Heegaard splittings and virtually Haken Dehn filling. II

Joseph D. Masters, William Menasco and Xingru Zhang

Abstract

We use Heegaard splittings to give a criterion for a tunnel number one knot manifold to be nonfibered and to have large cyclic covers. We also show that a knot manifold satisfying the criterion admits infinitely many virtually Haken Dehn fillings. Using a computer, we apply this criterion to the 2 generator, nonfibered knot manifolds in the cusped Snappea census. For each such manifold M, we compute a number $c(M)$, such that, for any $n>c(M)$, the n-fold cyclic cover of M is large.

Contents

1. Introduction 2
2. Definitions, notation, and statement of results 2
3. Background on 1-relator groups and 3-manifolds 7
4. 2-handles in nonfibered manifolds 8
5. Proof of irreducibility of $M_{n} \quad 10$
6. Proof that X_{n} has incompressible boundary 10
7. Proof that Y_{n} has incompressible boundary 12
8. Proof of Theorem 2.3 and Theorem 2.413
9. Brief description of algorithm 13

References 16

[^0]
1. Introduction

This paper continues the project, begun in [18], of using Heegaard splittings to construct closed essential surfaces in finite covers of 3 -manifolds. The idea, based on the work of Casson and Gordon [5], is to lift a Heegaard splitting of a 3 -manifold to a finite cover in which there are disjoint compressing disks on each side. By compressing the lifted Heegaard surface along an appropriate choice of such disks, we hope to arrive at an essential surface.

By a knot manifold we mean a connected, compact, orientable 3-manifold whose boundary is a single torus. A tunnel system for a knot manifold M is a collection $\left\{t_{1}, \ldots, t_{n}\right\}$ where the t_{i} 's are disjoint, properly embedded arcs in M, such that $\overline{M-N\left(\bigcup t_{i}\right)}$ is homeomorphic to a handlebody. The tunnel number of M, denoted $t(M)$, is the minimal cardinality of a tunnel system for M.

We focus attention on tunnel number one, nonfibered knot manifolds. These are obtained by attaching a single 2-handle to a genus two handlebody. We shall give a condition on the 2 -handle which, if satisfied, ensures that in all large enough cyclic covers, the lifted Heegaard splitting can be compressed to obtain an essential surface. There is also a statement about incompressibility after Dehn surgery.

Freedman and Freedman ([9]) have already proved that for any nonfibered knot manifold, all but finitely many cyclic covers are large (i.e., contain closed essential surfaces). Cooper and Long [7] then proved a result about virtually Haken Dehn surgery for these manifolds, and also obtained a bound on the number of excluded covers in terms of the genus of the knot.

However, our results provide a computational benefit. We computed, for all of the 453 nonfibered, 2-generator knot manifolds in the SnapPea census, a covering degree past which all cyclic covers are large, and the bounds obtained are typically improvements over known bounds.

For other connections between Heegaard splittings and virtually Haken 3 -manifolds, see [13], [14], [15], [17].

We wish to thank the referee for carefully reading the paper, and making a number of helpful suggestions.

2. Definitions, notation, and statement of results

Let F be a connected, closed, orientable surface of positive genus. Recall that a compression body W is a 3 -manifold obtained from $(F \times I)$ by first attaching a collection of 2 -handles along disjoint curves in one component of $\partial(F \times I)$, and then capping off all resulting 2 -sphere boundary components with 3-balls. One of the boundary components of W is homeomorphic to F, and is called the outer boundary of W, denoted $\partial_{+} W$. The other components of ∂W form the inner boundary, denoted $\partial_{-} W$.

If X is a 3-manifold with boundary, and $\mathcal{S} \subset X$ is a collection of disjoint compression disks for ∂X, we let $X / \mathcal{S}=X-N(\mathcal{S})$. If X is a 3-dimensional submanifold of a 3 -manifold Y, and if $\mathcal{S} \subset Y-X$ is a collection of disjoint compression disks for ∂X, then we let $X[\mathcal{S}]$ denote $X \cup N(\mathcal{S})$, where $N(S)$ is a regular neighborhood of S in $Y-X$.

A disk system \mathcal{S} for a compression body W is a set of disjoint compressing disks for ∂W of minimal cardinality such that W / \mathcal{S} has incompressible boundary. We shall use some basic facts about compression bodies, which can be found in [2].

A Heegaard splitting of a compact 3-manifold is a decomposition

$$
M=W_{1} \cup_{F} W_{2},
$$

where the W_{i} 's are compression bodies with outer boundary homeomorphic to F. The Heegaard genus of M, denoted $g(M)$, is the minimal genus of F for all such decompositions. If M has boundary, then a tunnel system for M is a collection of properly embedded arcs in M, whose exterior is a handlebody. The tunnel number of M, denoted $t(M)$, is the minimal cardinality among all tunnel systems for M. It is an elementary fact that, if M is a knot manifold, then $g(M)=t(M)+1$.

For the remainder of the paper, M will be a fixed knot manifold, with incompressible boundary, and with $t(M)=1$ and $b_{1}(M)=1$. Thus there is a Heegaard splitting $M=H \cup_{F} W$, where H is a genus 2 handlebody, and W is a genus 2 compression body. Let $\mathcal{D}=D_{1} \cup D_{2}$ be a disk system for H, and let E be the unique (up to isotopy) nonseparating compression disk for W. We assume that E has been isotoped so that every component of $\partial E-N(\mathcal{D})$ represents an essential arc in $F-N(\mathcal{D})$.

Since $b_{1}(M)=1$, there is a unique surjective homomorphism $\phi: \pi_{1} M \rightarrow$ \mathbb{Z}, where \mathbb{Z} is the free factor of $H_{1}(M)$. Let M_{n} denote the corresponding n -fold cyclic cover, with M_{∞} denoting the infinite cyclic cover. Let H_{n}, W_{n} and F_{n} be the preimages in M_{n} of H, W and F, respectively. Then

$$
M_{n}=H_{n} \cup_{F_{n}} W_{n}
$$

is a Heegaard splitting of M_{n} of genus $n+1$.
Let $\alpha_{1}, \alpha_{2} \subset F$ be simple closed curves transverse to $\partial \mathcal{D}$ such that

$$
\left|\alpha_{i} \cap D_{j}\right|=\delta_{i j}
$$

(the Kronecker delta function). We also assume that α_{1} and α_{2} intersect (nontransversely) in a single point p, which will be the base point for $\pi_{1} M$, and we assign orientations to α_{i} and ∂D_{i} so that the algebraic intersection numbers $I\left(\alpha_{i}, \partial D_{i}\right)$ are both +1 . We call such pair of curves $\left\{\alpha_{1}, \alpha_{2}\right\}$ dual curves for the disk system $\left\{D_{1}, D_{2}\right\}$ of H.

Lemma 2.1. We may choose a disk system \mathcal{D} so that $\phi\left(\alpha_{1}\right)=0$ and $\phi\left(\alpha_{2}\right)=1$.

