
New York Journal of Mathematics
New York J. Math. 13 (2007) 33–87.

Centered densities and fractal measures

G. A. Edgar

Abstract. We have collected definitions and basic results for the (centered
ball) density in metric space with respect to an arbitrary Hausdorff function.
We have kept the definitions general: we do not assume the Hausdorff functions
are continuous or blanketed, and we do not assume the metric space is a subset
of Euclidean space. We discuss the covering measure (= centered Hausdorff
measure) and packing measure defined from these densities.
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Introduction

The Hausdorff measure and the packing measure have been used in the math-
ematical study of fractal geometry. In Euclidean space, and with the classical
Hausdorff functions, there are certain basic facts related to them. Here we will con-
sider their generalization to other metric spaces and other Hausdorff functions. We
must take extra care with the definitions for Hausdorff functions that are not con-
tinuous, or not blanketed. (We say ϕ is blanketed iff lim supt→0 ϕ(2t)/ϕ(t) < ∞.)
In many cases we will need to consider two or more variants of definitions.

Why do we even consider such general Hausdorff functions?
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(a) Discontinuous. When defining a Hausdorff function to fit a particular sit-
uation, it is sometimes artificial to impose continuity. For example when a
metric takes only a discrete set of values, the natural definitions may yield
Hausdorff functions that are piecewise constant.

(b) Unblanketed. An infinite-dimensional metric space (that is, a space with
Hausdorff dimension +∞) may still admit a Hausdorff function ϕ for which
the Hausdorff measure (or covering measure, packing measure, etc.) is finite.
These “infinite-dimensional” Hausdorff functions ϕ satisfy limt→0 ϕ(t)/ta =
0 for all real a. They are typically unblanketed [23, 3, 13, 14, 27].

The packing and covering measures complement each other nicely. So instead
of the usual Hausdorff measure, we have used primarily the covering measure. See
Proposition 4.24 for the relation to the Hausdorff measure. When generalizing state-
ments and definitions from Euclidean space to arbitrary metric space, there may
be multiple alternative versions which are equivalent in Euclidean space, but not in
metric spaces. For example, we will use ϕ(r) rather than ϕ(2r) or ϕ

(
diamBr(x0)

)
.

We begin with statements of the results to be considered for generalization. More
complete definitions are given below. Let s > 0 be real and d ≥ 1 an integer.

0.1. Density theorem for covering measure ([30, Theorem 1.1(i)]). Write Cs
for the s-dimensional covering measure (= centered Hausdorff measure). Let μ be
a finite Borel measure on Rd and write

D
s

μ(x) = lim sup
r→0

μ
(
Br(x)

)
(2r)s

for the s-dimensional upper density of μ at x ∈ Rd. If E ⊆ Rd is a Borel set, then

Cs(E) inf
x∈E

D
s

μ(x) ≤ μ(E) ≤ Cs(E) sup
x∈E

D
s

μ(x),

provided the products are not 0 times ∞.

0.2. Density theorem for packing measure ([30, Theorem 1.1(ii)], [4]). Write
Ps for the s-dimensional packing measure. Let μ be a finite Borel measure on Rd

and write

Ds
μ(x) = lim inf

r→0

μ
(
Br(x)

)
(2r)s

for the s-dimensional lower density of μ at x ∈ Rd. If E ⊆ Rd is a Borel set, then

Ps(E) inf
x∈E

Ds
μ(x) ≤ μ(E) ≤ Ps(E) sup

x∈E
Ds
μ(x),

provided the products are not 0 times ∞.

0.3. Covering measure as fine variation. Let C(x, r) = (2r)s, and write vC

for the fine variation of this constituent function using the centered-ball basis. Then
for all Borel sets E ⊆ Rd we have

Cs(E) = vC(E).

Reference: [10].
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0.4. Packing measure as full variation. Let C(x, r) = (2r)s, and write V C for
the full variation of this constituent function using the centered-ball basis. Then
for all Borel sets E ⊆ Rd we have

Ps(E) = V C(E).

References: [28, 9].

0.5. Product inequalities. Let k, l ≥ 1 be integers, and let s, t > 0 be real
numbers. There exists a constant c > 0 such that for all Borel sets E ⊆ Rk, F ⊆ Rl,

Cs(E)Ct(F ) ≤ c Cs+t(E × F ),

Cs+t(E × F ) ≤ c Cs(E)Pt(F ),

Cs(E)Pt(F ) ≤ c Ps+t(E × F ),

Ps+t(E × F ) ≤ c Ps(E)Pt(F ).

Under good conditions, these inequalities hold with c = 1. References: [2, 26,
20, 29, 15, 16, 21, 8]. Howroyd [20] discusses the generalization to metric space.

We will be interested in proofs using densities.

1. Basic definitions

We begin with definitions and basic results for the (centered ball) density in
metric space and an arbitrary Hausdorff function. In particular, we make an effort
to use the definitions that will apply in the case of metric space other than Euclidean
space, and Hausdorff functions other than simple powers. Sometimes our proofs
may seem overly pedantic, because there are many details to take care of. This is
particularly true when we attempt to use discontinuous Hausdorff functions.

Hausdorff function. A Hausdorff function is a function ϕ defined on an interval
(0, δ) for some δ > 0 such that:

• ϕ(t) > 0 for all t > 0.
• If t1 < t2, then ϕ(t1) ≤ ϕ(t2).

The examples most often used are the Hausdorff functions of the form

(1) ϕs(t) = (2t)s

for a constant s ≥ 0. This is the one we use to discuss “dimension s” in the fractal
sense.

Write ϕ(r+) for the right limit ϕ(r+) = limt↘r ϕ(t). Sometimes we may extend
the definition with the convention ϕ(0) = 0. But the official definition includes only
(0, δ); so, for example, when we say ϕ is “right-continuous” we mean to assert that
it is right-continuous at positive t, and not that it is right-continuous at 0. The
properties of Hausdorff functions that come into play [for densities or for fractal
measures] are those that depend on the values ϕ(t) for t near 0. But we may always
assume ϕ has domain (0,∞) by choosing some t0 > 0 in the domain, and stipulating
ϕ(t) = ϕ(t0) for all t > t0.
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Other common examples of Hausdorff functions:

ϕ(t) = ts0
(

log
1
t

)−s1
,(2)

ϕ(t) = ts0
(

log
1
t

)−s1 (
log log

1
t

)−s2
,(3)

ϕ(t) = 2−M/tα .(4)

A Hausdorff function ϕ is called blanketed iff

lim sup
t→0

ϕ(2t)
ϕ(t)

<∞,

or, equivalently, sup {ϕ(2t)/ϕ(t) : 0 < t < δ } <∞. And of course

lim sup
ϕ(at)
ϕ(t)

<∞

is true for one constant a > 1 if and only if it is true for all constants a > 1.
Note the Hausdorff functions of the forms (1), (2), (3) are blanketed, but (4) is not
blanketed. [The term “blanketed” is from Larman [24]—other terminology can be
found in the later literature.]

A Hausdorff function ϕ will be called right moderate iff

lim sup
r→0

ϕ(r+)
ϕ(r)

<∞.

Note that, in particular, if ϕ is right-continuous, then ϕ is right moderate. And if
ϕ is blanketed, then ϕ is right moderate.

We allow discontinuous Hausdorff functions. But the discontinuity is important
only in the unblanketed case. When ϕ is blanketed, the possibility of discontinu-
ities only changes our fractal measures by at most a constant factor. Indeed, if
ϕ(2t)/ϕ(t) ≤M , then define

ϕ0(t) =
1
t

∫ 2t

t

ϕ(s) ds

to get a continuous Hausdorff function ϕ0 satisfying ϕ(t) ≤ ϕ0(t) ≤ ϕ(2t) ≤Mϕ(t).
So our fractal measures such as Cϕ all satisfy inequalities of the type Cϕ(E) ≤
Cϕ0(E) ≤MCϕ(E).

Metric space. We will usually write ρ for the metric in any metric space. Notation
for open and closed balls in the metric space X :

Br(a) = {x ∈ X : ρ(x, a) < r } , Br(a) = {x ∈ X : ρ(x, a) ≤ r } .
We will assume whenever convenient that our metric space is separable and com-
plete. Therefore, if μ is any finite Borel measure on X and E ⊆ X is a Borel
set,

μ(E) = sup {μ(F ) : F ⊆ E,F compact }
= inf {μ(V ) : V ⊇ E, V open } .
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Uncountable limit points. A simple variant of the lim sup and lim inf will be
used below. They are the limsup and liminf if we ignore countable sets.

Suppose q(r) ∈ R is defined for each r > 0. Then:

• u lim supr→0 q(r) is the infimum of all α such that, for some η > 0, we have
q(r) < α for all but countably many r with 0 < r < η.

• u lim supr→0 q(r) ≥ α means: for all ε > 0 and all η > 0, there are uncount-
ably many r with 0 < r < η and q(r) > α− ε.

• u lim infr→0 q(r) is the supremum of all α such that, for some η > 0, we have
q(r) > α for all but countably many r with 0 < r < η.

• u lim infr→0 q(r) ≤ α means: for all ε > 0 and all η > 0, there are uncount-
ably many r with 0 < r < η and q(r) < α+ ε.

Of course when q is continuous, u lim sup q(r) = lim sup q(r) and u lim inf q(r) =
lim inf q(r).

2. Densities

Let X be a metric space, let a ∈ X , let μ be a finite Borel measure on X , and
let ϕ be a Hausdorff function. The upper ϕ-density of μ at a is

D
ϕ

μ(a) = lim sup
r→0

μ
(
Br(a)

)
ϕ(r)

.

The lower ϕ-density of μ at a is

Dϕ
μ(a) = lim inf

r→0

μ
(
Br(a)

)
ϕ(r)

.

If a is an isolated point, then Br(a) = Br(a) = {a} for small enough r, so we have:

• If μ({a}) = 0, then D
ϕ

μ(a) = Dϕ
μ(a) = 0.

• If μ({a}) > 0 and ϕ(0+) = 0, then D
ϕ

μ(a) = Dϕ
μ(a) = ∞.

• If μ({a}) > 0 and ϕ(0+) > 0, then D
ϕ

μ(a) = Dϕ
μ(a) = μ({a})/ϕ(0+).

Although it is not immediate from the definition, we do have (Corollary 2.3)
Dϕ
μ(a) ≤ D

ϕ

μ(a).
In most cases it won’t matter whether we use open or closed balls; for example

it does not matter in cases when ϕ is continuous. But there are simple counterex-
amples showing that open and closed balls need not yield the same value for the
density when ϕ is discontinuous. Take X = R, and define μ with point-mass 2−k

at point 2−k for k = 1, 2, 3, . . . . For one example, take ϕ(r) = μ(Br(0)) to get

lim sup
r→0

μ
(
Br(0)

)
ϕ(r)

= 2 > 1 = lim sup
r→0

μ
(
Br(0)

)
ϕ(r)

.

For the other example, take ϕ(r) = μ(Br(0)) to get

lim inf
r→0

μ
(
Br(0)

)
ϕ(r)

= 1 >
1
2

= lim inf
r→0

μ
(
Br(0)

)
ϕ(r)

.

In both cases, the 1 is what we want. To ignore the countably many bad values,
we can use the “uncountable” liminf and limsup. More precisely:
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Theorem 2.1. Let X be a metric space, let a ∈ X, and let μ be a finite Borel
measure on X. Write:

D1 = lim sup
r→0

μ
(
Br(a)

)
ϕ(r)

= D
ϕ

μ(a)

D2 = u lim sup
r→0

μ
(
Br(a)

)
ϕ(r)

D3 = lim sup
r→0

μ
(
Br(a)

)
ϕ(r)

D4 = u lim sup
r→0

μ
(
Br(a)

)
ϕ(r)

.

Then D1 = D2 = D4 ≤ D3. All of them are equal provided ϕ is right-continuous.

Proof. Comparing u lim sup to lim sup, we get D1 ≥ D2 and D3 ≥ D4. Also,
Br(a) ⊇ Br(a), so D3 ≥ D1 and D4 ≥ D2. And Br(a) = Br(a) for all but
countably many r, so D4 = D2.

Now we claim D4 ≥ D1. Let α < D1. Let η > 0 be given. Then there exists
r < η such that μ(Br(a))/ϕ(r) > α. Now since lims↗r μ(Bs(a)) = μ(Br(a)), for
all s greater than r but sufficiently close to r we have

μ
(
Bs(a)

)
> αϕ(r) ≥ αϕ(s).

Thus, there are uncountably many s with 0 < s < η and μ(Bs(a))/ϕ(s) > α. So
D4 ≥ α. And therefore we conclude D4 ≥ D1.

So we have: D4 ≥ D1 ≥ D2 = D4, so D1 = D2 = D4 ≤ D3.
Assume ϕ is right-continuous. Let α > D1. There is η > 0 so that for all r < η,

we have μ(Br(a)) < αϕ(r). Taking the limit of this from the right, for all r < η
we have μ(Br(a)) ≤ αϕ(r). Thus lim supr→0 μ(Br(a))/ϕ(r) ≤ α. So D3 ≤ α. This
shows D3 ≤ D1, so that D3 agrees with the other three values. �

Theorem 2.2. Let X be a metric space, let a ∈ X, and let μ be a finite Borel
measure on X. Write:

D1 = lim inf
r→0

μ
(
Br(a)

)
ϕ(r)

D2 = u lim inf
r→0

μ
(
Br(a)

)
ϕ(r)

D3 = lim inf
r→0

μ
(
Br(a)

)
ϕ(r)

= Dϕ
μ(a)

D4 = u lim inf
r→0

μ
(
Br(a)

)
ϕ(r)

.

Then D1 ≤ D2 = D3 = D4. All of them are equal provided ϕ is left-continuous.

Proof. Comparing u lim inf to lim inf, we get D1 ≤ D2 and D3 ≤ D4. Also,
Br(a) ⊇ Br(a), so D3 ≥ D1 and D4 ≥ D2. And Br(a) = Br(a) for all but
countably many r, so D4 = D2.

Now we claim D3 ≥ D2. Let α > D3. Let η > 0 be given. Then there exists
r < η such that μ(Br(a))/ϕ(r) < α. Now since lims↘r μ(Bs(a)) = μ(Br(a)), for
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all s less than r but sufficiently close to r we have

μ
(
Bs(a)

)
< αϕ(r) ≤ αϕ(s).

Thus, there are uncountably many s with 0 < s < η and μ(Bs(a))/ϕ(s) < α. So
D2 ≤ α. And therefore we conclude D2 ≤ D3.

So we have: D2 ≤ D3 ≤ D4 = D2, so D2 = D3 = D4 ≥ D1.
Assume ϕ is left-continuous. Let α < D3. There is η > 0 so that for all r < η,

we have μ(Br(a)) > αϕ(r). Taking the limit of this from the left, for all r < η we
have μ(Br(a)) ≥ αϕ(r). Thus lim infr→0 μ(Br(a))/ϕ(r) ≥ α. So D1 ≥ α. This
shows D1 ≥ D3, so that D1 agrees with the other three values. �

Corollary 2.3. For all a ∈ X, Dϕ
μ(a) ≤ D

ϕ

μ(a).

Proof. u lim inf ≤ u lim sup. �

Comparing the two theorems, we see a reason for using open balls in the definition
of the upper density and closed balls in the definition of the lower density. For the
nonstandard densities, write

Δ
ϕ

μ(a) = lim sup
r→0

μ
(
Br(a)

)
ϕ(r)

,

Δϕ
μ(a) = lim inf

r→0

μ
(
Br(a)

)
ϕ(r)

.

Our densities satisfy

Δϕ
μ(a) ≤ Dϕ

μ(a) ≤ D
ϕ

μ(a) ≤ Δ
ϕ

μ(a).

Proposition 2.4. The densities D
ϕ

μ(x), Dϕ
μ(x), Δ

ϕ

μ(x), and Δϕ
μ(x) are Borel-

measurable functions of x.

Proof. [10, (1.1)] First we claim: for fixed r > 0, the function x �→ μ(Br(x)) is
Borel measurable. Indeed, for any t ∈ R, we claim that

V =
{
x ∈ X : μ

(
Br(x)

)
> t

}
is an open set. Let x0 ∈ V , so that μ(Br(x0)) > t. Now μ(Br−1/n(x0)) ↗
μ(Br(x0)), so there is n with μ(Br−1/n(x0)) > t. Then for any x ∈ B1/n(x0), we
have Br(x) ⊇ Br−1/n(x0), so μ(Br(x)) ≥ μ(Br−1/n(x0)) > t. So x ∈ V . This
shows that V is an open set. Thus, x �→ μ(Br(x)) is Borel measurable (in fact,
lower semicontinuous).

Next we claim: for fixed r > 0, the function x �→ μ(Br(x)) is Borel measurable.
This could be proved similarly to the above (in fact, it is upper semicontinuous).
Or it can be deduced from the above, since

lim
n→∞μ

(
Br+1/n(x)

)
= μ

(
Br(x)

)
.

Next we claim: for all x ∈ X and all η > 0,

sup

{
μ
(
Br(x)

)
ϕ(r)

: 0 < r < η

}
= sup

{
μ
(
Br(x)

)
ϕ(r)

: 0 < r < η, r ∈ Q

}
.

Inequality ≥ is clear. Let α < sup {μ(Br(x))/ϕ(r) : 0 < r < η }. So there exists
r0 ∈ (0, η) with μ(Br0(x))/ϕ(r0) > α. Now for all r < r0 sufficiently close to r0 we



40 G. A. Edgar

have μ(Br(x)) > αϕ(r0) ≥ αϕ(r); in particular there is a rational r that satisfies
this. So α < sup {μ(Br(x))/ϕ(r) : 0 < r < η, r ∈ Q }. This proves inequality ≤ .

For each fixed r ∈ Q, the function x �→ μ(Br(x))/ϕ(r) is Borel measurable,
so the supremum over all r ∈ Q ∩ (0, η) is Borel measurable. And the value
sup {μ(Br(x))/ϕ(r) : 0 < r < η } decreases as η > 0 decreases, so the limit may
be taken over rational η. So we conclude that x �→ D

ϕ

μ(x) is Borel measurable.
Next we claim: for all x ∈ X and all η > 0,

inf

{
μ
(
Br(x)

)
ϕ(r)

: 0 < r < η

}
= inf

{
μ
(
Br(x)

)
ϕ(r)

: 0 < r < η, r ∈ Q

}
.

Inequality ≤ is clear. Let α > inf
{
μ(Br(x))/ϕ(r) : 0 < r < η

}
. So there exists

r0 ∈ (0, η) such that μ(Br0(x))/ϕ(r0) < α. Now for all r > r0 sufficiently close to r0
we have μ(Br(x)) < αϕ(r0) ≤ αϕ(r); in particular there is a rational r that satisfies
this. So α > inf

{
μ(Br(x))/ϕ(r) : 0 < r < η, r ∈ Q

}
. This proves inequality ≥ .

