential in one of the spaces
Hom(U∧∗, U), Hom(V ∧∗, V ), or Hom(U∧∗, V ).
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7.3. The minimal model of LieB→W . Here we construct the minimal
model of the 2-colored operad LieB→W that encodes Lie algebra morphisms.
This definition is very similar to the one in the associative category, except
for the definition of the differential which differs slightly. Moreover one has
to be careful with respect to the symmetry which is a new feature of the Lie
category.

The 2-colored operad LieB→W can be represented as

LieB→W =
LieB ∗LieW ∗F(f)

(fμ = νf⊗2)
,

where μ and ν denote the generators in LieB(1, 2) and LieW (1, 2), respec-
tively, which encode the multiplications in the domain and the target.

Let E be the 2-colored Σ-bimodule with the following skew symmetric
generators:

μn : B⊗n → B of degree n− 2 and biarity (1, n) (n ≥ 2)

νn : W⊗n →W of degree n− 2 and biarity (1, n) (n ≥ 2), and

fn : B⊗n →W of degree n− 1 and biarity (1, n) (n ≥ 1).

Then the minimal model for LieB→W is

(F(E), ∂) α−→ LieB→W ,

where

α(μn) =

{
μ if n = 2,
0 otherwise,

α(νn) =

{
ν if n = 2,
0 otherwise,

and

α(fn) =

{
f if n = 1,
0 otherwise.

The differential ∂ is given by:

∂(μn) =
∑

i+j = n+1
i,j ≥ 2

(−1)j(i−1)
∑

σ∈Sj,i−1

sgn(σ)μi ◦ (μj ⊗ Id⊗i−1
) ◦ σ,(34a)

∂(νn) =
∑

i+j = n+1
i,j ≥ 2

(−1)j(i−1)
∑

σ∈Sj,i−1

sgn(σ)νi ◦ (νj ⊗ Id⊗i−1
) ◦ σ,(34b)

∂(fn) =
n∑

l=2

∑
r1+···+rl=n
r1 ≤ ···≤ rl

(−1)ε
∑

σ∈S<
r1,...,rl

sgn(σ)νl(fr1 ⊗ · · · ⊗ frl
) ◦ σ(34c)

−
∑

i+j = n+1
i≥ 1,j ≥ 2

(−1)j(i−1)
∑

σ∈Sj,i−1

sgn(σ)fi ◦ (μj ⊗ Id⊗i−1
) ◦ σ,
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where Sj,i−1 denotes the set of j, i − 1 unshuffles and S<
r1,...,rl

the set of
r1, . . . , rl-unshuffles satisfying σ(r1 + · · ·+ ri−1 + 1) < σ(r1 + · · ·+ ri + 1) if
ri = ri+1. The sign in the first line of (34c) is given by

(35) ε = ε(r1, . . . , rl) :=
l(l − 1)

2
+

l−1∑
i=1

ri(l − i).

It is also assumed in this notation that ri ≤ ri+1. We refer to [10] for the
proof that it is a minimal model.

One may alternatively write the above formulas with the summations run-
ning over the entire symmetric groups, with coefficients involving factorials.
This would reflect the convention in describing the morphism of L∞-algebras
used for instance in [22]. The graded anti-symmetry of the structure oper-
ations allows one to bring these formulas into the above ‘reduced’ form.

7.4. The cochain complex (C∗
LieB→W

(T ; T ), δLieB→W ). Suppose that
T = U⊕V as a 2-colored graded module and that g : U → V is a morphism of
Lie algebras represented by the morphism ρ : LieB→W → EndT of 2-colored
operads. Then the canonical isomorphism (14) says in this case,

C∗
LieB→W

(T ;T ) = ↑ Der(F(E),EndT )−∗ ∼= ↑ Hom{B,W}
Σ (E,EndT )−∗.

Under this isomorphism, an element θ ∈ Cn
LieB→W

(T ;T ) is determined by
the tuple

(36) (θU , θV , θg)
def= (θ(μn+1), θ(νn+1), θ(fn)) ∈ Λn+1(U, V ).

This establishes a linear isomorphism

Cn
LieB→W

(T ;T ) ∼= Λn+1(U, V ),

θ ↔ (θU , θV , θg) .