Proof. Suppose $\phi\left(\alpha_{i}\right)=n_{i}$, and that $\left|n_{1}\right| \leq\left|n_{2}\right|$. Let δ be an oriented embedded arc in $\alpha_{1} \cup \alpha_{2}$ such that $\delta \cap\left(D_{1} \cup D_{2}\right)=\partial \delta$, and that its orientation agrees with the orientation on α_{2}, but disagrees with the orientation on α_{1}. Let D_{1}^{\prime} be a properly embedded disk in H obtained by band sum of D_{1} and D_{2} along the $\operatorname{arc} \delta$, and let $D_{2}^{\prime}=D_{2}$. Then obviously we may assume that D_{1}^{\prime} and D_{2}^{\prime} are disjoint, and see that they form a disk system for H. Choose $\alpha_{1}^{\prime}=\alpha_{1}, \alpha_{2}^{\prime}=\alpha_{2} \alpha_{1}^{-1}$. Then up to an obvious homotopy of α_{2}^{\prime} in ∂H, we may consider α_{2}^{\prime} as a simple closed curve, and see that $\left\{\alpha_{1}^{\prime}, \alpha_{2}^{\prime}\right\}$ form a dual curve pair for the disk system $\mathcal{D}^{\prime}=\left\{D_{1}^{\prime}, D_{2}^{\prime}\right\}$ (with a suitable choice of orientation for $\left.\partial D_{1}^{\prime}\right)$. Further we have that $\phi\left(\alpha_{1}^{\prime}\right)=n_{1}$, and $\phi\left(\alpha_{2}^{\prime}\right)=n_{2}-n_{1}$.

Now we replace the disk system \mathcal{D} with the disk system \mathcal{D}^{\prime}, and repeat the above procedure. Applying the Euclidean Algorithm, we may continue until we have a disk system \mathcal{D} for which $\phi\left(\alpha_{1}\right)=0$ (say) and $\phi\left(\alpha_{2}\right)=\operatorname{gcd}\left(n_{1}, n_{2}\right)$. Since Image $(\phi)=\mathbb{Z}, n_{1}$ and n_{2} are relatively prime, so the resulting disk system satisfies the requirements of Lemma 2.1.

For the remainder of the paper, we shall assume that the disk system \mathcal{D} has been chosen as in Lemma 2.1.

Let $p \in F-\partial \mathcal{D}$ be a base point for M, and let p^{1}, \ldots, p^{n} be the lifts to M_{n} (where $n \in \mathbb{Z}^{+} \cup\{\infty\}$), with the natural indexing. Let δ_{1}, δ_{2} in $F-\partial \mathcal{D}$ be arcs connecting p with ∂D_{i}. Let $D_{i}^{j} \subset M_{n}$ denote the lift of D_{i} to M_{n} corresponding to the lift of δ_{i} with base point p_{j}. (In our notation, we have suppressed the dependence of D_{i}^{j} on n, trusting the meaning to be clear from context.) Note that D_{1}^{j} is between D_{2}^{j-1} and D_{2}^{j}. See Figure 1.

Let $I_{\text {geo }}(\cdot, \cdot)$ be the geometric intersection pairing, and for a loop ℓ in F_{∞}, define the width of ℓ to be:

$$
\operatorname{width}(\ell)=\operatorname{Max}\left(j \mid I_{\text {geo }}\left(\ell, D_{2}^{j}\right) \neq 0\right)-\operatorname{Min}\left(j \mid I_{\text {geo }}\left(\ell, D_{2}^{j}\right) \neq 0\right)+2
$$

in the special case where ℓ is disjoint from all D_{2}^{j} 's, we define the width to be one. If ℓ is a loop in F which lifts to F_{∞}, and $\widetilde{\ell}$ and $\widetilde{\ell}^{\prime}$ are any two lifts to F_{∞}, then $\operatorname{width}(\widetilde{\ell})=\operatorname{width}\left(\widetilde{\ell^{\prime}}\right)$. Thus for any such loop, we define width $(\ell)=\operatorname{width}(\widetilde{\ell})$, where $\widetilde{\ell}$ is any lift of ℓ to F_{∞}.

Since E bounds a disk in W, then ∂E lifts to F_{∞}, and we set (for the remainder of the paper)

$$
k=\operatorname{width}(\partial E) .
$$

Since ∂M is incompressible, then E intersects D_{1} and D_{2} nontrivially. If $n \geq k$, let $E^{j} \subset M_{n}$ denote the lift of E to M_{n} which intersects D_{1}^{j}, but is disjoint from D_{2}^{j}. Then $D_{2}^{1} \cup \bigcup_{j=1}^{n} D_{1}^{j}$ forms a disk system for H_{n} and $\bigcup_{j=1}^{n} E^{j}$ forms a disk system for W_{n} (cf. Figure 1 for an example with $k=3$ and $n=4$).

Set $H_{n}^{\prime}=H_{n} / D_{2}^{1}$, set $\mathcal{E}_{j}=\left\{E^{1}, \ldots, E^{j}\right\}$, and $\mathcal{E}_{j}^{(i)}=\mathcal{E}_{j}-E^{i}, 1 \leq i \leq j$. Recall that a collection \mathcal{C} of disjoint simple closed curves in the boundary of a handlebody X is disk busting if $\partial X-\mathcal{C}$ is incompressible in X.

Figure 1. An example of a 4 -fold cyclic cover
Definition 2.2. Let $m \geq 1$ be an integer. We say that E satisfies the m-lift condition if:
(1) The set $\partial \mathcal{E}_{m}$ is disk-busting in H_{m+k-1}^{\prime}.
(2) The set $\partial \mathcal{E}_{m}^{(i)}$ is not disk-busting in H_{m+k-1}^{\prime}, for all $1 \leq i \leq m$.
(3) For each $1 \leq i \leq m$, there is a compression disk

$$
\Delta_{i} \subset H_{m+k-1}^{\prime}-\partial \mathcal{E}_{m}^{(i)}
$$

such that $\left[\partial \Delta_{i}\right]$ is linearly independent from $\left\{\left[\partial E^{i+1}\right], \ldots,\left[\partial E^{m}\right]\right\}$ in $H_{1}\left(\partial H_{m+k-1}^{\prime} ; \mathbb{Q}\right)$.
Remark. If $M=H[E]$ is fibered, then it follows from Lemma 4.1 below that condition (1) fails, so E does not satisfy the m-lift condition for any m.

Recall that a 3 -manifold M is large if it is irreducible, and contains a closed essential surface, i.e., an incompressible surface which is not parallel to a component of ∂M. We prove:

Theorem 2.3. If E satisfies the m-lift condition, then M_{n} is large for any $n \geq \operatorname{Max}(m+k-1,2 k-2)$.