For each fixed r ∈ Q, the function x �→ μ(Br(x))/ϕ(r) is Borel measurable,
so the infimum over all r ∈ Q ∩ (0, η) is Borel measurable. And the value
inf {μ(Br(x))/ϕ(r) : 0 < r < η } increases as η > 0 decreases, so the limit may
be taken over rational η. So we conclude that x �→ Dϕ

μ(x) is Borel measurable.
Now ϕ is nondecreasing, so it has only countably many discontinuities. Let J be

a countable set, dense in (0,∞), that includes all of the discontinuities of ϕ.
Next we claim: for all x ∈ X and all η > 0,

sup

{
μ
(
Br(x)

)
ϕ(r)

: 0 < r < η

}
= sup

{
μ
(
Br(x)

)
ϕ(r)

: 0 < r < η, r ∈ J

}
.

Inequality ≥ is clear. Let α < sup
{
μ
(
Br(x)

)
/ϕ(r) : 0 < r < η

}
. So there exists

r0 ∈ (0, η) such that μ(Br0(x))/ϕ(r0) > α. If r0 ∈ J , we are done. So assume
r0 �∈ J . Then ϕ is continuous at r0 and αϕ(r0) < μ(Br0(x)). So for all r > r0
sufficiently close to r0, we have αϕ(r) < μ(Br0(x)) ≤ μ(Br(x)); in particular there
is r ∈ J∩(r0, η) that satisfies this. So sup

{
μ
(
Br(x)

)
/ϕ(r) : 0 < r < η, r ∈ J

}
> α.

This proves the inequality ≤ .
For each fixed r ∈ J , the function x �→ μ(Br(x))/ϕ(r) is Borel measurable,

so the supremum over all r ∈ J ∩ (0, η) is Borel measurable. And the value
sup {μ(Br(x))/ϕ(r) : 0 < r < η } decreases as η > 0 decreases, so the limit may
be taken over rational η. So we conclude that x �→ Δ

ϕ

μ(x) is Borel measurable.
Next we claim: for all x ∈ X and all η > 0,

inf

{
μ
(
Br(x)

)
ϕ(r)

: 0 < r < η

}
= inf

{
μ
(
Br(x)

)
ϕ(r)

: 0 < r < η, r ∈ J

}
.

Inequality ≤ is clear. Let α > inf
{
μ
(
Br(x)

)
/ϕ(r) : 0 < r < η

}
. So there exists

r0 ∈ (0, η) such that μ(Br0(x))/ϕ(r0) < α. If r0 ∈ J , we are done. So assume
r0 �∈ J . Then ϕ is continuous at r0 and αϕ(r0) > μ(Br0(x)). So for all r < r0
sufficiently close to r0, we have αϕ(r) > μ(Br0(x)) ≥ μ(Br(x)); in particular there
is r ∈ J ∩ (0, r0) that satisfies this. So inf

{
μ
(
Br(x)

)
/ϕ(r) : 0 < r < η, r ∈ J

}
< α.

This proves the inequality ≥ .
For each fixed r ∈ J , the function x �→ μ(Br(x))/ϕ(r) is Borel measurable,

so the infimum over all r ∈ J ∩ (0, η) is Borel measurable. And the value
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inf {μ(Br(x))/ϕ(r) : 0 < r < η } increases as η > 0 decreases, so the limit may
be taken over rational η. So we conclude that x �→ Δϕ

μ(x) is Borel measurable. �

3. Variations

We will use the Thomson–Henstock type “full” and “fine” variations with respect
to the centered ball derivation basis ([17, 31, 32]). Sometimes we use open balls
and sometimes we use closed balls. As we have seen, the uncountable limit points
u lim sup and u lim inf may be used in this connection. But we have gone to that
much trouble only to allow the possibility that the Hausdorff function ϕ is not
continuous.

A constituent is an ordered pair (x, r) with x ∈ X and r > 0. It represents the
ball centered at x with radius r. In a general metric space the center x and/or
radius r are not uniquely determined by the point-set Br(x) or Br(x).

Let E ⊆ X . A centered closed ball packing of E is a collection π of constituents
such that x ∈ E for all (x, r) ∈ π, and ρ(x, x′) > r + r′ for all (x, r), (x′, r′) ∈ π
with (x, r) �= (x′, r′). Note that this implies that the corresponding closed balls
Br(x) are pairwise disjoint. But more than that: if X is embedded isometrically in
a larger metric space, and the constituents are interpreted to represent closed balls
in that metric space, they are still disjoint.

A centered closed ball relative packing of E is a collection π of constituents such
that x ∈ E for all (x, r) ∈ π, and Br(x)∩Br′(x′) = ∅ for all (x, r), (x′, r′) ∈ π with
(x, r) �= (x′, r′). This is called pseudo-packing in [30].

A centered closed ball weak packing of E is a collection π of constituents such
that x ∈ E for all (x, r) ∈ π, and ρ(x, x′) > r ∨ r′ for all (x, r), (x′, r′) ∈ π with
(x, r) �= (x′, r′). Note that this is equivalent to x′ �∈ Br(x) and x �∈ Br′(x′). This is
called pseudo-packing in [19].

If we just say “packing”, we will mean centered closed ball packing. Of course
in Euclidean space, ρ(x, x′) > r + r′ is equivalent to Br(x) ∩Br(x′) = ∅. So when
packing measure was defined, it did not matter which of these two definitions was
used. Any metric space X may be embedded isometrically into a larger metric
space in which Br(x)∩Br′(x′) = ∅ if and only if ρ(x, x′) > r+ r′. Saint Raymond
& Tricot [30] used the term pseudo-packing for our relative packing, and showed
that (for blanketed Hausdorff functions and subsets of Euclidean space) the two
packing measures agree. Das [5] examines more general spaces where equality of
packing and pseudo-packing measures remains valid.

A centered open ball packing of E is a collection π of constituents such that x ∈ E
for all (x, r) ∈ π, and ρ(x, x′) ≥ r+ r′ for all (x, r), (x′, r′) ∈ π with (x, r) �= (x′, r′).
Note that this implies that the corresponding open balls Br(x) are pairwise disjoint,
even when interpreted in a larger metric space.

A centered open ball relative packing of E is a collection π of constituents such
that x ∈ E for all (x, r) ∈ π, and Br(x)∩Br′ (x′) = ∅ for all (x, r), (x′, r′) ∈ π with
(x, r) �= (x′, r′).

A centered open ball weak packing of E is a collection π of constituents such
that x ∈ E for all (x, r) ∈ π, and ρ(x, x′) ≥ r ∨ r′ for all (x, r), (x′, r′) ∈ π with
(x, r) �= (x′, r′). This is equivalent to x′ �∈ Br(x) and x �∈ Br′(x′).

Vitali theorems. Let X be a metric space, and let E ⊆ X . A fine cover of E is
a collection β of constituents such that: x ∈ E for every (x, r) ∈ β, and for every
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x ∈ E and every δ > 0, there exists r > 0 such that r < δ and (x, r) ∈ β. A
collection β of constituents is a very fine cover of E iff: x ∈ E for every (x, r) ∈ β
and for every δ > 0 there are uncountably many r with 0 < r < δ and (x, r) ∈ β.

Next is a standard Vitali theorem. But care is taken to make sure the proof
allows the packing as defined here.

Theorem 3.1. Let X be a metric space, let E ⊆ X be a subset, and let β be a fine
cover of E. Then there exists either:

(a) an infinite (centered closed ball) packing {(xi, ri)} ⊆ β such that inf ri > 0,
or

(b) a countable (possibly finite) centered closed ball packing {(xi, ri)} ⊆ β such
that for all n ∈ N,

E \
n⋃
i=1

Bri(xi) ⊆
∞⋃

i=n+1

B3ri(xi).

Proof. We define recursively a sequence (xn, rn) of constituents and a decreasing
sequence of fine covers βn ⊆ β.

Let β1 = { (x, r) ∈ β : r ≤ 1 }. Then β1 is again a fine cover of E. Define

t1 = sup { r : (x, r) ∈ β1 } ,
and then choose (x1, r1) ∈ β1 with r1 ≥ t1/2. Now suppose (x1, r1), (x2, r2), . . . ,
(xn, rn) and β1, β2, . . . , βn have been chosen. Let

βn+1 = { (x, r) ∈ βn : ρ(x, xn) > r + rn } .
If βn+1 is empty, the construction terminates. If βn+1 is not empty, define

tn+1 = sup { r : (x, r) ∈ βn+1 } ,
and choose (xn+1, rn+1) ∈ βn+1 with rn+1 ≥ tn+1/2. This completes the recursive
construction.

Consider the case where the construction terminates, say βn+1 = ∅. We claim
that E ⊆ ⋃n

i=1Bri(xi). Indeed, if x ∈ E \⋃n
i=1Bri(xi), then ρ(x, xi) − ri > 0 for

i = 1, . . . , n, and thus

ε = min { ρ(x, xi) − ri : 1 ≤ i ≤ n } > 0

and there is (x, r) ∈ βn with 0 < r < ε, so βn+1 �= ∅. So in case the construction
terminates, (b) holds.

So suppose the construction does not terminate, and (a) is false. We must prove
(b). Fix j, and let x ∈ E \⋃j

i=1Bri(xi). We must prove that x ∈ ⋃∞
i=j+1 B3ri(xi).

Just as before, min { ρ(x, xi) − ri : 1 ≤ i ≤ j } > 0 and β1 is a fine cover of E, so
there is r0 > 0 with (x, r0) ∈ β1 and ρ(x, xi) > r0 + ri for i = 1, . . . , j.

Now rn → 0, so there exists a least n with rn < (1/2)r0. We claim that there is
i < n with ρ(x, xi) ≤ r0+ri. Indeed, if not then (x, r0) ∈ βn, so tn ≥ r0 > 2rn ≥ tn,
a contradiction. This i satisfies j < i < n. Because i < n, we have ri ≥ (1/2)r0.
Then ρ(x, xi) ≤ r0 + ri ≤ 3ri. That is, x ∈ B3ri(xi) with i ≥ j + 1 as claimed. �

We will need the following specialized variant later for weak packing. A fine
cover β is upward closed iff, for every sequence (xn, rn) ∈ β such that xn → x and
rn ↗ r, it follows that (x, r) ∈ β.
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Lemma 3.2. Let X be a metric space, let E ⊆ X be compact subset, let β be a
upward closed fine cover of E. Then there is a finite centered open ball weak packing
π ⊆ β such that E ⊆ ⋃

(x,r)∈π Br(x).

Proof. First, β1 = { (x, r) ∈ β : r ≤ 1 } is also a upward closed fine cover of E.
Because it is upward closed and E is compact, { r : (x, r) ∈ β1 } achieves a max-
imum value. Let (x1, r1) ∈ β1 be such that r1 = sup { r : (x, r) ∈ β1 }. Next,
let β2 = { (x, r) ∈ β1 : ρ(x1, r) ≥ r1 }. Now E2 = { x ∈ E : ρ(x1, r) ≥ r1 } is com-
pact, so β2 is a upward closed fine cover of E2. There is (x2, r2) ∈ β2 such that
r2 = sup { r : (x, r) ∈ β2 }. Note r2 ≤ r1, and {(x1, r1), (x2, r2)} is a centered open
ball weak packing for E. Next β3 = { (x, r) ∈ β2 : ρ(x2, x) ≥ r2 } is a upward closed
fine cover of {x ∈ E : ρ(x, x1) ≥ r1, ρ(x, x2) ≥ r2 }. There is (x3, r3) ∈ β3 such
that r3 = sup { r : (x, r) ∈ β3 }. Note r3 ≤ r2, and {(x1, r1), (x2, r2), (x3, r3)} is a
centered open ball weak packing for E. Suppose that we have defined
{(x1, r1), . . . , (xn, rn)} a centered open ball weak packing, r1 ≥ r2 ≥ · · · ≥ rn.
Let βn+1 = { (x, r) : ρ(xn, x) ≥ rn }. If βn+1 = ∅, the construction terminates. If
not, choose (xn+1, rn+1) so that rn+1 = sup { r : (x, r) ∈ βn+1 }.

So if the construction never terminates, we end up with an infinite weak packing
π = {(xi, ri)}. Note that (by compactness or total boundedness) ri → 0. We claim
that E ⊆ ⋃∞

i=1Bri(xi). Let x ∈ E. There is r0 ≤ 1 so that (x, r0) ∈ β. Since
ri → 0, there is a least m so that rm < r0. Then we claim ρ(xi, x) < ri for some
i < m: if not, then (x, r0) ∈ βm so rm ≥ r0, a contradiction. But then ρ(xi, x) < ri
means x ∈ Bri(xi).

Finally, by compactness, this open cover has a finite subcover, so in fact there is
a finite weak packing that covers E. (That is, the construction terminates at some
finite stage.) �

Vitali properties. Let X be a metric space. Let μ be a Borel measure on X .
Then we say that μ has the Strong Vitali Property iff, for every Borel set E ⊆ X
and every fine cover β of E, there exists a (countable) centered closed ball packing
π ⊆ β such that

μ

⎛⎝E \
⋃

(x,r)∈π
Br(x)

⎞⎠ = 0.

We say that the packing π almost covers the set E.
We say that the metric space X has the Strong Vitali Property (or SVP) iff every

finite Borel measure on X has the SVP. Das [5] argues that what we really want
is a property of the support of the measure μ and not a property of the space X
itself.

Let X be a metric space. Let μ be a Borel measure on X . Then we say that μ
has the Weak Vitali Property iff, for every Borel set E ⊆ X and every fine cover β
of E, there exists a centered closed ball weak packing π ⊆ β such that

μ

⎛⎝E \
⋃

(x,r)∈π
Br(x)

⎞⎠ = 0.

We say that the metric space X has the Weak Vitali Property (or WVP) iff every
finite Borel measure on X has the WVP.
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Vitali showed that Lebesgue measure in Euclidean space has the SVP. Besicov-
itch [1] generalized that to every finite measure so that (as defined here) Euclidean
space has the SVP. Davies [7] gave an example of a metric space where the SVP
fails. Larman [25] defined a notion of “finite-dimensional” metric space where the
Besicovitch proof will establish the SVP. Das [6] formulated a “Besicovitch weak-
packing property” that similarly implies the WVP.

The Strong Vitali Property yields a version for open ball packings if we use a
very fine cover.

Proposition 3.3. Let X be a metric space. Let μ be a finite Borel measure on X.
Let E ⊆ X be a Borel set and let β be a very fine cover of E. Assume μ has the
Strong Vitali Property. Then there is a centered open ball packing π ⊆ β such that

μ

⎛⎝E \
⋃

(x,r)∈π
Br(x)

⎞⎠ = 0.

Proof. For a fixed point x, the sets

Sr(x) = { y ∈ X : ρ(x, y) = r }
are pairwise disjoint closed sets. Thus, only countably many have positive measure.
Therefore

β1 =
{

(x, r) ∈ β : μ
(
Sr(x)

)
= 0

}
is a fine cover of E. Therefore, by the SVP, there exists a centered closed ball
packing π ⊆ β1 with

μ

⎛⎝E \
⋃

(x,r)∈π
Br(x)

⎞⎠ = 0.

Now π ⊆ β, and π is also a centered open ball packing. Because of the definition of
β1, we have μ(Sr(x)) = 0 for all (x, r) ∈ π, and therefore μ

(
E \⋃Br(x)

)
= 0. �

The same proof will show:

Proposition 3.4. Let X be a metric space. Let μ be a finite Borel measure on X.
Let E ⊆ X be a Borel set and let β be a very fine cover of E. Assume μ has the
Weak Vitali Property. Then there is a centered open ball weak packing π ⊆ β such
that

μ

⎛⎝E \
⋃

(x,r)∈π
Br(x)

⎞⎠ = 0.

We can eliminate the WVP if we add a hypothesis on the fine cover β. Recall
that a fine cover β is upward closed if, for every sequence (xn, rn) ∈ β such that
xn → x and rn ↗ r, it follows that (x, r) ∈ β.

Proposition 3.5. Let X be a complete separable metric space, let E ⊆ X be a
Borel set, let μ be a finite Borel measure, and let β be a upward closed fine cover of
E. Then there is a centered open ball weak packing π ⊆ β with μ

(
E\⋃π Br(x)

)
= 0.
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Proof. There is a compact F ⊆ E with μ(F ) > (1/2)μ(E), and by Lemma 3.2
there is a weak packing {(x1, r1), . . . , (xn1 , rn1)} ⊆ β with F ⊆ ⋃n1

i=1 Bri(xi), so
μ
(
E \⋃Bri(xi)

)
< (1/2)μ(E). Now E2 = E \⋃n1

i−1Bri(xi) is compact, and

β2 = { (x, r) ∈ β : x ∈ E2, r ≤ min(ρ(x, x1), . . . , ρ(x, xn1)) }
is a upward closed fine cover of E2, so we may repeat to get a weak packing

{(xn1+1, rn1+1), . . . , (xn2 , rn2)}
of E2 with μ

(
E \⋃n2

i=1 Bri(xi)
)
< (1/4)μ(E). Continue in this way. �

Example 3.6 (Ultrametric product space). We consider an example. We will use
it again many times. First (Example 3.7) it will provide an example showing that
the Strong Vitali Property in the sense of centered closed ball packings is not the
same as the sense of centered closed ball relative packings.

Begin with positive integers k1, k2, . . . , all ≥ 2. For each n let Gn be a finite
set with kn elements. Let Ω =

∏∞
n=1Gn be the infinite Cartesian product. Let

positive numbers ρn be given, with 1 ≥ ρ1 > ρ2 > · · · and lim ρn = 0. Cylinders
Ω(x1, x2, . . . , xn) consist of all elements of Ω where the first n coordinates have
these fixed values. Define a metric ρ on Ω so that ρ(x, x) = 0 and ρ(x, y) = ρn if x
and y first differ in the nth coordinate. So Ω is a compact ultrametric space.

For m ∈ N, write Fm for the collection of all subsets of the product Ω that
depend on the first m coordinates. That is, Fm consists of the sets that may be
written as a union cylinders Ω(x1, x2, . . . , xm) of generation m; or equivalently a
union of open balls of radius ρm.

Define the uniform measure μ on Ω so that

μ
(
Ω(x1, . . . , xn)

)
= γn,

where γn = 1/Kn, Kn = k1k2 · · · kn. Note that any two cylinders in generation n
are isometric to each other, so if any of the common fractal measures happens to
be positive and finite on Ω, then it must be a constant multiple of this uniform
measure. The open ball Br(x): for ρn+1 < r ≤ ρn, we have Br(x) = Bρn(x) =
Bρn+1(x) and μ(Br(x)) = γn. The closed ball Br(x): For ρn+1 ≤ r < ρn, we have
Br(x) = Bρn+1(x) = Bρn(x) and μ(Br(x)) = γn. In particular, μ(Bρn(x)) = γn
and μ(Bρn(x)) = γn−1.

Note. The Davies example, as in [7], can be thought of as an ultrametric product
space of this type, with extra points added so that certain balls (disjoint in the
relative sense but not in the absolute sense) are made nondisjoint, and therefore
so that it fails the SVP even in the relative sense. The set of points with only
peripheral coordinates is the product space.

Example 3.7 (Ultrametric product space: Failure of SVP). For each δ > 0, there
are only finitely many distinct balls with radius ≥ δ. Closed balls are open sets.
For any two balls in Ω, either they are disjoint or one contains the other. The SVP
in the sense of relative packings follows. But SVP in the sense used here is false in
Ω for certain choices of kn and ρn, as we will see below.