Denote by δ the differential on the graded module Λ∗(U, V ) induced by
δLieB→W

. The identification (36) provides an isomorphism

(37) (C∗
LieB→W

, δLieB→W
)

∼=−→ (Λ∗+1(U, V ), δ)

of cochain complexes.

Theorem 7.5. For θ ∈ Cn−1
LieB→W

(T ;T ), we have

(38) δ (θU , θV , θg) =
(
bθU , bθV ,−bθg + θV g

⊗n − gθU

)
,

in which b denotes the appropriate Chevalley–Eilenberg differential.

One can then compare this complex (38) with the S-cohomology (33).

Corollary 7.6. There is a cochain complex isomorphism

π = (π∗, π∗, π̃∗) : (Λ∗(U, V ), δ)
∼=−→ (Λ∗(U, V ),Δ)
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given by {
πn = Id,
π̃n = (−1)n−1 Id .

Combined with (37), we obtain an isomorphism

(39) (C∗
LieB→W

(T ;T ), δLieB→W
)

∼=−→ (Λ∗(U, V ),Δ)

of cochain complexes.

Since (C∗
LieB→W

(T ;T ), δLieB→W
= l1, l2, l3, . . . ) is an L∞-algebra (Theo-

rem 4.2), we can use the cochain complex isomorphism (39) to transfer the
higher brackets lk (k ≥ 2) to (Λ∗(U, V ),Δ).

Corollary 7.7. There is an L∞-algebra structure (Δ = l1, l2, l3, . . . ) on
Λ∗(U, V ) capturing deformations of the Lie algebra morphism g.

Proof of Theorem 7.5. Since δ = l1 in the L∞-algebra and since the de-
gree of l1 is +1, we have

δ (θU , θV , θg) = (l1(θ)(μn+1), l1(θ)(νn+1), l1(θ)(fn))

by the identification (36). Therefore, to prove (38), it suffices to show:

l1(θ)(μn+1) = bθU ,

l1(θ)(νn+1) = bθV , and

l1(θ)(fn) = −bθg + θV g
⊗n − gθU .

(40)

From the description (15) of the operation lk, the computation of the
term l1(θ)(μn+1) starts with ∂(μn+1) (34a). As an E-decorated 2-colored
directed (1, n + 1)-graph, the term μi ◦s+1 μj in ∂(μn+1) has two vertices,
whose decorations are μi and μj. Therefore, the expression (15), when
applied to the current situation and using notation (20), gives

l1(θ)(μn+1) =(41) ∑
i+j = n+2

i,j ≥ 2, σ∈Sj,i−1

(−1)j(i−1)sgn(σ) {θ(μi) ◦1 β(μj) + β(μi) ◦1 θ(μj)} ◦ σ.

Note that, since θ ∈ Cn−1
LieB→W

(T ;T ),

θ(μi) =

{
0 if i �= n,

θU if i = n,
and β(μj) = ρ(α(μj)) =

{
0 if j �= 2,
μU if j = 2,
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where μU : U∧2 → U is the multiplication on U . It follows that (41) re-
duces to

l1(θ)(μn+1) = (−1)2(n−1)
∑

σ∈S2,n−1

sgn(σ)(θU ◦1 μU ) ◦ σ
︸ ︷︷ ︸

(a)

+ (−1)n(2−1)
∑

σ∈Sn,1

sgn(σ)(μU ◦1 θU ) ◦ σ
︸ ︷︷ ︸

(b)

.

In particular, applied to elements of U , (a) and (b) give:

(a)(x1, ..., xn+1) = (−1)s+t−1
∑

1≤s<t≤n+1

θU (μU (xs, xt), x1, ..., x̂s, ..., x̂t, ..., xn+1),

(b)(x1, ..., xn+1) = (−1)n(2−1)
∑

1≤s≤n+1

(−1)n+1−sμU (θU (x1, ..., x̂s, ..., xn+1), xs)

= (−1)−s
∑

1≤s≤n+1

μU (xs, θU (x1, ..., x̂s, ..., xn+1)).

Therefore, by the definition of the Chevalley–Eilenberg differential, we have

l1(θ)(μn+1) = bθU ,

which is the first condition in (40).
The previous paragraph applies verbatim to l1(θ)(νn+1) (with νl replacing

μl everywhere), since the definition of ∂(ν∗) (34b) admits the same formula
as that of ∂(μ∗). Therefore, it remains to show the last condition in (40).