Let λ be a longitude for M (i.e., a simple, closed, essential curve in ∂M which lifts to a loop in M_{∞}). Fix a meridian μ for M (i.e., a simple closed curve in ∂M which intersects λ exactly once). A slope p / q in ∂M means the pair of homology class $\pm(p[\mu]+q[\lambda])$ and $(p, q)=1$. We use $M(p / q)$ to denote the closed manifold obtained by Dehn filling of M with slope p / q. Let $b=|\phi(\mu)|$. Then $b>0$ is a finite integer. Then we have:

Theorem 2.4. If E satisfies the m-lift condition, then $M(n p / q)$ is virtually Haken for any $p \geq 2, n \geq \operatorname{Max}\{m+k-1,2 k-2$, width $(\lambda)+b\}$, and q with $(p n, q)=1$.

Given a 2-generator, 1-relator presentation of a 3-manifold group, there is an algorithm to decide if this presentation corresponds to a genus 2 Heegaard splitting (conjecturally it always does). From the data of such a geometric presentation, it is possible to check if the m-lift condition holds for a given m. Using the computer program GAP, we have shown:

Theorem 2.5. Every 2-generator, 1-relator 3-manifold M in the SnapPea census of 1-cusped hyperbolic 3-manifolds has a genus 2 Heegaard splitting. Moreover, if $b_{1}(M)=1$ and M is nonfibered, then M has a genus 2 Heegaard splitting whose 2 -handle satisfies the m-lift condition for some m.

A complete table of the values of m is available at
www.math.buffalo.edu/ jdmaster.

The first few values are given in Table 1.
To prove these theorems, consider the surface F_{n} (recall this is the preimage of the Heegaard surface F in M_{n}). Then F_{n} is a Heegaard surface for M_{n} of genus $n+1$, which we shall compress to both sides. On the handlebody side, we compress F_{n} along a single lift, D_{2}^{1}, of D_{2}; on the compression body side we compress F_{n} along all the lifts of E which are disjoint from D_{2}^{1}. We shall show that if E satisfies the m-lift condition and $n \geq m+k-1$, then the resulting surface is incompressible.

Let

$$
\begin{aligned}
X_{n} & =\left(W_{n} / \mathcal{E}_{n-k+1}\right)\left[D_{2}^{1}\right] \\
Y_{n} & =\left(H_{n} / D_{2}^{1}\right)\left[\mathcal{E}_{n-k+1}\right], \text { and } \\
S_{n} & =\partial Y_{n}
\end{aligned}
$$

Note that $M_{n}-\stackrel{\circ}{N}\left(S_{n}\right) \cong X_{n} \amalg Y_{n}$.
Lemma 2.6. The surface S_{n} is connected, has genus $=k-1$, and is not parallel to ∂M_{n}.

Proof. To prove that S_{n} is connected, it is enough to show that

$$
\left[\partial D_{2}^{1}\right],\left[\partial E^{1}\right], \ldots,\left[\partial E^{n}\right]
$$

are linearly independent in $H_{1}\left(F_{n}\right)$.
Let $I(\cdot, \cdot)$ denote the algebraic intersection pairing on the first homology group of a surface. Recall from Lemma 2.1 that $\phi\left(\alpha_{2}\right)=1$ is a generator of $\phi\left(\pi_{1}(M)\right)=\mathbb{Z}$. It follows that $I\left([\partial E],\left[\partial D_{2}\right]\right)=0$ and that $\left\{[\partial E],\left[\partial D_{2}\right]\right\}$ are linearly independent. We may complete $\left\{[\partial E],\left[\partial D_{2}\right]\right\}$ to a symplectic basis $\left\{[\partial E],[\partial E]^{*},\left[\partial D_{2}\right],\left[\partial D_{2}\right]^{*}\right\}$, i.e., a basis satisfying

$$
\begin{aligned}
& I\left([\partial E],[\partial E]^{*}\right)=I\left(\left[\partial D_{2}\right],\left[\partial D_{2}\right]^{*}\right)=1 \\
& I\left([\partial E]^{*},\left[\partial D_{2}\right]\right)=I\left([\partial E]^{*},\left[\partial D_{2}\right]^{*}\right)=I\left([\partial E],\left[\partial D_{2}\right]\right)=I\left([\partial E],\left[\partial D_{2}\right]^{*}\right)=0
\end{aligned}
$$

Let $\alpha \subset F$ be an embedded loop representing $[\partial E]^{*}$, and intersecting ∂E geometrically exactly once (such representative always exists). Then α lifts homeomorphically to loops $\widetilde{\alpha}_{1}, \ldots, \widetilde{\alpha}_{n} \subset F_{n}\left(\right.$ since $\left.I\left([\alpha],\left[\partial D_{2}\right]\right)=0\right)$. As ∂E also lifts to F_{n} as $\partial E^{1}, \ldots, \partial E^{n}$, it is easy to see that $I\left(\widetilde{\alpha}_{i}, \partial E^{j}\right)=\delta_{i j}$. Also

$$
\begin{aligned}
& I\left(\left[\widetilde{\alpha}_{i}\right],\left[\partial D_{2}^{1}\right]\right) \\
& =I\left(\left[\widetilde{\alpha}_{i}\right],\left[\bigcup_{j} \partial D_{2}^{j}\right] / n\right)\left(\text { since all lifts of } \partial D_{2} \text { are homologous in } F_{n}\right) \\
& =I\left([\alpha],\left[\partial D_{2}\right]\right) / n \\
& =0
\end{aligned}
$$

Recall that we have a map $\phi: \pi_{1} M \rightarrow \mathbb{Z}$; let $\beta \subset \partial M$ be a loop with $\phi(\beta) \neq 0$, and let β_{n} be the preimage in M_{n}. Then $\left[\beta_{n}\right],\left[\widetilde{\alpha}_{1}\right], \ldots,\left[\widetilde{\alpha}_{n}\right]$ are dual classes for $\left[\partial D_{2}^{1}\right],\left[\partial E^{1}\right], \ldots,\left[\partial E^{n}\right]$ in $H_{1}\left(F_{n}, \mathbb{Q}\right)$, which proves the linear independence, and completes the proof that S_{n} is connected.

The linear independence of $\left[\partial D_{2}^{1}\right],\left[\partial E^{1}\right], \ldots,\left[\partial E^{n}\right]$ also allows us to compute:

$$
\begin{aligned}
\operatorname{genus}\left(S_{n}\right) & =\operatorname{genus}\left(H_{n} / D_{2}^{1}\right)-\left|\mathcal{E}_{n-k+1}\right| \\
& =n-(n-k+1)=k-1
\end{aligned}
$$

Finally, note that S_{n} is not parallel into ∂M_{n}, since every loop in S_{n} projects to an element in $\operatorname{ker}(\phi)$ (because S is disjoint from D_{2}^{1}), but each component of ∂M_{n} contains a loop whose projection is not in $\operatorname{ker}(\phi)$.

To prove Theorems 2.3 and Theorem 2.4, we shall show that when $n \geq$ $\operatorname{Max}\{m+k-1,2 k-2\}, S_{n}$ is incompressible in both X_{n} and Y_{n}, and that when $n \geq \operatorname{Max}\{m+k-1,2 k-2$, width $(\lambda)\}, S_{n}$ remains incompressible in an equivariant Dehn filling of M_{n} along ∂M_{n} (which may have several components) which is a free cyclic cover of $M(n p / q)$.