In the space Ω with ρn = 1/2n, the question of whether the uniform measure μ
has the SVP depends on the sequence kn. Bounded kn is “finite-dimensional” and
unbounded kn is “infinite-dimensional” in ways we will see.
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Proposition 3.8. Let Ω be an ultrametric product space with ρn = 1/2n. Assume
{kn} is bounded. Then μ has the SVP.

Proof. Say kn ≤ k for all n. If 1/2n ≤ r < 1/2n−1, then each closed ball of radius
r is the union of kn ≤ k closed balls of radius r/2.

If β is a fine cover of E, apply Theorem 3.1 to get a packing (xi, ri) ⊆ β such
that

E \
n⋃
i=1

Bri(xi) ⊆
∞⋃

i=n+1

B3ri(xi)

for all n. Now the sets Bri(xn) are disjoint, so
∑
μ(Bri(xi)) < ∞. Each ball of

radius 3ri is covered by at most k2 balls of radius ri, so
∑
μ(B3ri(xi)) < ∞. So

we get μ
(
E \⋃∞

i=1Bri(xi)
)

= 0. �

Remark. Ω itself does not have the SVP. With kn = 2 for all n, we can take
a “biased coin” measure ν and for E the set obeying the Strong Law of Large
Numbers for that measure. The set β of (x, r) where ν(Br(x)) < (1/10)μ(Br(x))
is a fine cover, but any packing π ⊆ β has

∑
ν(Br(x)) < 1/10.

Proposition 3.9. Let Ω be an ultrametric product space with ρn = 1/2n. Assume
kn is unbounded. Then the uniform measure μ fails the SVP.

Proof. Choose a sequence n1 < n2 < n3 < · · · so that knj > j2. Fix m ∈ N.
Define a fine cover

βm =
{

(x, r) : r = 1/2nj+1 for some j ≥ m
}
.

Let π ⊆ βm be a centered closed ball packing. For a given j, if (x, 1/2nj+1),
(x′, 1/2nj+1) both belong to π, then ρ(x, x′) > 2/2nj+1 = 1/2nj so ρ(x, x′) ≥
1/2nj−1. Therefore x and x′ differ in some coordinate from 1 to nj − 1. So for
fixed j, there are at most Knj−1 consituents (x, r) in π with r = 1/2nj+1. And the
measure μ(Br(x)) is γnj . So for the entire packing π we have

μ

⎛⎝ ⋃
(x,r)∈π

Br(x)

⎞⎠ ≤
∞∑
j=m

Knj−1γnj =
∞∑
j=m

1
knj

≤
∞∑
j=m

1
j2
.

For large m this is < 1, so there is no packing ⊆ βm that almost covers Ω. The
SVP fails for the measure μ. �

Recall that if any of the common fractal measures happens to be positive and
finite on Ω, then it must be a constant multiple of this uniform measure. So (at
least in these “infinite-dimenional” ultrametric product spaces) the Strong Vitali
Property fails for all of the measures we use in fractal geometry.

Sometimes the following proposition will be used in place of the SVP.

Proposition 3.10. Let Ω be an ultrametric product space with ρn = 1/2n. Assume
kn → ∞. Let β be a fine cover of Ω. Then there is a centered closed ball packing
π ⊆ β such that

∑
(x,r)∈π μ(B2r(x)) = ∞.

Proof. If 1/2n+1 ≤ r < 1/2n, write r+ = 1/2n so 2r+ = 1/2n−1, so that Br(x) =
Br+(x) ∈ Fn and B2r(x) = B2r+(x) ∈ Fn−1.
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Claim. Let U ∈ Fm and let β∗ ⊆ β be a fine cover of U with r < 1/2m for all
(x, r) ∈ β∗. Then there is a finite set π∗ ⊆ β∗ such that

U =
⋃

(x,r)∈π∗
B2r+(x) and B2r+(x) are pairwise disjoint.

Note that {B2r+(x) : (x, r) ∈ β∗ } is an open cover of the compact set U . So
there is a finite subcover. By the ultrametric property, for any two balls, either
one contains the other or they are disjoint. So there is a further subcover that is
pairwise disjoint. This proves the claim.

We proceed recursively. To begin, let U0 = Ω and m0 ∈ N so that kn ≥ 2 for all
n ≥ m0. Now

β0 =
{

(x, r) ∈ β : r <
1

2m0+2

}
is a fine cover of Ω. Apply the claim to get a finite π1 ⊆ β0 with B2r+(x) pairwise
disjoint and union U0. Let s1 = min { r+ − r : (x, r) ∈ π1 } > 0. Then∑

π1

μ
(
B2r+(x)

)
= 1.

For each (x, r) ∈ π1 we have r < 1/2m0+2, so μ(Br+(x))/μ(B2r+(x)) ≤ 1/2. Thus∑
π1
μ
(
Br+(x)

) ≤ 1/2. Let

U1 = U0 \
⋃

(x,r)∈π1

Br+(x).

So μ(U1) ≥ 1/2.
Next, let m1 > m0 so that: 1/2m1 < s1; U1 ∈ Fm1 ; and kn ≥ 3 for all n ≥ m1.

Then

β1 =
{

(x, r) ∈ β0 : x ∈ U1, r <
1

2m1+2

}
is a fine cover of U1. Apply the claim to get a finite π2 ⊆ β1 with B2r+(x) pairwise
disjoint and union U1. Let s2 = min { r+ − r : (x, r) ∈ π1 ∪ π2 } > 0. Then∑

π2

μ
(
B2r+(x)

)
= μ(U1) ≥ 1

2
.

Let
U2 = U1 \

⋃
(x,r)∈π2

Br+(x).

Then μ(U2) ≥ (2/3)μ(U1) ≥ (2/3)(1/2) = 1/3.
Continue. Let m2 > m1 so that: 1/2m2 < s2; U2 ∈ Fm2 ; and kn ≥ 4 for all

n ≥ m2. Let

β2 =
{

(x, r) ∈ β1 : x ∈ U2, r <
1

2m2+2

}
.

As before get finite π3 ⊆ β2 and s3 with∑
π3

μ
(
B2r+(x)

)
= μ(U2) ≥ 1

3
.

Let
U3 = U2 \

⋃
(x,r)∈π3

Br+(x),
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so μ(U3) ≥ (3/4)μ(U2) ≥ (3/4)(1/3) = 1/4. And so on.
After defining πj recursively, let π =

⋃∞
j=1 πj . We claim π is a centered closed

ball packing. Let (x, r), (x′, r′) ∈ π, r ≥ r′. If they are in the same πj , then
B2r+(x)∩B2r′+(x′) = ∅ so ρ(x, x′) ≥ 2r+ > r+r′. On the other hand, if (x, r) ∈ πj
and (x′, r′) ∈ πj′ with j′ > j, then x′ �∈ Br+(x) so ρ(x, x′) ≥ r+ = r + (r+ − r) ≥
r + sj > r + r′. Finally,∑

(x,r)∈π
μ
(
B2r(x)

)
=

∞∑
j=1

∑
(x,r)∈πj

μ
(
B2r+(x)

) ≥ 1
2

+
1
3

+
1
4

+ · · · = ∞. �

Full variation. A gauge for E is a function Δ: E → (0,∞). A packing π of E is
said to be Δ-fine iff r < Δ(x) for all (x, r) ∈ π.

We begin with a “constituent function” C : X × (0,∞) → [0,∞). Define

V
C

Δ(E) = sup
∑

(x,r)∈π
C(x, r),

where the supremum is over all Δ-fine (centered closed ball) packings π of E. Note
that when Δ decreases, the value V

C

Δ(E) decreases. The (centered closed ball) full
variation of C on E is defined as the limit as Δ → 0:

V
C

(E) = inf
{
V
C

Δ(E) : Δ is a gauge on E
}
.

Similar definitions may be given for V C(E) using centered open ball packings
and Ṽ C(E) using centered open ball weak packings. (Also centered closed ball weak
packings, but we do not use them here.) When the constituent function C is of the
form C(x, r) = ϕ(r) for some Hausdorff function ϕ, we may write V

C
= V

ϕ
, etc.

Proposition 3.11. V
C
, V C , and Ṽ C are metric outer measures.

Proof. [11, (1.1.16)]. The proof works in all three cases. �

Remark. V
C ≤ V C ≤ Ṽ C , since every centered closed ball packing is a centered

open ball packing, and every centered open ball packing is a centered open ball
weak packing. If C(x, r) is left-continuous in r for every x, then then V C = V

C
,

since in any centered open ball packing, we may approximate all of the balls from
inside by open balls as closely as we like.

Example 3.12 (Ultrametric product space: V
ϕ
(Ω) < V ϕ(Ω)). Let Ω =

∏
Gn

be the ultrametric product space with kn = n2, Kn = (n!)2, γn = 1/(n!)2, and
ρn = 1/2n. Let ϕ be the discontinuous Hausdorff function defined by ϕ(r) = γn for
1/2n+1 ≤ r < 1/2n. We will show that V

ϕ
(Ω) = 0, V ϕ(Ω) = 1 and Ṽ ϕ(Ω) = ∞.

We first show V ϕ(Ω) ≥ 1. Let Δ be a gauge on Ω. Then

β =
{

(x, r) : x ∈ Ω, r =
1
2n

< Δ(x) for some n
}

is a fine cover of Ω. Then {B2r(x) : (x, r) ∈ β} is an open cover of the compact set
Ω, and there is a finite subcover. By the ultrametric property, there is a further
subcover such that the sets are disjoint. So we get a finite set π ⊆ β such that
B2r(x) are disjoint with union Ω. We claim π is a centered open ball cover of Ω. If
(x, r), (x′, r′) ∈ π, r ≥ r′, then x′ �∈ B2r(x), so ρ(x, x′) ≥ 2r ≥ r + r′. Thus π is a
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Δ-fine centered open ball packing of Ω. If r = 1/2n, then μ(B2r(x)) = γn−1 = ϕ(r).
Now

∑
(x,r)∈π ϕ(r) =

∑
μ(B2r(x)) = 1. So V ϕΔ (Ω) ≥ 1. This is true for all Δ, so

V ϕ(Ω) ≥ 1.
Next we show V ϕ(Ω) ≤ 1. If 1/2n+1 ≤ r < 1/2n, write r+ = 1/2n. Then

ϕ(r) = γn = μ(Br+(x)). Let π be a centered open ball packing. If (x, r), (x′, r′) ∈ π,
r ≥ r′, then ρ(x, x′) ≥ r+ r′ > r, so ρ(x, x′) ≥ r+. So the balls Br+(x) are pairwise
disjoint. Therefore ∑

(x,r)∈π
ϕ(r) =

∑
π

μ
(
Br+(x)

) ≤ 1.

Thus for all gauges Δ we have V ϕΔ (Ω) ≤ 1, so V ϕ(Ω) ≤ 1.
Next we show V

ϕ
(Ω) = 0. Let Δ = 1/2m, constant. Let π be a Δ-fine centered

closed ball packing. For n ≥ m, let πn =
{

(x, r) : 1/2n+1 ≤ r < 1/2n
}
, so that

π =
⋃∞
n=m πn. If (x, r), (x′, r′) ∈ πn for the same n, then ρ(x, x′) > r + r′ ≥

2/2n+1 = 1/2n so ρ(x, x′) ≥ 1/2n−1. So x, x′ differ in some coordinate between 1
and n − 1. So πn has at most Kn−1 elements. For 1/2n+1 ≤ r < 1/2n, we have
ϕ(r) = γn = 1/(n!)2. Thus∑
(x,r)∈π

ϕ(r) =
∞∑
n=m

∑
(x,r)∈πn

ϕ(r) ≤
∞∑
n=m

Kn−1γn =
∞∑
n=m

((n− 1)!)2

(n!)2
=

∞∑
n=m

1
n2

= αm.

So V
ϕ
(Ω) ≤ V

ϕ

Δ(Ω) ≤ αm. Take the limit on m to get V
ϕ
(Ω) = 0.

From the following example, we get Ṽ ϕ(Ω) = ∞.

Example 3.13 (Ultrametric product space: Ṽ ϕ(Ω)). Now consider the ultrametric
product space with kn → ∞ and ρn = 1/2n, but no other restrictions. We claim
that

(5) Ṽ ϕ(Ω) = lim sup
n→∞

Knϕ

(
1
2n

)
.

First we prove the upper bound. Let α > lim supKnϕ(1/2n). There exists
m so that for all n ≥ m, we have Knϕ(1/2n) ≤ α. For 1/2n+1 < r ≤ 1/2n,
write r+ = 1/2n. Then ϕ(r) ≤ ϕ(1/2n) ≤ αγn = αμ(Br+(x)). Let Δ = 1/2m

be a constant gauge. Let π be a Δ-fine centered open ball weak packing. For
(x, r), (x′, r′) ∈ π we have ρ(x, x′) ≥ r, so ρ(x, x′) ≥ r+ and thus x′ �∈ Br+(x). In
an ultrametric space, this means that the balls Br+(x) are pairwise disjoint. So∑

(x,r)∈π
ϕ(r) ≤ α

∑
π

μ
(
Br+(x)

) ≤ α.

So Ṽ ϕ(Ω) ≤ Ṽ ϕΔ (Ω) ≤ α.
Now we prove the lower bound. Let α < lim supKnϕ(1/2n). Let a gauge Δ be

given. Now

β =
{

(x, r) : r < Δ(x),Knϕ

(
1
2n

)
≥ α, r =

1
2n

for some n
}

is a fine cover of Ω. So {Br(x) : (x, r) ∈ β } is an open cover of the compact set
Ω. So there is a finite subcover. By the ultrametric property, there is a further
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subcover where the sets are disjoint. So we get a finite set π ⊆ β with
⋃
Br(x) = Ω

as a disjoint union. This means that π is a centered open ball weak packing. And∑
(x,r)∈π

ϕ(r) ≥ α
∑
π

μ
(
Br(x)

)
= αμ(Ω) = α.

So Ṽ ϕΔ (Ω) ≥ α. This is true for any gauge, so Ṽ ϕ(Ω) ≥ α.

Fine variation. Let X be a metric space, let E ⊆ X , and let C be a constituent
function. If β is a fine cover of E, define

vCβ = sup
∑

(x,r)∈π
C(x, r),

where the supremum is over all centered open ball packings π ⊆ β, and

vCβ = sup
∑

(x,r)∈π
C(x, r),

where the supremum is over all centered closed ball packings π ⊆ β.
In order to deal with discontinous constituent functions, we must be able to

disregard countably many radii. Recall that a collection β of constituents is a very
fine cover of E iff:

(i) x ∈ E for every (x, r) ∈ β.
(ii) For every x ∈ E and every δ > 0 there are uncountably many r with 0 <

r < δ and (x, r) ∈ β.

Proposition 3.14. Let X be a metric space, E ⊆ X, and C : X×(0,∞) → [0,∞).
Assume C(x, r) is nondecreasing in r for each x. Write:

S1 = inf
{
vCβ : β is a fine cover of E

}
,

S2 = inf
{
vCβ : β is a very fine cover of E

}
,

S3 = inf
{
vCβ : β is a fine cover of E

}
,

S4 = inf
{
vCβ : β is a very fine cover of E

}
.

Then S3 ≤ S1 ≤ S2 = S4. All of them are equal provided C(x, r) is right-continuous
in r for every x.

Proof. A very fine cover is fine, so S1 ≤ S2 and S3 ≤ S4. If π is a centered closed
ball packing, then it is also a centered open ball packing, so vCβ ≥ vCβ , and therefore
S1 ≥ S3 and S2 ≥ S4.

Next we show S2 ≤ S4. Let t > S4. We will show that t ≥ S2. There is a very
fine cover β such that vCβ < t. Let α > 1 be such that αvCβ < t. Now for each x,
the function C(x, r) is nondecreasing in r, so

β′ = { (x, r′) : there exists (x, r) ∈ β with r < r′, C(x, r′) < αC(x, r) }
is a very fine cover of E. In more detail: Fix x. Write T = { r : (x, r) ∈ β }. Then
T ∩ (0, ε) is uncountable for every ε > 0. But

{ r ∈ T : C(x, ·) is not right-continuous at r } is countable.

And for any r remaining after this countable set has been removed, there exist
uncountably many r′ > r, with C(x, r′) < αC(x, r). Now suppose π′ = {(xn, r′n)} ⊆
β′ is a centered open ball packing. Then there exist rn < r′n so that (xn, rn) ∈ β
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and C(xn, r′n) < αC(xn, rn) for all n. Then π = {(xn, rn)} ⊆ β is a centered closed
ball packing. So ∑

n

C(xn, r′n) < α
∑
n

C(xn, rn) ≤ αvCβ < t.

This is true for all π′, so vCβ′ ≤ t. Therefore S2 ≤ t as claimed.
Finally, assume C is right-continuous (in r). Then we claim S2 ≤ S3. Let t > S3.

We will show that t ≥ S2. There is a fine cover β such that vCβ < t. Let α > 1 be
such that αvCβ < t. Now for each x, the function C(x, r) is right-continuous in r.
Thus

β′ = { (x, r′) : there exists (x, r) ∈ β with r < r′, C(x, r′) < αC(x, r) }
is a very fine cover of E. The rest of this case is the same as the previous one, and
we conclude S2 ≤ t as claimed. �

For technical reasons, we adopt S2 = S4 as our definition, and recall that when
C is right continuous, they all agree.

Definition. The centered ball fine variation of C on E is

vC(E) = inf
{
vCβ : β is a very fine cover of E

}
= inf

{
vCβ : β is a very fine cover of E

}
.

For the closed ball version with fine covers, we use S3:

vC(E) = inf
{
vCβ : β is a fine cover of E

}
.

And for S1: ◦
v C(E) = inf

{
vCβ : β is a fine cover of E

}
.

When the constituent function is of the form C(x, r) = ϕ(r) for some Hausdorff
function ϕ, we may write vC = vϕ, and so on.

Proposition 3.15. vC , vC , and
◦
v C are metric outer measures.

Proof. [11, (1.1.19)]. �

Proposition 3.16. Let X be a metric space, let C be a constituent function, and
let E ⊆ X. Then vC(E) ≤ V

C
(E).

Proof. Let Δ be a gauge on E. Then β = { (x, r) : r < Δ(x) } is a very fine cover
of E. If π ⊆ β is a centered closed ball packing, then

∑
π C(x, r) ≤ V

C

Δ(E). Take
the supremum on π to get vCβ ≤ V

C

Δ(E). Therefore vC(E) ≤ V
C

Δ(E). Take the

infimum on Δ to get vC(E) ≤ V
C

(E). �

Example 3.17 (Ultrametric product space: A computation of vϕ). Consider an
ultrametric product space Ω =

∏
Gn. Assume kn → ∞ and ρn = 1/2n. Let ϕ be

a Hausdorff function. Then the value of vϕ(Ω) is determined by whether

(6) inf
n
Kn−1ϕ

(
1

2n+1
+
)

is positive or zero. Note that (in this “infinite-dimensional” case) there is no ϕ such
that 0 < vϕ(Ω) <∞.
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Proposition 3.18. Let Ω be an ultrametric Cartesian product space with kn → ∞
and ρn = 1/2n. Assume (6) is 0. Then vϕ(Ω) = 0.