In ∂(fn), the term νl(fr1⊗· · ·⊗frl
) (respectively, fi◦1μj) is an E-decorated

2-colored directed (1, n)-graph with l + 1 (respectively, 2) vertices. Since

β(fj) = ρ(α(fj)) =

{
g : U → V if j = 1,
0 otherwise,

the same kind of analysis as above gives

l1(θ)(fn) =
∑

σ∈S<
1,...,1

sgn(σ)θV (g⊗n) ◦ σ
︸ ︷︷ ︸

(s1)

+
∑

σ∈S1,n−1

sgn(σ)μV (g ⊗ θg) ◦ σ︸ ︷︷ ︸
(s2)

− (−1)2(n−1)
∑

σ∈S2,n−2

sgn(σ)θg(μU ⊗ Id⊗n−2
) ◦ σ

︸ ︷︷ ︸
(s3)

− (−1)n(1−1)
∑

σ∈Sn,0

sgn(σ)gθU ◦ σ
︸ ︷︷ ︸

(s4)

.

(42)
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We now apply the middle summands of (42) on elements and rearrange
them in order to recognize the Chevalley–Eilenberg differential. We have

(s2)(x1 ⊗·· ·⊗ xn) =
∑

1≤s≤n

(−1)s−1μV (g ⊗ θg)(xs ⊗ x1 ⊗·· ·⊗ x̂s ⊗·· ·⊗ xn),

so

((s2) + (s3))(x1 ⊗ · · · ⊗ xn) =

+
∑

1≤s≤n

(−1)s−1μV (g(xs), θg(x1, . . . , x̂s, . . . , xn))

−
∑

1≤s<t≤n

(−1)s−1+t−2θg(μU (xs, xt), x1, . . . , x̂s, . . . , x̂t, . . . , xn)

= −bθg(x1 ⊗ · · · ⊗ xn).

Considering the fact that both Sn,0 and S<
1,...,1 consist of a single element,

the trivial permutation, one finally gets

l1(θ)(fn) = −bθg + θV g
⊗n − gθU ,

which ends the proof of Theorem 7.5. �

8. The higher brackets in C∗
LieB→W

(T ; T )

We keep the same setting and notations as in the previous section. The
purpose of this section is to make the L∞-operations lk on C∗

LieB→W
(T ;T )

explicit for k ≥ 2. The cases k = 2 (Theorem 8.2) and k ≥ 3 (Theorem 8.4)
are treated separately. As an immediate consequence of our explicit for-
mula for lk (k ≥ 3), we observe that, when applied to the tensor powers of
C≤q

LieB→W
(T ;T ) for some fixed q ≥ 0, only δLieB→W

(T ;T ) = l1, l2, . . . , lq+2

can be nontrivial (Corollary 8.5).

8.1. The operation l2. First we deal with the case k = 2. Pick elements
θ ∈ Cn

LieB→W
(T ;T ) and ω ∈ Cm

LieB→W
(T ;T ). Under the identification (36),

θ and ω correspond to

(θU , θV , θg) ∈ Λn(U, V ) and (ωU , ωV , ωg) ∈ Λm(U, V ),

respectively.
Since l2 has degree 0, the element l2(θ, ω) lies in Cn+m

LieB→W
(T ;T ). Under

the identification (36), l2(θ, ω) is determined by

(l2(θ, ω)(μn+m+1), l2(θ, ω)(νn+m+1), l2(θ, ω)(fn+m)) ∈ Λn+m(U, V ).

Theorem 8.2. With the notations above, we have

l2(θ, ω)(μn+m+1) = (−1)mn

( ∑
σ∈Sm+1,n

sgn(σ)θU ◦1 ωU ◦ σ(43a)
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+ (−1)m+n
∑

σ∈Sn+1,m

sgn(σ)ωU ◦1 θU ◦ σ
)
,

l2(θ, ω)(νn+m+1) = (−1)mn

( ∑
σ∈Sm+1,n

sgn(σ)θV ◦1 ωV ◦ σ(43b)

+ (−1)m+n
∑

σ∈Sn+1,m

sgn(σ)ωV ◦1 θV ◦ σ
)
,

l2(θ, ω)(fn+m) =(43c)

(−1)m(n−1)

( ∑
σ∈Sm+1,n−1

sgn(σ)θg◦1ωU ◦σ +
∑

σ∈Sn+1,m−1

sgn(σ)ωg◦1θU ◦σ
)

(−1)n
( ∑

σ∈S<
1,...,1,m

sgn(σ)θV (g⊗n⊗ωg)◦σ+
∑

σ∈S<
1,...,1,n

sgn(σ)ωV (g⊗m⊗θg)◦σ
)

−
∑

σ∈S<
n,m

sgn(σ)μV (θg⊗ωg)◦σ−(−1)n+m
∑

σ∈S<
m,n

sgn(σ)μV (ωg⊗θg)◦σ.