3. Background on 1-relator groups and 3-manifolds

We will require the following result of Magnus (see [16]). The statement given here is easily seen to be equivalent to the standard statement.

Theorem 3.1 (Freiheitsatz for 1-relator groups). Let

$$
G=\left\langle x_{1}, \ldots, x_{n} \mid w\left(x_{1}, \ldots, x_{n}\right)=1\right\rangle
$$

be a 1-relator group, where w is a freely reduced word. Let $\mathcal{X}=\left\{x_{1}, \ldots, x_{n}\right\}$, let $\mathcal{X}^{*} \subset \mathcal{X}$, and suppose that some $x_{i} \in \mathcal{X}-\mathcal{X}^{*}$ appears in w. Then \mathcal{X}^{*} freely generates a free subgroup of G.

Corollary 3.2. Let $w\left(x_{1}, \ldots, x_{k}\right)$ be a word in which x_{1} and x_{k} appear nontrivially, and consider the group

$$
G=\left\langle\ldots, x_{-1}, x_{0}, x_{1}, \ldots \mid w\left(x_{i}, \ldots, x_{i+k-1}\right)=1, \forall i \in \mathbb{Z}\right\rangle
$$

Then for any i, the set $\left\{x_{i}, \ldots, x_{i+k-2}\right\}$ freely generates a free subgroup of G.

Proof. Let $G_{i}=\left\langle x_{i}, \ldots, x_{i+k-1} \mid w\left(x_{i}, \ldots, x_{i+k-1}\right)\right\rangle$, and let $J_{i}=\left\langle x_{i+1}\right\rangle *$ $\cdots *\left\langle x_{i+k-1}\right\rangle$. By repeated applications of Theorem 3.1, the group G has the structure of the following iterated amalgamated free product over free subgroups: $G \cong \cdots *_{J_{i-1}} G_{i} *_{J_{i}} G_{i+1} *_{J_{i+1}} \cdots$. By Theorem 3.1, each J_{i} injects into G_{i} and G_{i+1}. Each G_{i} thus injects into G, and so we obtain the corollary.

Suppose $G=\langle x, y \mid w(x, y)\rangle$ is a 1-relator group (where w is a cyclically reduced word) which admits a surjective homomorphism $\psi: G \rightarrow \mathbb{Z}$, such that $\psi(y)=0$. Let $x_{i}=x^{-i} y x^{i}$. Then $\operatorname{ker}(\psi)$ is generated by the x_{i} 's, and the relation w lifts to a relation \widetilde{w} on the x_{i} 's, so that $\operatorname{ker}(\psi)$ has a presentation as in the statement of Corollary 3.2. Write $\widetilde{w}=\Pi_{j} x_{\mu_{j}}$, and consider the finite integer sequence $\left(\mu_{j}\right)$. Then we have:

Theorem 3.3 (Brown). If $\left(\mu_{j}\right)$ has a repeated minimum (or maximum) (i.e., it assumes its minimum (or maximum) value more than once), then $\operatorname{ker}(\psi)$ is not finitely generated.

The case of a repeated minimum is a special instance of Theorem 4.2 in [4], and the case of a repeated maximum follows from a trivial modification of the proof (which is an application of the Freiheitsatz).

We also need the following, a special case of Corollary 2.2 of [5], which is in turn a slight modification of a theorem proved by Jaco in [12].

Theorem 3.4 (Handle Addition Lemma). Let M be an irreducible 3-manifold with compressible boundary of genus at least 2, and suppose $\alpha \subset \partial M$ is a simple closed curve, such that $\partial M-\alpha$ is incompressible in M. Then the 3-manifold obtained by adding a 2-handle to M along α is irreducible, and has incompressible boundary.

4. 2-handles in nonfibered manifolds

The results presented in this section are essentially combinations of results due to Brown ([4]) and Bieri-Neumann-Strebel ([1]).

If D is a compressing disk for H_{∞}, and α is a simple closed curve in H_{∞}, then let $I_{\text {geo }}(\alpha, D)$ be the geometric intersection number of α and D; in other words, $I_{\text {geo }}(\alpha, D)$ is the minimal cardinality of $\alpha^{\prime} \cap D$ over all curves α^{\prime} which is isotopic to α in H_{∞}.

If \mathcal{D} is a disk system for H, then there are dual simple loops which form a free basis for $\pi_{1} H$. If $D \in \mathcal{D}$ corresponds to the generator x_{D}, and if α is a simple loop in H, then $I_{\text {geo }}(\alpha, D)$ is the number of times the generator x_{D} appears in a cyclically reduced representative for the conjugacy class of $[\alpha]$ in $\pi_{1} H$.

Lemma 4.1. Suppose M is a knot manifold with $t(M)=1$, and suppose that E^{i} and D_{i}^{j} are as defined in Section 2.
(a) If M is fibered, then $I_{\text {geo }}\left(\partial E^{1}, D_{1}^{1}\right)=I_{\text {geo }}\left(\partial E^{1}, D_{1}^{k}\right)=1$ in H_{∞}.
(b) If M is nonfibered, then $I_{\text {geo }}\left(\partial E^{1}, D_{1}^{1}\right) \geq 2$ and $I_{\text {geo }}\left(\partial E^{1}, D_{1}^{k}\right) \geq 2$ in H_{∞}.

Proof. (a) Suppose $I_{\text {geo }}\left(\partial E^{1}, D_{1}^{1}\right) \geq 2$ or $I_{\text {geo }}\left(\partial E^{1}, D_{1}^{k}\right) \geq 2$. Then by Theorem 3.3 (together with the note in the proceeding paragraph of the present lemma), $\operatorname{ker}(\phi)$ is not finitely generated, and so by [21], M is not fibered.
(b) Suppose E^{1} intersects one of the disks, say D_{1}^{k}, exactly once. We shall show that in this case M is fibered.

Dual to each D_{1}^{i} is a generator x_{i} for the fundamental group of M_{∞}. The boundary of the disk E^{1} gives a relation among these generators which involves x_{k} only once; therefore $x_{k} \in\left\langle x_{1}, \ldots, x_{k-1}\right\rangle \subset \pi_{1} M_{\infty}$. Similarly, using the relation corresponding to the disk E^{2}, we get that

$$
x_{k+1} \in\left\langle x_{1}, \ldots, x_{k}\right\rangle=\left\langle x_{1}, \ldots, x_{k-1}\right\rangle \subset \pi_{1} M_{\infty}
$$

Continuing in this way, we see that all of the generators x_{i} with $i \geq k$ can be expressed in terms of x_{1}, \ldots, x_{k-1}.

Let H^{*} be the component of H_{∞} / D_{2}^{1} containing $D_{1}^{1}, D_{1}^{2}, \ldots$, and let $Q=$ $H^{*}\left[E^{1}, E^{2}, \ldots\right]$, which is a submanifold of M_{∞}. The argument we just gave shows that $\pi_{1}(Q)$ is finitely generated.