Proof. Fix ε > 0. Define n1 < n2 < · · · in N so that

Knj−1ϕ

(
1

2nj+1
+
)
<

ε

2j
.

Let aj = 1/2nj+1 and bj > aj so close that Knj−1ϕ(bj) < ε/2j. Then

β =

⎧⎨⎩ (x, r) : r ∈
∞⋃
j=1

(aj , bj)

⎫⎬⎭
is a very fine cover of Ω. Let π ⊆ β be a centered open ball packing. Write πj =
{ (x, r) : r ∈ (aj , bj) } so that π =

⋃∞
j=1 πj . Now for a given j, if (x, r), (x′, r′) ∈ πj ,

then ρ(x, x′) ≥ r + r′ > aj + aj = 1/2nj , so ρ(x, x′) ≥ 1/2nj−1. So the open balls
B1/2nj−1(x) are pairwise disjoint. Each of them has measure γnj−1 = 1/Knj−1, so
the number of elements of πj is at most Knj−1. Now∑

(x,r)∈π
ϕ(r) =

∞∑
j=1

∑
(x,r)∈πj

ϕ(r) ≤
∞∑
j=1

Knj−1ϕ(bj) <
∞∑
j=1

ε

2j
= ε.

So, for this β, we have vϕβ ≤ ε. Take the infimum on β to get vϕ(Ω) = 0. �

Proposition 3.19. Let Ω be an ultrametric Cartesian product space with kn → ∞
and ρn = 1/2n. Assume (6) is positive. Then vϕ(Ω) = ∞.

Proof. Write α for the positive infimum in (6). Let β be a very fine cover of Ω.
Then

β′ =
{

(x, r) ∈ β : r �= 1
2n
, n = 1, 2, . . .

}
is also a very fine cover of Ω. Apply Proposition 3.10 to get a centered closed ball
packing π ⊆ β′ so that

∑
μ(B2r(x)) = ∞. Now if 1/2n+1 < r < 1/2n, write

r+ = 1/2n so 2r+ = 1/2n−1. Then by the assumption

ϕ(r) ≥ ϕ

(
1

2n+1
+
)

≥ αγn−1 = αμ
(
B2r+(x)

)
= αμ

(
B2r(x)

)
.

Therefore
∑
ϕ(r) = ∞. Thus vϕβ = ∞. This holds for all very fine β, so vϕ(Ω) =

∞. �

Example 3.20 (Ultrametric product space: A computation of vϕ). Consider an
ultrametric product space Ω =

∏
Gn. Assume kn → ∞ and ρn = 1/2n. Let ϕ be

a Hausdorff function. Then the value of vϕ(Ω) is determined by whether

(7) inf
n
Kn−1ϕ

(
1

2n+1

)
is positive or zero. Note again that (in this “infinite-dimensional” case) there is no
ϕ such that 0 < vϕ(Ω) <∞.

Proposition 3.21. Let Ω be an ultrametric Cartesian product space with kn → ∞
and ρn = 1/2n. Assume (7) is 0. Then vϕ(Ω) = 0.
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Proof. Fix ε > 0. Define n1 < n2 < · · · in N so that

Knj−2ϕ

(
1

2nj

)
<

ε

2j
.

Then

β =
{

(x, r) : r =
1

2nj
for some j

}
is a fine cover of Ω. Let π ⊆ β be a centered closed ball packing. Write πj =
{ (x, r) : r = 1/2nj } so that π =

⋃∞
j=1 πj . Now for a given j, if (x, r), (x′, r′) ∈ πj ,

then ρ(x, x′) > r + r′ = 2/2nj = 1/2nj−1, so ρ(x, x′) ≥ 1/2nj−2. So the open balls
B1/2nj−2(x) are pairwise disjoint. Each of them has measure γnj−2 = 1/Knj−2, so
the number of elements of πj is at most Knj−2. Now∑

(x,r)∈π
ϕ(r) =

∞∑
j=1

∑
(x,r)∈πj

ϕ(r) ≤
∞∑
j=1

Knj−2ϕ

(
1

2nj

)
<

∞∑
j=1

ε

2j
= ε.

So, for this β, we have vϕβ ≤ ε. Take the infimum on β to get vϕ(Ω) = 0. �

Proposition 3.22. Let Ω be an ultrametric Cartesian product space with kn → ∞
and ρn = 1/2n. Assume (7) is positive. Then vϕ(Ω) = ∞.

Proof. Fix α with 0 < α < inf Kn−1ϕ(1/2n+1). Let β be a fine cover of Ω. By
Proposition 3.10 there is a centered closed-ball packing π ⊆ β with

∑
π μ

(
B2r(x)

)
=

∞. But for 1/2n+1 ≤ r < 1/2n we haveB2r(x) = B1/2n(x) and ϕ(r) ≥ ϕ(1/2n+1) >
αγn−1 = αμ

(
B1/2n(x)

)
= αμ

(
B2r(x)

)
. Therefore∑

(x,r)∈π
ϕ(r) ≥ α

∑
(x,r)∈π

μ
(
B2r(x)

)
= ∞.

This shows vϕβ = ∞. The infimum on β gives us vϕ(Ω) = ∞. �

Example 3.23 (Ultrametric product space: Estimates for
◦
v ϕ). Consider an ul-

trametric product space Ω =
∏
Gn. Assume kn → ∞ and ρn = 1/2n. Let ϕ be a

Hausdorff function. Then

(8) lim inf
n→∞ Kn−1ϕ

(
1

2n+1
+
)
≤◦
v ϕ(Ω) ≤ lim inf

n→∞ Kn−1ϕ

(
1
2n

)
.

Note the upper and lower bounds are not equal in general. But this case can have
a positive finite value.

Lower bound. Let α < lim inf Kn−1ϕ(1/2n+1+). There is m ∈ N so that for all
n ≥ m, we have Kn−1ϕ(1/2n+1+) ≥ α. Let β be any fine cover of Ω. Then

{B2r(x) : (x, r) ∈ β, r < 1/2m }
is an open cover of Ω. So it has a finite subcover {B2r(x) : (x, r) ∈ β1 }. By the
ultrametric property, for any two balls, either one contains the other or they are
disjoint. So there is a further subcover {B2r(x) : (x, r) ∈ β2 } such that the balls
B2r(x) are pairwise disjoint. We claim that β2 is a centered open ball packing.
Indeed, if (x, r), (x′, r′) ∈ β3, r ≥ r′, then B2r(x)∩B2r′(x′) = ∅, so ρ(x, x′) ≥ 2r ≥
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r + r′ as required. Now for (x, r) ∈ β2, say 1/2n+1 < r ≤ 1/2n, n ≥ m, we have
ϕ(r) ≥ ϕ(1/2n+1+) ≥ αγn−1 ≥ αμ

(
B1/2n−1(x)

)
= αμ

(
B2r(x)

)
. So∑

(x,r)∈β2

ϕ(r) ≥ α
∑

(x,r)∈β2

μ
(
B2r(x)

) ≥ α.

Therefore
◦
v ϕβ ≥ α. Taking infimum on β, we get

◦
v ϕ(Ω) ≥ α.

Upper bound. Let α > lim inf Kn−1ϕ(1/2n). So

β =
{

(x, r) : r =
1
2n
,Kn−1ϕ

(
1
2n

)
≥ α

}
is a fine cover of Ω. Let π ⊆ β be a centered open ball packing. If (x, r), (x′, r′) ∈ π,
then ρ(x, x′) ≥ r + r′ > r = 1/2n, say, so ρ(x, x′) ≥ 1/2n−1 = 2r. Therefore
B2r(x) ∩ B2r′(x′) = ∅. Now if r = 1/2n, then ϕ(r) = ϕ(1/2n) ≤ αγn−1 =
αμ

(
B1/2n−1(x)

)
= αμ

(
B2r(x)

)
. So we have∑

(x,r)∈π
ϕ(r) ≤ α

∑
(x,r)∈π

μ
(
B2r(x)

) ≤ α.

So
◦
v ϕβ ≤ α. This shows that

◦
v ϕ(Ω) ≤ α.

Example 3.24 (Ultrametric product space: Example for vϕ(Ω) <
◦
v ϕ(Ω) < vϕ(Ω)).

Let Ω be the ultrametric product space, Ω =
∏
Gn, with kn = n, Kn = n!,

γn = 1/n!, ρn = 1/2n. Define a discontinuous Hausdorff function ϕ: For all n ∈ N,
let ϕ(r) = γn−1 = 1/(n − 1)! for 1/2n+1 < r ≤ 1/2n. Let C(x, r) = ϕ(r) be the
corresponding constituent function. Then by the last three examples, we get

vϕ(Ω) = 0,
◦
v ϕ(Ω) = 1,

vϕ(Ω) = ∞.

I will almost never use
◦
v , but I kept it in the discussion because of the extra

possibility of positive finite value. But recall that for continuous ϕ it agrees with
vϕ and vϕ, and therefore can have only values 0 and ∞ in the examples discussed
above.

In the blanketed case (or more generally the right moderate case) vϕ and vϕ

differ by at most a constant factor. So in the situations where they are either 0 or
∞, they are forced to be equal.

Proposition 3.25. Let X be a metric space and ϕ a right moderate Hausdorff
function. Then for all Borel sets E ⊆ X, we have vϕ(E) ≤ Mvϕ(E), where
M = lim supr→0 ϕ(r+)/ϕ(r).

Proof. If vϕ(E) = ∞, there is nothing to prove, so assume vϕ(E) < ∞. Let
t > vϕ(E). There is a fine cover β of E so that vϕβ < t. Choose α > 1 so that
αvϕβ < t. Then by the definition of M ,

β0 = { (x, r) : there exists r′ with (x, r′) ∈ β, r′ ≤ r, ϕ(r) ≤Mαϕ(r′) }
is a very fine cover of E. Let {(x1, r1), (x2, r2), . . . } ⊆ β0 be a centered closed ball
packing. For each (xj , rj), choose r′j so that (xj , r′j) ∈ β, r′j ≤ rj , ϕ(rj) ≤Mαϕ(r′j).
Then {(x1, r

′
1), (x2, r

′
2), . . . } ⊆ β is a centered closed ball packing, and

∑
ϕ(rj) ≤
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Mα
∑
ϕ(r′j) ≤ Mαvϕβ < Mt. This shows vϕβ0

≤ Mt, and therefore vϕ(E) ≤ Mt.
Finally t was arbitrary, so vϕ(E) ≤Mvϕ(E). �

4. Covering measure

The covering measure (or centered Hausdorff measure) is a variant of the Haus-
dorff measure. In classical cases, it is a fine variation for the centered open ball
base. Reference: [10]. We will discuss the extent to which that remains true in the
generality used here.

Let X be a metric space, and let A ⊆ X . A (centered open ball) cover of A is a
set β of constituents such that

A ⊆
⋃

(x,r)∈β
Br(x), and x ∈ A for all (x, r) ∈ β.

If δ > 0, then we say the cover β is δ-fine provided r < δ for all (x, r) ∈ β. [Do not
confuse two similar-sounding definitions: “δ-fine cover” and “fine cover”.] Define

Cϕδ (A) = inf

⎧⎨⎩ ∑
(x,r)∈β

ϕ(r) : β is a δ-fine cover of A

⎫⎬⎭ ,

Cϕ0 (A) = sup
δ>0

Cϕδ (A) = lim
δ→0

Cϕδ (A),

Cϕ(A) = sup { Cϕ0 (E) : E ⊆ A } .
Outer measure Cϕ is called the ϕ-covering outer measure. When the Hausdorff func-
tion has the special form ϕ(t) = (2t)s for all t, then Cϕ is called the s-dimensional
covering outer measure and written Cϕ = Cs.

If A is totally bounded, then there is a finite δ-fine cover of A for all δ > 0. If A
is separable (so the Lindelöf property holds), then there is a countable δ-fine cover
of A for all δ > 0. But if A is not separable, then for small δ we have Cϕδ (A) = ∞,
so Cϕ0 (A) = ∞, so Cϕ(A) = ∞. For nonseparable sets, Hausdorff measure is always
infinite, so such sets are too large to be classified in this way.

Proposition 4.1. Cϕ is a metric outer measure; Cϕδ and Cϕ0 are countably subad-
ditive.

Proof. [30] The only (centered ball) cover of the empty set is the empty cover, so
Cϕδ (∅) = 0, Cϕ0 (∅) = 0, and Cϕ(∅) = 0.

Suppose E ⊆ F . We claim that Cϕ(E) ≤ Cϕ(F ). if A ⊆ E, then A ⊆ F , so
Cϕ(F ) ≥ Cϕ0 (A). Take the supremum over all subsets A of E to obtain Cϕ(F ) ≥
Cϕ(E).

Fix δ > 0. We claim that Cϕδ is countably subadditive. Suppose E =
⋃∞
n=1En.

We claim that Cϕδ (E) ≤ ∑
n Cϕδ (En). If

∑
n Cϕδ (En) = ∞, we are done. So assume∑

n Cϕδ (En) <∞.
Let ε > 0. For each n ∈ N, let βn be a δ-fine centered open ball cover of En with∑

(x,r)∈βn

ϕ(r) < Cϕδ (En) +
ε

2n
.
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Then β =
⋃
n βn is a δ-fine cover of E. And

Cϕδ (E) ≤
∑

(x,r)∈β
ϕ(r) =

∞∑
n=1

∑
(x,r)∈βn

ϕ(r)

<

∞∑
n=1

(
Cϕδ (En) +

ε

2n
)

=

( ∞∑
n=1

Cϕδ (En)

)
+ ε.

This is true for all ε > 0. So Cϕδ (E) ≤∑
n Cϕδ (En), as claimed.

Next we prove countable subadditivity for Cϕ0 . Let E =
⋃∞
n=1En. For each

δ > 0,

Cϕδ (E) ≤
∞∑
n=1

Cϕδ (En) ≤
∞∑
n=1

Cϕ0 (En).

Let δ → 0 to obtain Cϕ0 (E) ≤∑
n Cϕ0 (En).

Now subadditivity for Cϕ. Suppose E =
⋃∞
n=1En. If A ⊆ E, then A ∩En ⊆ En

for each n and A =
⋃
n(A ∩ En). So

Cϕ0 (A) ≤
∞∑
n=1

Cϕ0 (A ∩ En) ≤
∞∑
n=1

Cϕ(En).

Take the supremum over all A ⊆ E to obtain Cϕ(E) ≤ ∑
n Cϕ(En).

Finally, we prove the metric property. Suppose E,F are sets with dist(E,F ) =
ε > 0. If A ⊆ E and B ⊆ F , then also dist(A,B) ≥ ε. Now for δ < ε/2, any δ-fine
cover of A ∪B is the disjoint union of a δ-fine cover of A with a δ-fine cover of B.
So Cϕδ (A∪B) = Cϕδ (A) + Cϕδ (B). Let δ → 0 to obtain Cϕ0 (A∪B) = Cϕ0 (A) + Cϕ0 (B).
Then take the supremum over all A ⊆ E and B ⊆ F to obtain Cϕ(E ∪ F ) =
Cϕ(E) + Cϕ(F ). �

The extra step at the end of the definition, obtaining Cϕ from Cϕ0 , is awkward.
Use of the variation, below, avoids this. When ϕ is blanketed, the difference is at
most a constant factor.

Proposition 4.2. Assume that ϕ is blanketed. Then there is a constant M so that
for all Borel sets E ⊆ X, we have Cϕ0 (E) ≤ Cϕ(E) ≤MCϕ0 (E).

Proof. From the definition, Cϕ0 (E) ≤ Cϕ(E). If ϕ is blanketed, then there is δ0 > 0
and a constant M so that ϕ(2r)/ϕ(r) ≤M for all r < δ0. If X is finite-dimensional,
then there is δ0 > 0 and a constant M so that for any r < δ, every ball of radus 2r
is contained in a union of at most M balls of radius r.

Let A ⊆ E and let δ < δ0. Let β be a δ-fine (centered open ball) cover of E.
Then β1 = { (x, r) ∈ β : Br(x) ∩A �= ∅ } satisfies A ⊆ ⋃

β1
Br(x). For each

(x, r) ∈ β1, choose some point y ∈ Br(x)∩A, call it y(x). Then B2r(y(x)) ⊇ Br(x),
so β2 = { (y(x), 2r) : (x, r) ∈ β1 } is a 2δ-fine cover of A. So we get∑

β2

ϕ(2r) ≤M
∑
β

ϕ(r).

Therefore Cϕ2δ(A) ≤M
∑

β ϕ(r). Take the infimum on β to get Cϕ2δ(A) ≤MCϕδ (E),
take the limit on δ to get Cϕ0 (A) ≤MCϕ0 (E), then take the supremum on A to get
Cϕ(E) ≤MCϕ0 (E). �
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Corollary 4.3. Assume that ϕ is blanketed. Then Cϕ(E) = 0 if and only if
Cϕ0 (E) = 0.

In Example 4.5, below, we see that this may fail for unblanketed ϕ.

Example 4.4 (Ultrametric product space: Computation for Cϕ(Ω)). Let Ω =∏
Gn be an ultrametric product space with general ρn strictly decreasing to 0. Let

ϕ be a Hausdorff function. Then we claim

(9) Cϕ(Ω) = lim inf
n

Knϕ (ρn+1+) .

Lower bound. Let α < lim inf Knϕ(ρn+1+). There is m so that

Knϕ(ρn+1+) ≥ α

for all n ≥ m. Let δ < ρm. Then for any r < δ there is n ≥ m with ρn+1 < r ≤ ρn,
and we have Br(x) = Bρn(x), so μ(Br(x)) = γn ≤ (1/α)ϕ(ρn+1+) ≤ (1/α)ϕ(r).
Now if β is any δ-fine centered open ball cover of Ω, then∑

(x,r)∈β
ϕ(r) ≥ α

∑
β

μ
(
Br(x)

) ≥ α.

So Cϕδ (Ω) ≥ α. Take the limit as δ → 0 to get Cϕ(Ω) ≥ Cϕ0 (Ω) ≥ α.
Upper bound. Let α > lim inf Knϕ(ρn+1+). Let A ⊆ Ω. Let δ > 0. There are

n ∈ N and r > ρn+1 so that ρn < δ and Knϕ(r) < α. There is a finite open cover
{Br(xi) : 1 ≤ i ≤ k } consisting of k ≤ Kn open balls all with the same radius. So
Cϕδ (A) ≤ Knϕ(r) ≤ α. Take the supremum on δ to get Cϕ0 (A) ≤ α. Take the
supremum on A to get Cϕ(Ω) ≤ α. �
Example 4.5 (Example with different nullsets for Cϕ and Cϕ0 ). This example can-
not be ultrametric, since in an ultrametric space every point of a ball is a center,
and thus we get Cϕ0 = Cϕ.

For n ∈ N, let Gn be a set with n elements. Write Qn =
∏n
j=1Gj , so that Qn

has n! elements, write Q∞ =
∏∞
j=1Qj , and

Q = Q∞ ∪
∞⋃
n=0

Qn.