In the above theorem, we use the notation of (20) and of S< as defined
after (34c). One should remark that depending on whether m < n or n < m,
the first or the second summand in the last bracketed expression above is
zero. The proof of the theorem will be given at the end of this section.

8.3. The operations lk for k ≥ 3. Now consider the cases k ≥ 3. Pick
elements θs ∈ Cns

LieB→W
(T ;T ) (1 ≤ s ≤ k). Each θs corresponds, via the

identification (36), to the tuple

(θs,U , θs,V , θs,g) = (θs(μns+1), θs(νns+1), θs(fns)) ∈
ns∧

(U ;V ).

Since lk has degree 2 − k, the element lk(θ1, . . . , θk) lies in Ct
LieB→W

(T ;T ),
where

t = −k + 2 +
k∑

s=1

ns.

Under the identification (36), lk(θ1, . . . , θk) is determined by

(lk(θ1, . . . , θk)(μt+1), lk(θ1, . . . , θk)(νt+1), lk(θ1, . . . , θk)(ft)) ∈
t∧

(U ;V ).

Now we extend the ◦i operation as follows. Fix s ∈ {1, . . . , k}. Let

a′ = (a1, . . . , âs, . . . , ak)

be a (k−1)-tuple of distinct points in the set {1, . . . , ns+1}. Then we define

θs,V ◦a′ (θ1,g, . . . , θ̂s,g, . . . , θk,g) ∈ Hom(U⊗t, V )



384 Y. Frégier, M. Markl and D. Yau

to be the element obtained by plugging θj,g (1 ≤ j ≤ k, j �= s) into the ajth
input of θs,V and g into the other (ns + 2 − k) inputs of θs,V . Also define
the coefficient

(−1)a
′
= (−1)

(ns+1)(ns)
2

+
P

i=ns+1 ri(ns+1−i),

where

ra =

{
|θj | = nj if a = aj ∈ {a1, . . . , âs, . . . , ak},
1 otherwise.

Let us remark that the set {r1, . . . , rns+1} satisfies r1 + · · ·+ rns+1 = t. One
says that a′ is admissible if this set also satisfies r1 ≤ · · · ≤ rns+1. One
denotes by A the set of admissible a′.

Theorem 8.4. For k ≥ 3 and notations as above, we have

lk(θ1, . . . , θk)(μt+1) = 0,

lk(θ1, . . . , θk)(νt+1) = 0, and

lk(θ1, . . . , θk)(ft) =

(−1)ν(θ1,...,θk)
k∑

s=1

∑
a′∈A

∑
σ∈S<

r1,...,rns+1

sgn(σ)(−1)a
′
θs,V ◦a′ (θ1,g, ..., θ̂s,g, ..., θk,g)◦σ,

with ν(θ1, . . . , θk) defined as in (16), and S< defined after (34c).

Corollary 8.5. Suppose k ≥ 3 and θs ∈ Cns
LieB→W

(T ;T ) (1 ≤ s ≤ k). If

ns < k − 1 for 1 ≤ s ≤ k,

then

lk(θ1, . . . , θk) = 0.

In other words, for each q ≥ 0 and any k ≥ q + 3, the operation

lk :
(
C≤q

LieB→W
(T ;T )

)⊗k → C∗
LieB→W

(T ;T )

is trivial.