Note that there is a nonseparating incompressible surface S in M with boundary slope λ such that M_{∞} is the infinite cover dual to S. Let \widetilde{S} be a lift of S to M_{∞} which is disjoint from Q, and let Q^{+}be the component of $M_{\infty}-\stackrel{N}{N}(\widetilde{S})$ which contains Q. Then $Q^{+}-\stackrel{N}{(Q)}$ is compact, and since $\pi_{1} Q$ is finitely generated, $\pi_{1} Q^{+}$is finitely generated as well.

Let $M_{0}^{-}=M-\dot{N}(S)$, let S_{0} and S_{1} be the two preimages of S in ∂M_{0}^{-}, let \widetilde{S}_{i} be the preimages of S in \widetilde{S}_{∞}, and let M_{i}^{-}be the submanifold of Q bounded by \widetilde{S}_{0} and \widetilde{S}_{i}. Since \widetilde{S}_{i} is incompressible, M_{i}^{-}is π_{1}-injective in Q for each i. If neither of the maps $i_{*} \pi_{1} S_{j} \rightarrow \pi_{1} M_{0}$ is onto, then $\left\{\pi_{1} M_{i}\right\}$ forms an an infinite sequence of subgroups of $\pi_{1} Q$, with $\pi_{1} M_{i+1}$ properly containing $\pi_{1} M_{i}$ for each i, which is a contradiction, since $\pi_{1} Q$ is finitely
generated. Therefore, one of the induced maps $\pi_{1} S_{j} \rightarrow \pi_{1} M_{0}$ is onto, and so, as in the proof of Theorem 2 in [21], M is fibered.

Corollary 4.2. If M is fibered, then E does not satisfy the m-lift condition for any m.

Proof. Suppose M is fibered, let $m \geq 1$ be an integer, and consider the cover F_{m+k-1} of F. In F_{m+k-1}, we have that E^{j} is disjoint from D_{1}^{1} for all $2 \leq$ $j \leq m-k+1$, and by Lemma 4.1(a), $\left|\partial E^{1} \cap \partial D_{1}^{1}\right|=1$. Therefore there is a compressing disk Δ in H_{m+k-1} (whose boundary is equal to $\partial N\left(\partial E^{1} \cup \partial D_{1}^{1}\right)$) with $\partial \Delta \cap \partial \mathcal{E}_{m}=\emptyset$, and so E fails condition (2).

5. Proof of irreducibility of $\boldsymbol{M}_{\boldsymbol{n}}$

We shall now begin the proof of Theorem 2.3, which will occupy the next three sections.

Lemma 5.1. M_{n} is irreducible for all n.
Proof. By Theorem 3.4, $M_{1}=M$ is irreducible. By [19] (or [8]), the cover of an irreducible manifold is irreducible, so M_{i} is irreducible for all $i \geq 2$.

6. Proof that X_{n} has incompressible boundary

We remark that the m-lift condition is not needed in this case; we only use the assumption that ∂M is incompressible.

Let $W_{n}^{\prime}=W_{n} / \mathcal{E}_{n-k+1}$. By Theorem 3.4 it is enough to prove:
Lemma 6.1. If $n \geq 2 k-2$, then $W_{n}^{\prime}-\partial D_{2}^{1}$ has incompressible boundary.
First we need:
Lemma 6.2. For each n there is a loop $\alpha_{n} \subset \partial M_{n}$ such that $I\left(\alpha_{n}, D_{2}^{1}\right) \neq 0$.
Proof. By the exact sequence of the pair, there is a loop $\alpha \in \partial M$ such that $\phi[\alpha]=I\left(\alpha, D_{2}^{1}\right) \neq 0$. Letting α_{n} be the preimage of α in ∂M_{n}, we have $I\left(\alpha_{n}, \bigcup_{i=1}^{n} D_{2}^{i}\right)=n I\left(\alpha, D_{2}\right) \neq 0$. Since $\left[D_{2}^{i}\right]=\left[D_{2}^{j}\right] \in H_{1}\left(M_{n}\right)$ for all i, j, then we have $I\left(\alpha_{n}, D_{2}^{1}\right)=I\left(\alpha, D_{2}\right) \neq 0$.

Proof of Lemma 6.1. Suppose otherwise that there is a compressing disk in $W_{n}^{\prime}-\partial D_{2}^{1}$. First, if there is a compressing disk, we claim that there must be a nonseparating one. To see this, suppose that Δ is a separating compressing disk. If there are no nonseparating compressing disks, then one of the components of W_{n}^{\prime} / Δ is homeomorphic to a surface cross an interval, and the other component is a handlebody containing ∂D_{2}^{1}. Every curve in ∂M_{n} lies on the surface cross interval side, but by Lemma 6.2 , there is a curve in ∂M_{n} which has nontrivial intersection with D_{2}^{1}, yielding a contradiction. So we may assume that there is a nonseparating compressing disk Δ in $W_{n}^{\prime}-\partial D_{2}^{1}$.

Consider the Heegaard surface F_{n} and the curves ∂D_{2}^{j} and $\partial E^{j}, j=$ $1, \ldots, n$, in F_{n}. Note that since $n \geq 2 k-2,\left\{\partial E^{n-k+2}, \ldots, \partial E^{n}\right\}$ are all disjoint from ∂D_{2}^{n-k+2} and ∂D_{2}^{k} (by considering the definition of $k=$ width (E)). The two simple closed curves ∂D_{2}^{n-k+2} and ∂D_{2}^{k} cut F_{n} into two components, F_{n}^{1} and F_{n}^{2}, one of which, say F_{n}^{1}, is disjoint from all $\partial E^{n-k+2}, \ldots, \partial E^{n}$.

The curves $\partial E^{1}, \ldots, \partial E^{n-k+1}$ may intersect ∂D_{2}^{n-k+2} and ∂D_{2}^{k}. But by the property of the width k again, any arc component of $F_{n}^{2} \cap\left(\cup_{j=1}^{n-k+1} \partial E^{j}\right)$ has either both endpoints in ∂D_{2}^{n-k+2} or both endpoints in ∂D_{2}^{k}. Further, every arc component of $F_{n}^{2} \cap\left(\cup_{j=1}^{n-k+1} \partial E^{j}\right)$ is disjoint from ∂D_{2}^{1}. Let F_{n}^{3} be the subsurface of F_{n} which is the union of F_{n}^{1} and a small regular neighborhood of the arcs $F_{n}^{2} \cap\left(\cup_{j=1}^{n-k+1} \partial E^{j}\right)$ in F_{n}^{2} (in other words, F_{n}^{3} is F_{n}^{1} with some bands attached, one for each arc component in $\left.F_{n}^{2} \cap\left(\cup_{j=1}^{n-k+1} \partial E^{j}\right)\right)$. Then F_{n}^{3} is a connected subsurface of F_{n} which contains all $\partial E^{1}, \ldots, \partial E^{n-k+1}$ but is disjoint from all $\partial E^{n-k+2}, \ldots, \partial E^{n}$ and ∂D_{2}^{1}.