If x1 ∈ G1, . . . , xn ∈ Gn, then letQ(x1, . . . , xn) be the “cylinder” consisting of those
elements of Q that begin with these coordinates. [If k < n, then Qk is disjoint from
all Q(x1, . . . , xn).] Let ρn = 1/4n−1. Define a metric ρ on Q as follows: If x = y,
then ρ(x, y) = 0. If x and y both have length at least n, and first differ in coordinate
n, then ρ(x, y) = ρn. If x has length at least n and y = (x1, . . . , xn−1) is the first
n− 1 coordinates of x, then ρ(x, y) = ρn/2. Note that the restriction of this metric
to the subset Q∞ is an ultrametric product space of the type we have considered
before, with ρn = 1/4n−1, kn = n, Kn = n!, γn = 1/n!. The difference between Q
and Q∞ is that we have added countably many points to Q∞ to serve as centers of
balls.

Let

ϕ(t) = Γ
(

log(4/t)
log 4

)−1

, t ≤ 1/2,

using the Gamma function Γ(t) =
∫∞
0 vt−1e−v dv. So ϕ(1/4n) = 1/Γ(n+1) = 1/n!

and ϕ is a Hausdorff function.
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Proposition 4.6. Let Q be the metric space described above, and ϕ the Hausdorff
function defined above. Then Cϕ(Q) ≥ 1 but Cϕ0 (Q) = 0.

Proof. The subset Q∞ has Cϕ(Q∞) = 1 by Example 4.4. So Cϕ(Q) ≥ 1.
On the other hand, for δ > 0, and any n with δ > ρn/2, if δ > r > ρn/2, then

the space Q is covered by the Kn−1 balls with centers in Qn−1 and radius r. So
Cϕδ (Q) ≤ Kn−1ϕ(r). Take the infimum over r > ρn/2 to get

Cϕδ (Q) ≤ Kn−1ϕ
(ρn

2

)
=

Γ(n)
Γ(n+ 1/2)

,

and the limit on n to get Cϕδ (Q) = 0. This is true for all δ, so Cϕ0 (Q) = 0. �

There is a variant of the covering measure with centered closed ball covers. A
collection β of constituents is a centered closed ball cover of E if: x ∈ E for all
(x, r) ∈ β and E ⊆ ⋃

(x,r)∈β Br(x). Define

Cϕδ (A) = inf

⎧⎨⎩ ∑
(x,r)∈β

ϕ(r) : β is a δ-fine centered closed ball cover of A

⎫⎬⎭ ,

Cϕ0 (A) = sup
δ>0

Cϕδ (A) = lim
δ→0

Cϕδ (A),

Cϕ(A) = sup
{
Cϕ0 (E) : E ⊆ A

}
.

Example 4.7 (Ultrametric product space: Computation for Cϕ(Ω)). Let Ω =∏
Gn be an ultrametric product space with ρn = 1/2n. Let ϕ be a Hausdorff

function. Then we claim

(10) Cϕ(Ω) = lim inf
n

Knϕ

(
1

2n+1

)
.

Lower bound. Let α < lim inf Knϕ(1/2n+1). There is m with Knϕ(1/2n+1) ≥ α
for all n ≥ m. Let δ < 1/2m. Then for any r < δ there is n ≥ m with 1/2n+1 ≤ r <
1/2n, and we have Br(x) = B1/2n+1(x), so μ(Br(x)) = γn ≤ (1/α)ϕ(1/2n+1) ≤
(1/α)ϕ(r). Now if β is any δ-fine centered closed ball cover of Ω, then∑

(x,r)∈β
ϕ(r) ≥ α

∑
β

μ
(
Br(x)

) ≥ α.

So Cϕδ (Ω) ≥ α. Take the limit as δ → 0 to get Cϕ(Ω) ≥ Cϕ0 (Ω) ≥ α.
Upper bound. Let α > lim inf Knϕ(1/2n+1). Let A ⊆ Ω. Let δ > 0. There

exists n ∈ N so that 1/2n < δ and Knϕ(1/2n+1) < α. There is a finite open cover{
B1/2n+1(xi) : 1 ≤ i ≤ k

}
consisting of k ≤ Kn closed balls all with the same

radius. So Cϕδ (A) ≤ Knϕ(1/2n+1) ≤ α. Take the supremum on δ to get Cϕ0 (A) ≤ α.
Take the supremum on A to get Cϕ(Ω) ≤ α. �

Recall that a Hausdorff function ϕ is right moderate iff

lim sup
r→0

ϕ(r+)
ϕ(r)

<∞.

Proposition 4.8. Let X be a metric space, let ϕ be a Hausdorff function. For all
E ⊆ X, we have Cϕ(E) ≤ Cϕ(E). If ϕ is right moderate, then there is a constant
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M so that for all E ⊆ X, we have Cϕ(E) ≤MCϕ(E). And if ϕ is right-continuous,
then for all E ⊆ X we have Cϕ(E) = Cϕ(E).

Proof. If
⋃

(x,r)∈πBr(x) ⊇ A, then
⋃
π Br(x) ⊇ A. Therefore Cϕ(E) ≤ Cϕ(E).

Conversely, assume ϕ is right moderate. Then there exist M and ε so that
ϕ(r+)/ϕ(r) < M for all r < ε. If δ < ε and {(xn, rn)} is a δ-fine centered closed
ball cover of A, then there exist r′n > rn so that r′n < 2δ and

∑
ϕ(r′n) < M

∑
ϕ(rn).

If ϕ is right-continuous,M may be chosen as close to 1 as we like. But {(xn, r′n)} is a
centered open ball cover of A. So C2δ(A) ≤MCδ(A). Therefore Cϕ(E) ≤MCϕ(E).
And if ϕ is right-continuous, Cϕ(E) ≤ Cϕ(E). �

Example 4.9 (Ultrametric product space: Cϕ(Ω) < Cϕ(Ω)). Consider the product
space Ω with kn = n, Kn = n!, ρn = 1/2n, γn = 1/Kn = 1/n!. Let ϕ be the
discontinuous Hausdorff function defined by ϕ(r) = γn for 1/2n+1 < r ≤ 1/2n.
Then by (9) and (10) we have Cϕ(Ω) = 1 and Cϕ(Ω) = 0.

Covering measure and fine variation. In the classical case, we have Cϕ = vϕ.
Now we will consider this in greater generality.

Theorem 4.10. Let X be a metric space, and let ϕ be a Hausdorff function. Let
C(x, r) = ϕ(r) and let vϕ = vC be its fine variation. Then for all Borel sets E, we
have vϕ(E) ≤ Cϕ(E).

Proof. [10, Theorem 3.1] (a) First we prove: If Cϕ(E) = 0, then vϕ(E) = 0.
Assume Cϕ(E) = 0. Let ε > 0. Now Cϕ0 (E) = 0. For each n ∈ N we have
Cϕ1/n(E) = 0. So there is a centered open ball cover

βn = { (xin, rin) : i ∈ N }
of E with rin < 1/n and ∑

i

ϕ(rin) <
ε

2n+1
.

Now for each i and n let

βin = { (y, r) : ρ(y, xin) < r < rin } .
Then

β =
⋃
i,n

βin

is a very fine cover of E. Let π ⊆ β be a packing. For each i, n, there is at most
one element of βin in π, because the balls Br(y) for (y, r) ∈ βin are disjoint but all
contain the point xin. Thus∑

(x,r)∈π
ϕ(r) ≤

∑
i,n

ϕ(rin) ≤
∑
n

ε

2n+1
≤ ε.

Thus vϕβ ≤ ε. So vϕ(E) ≤ ε. But ε > 0 was arbitrary, so vϕ(E) = 0.
(b) Now we prove that vϕ(E) ≤ Cϕ(E). If Cϕ(E) = ∞, there is nothing to prove,

so assume Cϕ(E) <∞. Let μ be the restriction of Cϕ to E; that is, μ(A) = Cϕ(A∩E)
for all sets A ⊆ X . Then μ is a finite metric outer measure.
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We will decompose E using the density D
ϕ

μ . Fix a number α > 1. Write

E1 =
{
x ∈ E : D

ϕ

μ(x) ≤ α−3
}
,

E2 =
{
x ∈ E : D

ϕ

μ(x) > α−3
}
.

Consider first E1. For n ∈ N write

Fn =

{
x ∈ E1 :

μ
(
Br(x)

)
ϕ(r)

< α−2 for all r <
1
n

}
.

Then Fn increases to E1 as n→ ∞ since α−2 > α−3.
We claim that Cϕ(Fn) = 0. If δ < 1/n, then when Fn is covered by a δ-fine cover

β, we have

∑
(x,r)∈β

ϕ(r) ≥ α2
∑
β

μ
(
Br(x)

) ≥ α2μ

⎛⎝⋃
β

Br(x)

⎞⎠ ≥ α2μ(Fn) = α2Cϕ(Fn).

Therefore Cϕδ (Fn) ≥ α2Cϕ(Fn). Let δ → 0 to obtain Cϕ0 (Fn) ≥ α2Cϕ(Fn). Therefore
Cϕ(Fn) ≥ α2Cϕ(Fn). Now Cϕ(Fn) <∞ and α2 > 1, so Cϕ(Fn) = 0.

Thus Cϕ(Fn) = 0 for all n. By countable subadditivity, we conclude that
Cϕ(E1) = 0. By part (a), vϕ(E1) = 0 as well.

Next consider the set E2. From Theorem 2.1, D
ϕ

μ(x) = u lim supμ(Br(x))/ϕ(r).
Now α−4 < α−3, so the set

β =

{
(x, r) consituent : x ∈ E2,

μ
(
Br(x)

)
ϕ(r)

> α−4

}
is a very fine cover of E2. Now, if π ⊆ β is a packing, then∑

(x,r)∈π
ϕ(r) < α4

∑
π

Cϕ(Br(x) ∩ E) ≤ α4Cϕ(E).

This is true for all packings π ⊆ β, so vϕβ ≤ α4Cϕ(E), and thus vϕ(E2) ≤ α4Cϕ(E).
Combining the two parts, we have

vϕ(E) ≤ vϕ(E1) + vϕ(E2) ≤ 0 + α4Cϕ(E).

Take the infimum over all α > 1 to obtain vϕ(E) ≤ Cϕ(E). �

Remark. The same argument may be adapted for the centered closed ball covering
measure Cϕ. It will establish the inequality where vϕ(E) is replaced by vϕ(E) = S3

of Proposition 3.14. The upper density in the proof is replaced by Δ
ϕ

μ = D3 of
Theorem 2.1. The result is vϕ(E) ≤ Cϕ(E).

Theorem 4.11. Let X be a metric space, and let ϕ be a Hausdorff function. Let
C(x, r) = ϕ(r) and let vϕ = vC be its fine variation. Assume that ϕ is blanketed.
Then for all Borel sets E, we have vϕ(E) = Cϕ(E).

Proof. [10, Theorem 3.1] Because of the previous theorem, it suffices to show
Cϕ(E) ≤ vϕ(E). If vϕ(E) = ∞, there is nothing to prove. So assume vϕ(E) < ∞.
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Let Λ ⊆ (0,∞) be the set of points r such that ϕ is not right-continuous at r. so
Λ is countable. Let β be a very fine cover of E with vϕβ <∞. Let δ > 0. Then

β1 =
{

(x, r) ∈ β : r <
δ

3
, r �∈ Λ

}
is a fine cover of E. Apply Theorem 3.1 to β1 to get a packing {(xn, rn)} ⊆ β.
Note that lim supn rn > 0 is impossible, since

∑
n ϕ(rn) ≤ vϕβ < ∞; so we have for

all n ∈ N

E \
n⋃
i=1

Bri(xi) ⊆
∞⋃

i=n+1

B3ri(xi).

Now ϕ is right-continuous at each ri. Let α > 1, and choose r′i > ri so that r′i < δ/3
and

∑
ϕ(r′i) < α

∑
ϕ(ri). Thus we get open covers

E ⊆
n⋃
i=1

Br′i(xi) ∪
∞⋃

i=n+1

B3r′i(xi).

Now since ϕ is blanketed, we may write

Cϕδ (E) ≤
n∑
i=1

ϕ(r′i) +
∞∑

i=n+1

ϕ(3r′i).

Now
∑
ϕ(3r′i) < ∞, so taking the limit on n, we get Cϕδ (E) ≤ ∑∞

i=1 ϕ(r′i) ≤ αvϕβ .
Let α→ 1 and δ → 0 to get Cϕ0 (E) ≤ vϕβ . Take the infimum over β to get Cϕ0 (E) ≤
vϕ(E). Take the supremum of this over all subsets to get Cϕ(E) ≤ vϕ(E). �

Theorem 4.12. Let X be a metric space, and let ϕ be a Hausdorff function. Let
C(x, r) = ϕ(r) and let vϕ = vC be its (closed ball) fine variation. Assume that ϕ
is blanketed. Then for all Borel sets E, we have vϕ(E) = Cϕ(E).

Proof. [10, Theorem 3.1] It suffices to show Cϕ(E) ≤ vϕ(E). If vϕ(E) = ∞, there
is nothing to prove. So assume vϕ(E) <∞. Let β be a fine cover of E with vϕβ <∞.
Let δ > 0. Then

β1 =
{

(x, r) ∈ β : r <
δ

3

}
is a fine cover of E. Apply Theorem 3.1 to β1 to get a packing {(xn, rn)} ⊆ β.
Thus we get centered closed ball covers

E ⊆
n⋃
i=1

Bri(xi) ∪
∞⋃

i=n+1

B3ri(xi).

Now ϕ is blanketed, so write

Cϕδ (E) ≤
n∑
i=1

ϕ(ri) +
∞∑

i=n+1

ϕ(3ri).

Now
∑
ϕ(3ri) < ∞, so taking the limit on n, we get Cϕδ (E) ≤ ∑∞

i=1 ϕ(ri) ≤ vϕβ .
Take the infimum over β to get Cϕ0 (E) ≤ vϕ(E). Take the supremum of this over
all subsets to get Cϕ(E) ≤ vϕ(E). �
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Example 4.13 (Ultrametric product space: vϕ(Ω) �= Cϕ(Ω)). Consider the exam-
ple Ω with kn = n, Kn = n!, ρn = 1/2n, γn = 1/n!, with the Hausdorff function
ϕ(r) = γn for 1/2n+1 < r ≤ 1/2n. We saw above that Cϕ(Ω) = 1. And vϕ(Ω) = 0
by Proposition 3.19. So this is an example with vϕ(Ω) �= Cϕ(Ω). �

Example 4.14 (Ultrametric product space: vϕ(Ω) �= Cϕ(Ω)). Consider again the
example Ω with kn = n, Kn = n!, ρn = 1/2n, γn = 1/n!, with the Hausdorff
function ϕ(r) = γn−1 for 1/2n+1 < r ≤ 1/2n. Then Cϕ(Ω) = 1 by (10) and
vϕ(Ω) = 0 by Proposition 3.19. So this is an example with vϕ(Ω) �= Cϕ(Ω). �

Note. The failure of vϕ = Cϕ in the unblanketed case may be an indication that
one of the definitions is wrong, and should be altered somehow (in a way that makes
no difference in the blanketed case). But which one? Perhaps the density theorem
will show whether we should consider vϕ or Cϕ to be the “correct” measure.

Density theorem.

Theorem 4.15. Let X be a metric space, let ϕ be a Hausdorff function, let μ be a
finite Borel measure on X, and let E ⊆ X be a Borel set.

(a) Then

μ(E) ≤ Cϕ(E) sup
x∈E

D
ϕ

μ(x),

except when the product is 0 times ∞.
(b) Assume ϕ is blanketed. Then

Cϕ(E) inf
x∈E

D
ϕ

μ(x) ≤ μ(E).

Proof. [30, Theorem 1.1], [11, Theorem 1.5.13] (a) We will prove

μ(E) ≤ Cϕ(E) supD
ϕ

μ(x).

If supD
ϕ

μ(x) = ∞, this is immediate. So assume supD
ϕ

μ(x) < ∞. Let h be such
that D

ϕ

μ(x) < h < ∞ for all x ∈ E. We must show that μ(E) ≤ hCϕ(E). For
n ∈ N, let

En =

{
x ∈ E :

μ
(
Br(x)

)
ϕ(r)

< h for all r <
1
n

}
.

The sets En increase to E. Let δ < 1/n and let β be a δ-fine cover of En. Then

∑
(x,r)∈β

ϕ(r) ≥ 1
h

∑
β

μ
(
Br(x)

) ≥ 1
h
μ

⎛⎝⋃
β

Br(x)

⎞⎠ ≥ 1
h
μ(En).

Therefore Cϕδ (En) ≥ (1/h)μ(En). Let δ → 0, so (1/h)μ(En) ≤ Cϕ0 (En) ≤ Cϕ(E).
Let n→ ∞ to obtain (1/h)μ(E) ≤ Cϕ(E), as required.

(b) Apply Theorem 4.18(a), below, and use Theorem 4.11 to replace vϕ by
Cϕ. �
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Remark. The closed version is the same, using Cϕ and density Δ
ϕ

μ .

Corollary 4.16. Let X be a metric space, let ϕ be a Hausdorff function, and let
E ⊆ X be a Borel set.

(a) If there is a finite Borel measure μ such that supx∈E D
ϕ

μ(x) = k < ∞, then
Cϕ(E) ≥ μ(E)/k.

(b) Assume ϕ is blanketed. If there is a finite Borel measure μ such that

inf
x∈E

D
ϕ

μ(x) = k > 0,

then Cϕ(E) ≤ μ(E)/k.

Corollary 4.17. Let X be a metric space, let ϕ be a Hausdorff function, and let
E ⊆ X be a Borel set such that Cϕ(E) < ∞. Write μ for the restriction of Cϕ to
E. Then:

(a) Cϕ
{
x ∈ E : D

ϕ

μ(x) < 1
}

= 0.

(b) If ϕ is blanketed, then Cϕ
{
x ∈ E : D

ϕ

μ(x) > 1
}

= 0.

Proof. (a) Let α < 1. Write Eα =
{
x ∈ E : D

ϕ

μ(x) ≤ α
}
. Then supx∈Eα

D
ϕ

μ(x) ≤
α, so by Theorem 4.15(a), Cϕ(Eα) = μ(Eα) ≤ αCϕ(Eα). Now Cϕ(Eα) < ∞ and
α < 1, so we have Cϕ(Eα) = 0. This is true for all α < 1, so taking a countable
union we have Cϕ

{
x ∈ E : D

ϕ

μ(x) < 1
}

= 0.

(b) Let α > 1. Write Eα =
{
x ∈ E : D

ϕ

μ(x) ≥ α
}
. Then infx∈Eα D

ϕ

μ(x) ≥ α, so
by Theorem 4.15(b), Cϕ(Eα) = μ(Eα) ≥ αCϕ(Eα). Now Cϕ(Eα) < ∞ and α > 1,
so we have Cϕ(Eα) = 0. This is true for all α > 1, so taking a countable union we
have Cϕ

{
x ∈ E : D

ϕ

μ(x) > 1
}

= 0. �

Remark. These corollaries also hold for Cϕ and density Δ
ϕ

μ .

Use the fine variation. In case ϕ is not blanketed, maybe it is better to use vϕ

itself, instead of Cϕ. This time the extra condition is needed for the upper bound.