Proof of Theorem 8.2. To prove (43a), first note that

∂(μn+m+1) =
∑

i+j =n+m+2
i,j ≥ 2

(−1)j(i−1)
∑

σ∈Sj,i−1

sgn(σ)μi ◦ (μj ⊗ Idi−1) ◦ σ.
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Since the E-decorated 2-colored directed (1, n+m+1)-graph μi◦(μj⊗Idi−1)
has two vertices, we have

l2(θ, ω)(μn+m+1) =

(−1)|θ|
∑

i+j = n+m+2
i,j ≥ 2

(−1)j(i−1)
∑

σ∈Sj,i−1

sgn(σ)

{
θ(μi) ◦ (ω(μj) ⊗ g⊗

i−1
) + ω(μi) ◦ (θ(μj) ⊗ g⊗

i−1
)
}
◦ σ

= (−1)mn
∑

σ∈Sm+1,n

sgn(σ)θU ◦ (ωU ⊗ g⊗
n
) ◦ σ

+(−1)(n+1)m+n
∑

σ∈Sn+1,m

sgn(σ)ωU ◦ (θU ⊗ g⊗
m

) ◦ σ.

Since ∂(νn+m+1) has the same defining formula as ∂(μn+m+1) (with νl re-
placing μl everywhere), the reasoning in the previous paragraph also applies
to l2(θ, ω)(νn+m+1) to establish (43b).

To prove (43c), first note that

∂(fn+m) =
n+m∑
l=2

∑
r1+···+rl=n+m

r1 ≤···≤ rl

(−1)ε
∑

σ∈S<
r1,...,rl

sgn(σ)νl(fr1 ⊗ · · · ⊗ frl
) ◦ σ

−
∑

i+j = n+m+1
i≥ 1,j ≥ 2

(−1)j(i−1)
∑

σ∈Sj,i−1

sgn(σ)fi ◦ (μj ⊗ Id⊗i−1
) ◦ σ,

where ε is as in (35).
An argument essentially identical to the first paragraph of this proof can

be applied to the terms fi ◦ (μj ⊗ Idi−1). This gives rise to the sums

(−1)m(n−1)
∑

σ∈Sm+1,n−1

sgn(σ)θg ◦ (ωU ⊗ g⊗
n−1

) ◦ σ

+ (−1)m(n−1)
∑

σ∈Sn+1,m−1

sgn(σ)ωg ◦ (θU ⊗ g⊗
m−1

) ◦ σ
(45)

in l2(θ, ω)(fn+m).
In (45), the E-decorated 2-colored directed (1, n +m)-graph

Γ = νl(fr1 ⊗ · · · ⊗ frl
)

has l+1 vertices, say, vtop, v1
bot, . . . , v

l
bot, with decorations νl, fr1, . . . , frl

, re-
spectively. In this graph Γ, the only pairs of distinct vertices are (vtop, v∗bot),
(v∗bot, vtop), and (vi

bot, v
j
bot) (i �= j). The corresponding elements (without

the signs) in l2(θ, ω)(fn+m) are:
(1) θ(νl)(β(fr1) ⊗ · · · ⊗ ω(fri) ⊗ · · · β(frl

)) (1 ≤ i ≤ l), which is 0 unless
l = n+ 1, rn+1 = m, and all the other r∗ = 1;
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(2) ω(νl)(β(fr1)⊗· · ·⊗θ(frj)⊗· · ·⊗β(frl
)) (1 ≤ j ≤ l), which is 0 unless

l = m+ 1, rm+1 = n, and all the other r∗ = 1;
(3) β(νl)(β(fr1) ⊗ · · · ⊗ θ(fri) ⊗ · · · ⊗ ω(frj) ⊗ · · · ⊗ β(frl

)), which is 0
unless l = 2 and (r1, r2) = (n,m);

(4) β(νl)(β(fr1) ⊗ · · · ⊗ ω(fri) ⊗ · · · ⊗ θ(frj) ⊗ · · · ⊗ β(frl
)), which is 0

unless l = 2 and (r1, r2) = (m,n).
Taking all the signs into account, we also obtain the following sums in
l2(θ, ω)(fn+m):

(−1)|θ|
∑

σ∈S<
1,...,1,m

sgn(σ)θV (g⊗n ⊗ ωg) ◦ σ,

(−1)|θ|
∑

σ∈S<
1,...,1,n

sgn(σ)ωV (g⊗m ⊗ θg) ◦ σ,

(−1)|θ|(−1)1+n
∑

σ∈S<
n,m

sgn(σ)μV (θg ⊗ ωg) ◦ σ,

(−1)|θ|(−1)1+m
∑

σ∈S<
m,n

sgn(σ)μV (ωg ⊗ θg) ◦ σ.