Let F_{n}^{4} be the surface obtained from F_{n}^{3} by surgery along the curves $\partial E^{1}, \ldots, \partial E^{n-k+1}$ (i.e., cut F_{n}^{3} open along $\left\{\partial E^{1}, \ldots, \partial E^{n-k+1}\right\}$ and fill each of the new boundary circles with a disk), which may not be connected. Note that $\left\{E^{n-k+2}, \ldots, E^{n}\right\}$ is a disk system for the compression body W_{n}^{\prime} and $W_{n}^{\prime} /\left\{E^{n-k+2}, \ldots, E^{n}\right\}$ is an I-bundle over a surface. As F_{n}^{4} is disjoint from $\left\{\partial E^{n-k+2}, \ldots, \partial E^{n}\right\}, F_{n}^{4}$ is contained in the horizontal boundary of the I-bundle. So $\partial F_{n}^{4} \times I$ are vertical annuli of this I-bundle. By standard cut-and-paste operations along arcs and circles of $\Delta \cap\left(\partial F_{n}^{4} \times I\right)$, we get a nonseparating compressing disk, still denoted Δ, which is disjoint from the annuli $\partial F_{n}^{4} \times I$. It is easy to see that Δ cannot be contained in $F_{n}^{4} \times I$, so it follows that $\partial \Delta$ is disjoint from all $\partial D_{2}^{1}, \partial D_{2}^{k}, \ldots, \partial D_{2}^{n-k+2}$. Hence the width of Δ is strictly less than k.

Let $\delta=\partial \Delta$, and let $\widetilde{\delta}$ be a lift of δ in M_{∞}, The group $\pi_{1} M_{\infty}$ has the following presentation:

$$
\pi_{1} M_{\infty}=\left\langle\ldots, x_{-1}, x_{0}, x_{1}, \ldots \mid w\left(x_{i}, \ldots, x_{i+k-1}\right)=1, \forall i \in \mathbb{Z}\right\rangle
$$

where the relations correspond to the lifts of E. Since $\operatorname{width}(\delta)<k$, the loop $\widetilde{\delta}$ represents an element in the subgroup of $\pi_{1} M_{\infty}$ generated by the elements x_{i}, \ldots, x_{i+k-2}, for some i. By Corollary 3.2, these elements are a basis for a free subgroup; since $\widetilde{\delta}$ represents a trivial element in $\pi_{1} M_{\infty}$, we see that $\widetilde{\delta}$ represents the trivial word in x_{i}, \ldots, x_{i+k-2}. Thus $\widetilde{\delta}$ bounds a disk in H_{∞} by Dehn's lemma, and thus δ bounds a disk in H_{n}. Thus there is a nonseparating sphere in M_{n}, contradicting Lemma 5.1.

Lemma 6.3. Suppose $n \geq 2 k-2$. Then X_{n} has incompressible boundary.
Proof. This is a consequence of Lemma 6.1 and Theorem 3.4.

7. Proof that Y_{n} has incompressible boundary

In this section, we are under the assumption that \mathcal{E} satisfies the m-lift condition. Recall that $H_{n}^{\prime}=H_{n} / D_{2}^{1}$.
Lemma 7.1. The curve ∂E^{n-k+1} cannot be isotoped in $H_{n}^{\prime}\left[\mathcal{E}^{n-k}\right]$ to intersect D_{1}^{n} fewer than two times.

Proof. We have

$$
\begin{aligned}
\pi_{1} H_{n}^{\prime}\left[\mathcal{E}^{n-k}\right] & =\left\langle x_{1}, \ldots, x_{n} \mid w_{1}, \ldots, w_{n-k}\right\rangle \\
& \cong\left\langle x_{1}, \ldots, x_{n-1} \mid w_{1}, \ldots, w_{n-k}\right\rangle *\left\langle x_{n}\right\rangle
\end{aligned}
$$

where x_{j} is dual to D_{1}^{j}, and the word w_{j} corresponds to ∂E^{j}.
The word w_{n-k+1} can be cyclically permuted to have the form

$$
w_{n-k+1}=\mathcal{W}_{1} x_{n}^{\ell_{1}} \mathcal{W}_{2} x_{n}^{\ell_{2}} \ldots \mathcal{W}_{t} x_{n}^{\ell_{t}}
$$

where the \mathcal{W} 's are freely reduced words involving only x_{j} 's with $n-k+$ $1 \leq j \leq n-1$, and each \mathcal{W}_{j} represents a nontrivial element in the group $\left\langle x_{1}, \ldots, x_{n} \mid w_{1}, \ldots, w_{n-k}\right\rangle$.

Suppose ∂E^{n-k+1} can be isotoped to be disjoint from D_{1}^{n} in $H_{n}^{\prime}\left[\mathcal{E}^{n-k}\right]$. Then, using the relations $w_{j}, j \leq n-k$, the word w_{n-k+1} can be rewritten entirely in terms of x_{j} 's, $j \leq n-1$, and this would imply that one of the \mathcal{W}_{j} 's must be trivial in $\pi_{1} H_{n}^{\prime}\left[\mathcal{E}^{n-k}\right]$. However, \mathcal{W}_{j} is a freely reduced word on $x_{n-k+1}, \ldots, x_{n-1}$, which by Corollary 3.2 freely generate a free subgroup, for a contradiction.

Suppose ∂E^{n-k+1} can be isotoped to intersect D_{1}^{n} exactly once. Then, as in the proof of Lemma 4.1, M is fibered, and so by Corollary $4.2, \mathcal{E}$ does not satisfy the m-lift condition, for a contradiction.

Lemma 7.2. If $n \geq m+k-1$, then Y_{n} has incompressible boundary.
Proof. Let $n_{0}=m+k-1$. We first prove the result in the case where $n=n_{0}$.

Claim. The manifold $Y_{n_{0}}$ has incompressible boundary.
Proof. Recall $H_{n_{0}}^{\prime}=H_{n_{0}} / D_{2}^{1}$. By condition (2) of Definition 2.2, the manifold

$$
H_{n_{0}}^{\prime}-\partial \mathcal{E}_{m}^{(m)}=H_{n_{0}}^{\prime}-\partial \mathcal{E}_{m-1}
$$

has compressible boundary, and by condition (1), $H_{n_{0}}^{\prime}-\partial \mathcal{E}_{m}$ has incompressible boundary; therefore, by Theorem 3.4, the manifold $\left(H_{n_{0}}^{\prime}-\partial \mathcal{E}_{m-1}\right)\left[E^{m}\right]$ has incompressible boundary.

Suppose for some $i \in[1, m]$, that $H_{n_{0}}^{\prime}\left[\overline{\mathcal{E}}_{i}\right]-\partial \mathcal{E}_{i}$ has incompressible boundary, where $\overline{\mathcal{E}}_{i}=\mathcal{E}_{m}-\mathcal{E}_{i}$. By condition (2) of Definition 2.2, there is a compression disk for $H_{n_{0}}^{\prime}-\partial \mathcal{E}_{m}^{(i)}$ which is also a compression disk for $H_{n_{0}}^{\prime}\left[\overline{\mathcal{E}}_{i}\right]-\partial \mathcal{E}_{i-1}$. Therefore, by Theorem 3.4, $H_{n_{0}}^{\prime}\left[\overline{\mathcal{E}}_{i-1}\right]-\partial \mathcal{E}_{i-1}$ has incompressible boundary.