Theorem 4.18. Let X be a metric space, let ϕ be a Hausdorff function, let μ be a
finite Borel measure on X, and let E ⊆ X be a Borel set.

(a) Then
vϕ(E) inf

x∈E
D
ϕ

μ(x) ≤ μ(E).

(b) Assume μ has the Strong Vitali Property. Then

μ(E) ≤ vϕ(E) sup
x∈E

D
ϕ

μ(x),

except when the product is 0 times ∞.
(c) Assume that ϕ is blanketed. Then

μ(E) ≤ vϕ(E) sup
x∈E

D
ϕ

μ(x),

except when the product is 0 times ∞.
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Proof. (a) If infD
ϕ

μ(x) = 0 we are done. So assume inf D
ϕ

μ(x) > 0. Let h be a
constant such that 0 < h < D

ϕ

μ(x) for all x ∈ E. We must show hvϕ(E) ≤ μ(E).
Let V ⊇ E be an open set. Then

β =

{
(x, r) : x ∈ E,

μ
(
Br(x)

)
ϕ(r)

> h, 0 < r < dist(x,X \ V )

}
is a very fine cover of E. Let π ⊆ β be a centered open ball packing. Then

∑
(x,r)∈π

ϕ(r) <
1
h

∑
π

μ
(
Br(x)

)
=

1
h
μ

(⋃
π

Br(x)

)
≤ 1
h
μ(V ).

Take the supremum on π to get vϕβ ≤ (1/h)μ(V ). Therefore vϕ(E) ≤ (1/h)μ(V ).
Take the infimum on V to get vϕ(E) ≤ (1/h)μ(E), as claimed.

(b) If supD
ϕ

μ(x) = ∞ there is nothing to prove. So assume supD
ϕ

μ(x) < ∞.
Let h be a constant such that D

ϕ

μ(x) < h < ∞ for all x ∈ E. We must prove
μ(E) ≤ hvϕ(E). Let β be a very fine cover of E. Then

β1 =

{
(x, r) ∈ β :

μ
(
Br(x)

)
ϕ(r)

< h

}
is also a very fine cover of E. By the Strong Vitali Property, there is a centered
closed ball packing π ⊆ β1 such that μ

(
E \⋃π Br(x)

)
= 0. Then

∑
(x,r)∈π

ϕ(r) >
1
h

∑
π

μ
(
Br(x)

) ≥ 1
h
μ

(⋃
π

Br(x)

)
≥ 1
h
μ(E).

Therefore vϕβ ≥ (1/h)μ(E). This holds for all β, so vϕ(E) ≥ (1/h)μ(E) as required.
(c) Apply Theorems 4.11 and 4.15(a). �

Remark. The same result holds for vϕ with density Δ
ϕ

μ .

Corollary 4.19. Let X be a metric space, let ϕ be a Hausdorff function, and let
E ⊆ X be a Borel set.

(a) Assume there is a finite Borel measure μ such that supx∈E D
ϕ

μ(x) = k <∞.
Assume ϕ is blanketed or μ has the SVP. Then vϕ(E) ≥ μ(E)/k.

(b) Assume there is a finite Borel measure μ such that infx∈ED
ϕ

μ(x) = k > 0.
Then vϕ(E) ≤ μ(E)/k.

Corollary 4.20. Let X be a metric space, let ϕ be a Hausdorff function, and let
E ⊆ X be a Borel set such that vϕ(E) < ∞. Write μ for the restriction of vϕ to
E.

(a) Then vϕ
{
x ∈ E : D

ϕ

μ(x) > 1
}

= 0.
(b) Assume either ϕ is blanketed or μ has the SVP. Then

vϕ
{
x ∈ E : D

ϕ

μ(x) < 1
}

= 0.
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Remark. Corollaries also hold for vϕ with density Δ
ϕ

μ .

Example 4.21 (Davies example). Inequalities above have been proved with extra
assumptions, such as the Strong Vitali Property. In situations where the SVP fails,
some of these inequalities also may fail.

The example (due to R. Davies) discussed in [12] is a compact metric space Ω
in which the SVP fails. We follow the notation of [12]. The set P is the set of
eventually peripheral points. The measure μ is the uniform measure. Numbers
γn (rapidly decreasing to zero) are measures of cylinders in generation n. The
measures μ1, μ2 are used to show the failure of the SVP: in fact, 2μ1(Br(u)) =
2μ2(Br(u)) = μ(Br(u)) for all balls with radius r < 1, but 2μ1(P ) = 4/3 > μ(P ) =
1 > 2μ2(P ) = 2/3.

Proposition 4.22. Let ϕ be a right-continuous Hausdorff function such that

ϕ(1/2n) = 2γn.

Then D
ϕ

μ(u) = 1 for all u ∈ P , Cϕ(P ) ≥ 4/3, and vϕ(P ) ≤ 2/3.

Proof. Let u ∈ P . Since u is eventually peripheral, there is m so that for all
n ≥ m, the component un is peripheral. Now if r < 1/2m, choose n so that

1
2n

< r ≤ 1
2n−1

.

Then Br(u) = B1/2n(u) consists of two cylinders in generation n, so μ(Br(u)) =
2γn. So

μ
(
Br(u)

)
ϕ(r)

=
2γn
ϕ(r)

.

When taking the limsup, among all r in this interval, we want to make the ratio as
large as possible, so we should take r as small as possible. Since we have assumed
ϕ is right-continuous, we may let r = 1/2n. So

D
ϕ

μ(u) = lim sup
n

2γn
ϕ(1/2n)

= 1.

Now μ, 2μ1, 2μ2 agree on balls, so their upper densities are all the same. Applying
Theorem 4.15(a) with measure 2μ1, we get Cϕ(P ) ≥ 2μ1(P ) = 4/3. Applying
Theorem 4.18(a) with measure 2μ2, we get vϕ(P ) ≤ 2μ2(P ) = 2/3. �

This example illustrates:

vϕ(P ) �= Cϕ(P ) (Theorem 4.11),

Cϕ(P ) inf
x∈P

D
ϕ

μ(x) �≤ μ(P ) (Theorem 4.15(b)),

μ(P ) �≤ vϕ(P ) sup
x∈P

D
ϕ

μ(x) (Theorem 4.18(b)).

[In fact, I think it is probably true that Cϕ(P ) = ∞ and vϕ(P ) = 0. Is the proper
choice of Hausdorff function in the absense of SVP clear? Should we attempt, for
example, to arrange upper density = 1? But for which measure?]
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Example 4.23 (Ultrametric product space). Consider again the example Ω with
kn = n, Kn = n!, ρn = 1/2n, γn = 1/n!, with the Hausdorff function ϕ(r) = γn for
1/2n+1 < r ≤ 1/2n. Then

vϕ(Ω) �= Cϕ(Ω) (Theorem 4.11),

μ(Ω) �≤ vϕ(Ω) sup
x∈Ω

D
ϕ

μ(x) (Theorem 4.18(b)).

Remark. Consider the same example with Hausdorff function ϕ(r) = γn for
1/2n+1 < r ≤ 1/2n. Then

vϕ(Ω) �= Cϕ(Ω), μ(Ω) �≤ vϕ(Ω) sup
x∈Ω

Δ
ϕ

μ .

Hausdorff measure. Our “centered Hausdorff measures” Cϕ are meant to fulfill
the role of the usual Hausdorff measures Hϕ. When ϕ is blanketed, the two are
within a constant factor. This will be verified next. But when ϕ is not blanketed,
they need not be within a constant factor, and they need not vanish simultaneously.

Let X be a metric space, let ϕ be a Hausdorff function, and let E ⊆ X . For
δ > 0, let

Hϕ
δ (E) = inf

∞∑
i=1

ϕ(diamAi),

where the infimum is over all countable families (Ai) such that E ⊆ ⋃∞
i=1 Ai and

diamAi < δ. Let

Hϕ(E) = sup
δ>0

Hϕ
δ (A).

Proposition 4.24. (a) Hϕ(E) ≥ Cϕ(E).
(b) If ϕ(2r)/ϕ(r) ≤M for all r > 0, then Hϕ(E) ≤MCϕ(E) and (1/M)Cϕ(E) ≤

Hϕ(E) ≤MCϕ(E).

Proof. (a) Let E ⊆ X and δ > 0. Let E ⊆ ⋃
Ai with diamAi < δ. Because we

will take the infimum, we may assume Ai ∩ E �= ∅ for all i. Choose xi ∈ Ai ∩ E
and ri = diamAi. Then A ⊆ Bri(xi), so {(xi, ri)} is a δ-fine centered closed ball
cover of E. So

∑
ϕ(diamAi) =

∑
ϕ(ri) ≥ Cϕδ (E). Take the infimum over all (Ai)

to get Hϕ
δ (E) ≥ Cϕδ (E). Let δ → 0 to get Hϕ(E) ≥ Cϕ0 (E). And take supremum

over subsets to get Hϕ(E) ≥ Cϕ(E).
(b) Let E ⊆ X and δ > 0. Let {(xi, ri)} be a δ-fine centered closed ball cover of

E. Now diamBri(xi) ≤ 2ri, so

Hϕ
2δ(E) ≤

∑
ϕ
(
diamBri(xi)

) ≤ ∑
ϕ(2ri) ≤M

∑
ϕ(ri).

Therefore Hϕ
2δ(E) ≤MCϕδ (E), so Hϕ(E) ≤MCϕ0 (E) ≤MCϕ(E). �

Remark. Let Ω be the ultrametric product space with kn = n, Kn = n!, γn = 1/n!,
ρn = 1/2n, and let ϕ be the Hausdorff function with ϕ(r) = γn−1 for ρn+1 < r ≤ ρn.
Then Cϕ(Ω) = 1, Hϕ(Ω) = 1, but Cϕ(Ω) = ∞. Of course ϕ is not blanketed and
not right moderate.
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5. Packing measure

The packing measure began with Tricot [33]. (But see Hewitt & Stromberg [18,
Exercise (10.51), p. 145].) We will show that it is a full variation for the centered
closed ball base.

Let X be a metric space, and A ⊆ X . A (centered closed ball) packing of A is a
set π of constituents such that x ∈ A for all (x, r) ∈ π, and ρ(x, x′) > r + r′ for all
(x, r), (x′, r′) ∈ π with (x, r) �= (x′, r′). If δ > 0, then we say the packing π is δ-fine
provided r < δ for all (x, r) ∈ π. Define

Pϕδ (A) = sup

⎧⎨⎩ ∑
(x,r)∈π

ϕ(r) : π is a δ-fine packing of A

⎫⎬⎭ ,

Pϕ0 (A) = inf
δ>0

Pϕδ (A) = lim
δ→0

Pϕδ (A),

Pϕ(A) = inf

{ ∞∑
n=1

Pϕ0 (En) : A ⊆
∞⋃
n=1

En

}
.

Outer measure Pϕ is called the ϕ-packing outer measure. When the Hausdorff func-
tion has the special form ϕ(t) = (2t)s for all t, then Pϕ is called the s-dimensional
packing outer measure and written Pϕ = Ps.

As before, if Pϕ(E) <∞ for any Hausdorff function, then E must be separable.

Proposition 5.1. If Pϕ0 (E) <∞, then E is totally bounded.

Proof. Assume E is not totally bounded. There there is r > 0 and an infinite
r-separated set {xn}. Then for all δ < r/2, the set {(xn, δ/2)} is a δ-fine packing,
so Pϕδ (E) = ∞. Thus Pϕ0 (E) = ∞. �

Proposition 5.2. Pϕ is a metric outer measure.

Proof. [9] The only packing of the empty set is the empty packing, and an empty
sum has the value zero. So Pϕδ (∅) = 0 for all δ, and Pϕ0 (∅) = 0. Then ∅ ⊆ ⋃∞

n=1En
where all En = ∅, so Pϕ(∅) = 0.

If A ⊆ B, and B ⊆ ⋃∞
n=1En, then also A ⊆ ⋃∞

n=1En, so Pϕ(A) ≤ Pϕ(B).
Suppose A =

⋃∞
i=1 Ai. We must show that Pϕ(A) ≤ ∑∞

i=1 P
ϕ
(Ai). If

∑
i P

ϕ
(Ai)

is infinite, then there is nothing to do. So assume
∑
i P

ϕ
(Ai) < ∞. Let ε > 0

be given. For each i, there exist sets Eni, n ∈ N, so that Ai ⊆ ⋃
nEni and∑

n P
ϕ

0 (Eni) < Pϕ(Ai) + ε/2i. Then A ⊆ ⋃
i

⋃
nEni, which may be rearranged

into a single series, so

Pϕ(A) ≤
∞∑
i=1

∞∑
n=1

Pϕ0 (Eni) <
∞∑
i=1

(
Pϕ(Ai) +

ε

2i
)

=

( ∞∑
i=1

Pϕ(Ai)

)
+ ε.

This holds for any ε > 0, so Pϕ(A) ≤ ∑
i P

ϕ
(Ai).

Let A,B ⊆ X and dist(A,B) = ε > 0. For any δ > 0 with δ < ε/2, the union of
any packing of A with any packing of B is a packing of A ∪ B. So Pϕδ (A ∪ B) =
Pϕδ (A) + Pϕδ (B), so Pϕ0 (A ∪ B) = Pϕ0 (A) + Pϕ0 (B). Let A ∪ B ⊆ ⋃∞

n=1En. Now
for each n, we have dist(En ∩ A,En ∩ B) ≥ ε, so Pϕ0 (En) ≥ Pϕ0 (En ∩ (A ∪ B)) =
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Pϕ0 (En ∩A) + Pϕ0 (En ∩B). Thus
∞∑
n=1

Pϕ0 (En) ≥
∞∑
n=1

Pϕ0 (En ∩A) +
∞∑
n=1

Pϕ0 (En ∩B) ≥ Pϕ(A) + Pϕ(B).

This is true for all covers En, so Pϕ(A ∪B) ≥ Pϕ(A) + Pϕ(B). �

Corollary 5.3. All Borel sets are measurable for the outer measures Pϕ.
Theorem 5.4 (The Closure Theorem). Let E ⊆ X, and let E be the closure of E.
Then Pϕ0 (E) = Pϕ0 (E).

Proof. In the definition of Pϕδ (E) it is enough to use finite packings because of the
sup. (The sum of a series of nonnegative terms is the supremum of the subseries
with finitely many terms.) Any packing of E is a packing of E, so Pϕ0 (E) ≤ Pϕ0 (E).

Conversely, let δ > 0 and let π be any finite δ-fine packing for the closure E.
Then

ε = inf { r + r′ − ρ(x, x′) : (x, r), (x′, r′) ∈ π, (x, r) �= (x′, r′) } > 0.

For every (x, r) ∈ π, we have x ∈ E, so there is y ∈ E with ρ(y, x) < ε/2. For each
such x, choose such a y and call it y(x). Let π′ = { (y(x), r) : (x, r) ∈ π }. Then π′

is a packing for E, since if (x, r), (x′, r′) ∈ π we have

ρ
(
y(x), y(x′)

) ≤ ρ
(
y(x), x

)
+ ρ

(
y(x′), x′

)
+ ρ

(
x, x′

)
≤ ε

2
+
ε

2
+
(
ρ(x, x′) − r − r′

)
+
(
r + r′

)
< ε− ε+ r + r′ = r + r′.

So for every finite δ-fine packing π of E there corresponds a δ-fine packing π′ of
E with the same value for

∑
ϕ(r). This shows that Pϕδ (E) ≥ Pϕδ (E). Taking the

limit as δ → 0, we obtain Pϕ0 (E) ≥ Pϕ0 (E). �

Note in our definition of Pϕ0 we have used our current definition of packing
[if (x, r), (x′, r′) ∈ π, then ρ(x, x′) > r + r′] and not the “relative packing” [if
(x, r), (x′, r′) ∈ π, then Br(x)∩Br′(x′) = ∅]. Example 5.18, below, shows that the
Closure Theorem may fail when relative packings are used.

Theorem 5.5. The outer measure Pϕ is regular in the sense that: for every set
E ⊆ X, there is a Borel set B ⊇ E with Pϕ(B) = Pϕ(E). In fact, B may be
chosen to be an Fσδ-set.

Proof. If Pϕ(E) = ∞, choose B = X . Now assume Pϕ(E) < ∞. For any n ∈ N,
there is a countable cover E ⊆ ⋃∞

i=1 Ani with
∞∑
i=1

Pϕ0 (Ani) ≤ Pϕ(E) +
1
n
.

Now

B =
∞⋂
n=1

∞⋃
i=1

Ani
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is an Fσδ-set, B ⊇ E, and for every n ∈ N, we have B ⊆ ⋃∞
i=1 Ani, so

Pϕ(B) ≤
∞∑
i=1

Pϕ0
(
Ani

)
=

∞∑
i=1

Pϕ0 (Ani) ≤ Pϕ(E) +
1
n
.

But n is arbitrary, so Pϕ(B) ≤ Pϕ(E) and therefore Pϕ(B) = Pϕ(E). �

Corollary 5.6. If En ↗ E, then Pϕ(En) → Pϕ(E).

Proof. (This is a standard consequence of regularity.) Because Borel sets are
measurable, the result is true in the case the sets En are Borel sets. Now suppose the
En are arbitrary sets. Then there exist Borel sets Bn ⊇ En with Pϕ(Bn) = Pϕ(En).
Then define

Cn =
∞⋂
m=n

Bm.

Then Cn ⊇ ⋂∞
m=nEm = En, and Pϕ(Cn) ≤ Pϕ(Bn) = Pϕ(En) ≤ Pϕ(Cn). But

Cn increase, So we have

lim inf
n→∞ Pϕ(En) = lim inf

n→∞ Pϕ(Cn) = Pϕ
( ∞⋃
n=1

Cn

)
≥ Pϕ(E).

And Pϕ(En) ≤ Pϕ(E) for all n, so limn→∞ Pϕ(En) = Pϕ(E). �

Identifying packing measure with the full variation does not require any special
assumptions (such as blanketed or Strong Vitali Property).

Theorem 5.7. Let X be a metric space, let ϕ be a Hausdorff function. Then Pϕ
is the full variation V

ϕ
= V

C
for the constituent function C(x, r) = ϕ(r).

Proof. Let E ⊆ X . Let δ > 0. Then the constant function Δ(x) = δ is a gauge,
and V

ϕ

Δ(E) = Pϕδ (E). So V
ϕ
(E) ≤ Pϕ0 (E). Now if E =

⋃∞
n=1En, then we have,

since V
ϕ

is an outer measure,

V
ϕ
(E) ≤

∞∑
n=1

V
ϕ
(En) ≤

∞∑
n=1

Pϕ0 (En).

This is true for all countable covers of E, so V
ϕ
(E) ≤ Pϕ(E).

On the other hand, suppose a gauge Δ for the set E is given. For each n ∈ N,
let

En =
{
x ∈ E : Δ(x) ≥ 1

n

}
.