(46)

The required result (43c) is now obtained by combining (45) and (46). This
finishes the proof of Theorem 8.2. �

Proof of Theorem 8.4. This proof is identical to the proof of Theorem 6.4
if one shifts the indices, replacing t by t + 1, s + 1 by 1, and (−1)a by
−(−1)a

′ �

9. Deformations of diagrams

Recall that a diagram in a category C is a functor F : D → C from a
small category D to C; the category D is called the shape of the diagram
F. Diagrams of shape D can equivalently be described as algebras over an
Ob(D)-colored operad D which has only elements of arity 1 (one input, one
output) and

D
(
d

c

)
:= MorD(c, d), for c, d ∈ Ob(D).

The operadic composition in D equals the categorial composition of D. It
is clear that D-diagrams in C are precisely Ob(D)-colored D-algebras in C.

The Ob(D)-colored operad D as defined above lives in the category of
sets. Since we will be primarily interested in diagrams in the category of
k-vectors spaces, we may as well consider the k-linear operad generated by
D or assume from the very beginning that D is given by

D
(
d

c

)
:= Spank (MorD(c, d)) , for c, d ∈ Ob(D),
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where Spank(−) denotes the k-linear span. We will call colored operads of
the above form diagram operads.

Example 9.1. In this example we describe the diagram operad Iso associ-
ated to the category Iso consisting of two objects and two mutually inverse
maps between these objects. Let f : B → W, g : W → B be two degree-zero
generators. Then

Iso :=
F(f, g)

(fg = 1W, gf = 1B)
,

where F(f, g) denotes the free {B, W}-colored operad on the set {f, g} and
(fg = 1W, gf = 1B) the operadic ideal generated by fg − 1W and gf − 1B.

Algebras over Iso consist of two mutually inverse degree zero chain maps
F : U → V and G : V → U . In other words, Iso-algebras are diagrams

(47)
�

F

G

�
VU , FG = 1 and GF = 1.

A typical diagram operad D does not admit a minimal model. For in-
stance, a hypothetical minimal model of the operad Iso from Example 9.1
shall have generators f0, g0 for f and g, but also a generator, say f1, whose
boundary kills the difference f0g0 − 1W, i.e. satisfying

f0g0 − 1W = ∂f1.

The “constant” 1W however defies any thinkable notion of minimality.
This phenomenon is related to the fact that a typical diagram operad D,

such as Iso, is not augmented, by which we mean that it does not admit
an operad morphism D → i to the terminal Ob(D)-colored operad i. In
the next example we will see that sometimes there still exists a cofibrant
resolution whose size is that of a minimal model.

Example 9.2. A small cofibrant resolution of Iso was described in [33,
Theorem 9]. It is a graded colored differential operad

Riso := (F(f0, f1, . . . ; g0, g1, . . . ), d),

with generators of two types,

(i) generators {fn}n≥0, deg(fn) = n,

{
fn : B → W if n is even,
fn : B → B if n is odd,

(ii) generators {gn}n≥0, deg(gn) = n,

{
gn : W → B if n is even,
gn : W → W if n is odd.

The differential ∂ is given by

∂f0 := 0, ∂g0 := 0,

∂f1 := g0f0 − 1, ∂g1 := f0g0 − 1
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and, on remaining generators, by the formula

∂f2m :=
∑

0≤i<m

(f2if2(m−i)−1 − g2(m−i)−1f2i), m ≥ 0,

∂f2m+1 :=
∑

0≤j≤m

g2jf2(m−j) −
∑

0≤j<m

f2j+1f2(m−j)−1, m ≥ 1,

∂g2m :=
∑

0≤i<m

(g2ig2(m−i)−1 − f2(m−i)−1g2i), m ≥ 0,

∂g2m+1 :=
∑

0≤j≤m

f2jg2(m−j) −
∑

0≤j<m

g2j+1g2(m−j)−1, m ≥ 1.

The above resolution is “minimal’ in the following sense. Consider a one-
parametric family Isoε of {B, W}-colored operads defined by

Isoε :=
F(f, g)

(fg = ε · 1W, gf = ε · 1B) ,

where ε is a formal parameter. The operad Iso0 clearly describes couples
(F,G) of maps F : U → V and G : V → U such that FG = 0 and GF = 0,
while Isoε is, at a generic ε, isomorphic to the operad Iso. In other words,
Iso is a deformation of Iso0. It turns out that Iso0 is an augmented colored
operad that admits a minimal model whose generators are the same as the
generators of Riso; see [33, Theorem 10].