By induction on i, it follows that $Y_{n_{0}}=H_{n_{0}}^{\prime}\left[\mathcal{E}_{m}\right]$ has incompressible boundary.

Now, suppose $n>n_{0}$. and proceed by induction on n. Suppose Y_{n} has incompressible boundary. The manifold Y_{n+1} is obtained from Y_{n} by adding a 1-handle Z to H_{n}^{\prime}, and then attaching a 2-handle E^{n-k+2}. We claim that $\left(Y_{n} \cup Z\right)-\partial E^{n-k+2}$ has incompressible boundary.

Suppose otherwise, and let Δ be a compressing disk. Since Y_{n} has incompressible boundary, the maximal compression body for $\partial\left(Y_{n} \cup Z\right)$ has a unique disk system consisting only of D_{1}^{n+1}. Therefore if Δ is nonseparating, it is isotopic to D_{1}^{n+1}; then ∂E^{n-k+2} can be isotoped off of ∂D_{1}^{n+1} in $Y_{n} \cup Z$, contradicting Lemma 7.1.

Suppose Δ is separating, so it separates off a solid torus $V \subset H_{n+1}^{\prime}$, with $V \supset D_{1}^{n+1}$. Since $\partial E^{n-k+2} \cap D_{1}^{n+1} \neq \emptyset$, we have $\partial E^{n-k+2} \subset V$.

So Y_{n+1} contains the punctured lens space $V\left[E^{n-k+2}\right]$. By Lemma 7.1, this lens space cannot be B^{3}. So Y_{n} is not irreducible, contradicting Lemma 5.1. This completes the proof that $\left(Y_{n} \cup Z\right)-\partial E^{n-k+2}$ has incompressible boundary. Then by Theorem 3.4, Y_{n+1} has incompressible boundary.

8. Proof of Theorem 2.3 and Theorem 2.4

Proof of Theorem 2.3. Assume M satisfies the hypotheses of Theorem 2.3. Then by Lemmas 6.3 and $7.2, M_{n}$ contains an incompressible closed surface S_{n}, which is not parallel into ∂M_{n} by Lemma 2.6.

Proof of Theorem 2.4. Suppose the hypotheses of Theorem 2.4 are satisfied. Let b_{n} be the number of boundary components of M_{n}. Then it is easy to see that b_{n} is equal to the largest common divisor of n and b (recall from the proceeding paragraph of Theorem 2.4 that $b=|\phi(\mu)|$ is a finite integer). Let each boundary component of ∂M_{n} have the coordinate basis induced from the basis $\{\mu, \lambda\}$ of ∂M. Let $M_{n}\left(b_{n} p / q\right)$ denote the closed manifold obtained by Dehn filling each component of ∂M_{n} with slope $b_{n} p / q$. Then it is easy to check that $M(n p / q)$ is cyclically covered by $M_{n}\left(b_{n} p / q\right)$. We have shown that M_{n} contains an incompressible surface S_{n}. When $n \geq \operatorname{width}(\lambda)+b$ as well, there are b successive lifts of λ contained in $S_{n}=\partial Y_{n}$, which implies that S_{n} has an annular compression to each component of ∂M_{n}, with slope 0 . Since $p>1$, then by repeatedly applying Theorem 2.4.3 of [6] b_{n} times, we see that S_{n} remains incompressible in $M_{n}\left(b_{n} p / q\right)$. Also, by [20], $M_{n}\left(b_{n} p / q\right)$ is irreducible. Hence $M(n p / q)$ is virtually Haken.

9. Brief description of algorithm

A. Checking that SnapPea presentations are geometric. Given an algebraic word on x and y, we need to know if it can be represented by a simple closed curve in the boundary of a genus 2 handlebody. To do this, we attempt to draw a Heegaard diagram. So we start with four disks in the
plane, corresponding to x, x^{-1}, y and y^{-1}. The word w is represented by a collection of edges connecting these disks, and we need to find a representation which embeds in the plane.

To program this on the computer, we start placing edges on the graph one by one, as indicated by the word w. When placing an edge, the intial point is determined from the previous step, but there may be a choice of terminal point. However, it is possible to keep track of the choices which are made, and if an impossible situation is arrived at, we retreat to the previous choice, and change it. In this way, the computer found for every given word, a geometric representation.
B. Checking that the m-lift condition holds. The only nonelementary step in checking the m-lift condition algorithmically is to find, for a given collection of loops in the fundamental group of a handlebody H, a specific compressing disk for H which is disjoint from the loops. An algorithm for this was given by Whitehead ([23], or see [22]), which we implemented on GAP.

Note that Whitehead's algorithm allows one to determine the existence of a compressing disk in polynomial time in the length of the word; however, to construct the disk explicitly requires exponential time. For our application, we are saved this difficulty, since for each compressing disk Δ we only need to compute $[\partial \Delta] \in H_{1}(\partial H)$. This allows the algorithm to run in polynomial time.

Table 1. Data on SnapPea census manifolds

manifold name:	width of 2-handle:	satisfies m-lift for:	n-fold cyclic
			cover large for:

Heegaard splittings and virtually Haken Dehn filling 15

m059	$k=3$	$m=1$	$n \geq 4$
m061	$k=3$	$m=2$	$n \geq 4$
m062	$k=3$	$m=2$	$n \geq 4$
m066	$k=3$	$m=1$	$n \geq 4$
m067	$k=3$	$m=1$	$n \geq 4$
m073	$k=3$	$m=1$	$n \geq 4$
m074	$k=3$	$m=2$	$n \geq 4$
m076	$k=3$	$m=1$	$n \geq 4$
m077	$k=3$	$m=1$	$n \geq 4$
m079	$k=3$	$m=1$	$n \geq 4$
m080	$k=3$	$m=1$	$n \geq 4$
m084	$k=3$	$m=1$	$n \geq 4$
m085	$k=3$	$m=1$	$n \geq 4$
m089	$k=3$	$m=1$	$n \geq 4$
m090	$k=3$	$m=1$	$n \geq 4$
m093	$k=3$	$m=2$	$n \geq 4$
m094	$k=3$	$m=2$	$n \geq 4$
m104	$k=3$	$m=1$	$n \geq 4$
m105	$k=3$	$m=3$	$n \geq 5$
m110	$k=3$	$m=1$	$n \geq 4$
m111	$k=3$	$m=1$	$n \geq 4$
m137	$k=3$	$m=2$	$n \geq 4$
m139	$k=4$	$m=3$	$n \geq 6$
m148	$k=3$	$m=1$	$n \geq 4$
m149	$k=3$	$m=1$	$n \geq 4$
m202	$k=4$	$m=2$	$n \geq 6$
m203	$k=4$	$m=1$	$n \geq 6$
m208	$k=4$	$m=1$	$n \geq 6$
m249	$k=5$	$m=4$	$n \geq 8$
m259	$k=5$	$m=3$	$n \geq 8$
m260	$k=5$	$m=3$	$n \geq 8$
m261	$k=3$	$m=1$	$n \geq 4$
m262	$k=3$	$m=1$	$n \geq 4$
m285	$k=3$	$m=1$	$n \geq 4$
m286	$k=3$	$m=1$	$n \geq 4$
m287	$k=5$	$m=5$	$n \geq 9$
m288	$k=5$	$m=3$	$n \geq 8$
m292	$k=5$	$m=3$	$n \geq 8$
m319	$k=3$	$m=1$	$n \geq 4$