So V
ϕ

Δ(E) ≥ V
ϕ

Δ(En) ≥ V
ϕ

1/n(En) = Pϕ1/n(En) ≥ Pϕ0 (En) ≥ Pϕ(En). Now
En ↗ E as n → ∞, so by Corollary 5.6, limn→∞ Pϕ(En) = Pϕ(E). Therefore
V
C

Δ(E) ≥ Pϕ(E). This is true for all gauges Δ, so V
ϕ
(E) ≥ Pϕ(E). �

Example 5.8 (Ultrametric product space: Upper and lower bounds for Pϕ). Let
Ω =

∏
Gn be an ultrametric product space with ρn = 1/2n and kn → ∞. We

will prove some elementary bounds for the packing measure Pϕ(Ω). There is a gap
between the conditions for the upper and lower bounds, however, so this is not a
complete analysis.
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Lower bound.

(11) If lim sup
n→∞

Kn−1ϕ

(
1
2n

−
)
> 0, then Pϕ(Ω) = ∞.

Let 0 < α < lim supKn−1ϕ(1/2n−). Let Δ be a gauge on Ω. Then

β =
{

(x, r) : r < Δ(x),Kn−1ϕ(r) > α, for some n with
1

2n+1
< r <

1
2n

}
is a fine cover of Ω. Apply Proposition 3.10 to get a centered closed ball packing
π ⊆ β with

∑
μ(B2r(x)) = ∞. Now for (x, r) ∈ π ⊆ β with 1/2n+1 < r < 1/2n we

have ϕ(r) > αγn−1 = αμ(B2r(x)). So
∑
π ϕ(r) = ∞. Therefore V

ϕ

Δ(Ω) = ∞. This
is true for all Δ, so Pϕ(Ω) = V

ϕ
(Ω) = ∞.

Upper bound.

(12) If
∞∑
n=2

Kn−1ϕ

(
1
2n

−
)
<∞, then Pϕ(Ω) = 0.

Let m ∈ N. Let Δ = 1/2m be a constant gauge. Let π be a Δ-fine centered closed
ball cover of Ω. For each n, let πn =

{
(x, r) ∈ π : 1/2n+1 ≤ r < 1/2n

}
so that

π =
⋃∞
n=m πn. Now for a given n, if (x, r), (x′, r′) ∈ πn, then ρ(x, x′) > r + r′ ≥

2/2n+1 = 1/2n so that ρ(x, x′) ≥ 1/2n−1. So there are at most Kn−1 members of
πn. For 1/2n+1 ≤ r < 1/2n we have ρ(r) ≤ ϕ(1/2n−). So∑

π

ϕ(r) ≤
∞∑
n=m

Kn−1ϕ

(
1
2n

−
)

= αm.

This shows V
ϕ
(Ω) ≤ V

ϕ

Δ(Ω) ≤ αm. Take the limit on m to get V
ϕ
(Ω) = 0. Recall

that V
ϕ

= Pϕ.

Density theorem. Next we see how the lower density may be used for computa-
tion of the packing measure.

Theorem 5.9. Let X be a metric space, let μ be a finite Borel measure on X, let
ϕ be a Hausdorff function, and let E ⊆ X be a Borel set.

(a) Then
Pϕ(E) inf

x∈E
Dϕ
μ(x) ≤ μ(E).

(b) If μ has the Strong Vitali Property, then

μ(E) ≤ Pϕ(E) sup
x∈E

Dϕ
μ(x),

provided this product is not 0 times ∞.
(c) If the Hausdorff function is blanketed, then even if μ fails the Strong Vitali

Property,
μ(E) ≤ CPϕ(E) sup

x∈E
Dϕ
μ(x),

provided this product is not 0 times ∞, where C = lim supt→0 ϕ(3t)/ϕ(t).

Proof. (a) If infx∈EDϕ
μ(x) = 0, the claimed inequality is trivial, so we may assume

infx∈EDϕ
μ(x) > 0. Let h > 0 be a constant such that Dϕ

μ(x) > h for all x ∈ E. We
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must show that hPϕ(E) ≤ μ(E). Let ε > 0 be given. Then there is an open set
V ⊇ E such that μ(V ) < μ(E) + ε. For x ∈ E, let Δ(x) > 0 be so small that

μ
(
Br(x)

)
ϕ(r)

> h for all r < Δ(x), and Δ(x) < dist(x, S \ V ).

Then Δ is a gauge for E. Let π be a Δ-fine packing of E. Then
⋃
π Br(x) is a

disjoint union of closed sets contained in V , and∑
(x,r)∈π

ϕ(r) <
1
h

∑
π

μ
(
Br(x)

) ≤ 1
h
μ(V ).

This shows that

Pϕ(E) ≤ V
ϕ

Δ(E) ≤ 1
h
μ(V ) ≤ 1

h

(
μ(E) + ε

)
.

Let ε→ 0 to obtain Pϕ(E) ≤ (1/h)μ(E) as required.
(b) Assume μ has the Strong Vitali Property. If supx∈ED

ϕ
μ(x) = ∞, then

either the inequality claimed is trivial, or has the form 0 times ∞. So assume
supx∈ED

ϕ
μ(x) < ∞. Let h < ∞ satisfy Dϕ

μ(x) < h for all x ∈ E. We must show
that μ(E) ≤ hPϕ(E). Let Δ be a gauge on E. Then

β =

{
(x, r) : x ∈ E, r < Δ(x),

μ
(
Br(x)

)
ϕ(r)

≤ h

}
is a fine cover of E. By the Strong Vitali Property, there is a packing π ⊆ β of E
with μ(E) = μ

(
E ∩⋃

π Br(x)
)
. Thus

μ(E) = μ

(
E ∩

⋃
π

Br(x)

)
≤
∑
π

μ
(
Br(x)

) ≤ h
∑
π

ϕ(r).

So μ(E) ≤ hV
ϕ

Δ(E). Take the limit on α and Δ to get μ(E) ≤ hPϕ(E), as required.
(c) Now let C = lim supt→0 ϕ(3t)/ϕ(t). Again we may assume supx∈E D

ϕ
μ(x) <

∞. Let h <∞ satisfy Dϕ
μ(x) < h for all x ∈ E, and let C1 > C. We will show that

μ(E) ≤ hC1Pϕ(E). Let Δ be a gauge on E. We will show that μ(E) ≤ hC1V
ϕ

Δ(E).
If V

ϕ

Δ(E) = ∞, then this is trivial. So we may assume V
ϕ

Δ(E) <∞. Now

β =

{
(x, r) : x ∈ E, r < Δ(x),

μ
(
B3r(x)

)
ϕ(3r)

≤ h,
ϕ(3r)
ϕ(r)

≤ C1

}
is a fine cover of E. Next we will apply Theorem 3.1 with the fine cover β. Now,
for any packing {(xi, ri)} ⊆ β we have

∑
ϕ(ri) ≤ V

ϕ

Δ(E) < ∞, and thus ri → 0.
So there is a packing {(xi, ri)} ⊆ β such that E ⊆ ⋃∞

i=1B3ri(xi). Thus

μ(E) ≤
∞∑
i=1

μ
(
B3ri(xi)

) ≤ h

∞∑
i=1

ϕ(3ri) ≤ hC1

∞∑
i=1

ϕ(ri).

So μ(E) ≤ hC1V
ϕ

Δ(E) as required. �
Corollary 5.10. Let X be a metric space, let ϕ be a Hausdorff function, and let
E ⊆ X be a Borel set.

(a) Assume there is a finite Borel measure μ such that supx∈E D
ϕ
μ(x) = k <∞.

Assume μ has the SVP. Then Pϕ(E) ≥ μ(E)/k.
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(a′) Assume there is a finite Borel measure μ such that supx∈E D
ϕ
μ(x) = k <∞.

Assume ϕ satisfies ϕ(3r)/ϕ(r) ≤ C. Then Pϕ(E) ≥ μ(E)/(kC).
(b) Assume there is a finite Borel measure μ such that infx∈EDϕ

μ(x) = k > 0.
Then Pϕ(E) ≤ μ(E)/k.

Corollary 5.11. Let X be a metric space, let ϕ be a Hausdorff function, and let
E ⊆ X be a Borel set such that Pϕ(E) < ∞. Write μ for the restriction of Pϕ to
E.

(a) Then Pϕ { x ∈ E : Dϕ
μ(x) > 1

}
= 0.

(b) Assume μ has the SVP. Then Pϕ { x ∈ E : Dϕ
μ(x) < 1

}
= 0.

(b′) Assume ϕ satisfies ϕ(3r)/ϕ(r) ≤ C. Then Pϕ {x ∈ E : Dϕ
μ(x) < 1/C

}
= 0.

Open packing measure. Let X be a metric space, and A ⊆ X . A centered open
ball packing of A is a set π of constituents such that x ∈ A for all (x, r) ∈ π, and
ρ(x, x′) ≥ r+ r′ for all (x, r), (x′, r′) ∈ π with (x, r) �= (x′, r′). If δ > 0, then we say
the packing π is δ-fine provided r < δ for all (x, r) ∈ π. Define

Pϕδ (A) = sup

⎧⎨⎩ ∑
(x,r)∈π

ϕ(r) : π is a δ-fine centered open ball packing of A

⎫⎬⎭ ,

Pϕ0 (A) = inf
δ>0

Pϕδ (A) = lim
δ→0

Pϕδ (A),

Pϕ(A) = inf

{ ∞∑
n=1

Pϕ0 (En) : A ⊆
∞⋃
n=1

En

}
.

This has many of the same properties as the closed version Pϕ. But not all.
In general, Pϕ(Ω) ≤ Pϕ(Ω). If ϕ is left-continuous, then Pϕ = Pϕ, since any
centered open ball packing can be approximated from inside by a centered closed
ball packing. Example 3.12 is a case with Pϕ(Ω) < Pϕ(Ω). To see this, combine
the results of Example 3.12 with Theorems 5.7 and 5.20.

Proposition 5.12. If Pϕ0 (E) <∞, then E is totally bounded.

Proposition 5.13. Pϕ is a metric outer measure.

Corollary 5.14. All Borel sets are measurable for the outer measures Pϕ.
However: It is not necessarily true that Pϕ0 (E) = Pϕ0 (E). This is true when ϕ

is left-continuous (since Pϕ0 = Pϕ0 ), or when X is ultrametric (since every point in
a ball is a center of the ball). This difficulty is the reason we have taken the closed
packing measure as the primary definition, not the open packing measure.

Example 5.15 (Failure of the Closure Theorem). This counterexample cannot
be ultrametric, so we describe a different one. Begin with a sequence of positive
integers kn ≥ 2 increasing to ∞ so that

(13)
∞∑
j=1

1
kj

≤ 1
2
.

For each n, let Gn be a set with kn elements, including the distinguished element
0. The space Q is the cartesian product Q =

∏∞
n=1Gn. For x ∈ Q we write x =

(x1, x2, . . . ). Cylinders Q(x1, . . . , xn) are those elements with the first n coordinates
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as specified. For a finite initial segment (x1, . . . , xn), extend using the distinguished
element to get τ(x1, . . . , xn) = (x1, . . . , xn, 0, 0, . . . ), which will be called the tag of
the cylinder Q(x1, . . . , xn). Let T ⊆ Q be the set of all tags, that is all sequences
eventually 0. So T is a countable set.

Define the metric on Q as follows. For s ∈ Gn, if s = 0 is the distinguished
symbol, then let θ(s) = 0, but for all others s �= 0, then let θ(s) = 1. Now let
x, y ∈ Q. If x = y, then ρ(x, y) = 0. If x �= y, let coordinate n be the first one
where they disagree. That is,

x = (x1, . . . , xn−1, xn, xn+1, . . . ),

y = (x1, . . . , xn−1, yn, yn+1, . . . ),

where xn �= yn. Define

ρ(x, y) =
1
2n

+
∞∑

k=n+1

θ(xk)
2k

+
∞∑

k=n+1

θ(yk)
2k

.

We may check that this defines a metric on Q. I like to think of the terms in the
definition in this way: First,

∑∞
k=n+1 θ(xk)/2

k is the distance from x to the tag
τ(x1, . . . , xn−1, xn), second 1/2n is the distance from the tag τ(x1, . . . , xn−1, xn)
to the sibling tag τ(x1, . . . , xn−1, yn), and finally

∑∞
k=n+1 θ(yk)/2

k is the distance
from the tag τ(x1, . . . , xn−1, yn) to the point y.

Note that the diameter of the cylinder Q(x1, . . . , xn−1) is 3/2n, and that maxi-
mum value is achieved only if xn �= yn, xk �= 0 for all k ≥ n+ 1, and yk �= 0 for all
k ≥ n+ 1. In particular, the diameter of Q itself is 3/2.

Write Kn = k1 · k2 · · ·kn, γn = 1/Kn, and define the uniform measure μ so that
μ
(
Q(x1, . . . , xn)

)
= γn for all cylinders of generation n. And μ(Q) = γ0 = 1.

Let a discontinuous Hausdorff function ϕ be defined by:

ϕ(r) =
1
Kn

, for
3

2n+1
≤ r <

3
2n
.

The countable subset T ⊆ Q of tags is dense in Q. But we will show that
Pϕ0 (T ) ≤ 1/2 and Pϕ0 (Q) ≥ 1, so that Pϕ0 (T ) < Pϕ0 (T ).

Proposition 5.16. Pϕ0 (Q) ≥ 1.

Proof. Let δ > 0. There is n so that 3/2n+1 < δ. For each x1, . . . , xn, choose an
extension using symbols other than 0, call it σ(x1, . . . , xn). There are Kn of these.
The distance between any two is ≥ 3/2n. Using these as centers and 3/2n+1 as
radius, we get a centered open ball weak packing. So

Pϕδ (Q) ≥ Knϕ

(
3

2n+1

)
= 1.

Take the limit as δ → 0 to get Pϕ0 (Q) ≥ 1. �
Proposition 5.17. Pϕ0 (T ) ≤ 1/2.

Proof. Write

αn = γn−1

∞∑
j=n

1
kj
.

In particular, since γ0 = 1, we have α1 ≤ 1/2 by (13). For n,m ∈ N, we claim
that if { (ui, ri) : 1 ≤ i ≤ m } is a centered open ball packing for a cylinder T ∩
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Q(x1, . . . , xn−1) with m constituents, with all radii ri < 3/2n, then
∑m

i=1 ϕ(ri) <
αn. We prove this by induction on m. If m = 1, then since r1 < 3/2n we get

ϕ(r1) ≤ γn = γn−1
1
kn

< αn.

Let m > 1 and assume the result is known for all smaller values of m. Consider
the kn daughter cylinders Q(x1, . . . , xn−1, xn) obtained by adding one more letter
to x1, . . . , xn−1. If all m of the centers are in the same daughter, then (because
the diameter 3/2n+1 of that daughter is not achieved in T ) all of the radii are
< 3/2n+1; we may keep the same value of

∑
ϕ(ri) by replacing one constituent

(u1, r1) by another with center in a different daughter, and the same radius r1; this
is possible since there are elements of T in that daughter at least this far from the
tag of that daughter. So, in estimating

∑
ϕ(ri) we may assume that not all of the

centers are in the same daughter. Say there are m1 in the first daugher, m2 in the
second, and so on. Of course m =

∑kn

l=1ml and ml < m.
Consider the case where some ri ≥ 3/2n+1. Because this is a packing, and no

two points of the cylinder have distance ≥ 3/2n, there can be at most one ri this
large. Say it is r1. Then the ball Br1(u1) includes the entire daughter, so all other
centers are in other daughters and all other radii are < (3/2n) − r1 < 3/2n+1. So
the portion of the packing in each daughter satisfies the induction hypothesis, and
we have

m∑
i=1

ϕ(ri) < ϕ(r1) + (kn − 1)αn+1 ≤ γn + knγn

∞∑
j=n+1

1
kj

= γn−1

⎛⎝ 1
kn

+
∞∑

j=n+1

1
kj

⎞⎠ = αn.

Now consider the case where all ri < 3/2n+1. Then we may apply the induction
hypothesis to each of the daughters, to get

m∑
i=1

ϕ(ri) < knαn+1 = knγn

∞∑
j=n+1

1
kj

< γn−1

∞∑
j=n

1
kj

= αn.

This completes the inductive proof. It follows that for any 3/2-fine finite packing
π of T we have

∑
ϕ(r) ≤ α1 ≤ 1/2. Therefore Pϕ0 (T ) ≤ 1/2. �

Example 5.18 (Relative closed ball packing, failure of the Closure Theorem).
Write P̂ϕ0 for a packing measure defined using relative centered closed ball packings:
that is with condition ρ(x, x′) > r+r′ replaced by Br(x)∩Br′(x′) = ∅. The Closure
Theorem P̂ϕ0 (A) = P̂ϕ0 (A) may fail. The Closure Theorem is correct if ϕ is left-
continuous or if A is complete. So our counterexample is an incomplete metric
space. (This example was placed here because it is similar to the metric space of
Example 5.15, above.)
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Begin with a sequence kn ≥ 2 of positive integers increasing to ∞ so that∑
n 1/kn <∞. For each n, let Gn be a set with kn elements, including the distin-

guished element 0. The space and subset are

Q =

{
(x1, x2, . . . ) ∈

∞∏
n=1

Gn : xn = 0 for infinitely many n

}

T =

{
(x1, x2, . . . ) ∈

∞∏
n=1

Gn : xn = 0 for all but finitely many n

}
.

Given x1 ∈ G1, . . . , xn ∈ Gn, the cylinder Q(x1, . . . , xn) consists of the elements of
Q with the first n coordinates as specified.

Write Kn = k1k2 · · · kn, so that there are Kn cylinders Q(x1, . . . , xn) of gen-
eration n. Write γn = 1/Kn, and then define the uniform measure μ so that
μ(Q(x1, . . . , xn)) = γn for cylinders of generation n. In restricting Q to those x
with infinitely many zeros, we leave out only a countable set, a set of measure zero
for μ, so μ is in fact countably additive even on the subset Q of the product.

Define the metric ρ on Q as follows. For s ∈ Gn, let θ(s) = 0 if s is not the
distinguished element 0, and θ(0) = 1. Now let x, y ∈ Q. If x = y, then ρ(x, y) = 0.
If x �= y, let coordinate n be the first one where they disagree. That is,

x = (x1, . . . , xn−1, xn, xn+1, . . . ),

y = (x1, . . . , xn−1, yn, yn+1, . . . ),

and xn �= yn. Define

ρ(x, y) =
∞∑

j=n+1

θ(xj)
2j

+
∞∑

j=n+1

θ(yj)
2j

.

This defines a metric on Q: Because x and y have infinitely many coordinates 0,
ρ(x, y) > 0. And ρ(x, y) ≤ 1/2n−1, with strict inequality when x, y �∈ T . The
subset A = Q \ T is dense in Q.

Define a Hausdorff function by

ϕ(r) = γn for
1
2n

≤ r <
1

2n−1
.

Proposition 5.19. Let Q, A, and ϕ be as defined. Then P̂ϕ0 (A) = 0 but P̂ϕ0 (A) ≥
1.

Proof. Of course A = Q, the whole space. Let n be a natural number. For
x1 ∈ G1, . . . , xn ∈ Gn, let τ(x1, . . . , xn) = (x1, . . . , xn, 0, 0, . . . ). We have

B1/2n

(
τ(x1, . . . , xn)

)
= Q(x1, . . . , xn),

so there is a (relative) packing made up of Kn pairwise disjoint closed balls of
radius 1/2n. For δ > 1/2n we have P̂ϕδ (Q) ≥ Knϕ(1/2n) = 1. As δ → 0 we may
let n→ ∞, and we have P̂ϕ0 (Q) ≥ 1.