An obvious generalization of the machinery developed in the previous
sections applies verbatim to resolutions of diagram operads. One typically
gets an L∞-algebra with a nontrivial ‘curvature’ l0; see [36, Section 5] for the
terminology and definitions. The corresponding Maurer–Cartan equation
then involves the l0-term.

Example 9.3. In this example we describe the L∞-deformation complex
(C∗

Iso(T, T ), l0, l1, l2, . . . ) for a diagram T as in (47). As we already observed,
this deformation complex has, as a consequence of the presence of 1 in the
formulas for ∂f1 and ∂g1 in Riso, a nontrivial l0. On the other hand, since the
differential ∂ on the generators of Riso does not have higher than quadratic
terms, all lk’s are trivial, for k ≥ 3.

Formula (11) applied to the resolution Riso from Example 9.2 gives the
underlying cochain complex

Cn
Iso(T, T ) =

{
Hom(U, V ) ⊕ Hom(V,U) for n ≥ 1 odd, and
Hom(U,U) ⊕ Hom(V, V ) for n ≥ 1 even.

Formula (15) makes sense also for k = 0 and describes l0 ∈ C2
Iso(T, T ) as

the direct sum of the identity maps IdU ⊕ IdV ∈ Hom(U,U) ⊕ Hom(V, V ).
Likewise, one obtains the following formulas for the operation

l1 : C∗
Iso(T, T ) → C∗+1

Iso (T, T ).
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If α⊕ β ∈ Cn
Iso(T, T ), n ≥ 1 odd, then

l1(α ⊕ β) = (Gα + βF ) ⊕ (αG + Fβ) ∈ Cn+1
Iso (T, T ).

For γ ⊕ δ ∈ Cn
Iso(T, T ), n ≥ 1 even, we have

l1(γ ⊕ δ) = (Fγ − δF ) ⊕ (Gδ − γG) ∈ Cn+1
Iso (T, T ).

The bracket

l2 : Cm
Iso(T, T ) ⊗ Cn

Iso(T, T ) → Cm+n
Iso (T, T )

is given as follows. For α′⊕β′ ∈ Cm
Iso(T, T ), α′′⊕β′′ ∈ Cn

Iso(T, T ), m,n odd,
we have

l2(α′ ⊕ β′, α′′ ⊕ β′′) = (β′α′′ + β′′α′) ⊕ (α′β′′ + α′′β′) ∈ Cm+n
Iso (T, T ).

For α⊕ β ∈ Cm
Iso(T, T ), γ ⊕ δ ∈ Cn

Iso(T, T ), m odd, n even, we have

l2(α⊕ β, γ ⊕ δ) = −l2(γ ⊕ δ, α⊕ β) = (αγ − δα)⊕ (βδ− γβ) ∈ Cm+n
Iso (T, T ).

Finally, for γ′ ⊕ δ′ ∈ Cm
Iso(T, T ), γ′′ ⊕ δ′′ ∈ Cn

Iso(T, T ), m,n even, we have

l2(γ′ ⊕ δ′, γ′′ ⊕ δ′′) = −l2(γ′′ ⊕ δ′′, γ′ ⊕ δ′) =
(γ′γ′′ − γ′′γ′) ⊕ (δ′δ′′ − δ′′δ′) ∈ Cm+n

Iso (T, T ).

The higher lk’s, k ≥ 3, are trivial.
Observe that, for each w ∈ C∗

Iso(T, T ), l2(l0, w) = 0; therefore, by [36,
Section 5], l21 = 0. In other words, l1 is a differential and the standard anal-
ysis of deformation theory applies. For instance, there exists the canonical
element χ := F ⊕G ∈ C1

Iso(T, T ) such that

l1(w) = l2(χ,w), w ∈ C∗
Iso(T, T ).

As expected [36, 51], Iso-algebras are solutions of the Maurer–Cartan
equation in the L∞-complex of the trivial D-algebra Tø with F = 0, G = 0.
Indeed, if κ = Φ ⊕ Ψ ∈ C1

Iso(T, T ), then the Maurer–Cartan equation

−l0 +
1
2
l2(κ, κ) = 0

expands into

−(IdU ⊕ IdV ) +
1
2
(2ΨΦ ⊕ 2ΦΨ) = 0,

which says precisely that Φ and Ψ are mutually inverse isomorphisms.
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