m320	$k=3$	$m=1$	$n \geq 4$
m328	$k=4$	$m=1$	$n \geq 6$
m329	$k=4$	$m=2$	$n \geq 6$
m340	$k=5$	$m=1$	$n \geq 8$
m357	$k=4$	$m=2$	$n \geq 6$
m366	$k=4$	$m=1$	$n \geq 6$
m388	$k=4$	$m=1$	$n \geq 6$

References

[1] Bieri, Robert; Neumann, Walter D.; Strebel, Ralph. A geometric invariant of discrete groups. Invent. Math. 90 (1987) 451-477. MR0914846 (89b:20108), Zbl 0642.57002.
[2] Bonahon, Francis. Cobordism of automorphisms of surfaces. Ann. S. Ec. Norm. Sup. (4) 16 (1983) 237-270. MR0732345 (85j:57011), Zbl 0535.57016.
[3] Bonahon, Francis; Otal, Jean-Pierre. Scindements de Heegaard des espaces lenticulaires [Heegaard splittings of lens spaces]. Ann. Sci. Ec. Norm. Sup. (4) 16 (1983) 451-466. MR0740078 (85c:57010), Zbl 0545.57002.
[4] Brown, Kenneth S. Trees, valuations, and the Bieri-Neumann-Strebel invariant. Invent. Math. 90 (1987) 479-504. MR0914847 (89e:20060), Zbl 0663.20033.
[5] Casson, A. J.; Gordon, C. McA. Reducing Heegaard splittings. Topology Appl. 27 (1987) 275-283. MR0918537 (89c:57020), Zbl 0632.57010.
[6] Culler, Marc; Gordon, C. McA.; Luecke, J.; Shalen, Peter B. Dehn surgery on knots. Ann. of Math (2) 125 (1987) 237-300. MR0881270 (88a:57026), Zbl 0633.57006. Correction. Ann. of Math (2) 127 (1988) 663. MR0942524 (89c:57015), Zbl 0645.57006.
[7] Cooper, D.; Long, D. D. Virtually Haken Dehn filling. J. Differential Geom. 52 (1999) 173-187. MR1743462 (2001a:57025), Zbl 1025.57020.
[8] Dunwoody, M. J. An equivariant sphere theorem. Bull. London Math. Soc. 17 (1985) 437-448. MR0806009 (87f:57008), Zbl 0592.57005.
[9] Freedman, Benedict; Freedman, Michael H. Kneser-Haken finiteness for bounded 3-manifolds, locally free groups, and cyclic covers. topology 37 (1998) 133-147. MR1480882 (99h:57036), Zbl 0896.57012.
[10] Gabai, David. Foliations and the topology of 3-manifolds. J. Differential Geom. 18 (1983) 445-503. MR0723813 (86a:57009), Zbl 0533.57013.
[11] Haken, Wolfgang. Some results on surfaces in 3-manifolds. Studies in Modern Topology, pp. 39-98. Math. Assoc. Amer. (distributed by Prentice-Hall, Englewood Cliffs, N.J.), 1968. MR0224071 (36 \#7118), Zbl 0194.24902.
[12] Jaco, William. Adding a 2-handle to a 3-manifold: an application to Property R. Proc. Amer. Math. Soc. 92 (1984) 288-292. MR0754723 (86b:57006), Zbl 0564.57009.
[13] Lackenby, Marc. Heegaard splittings, the virtually Haken conjecture, and property (τ). Invent. Math. 164 (2006) 317-359. MR2218779 (2007c:57030), Zbl 1110.57015.
[14] Lackenby, Marc. The asymptotic behaviour of Heegaard genus Math. Res. Lett. 11 (2004) 139-149. MR2067463 (2005d:57030), Zbl 1063.57002.
[15] Li, TaO. Heegaard surfaces and measured laminations. II. Non-Haken 3manifolds. J. Amer. Math. Soc. 19 (2006) 625-657. arXiv:math.GT/0408198. MR2220101 (2007g:57036), Zbl 1108.57015.
[16] Magnus, Wilhelm; Karrass, Abraham; Solitar, Donald. Combinatorial group theory: Presentations of groups in terms of generators and relations. Interscience Publishers [John Wiley \& Sons, Inc.], New York-London-Sidney, 1966. xii+444 pp. MR0207802 (34 \#7617), Zbl 0138.25604.
[17] Maher, Joseph. Heegaard gradient and virtual fibers. Geom. Topol. 9 (2005) 2227-2259. MR2209371 (2007b:57029), Zbl 1100.57002.
[18] Masters, Joseph D.; Menasco, William; Zhang, Xingru. Heegaard splittings and virtually Haken Dehn filling. New York J. Math. 10 (2004) 133-150. MR2052369 (2005b:57040), Zbl 1067.57013.
[19] Meeks, William, III; Simon, Leon; Yau, Shing Tung. Embedded minimal surfaces, exotic spheres, and manifolds with positive Ricci curvature. Ann. of Math. (2) 116 (1982) 621-659. MR0678484 (84f:53053), Zbl 0521.53007.
[20] Scharlemann, Martin. Producing reducible 3-manifolds by surgery on a knot. Topology 29 (1990) 481-500. MR1071370 (91i:57003), Zbl 0727.57015.
[21] Stallings, John. On fibering certain 3-manifolds. Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961), 95-100. Prentice-Hall, Englewood Cliffs, N.J., 1962. MR0158375 (28 \#1600).
[22] Stallings, John. Whitehead graphs on handlebodies. Geometric group theory down under (Canberra, 1996), 317-330. de Gruyter, Berlin, 1999. MR1714852 (2001i:57028), Zbl 1127.57300.
[23] Whitehead, J. H. C. On certain sets of elements in a free group. Proc. London Math. Soc. 41 (1936) 48-56. Zbl 0013.24801, JFM 62.0079.04.

Math Department, SUNY Buffalo
jdmaster@buffalo.edu
menasco@buffalo.edu
xinzhang@buffalo.edu

This paper is available via http://nyjm.albany.edu/j/2009/15-1.html.

[^0]: Received December 8, 2006.
 Mathematics Subject Classification. 57N10, 57M10; 58C40, 05C25, 57M15, 51M15.
 Key words and phrases. 3-manifolds, covering spaces, Heegaard splittings, knots, virually Haken.

 The second author was partially supported by NSF grant DMS 0306062. The third author was partially supported by NSF grant DMS 0204428.