Now we consider A = Q \ T . Let π be a relative packing. That is: for all
(x, r) ∈ π we have x ∈ A, and for all (x, r), (x′, r′) ∈ π with (x, r) �= (x′, r′), we
have Br(x) ∩Br′(x′) = ∅.

Consider (x, r) ∈ π, x = (x1, x2, . . . ), r ≥ 1/2n. Then not only does Br(x) ⊇
Q(x1, . . . , xn), but for every s ∈ Gn we have Br(x) ∩ Q(x1, . . . , xn−1, s) �= ∅. So
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no other (x′, r′) ∈ π can have x′ ∈ Q(x1, . . . , xn−1) and r′ ≥ 1/2n. Thus, in the
packing π there are at most Kn−1 different (x, r) with r ≥ 1/2n. In particular,
there are at most Kn−1 different (x, r) ∈ π with 1/2n ≤ r < 1/2n−1, and for these
we have ϕ(r) ≤ γn. Now if π is δ-fine and 1/2m > δ, then∑

(x,r)∈π
ϕ(r) ≤

∞∑
n=m+1

Kn−1ϕ(γn) =
∞∑

n=m+1

1
kn
.

So P̂ϕδ (A) ≤ ∑∞
n=m+1 1/kn, and therefore in the limit we get P̂ϕ0 (A) = 0. �

Properties of Pϕ. I do not know in general whether Pϕ is regular. Or whether
Pϕ(E) = V ϕ(E). But at least half of the following results remain, with essentially
the same proofs:

Theorem 5.20. Let X be a metric space, let ϕ be a Hausdorff function. Then
V ϕ(E) ≤ Pϕ(E).

Theorem 5.21. Let X be a metric space, let μ be a finite Borel measure on X, let
ϕ be a Hausdorff function, and let E ⊆ X be a Borel set. Then

V ϕ(E) inf
x∈E

Δϕ
μ(x) ≤ μ(E).

Corollary 5.22. Let X be a metric space, let ϕ be a Hausdorff function, and
let E ⊆ X be a Borel set. Assume there is a finite Borel measure μ such that
supx∈ED

ϕ
μ(x) = k > 0. Then V ϕ(E) ≤ μ(E)/k.

Corollary 5.23. Let X be a metric space, let ϕ be a Hausdorff function, and let
E ⊆ X be a Borel set such that V ϕ(E) < ∞. Write μ for the restriction of V ϕ to
E. Then V ϕ

{
x ∈ E : Δϕ

μ(x) > 1
}

= 0.

Example 5.24 (Ultrametric product space: Bounds for Pϕ(Ω)). Let Ω be the
ultrametric product space with ρn = 1/2n.

Lower bound.

If lim sup
n

Kn−1ϕ

(
1
2n

−
)
> 0, then Pϕ(Ω) = ∞.

By (11) we have Pϕ(Ω) = ∞, so Pϕ(Ω) = ∞.
Upper bound.

If
∞∑
n=2

Kn−1ϕ

(
1
2n

)
<∞, then Pϕ(Ω) = 0.

Let m ∈ N, and δ < 1/2m. Let π be a δ-fine centered open ball packing of Ω.
Let πn =

{
(x, r) ∈ π : 1/2n+1 < r ≤ 1/2n

}
so that π =

⋃∞
n=m πn. For given n, if

(x, r), (x′, r′) ∈ πn, then ρ(x, x′) ≥ r + r′ > 2/2n+1 = 1/2n, so ρ(x, x′) ≥ 1/2n−1.
Thus there are at most Kn−1 elements in πn. For 1/2n+1 < r ≤ 1/2n we have
ρ(r) ≤ ρ(1/2n). So ∑

(x,r)∈π
ϕ(r) ≤

∞∑
n=m

Kn−1ϕ

(
1
2n

)
= αm.

This shows Pϕ0 (Ω) ≤ Pϕδ (Ω) ≤ αm. Take the limit on m to get Pϕ0 (A) = 0. So
Pϕ(Ω) = 0.
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Weak packing. Let X be a metric space, and A ⊆ X . A (centered open ball)
weak packing of A is a set π of constituents such that x ∈ A for all (x, r) ∈ π, and
ρ(x, x′) ≥ r∨ r′ for all (x, r), (x′, r′) ∈ π with (x, r) �= (x′, r′). If δ > 0, then we say
the weak packing π is δ-fine provided r < δ for all (x, r) ∈ π. Define

P̃ϕδ (A) = sup

⎧⎨⎩ ∑
(x,r)∈π

ϕ(r) : π is a δ-fine weak packing of A

⎫⎬⎭ ,

P̃ϕ0 (A) = inf
δ>0

P̃ϕδ (A) = lim
δ→0

P̃ϕδ (A),

P̃ϕ(A) = inf

{ ∞∑
n=1

P̃ϕ0 (En) : A ⊆
∞⋃
n=1

En

}
.

Packing and weak packing measures are within a constant factor of each other
when ϕ is blanketed.

The next few properties of P̃ϕ have the same proofs as Pϕ.

Proposition 5.25. If P̃ϕ0 (E) <∞, then E is totally bounded.

Proposition 5.26. P̃ϕ is a metric outer measure.

Corollary 5.27. All Borel sets are measurable for the outer measure P̃ϕ.
Theorem 5.28. Ṽ ϕ(E) ≤ P̃ϕ(E).

A reason to consider the weak packing measure is that this density inequality
does not require SVP:

Theorem 5.29. Let X be a complete separable metric space, let μ be a finite Borel
measure on X, let ϕ be a Hausdorff function, and let E ⊆ X be a Borel set. Then

μ(E) ≤ P̃ϕ(E) sup
x∈E

Dϕ
μ(x),

provided this product is not 0 times ∞.

Proof. If supx∈ED
ϕ
μ(x) = ∞, then either the inequality claimed is trivial, or has

the form 0 times ∞. So assume supx∈ED
ϕ
μ(x) <∞. Let h <∞ satisfy Dϕ

μ(x) < h

for all x ∈ E. We must show that μ(E) ≤ hP̃ϕ(E). Let δ > 0. Then

β =

{
(x, r) : x ∈ E, r ≤ δ,

μ
(
Br(x)

)
ϕ(r)

≤ h

}
is a fine cover of E.

We claim that β is upward closed. Let (xn, rn) ∈ β with xn ∈ E, xn → x ∈ E,
and rn ↗ r. First, r ≤ δ. Given ε > 0, there is r′ < r so that μ(Br′(x)) >
μ(Br(x))− ε; and for n large we have ρ(xn, x) < (r− r′)/2 and r− rn < (r− r′)/2,
so that Brn(xn) ⊇ Br′(x) and therefore μ(Brn(xn)) ≥ μ(Br(x)) − ε. So

μ
(
Br(x)

) ≤ μ
(
Brn(xn)

)
+ ε ≤ hϕ(rn) + ε ≤ hϕ(r) + ε.

This is true for all ε > 0, so μ(Br(x)) ≤ hϕ(r). Therefore (x, r) ∈ β.
By Proposition 3.5, there is a weak packing {(xn, rn)} ⊆ β1 of E with μ

(
E \⋃

nBrn(xn)
)

= 0. Thus

μ(E) ≤
∑
n

μ
(
Brn(xn)

) ≤ h
∑
n

ϕ(rn).
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So μ(E) ≤ hP̃ϕδ (E). But δ was arbitrary, so μ(E) ≤ hP̃ϕ0 (E). Finally, μ is
countably subadditive, so we get μ(E) ≤ hP̃ϕ(E), as required. �

Corollary 5.30. Let X be a metric space, let ϕ be a Hausdorff function, and
let E ⊆ X be a Borel set. Assume there is a finite Borel measure μ such that
supx∈ED

ϕ
μ(x) = k <∞. Then P̃ϕ(E) ≥ μ(E)/k.

Corollary 5.31. Let X be a metric space, let ϕ be a Hausdorff function, and let
E ⊆ X be a Borel set such that P̃ϕ(E) < ∞. Write μ for the restriction of P̃ϕ to
E. Then P̃ϕ {x ∈ E : Dϕ

μ(x) < 1
}

= 0.

Summary of the density inequalities. In the summary table, we list the in-
equalities with the conditions used in the proofs. And of course we can imagine
many other combinations that have not been considered. And there are many more
inequalities with constant c.

[1 means “ϕ is blanketed”, 2 means “μ has the Strong Vitali Property”]

μ(E) ≤ Cϕ(E) supD
ϕ

μ(x)

μ(E) ≤ Cϕ(E) sup Δ
ϕ

μ(x)

μ(E) ≤ vϕ(E) supD
ϕ

μ(x) 1 or 2

μ(E) ≤ vϕ(E) sup Δ
ϕ

μ(x) 1 or 2

Cϕ(E) infD
ϕ

μ(x) ≤ μ(E) 1

Cϕ(E) inf Δ
ϕ

μ(x) ≤ μ(E) 1

vϕ(E) inf D
ϕ

μ(x) ≤ μ(E)

vϕ(E) inf Δ
ϕ

μ(x) ≤ μ(E)

μ(E) ≤ Pϕ(E) supDϕ
μ(x) 2

μ(E) ≤ cPϕ(E) supDϕ
μ(x) 1

μ(E) ≤ P̃ϕ(E) supDϕ
μ(x)

Pϕ(E) infDϕ
μ(x) ≤ μ(E)

V ϕ(E) inf Δϕ
μ(x) ≤ μ(E).

6. Product inequalities

In this section we intend to discuss the product inequalities 0.5:

Cs(E)Ct(F ) ≤ c Cs+t(E × F ),

Cs+t(E × F ) ≤ c Cs(E)Pt(F ),

Cs(E)Pt(F ) ≤ c Ps+t(E × F ),

Ps+t(E × F ) ≤ c Ps(E)Pt(F ).

To what extent do these generalize to metric spaces, and to general (possibly dis-
continuous) Hausdorff functions? Howroyd [20] has a fairly complete discussion of
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this. Here we will try to see to what extent the density inequalities are relevant.
However, my attempt to use densities here has been a disappointment.

We can think of certain density inequalities as “local” versions of the product
inequalities. For example, the inequality Ps+t(E × F ) ≤ c Ps(E)Pt(F ) is a con-
sequence of a density inequality cDϕψ

μ×ν(x, y) ≥ Dϕ
μ(x) Dψ

ν (y). The advantages of
the density approach over the traditional one include the local nature of the in-
equality, and the use of a single unified method for all four of the inequalities. The
disadvantages include the inability to handle sets of measure 0 or ∞. (In fact, this
disadvantage goes back to Marstrand [26] in the first study of Hausdorff dimension
of products.)

To overcome the problem of measure zero, we will have to add extra nullset
lemmas in certain cases. To overcome the problem of infinite measure, we will
require semifiniteness.

Let X be a metric space, and let μ be a Borel measure on X . Then μ is semifinite
iff for every Borel set E ⊆ X with μ(E) = ∞, there exists a Borel set F ⊆ E with
0 < μ(F ) <∞. We say μ is semifinite on A iff the restriction of μ to A is semifinite.
That is, the above holds for subsets E ⊆ A.

Once μ is semifinite, the conclusion can be improved: ifX is a complete separable
metric space and μ is semifinite, then for every Borel set E ⊆ X we have

μ(E) = sup {μ(F ) : F ⊆ E,F compact } .
Here are the relevant semifiniteness results from the literature:

Theorem 6.1 (Howroyd [19, Corollary 7]). Let X be a complete separable metric
space, and let ϕ be a blanketed Hausdorff function. Then Cϕ is semifinite.

Theorem 6.2 (Joyce & Preiss [22, Theorem 1, Corollary 1]). Let X be a complete
separable metric space, and let ϕ be an arbitrary Hausdorff function. Then P̃ϕ is
semifinite. If ϕ is blanketed, then Pϕ is semifinite.

There are examples of Hausdorff functions ϕ and spaces X where the Hausdorff
measure Hϕ is not semifinite. I have not checked whether these examples will also
provide Cϕ not semifinite. And how about vϕ?

Wen & Wen [34] show: for every Hausdorff function ϕ that is not blanketed,
there is a compact metric space X where Pϕ is not semifinite. They use relative
packings, what about absolute packings?

Let X and Y be two metric spaces. The Cartesian product space X × Y may
be metrized in more than one way. We will use the maximum metric defined by

ρ
(
(x1, y1), (x2, y2)

)
= max {ρ(x1, x2), ρ(y1, y2)} .

Although this is not the metric to make the product Rk×Rl of two Euclidean spaces
into Euclidean space Rk+l, it is within a constant factor. To use the Euclidean
metric in any of our product results 0.5, the constant c on the right-hand side will
need to be adjusted. In particular, we usually do not have c = 1 when the Euclidean
metric is used for Rk+l. But (when the Hausdorff function is blanketed), changing
the metric by at most a constant factor will change the measures Cϕ,Pϕ, etc. also
only by at most a constant factor.
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When we use the maximum metric, we have an easy description for balls in the
product:

Br
(
(x, y)

)
= Br

(
x
)×Br

(
y
)
,

Br
(
(x, y)

)
= Br

(
x
)×Br

(
y
)
.

6a. Generalizing Cs(E)Ct(F ) ≤ Cs+t(E × F ).
If ϕ and ψ are two Hausdorff functions, define ϕψ by (ϕψ)(r) = ϕ(r)ψ(r).

Of course ϕψ is also a Hausdorff function. In particular, if ϕ(r) = (2r)s and
ψ(r) = (2r)t, then ϕψ(r) = (2r)s+t.

For this generalization, we use the inequality

u lim sup
r→0

[
μ
(
Br(x)

)
ϕ(r)

μ
(
Br(y)

)
ψ(r)

]
≤ u lim sup

r→0

[
μ
(
Br(x)

)
ϕ(r)

]
u lim sup

r→0

[
μ
(
Br(y)

)
ψ(r)

]
so that

(14) D
ϕψ

μ×ν(x, y) ≤ D
ϕ

μ(x) D
ψ

ν (y).

Theorem 6.3. Let X and Y be complete separable metric, let X × Y have the
maximum metric, let E ⊆ X and F ⊆ Y be Borel sets, and let ϕ, ψ be two
Hausdorff functions. Assume vϕ(E) <∞ and vψ(F ) <∞. Then

vϕ(E) vψ(F ) ≤ Cϕψ(E × F ).

Proof. Let μ be the restriction of vϕ to E. That is, μ(A) = vϕ(E ∩A) for all A.
Then μ is a finite Borel measure on X . Similarly, let ν be the restriction of vϕ to
F , a finite Borel measure on Y . Now by Corollary 4.20(a) we have D

ϕ

μ(x) ≤ 1 for
almost all x ∈ E. Write

E1 =
{
x ∈ E : D

ϕ

μ(x) ≤ 1
}
, μ(E1) = μ(E).

Similarly, we have D
ψ

ν (y) ≤ 1 for almost all y ∈ F . Write

F1 =
{
y ∈ F : D

ψ

ν (y) ≤ 1
}
, ν(F1) = ν(F ).

Now the product measure μ × ν is a finite Borel measure on X × Y . For (x, y) ∈
E1×F1, we have from (14) that D

ϕψ

μ×ν
(
(x, y)

) ≤ 1. Therefore, by Corollary 4.16(a),
we have

Cϕψ(E1 × F1) ≥ (μ× ν)(E1 × F1) = μ(E1) ν(F1) = μ(E) ν(F ),

so that Cϕψ(E × F ) ≥ Cϕψ(E1 × F1) ≥ μ(E) ν(F ) = vϕ(E) vψ(F ). �
Corollary 6.4. Let X and Y be complete separable metric, let X × Y have the
maximum metric, let E ⊆ X and F ⊆ Y be Borel sets, and let ϕ, ψ be two
Hausdorff functions. Assume vϕ is semifinite on E and vψ is semifinite on F .
Then

vϕ(E) vψ(F ) ≤ Cϕψ(E × F ).

Proof. Let E1 ⊆ E be compact with vϕ(F1) <∞ and let F1 ⊆ F be compact with
vψ(F1) <∞. Then by the theorem, we have

vϕ(E1) vψ(F1) ≤ Cϕψ(E1 × F1) ≤ Cϕψ(E × F ).

Taking supremum over E1 and F1 we get vϕ(E) vψ(F ) ≤ Cϕψ(E × F ) using the
semifiniteness. �
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The previous inequalities have vϕ on one side and Cϕ on the other. With added
hypotheses, we may prove inequalities with the same type of measure on both sides.

Proposition 6.5. Let X and Y be complete separable metric spaces, let X × Y
have the maximum metric, let E ⊆ X and F ⊆ Y be Borel sets, and let ϕ, ψ be
two Hausdorff functions. Assume that ϕ and ψ are blanketed. Assume Cϕ(E) <∞
and Cψ(F ) <∞. Then

Cϕ(E) Cψ(F ) ≤ Cϕψ(E × F ).

Proposition 6.6. Let X and Y be complete separable metric, let X × Y have the
maximum metric, let E ⊆ X and F ⊆ Y be Borel sets, and let ϕ, ψ be two Hausdorff
functions. Assume either that X×Y has the SVP or that ϕψ is blanketed. Assume
vϕ(E) <∞ and vψ(F ) <∞. Then

vϕ(E) vψ(F ) ≤ vϕψ(E × F ).

Varying the hypotheses appropriately, we can get other variants, such as

vϕ(E) Cψ(F ) ≤ Cϕψ(E × F ),

vϕ(E) Cψ(F ) ≤ vϕψ(E × F ),

Cϕ(E) Cψ(F ) ≤ vϕψ(E × F ).

Remark. The results are also true with Cϕ, vϕ, etc. For this, we use the inequality

lim sup
r→0

[
μ
(
Br(x)

)
ϕ(r)

μ
(
Br(y)

)
ψ(r)

]
≤ lim sup

r→0

[
μ
(
Br(x)

)
ϕ(r)

]
lim sup
r→0

[
μ
(
Br(y)

)
ψ(r)

]
so that

(15) Δ
ϕψ

μ×ν(x, y) ≤ Δ
ϕ

μ(x) Δ
ψ

ν (y).

6b. Generalizing Cs+t(E × F ) ≤ Cs(E)Pt(F ).
For this generalization, we use the inequality

u lim sup
r→0

[
μ
(
Br(x)

)
ϕ(r)

μ
(
Br(y)

)
ψ(r)

]
≥ u lim sup

r→0

[
μ
(
Br(x)

)
ϕ(r)

]
u lim inf
r→0

[
μ
(
Br(y)

)
ψ(r)

]
so that

(16) D
ϕψ

μ×ν(x, y) ≥ D
ϕ

μ(x) Dψ
ν (y).

The proofs then proceed much as before.

Theorem 6.7. Let X and Y be complete separable metric, let X × Y have the
maximum metric, and let ϕ, ψ be two Hausdorff functions.

vϕψ(E × F ) ≤ Cϕ(E) P̃ψ(F ).

is true for all Borel sets E ⊆ X and F ⊆ Y provided it is true in the “null” cases
when one of the factors on the right is zero.

Proof. If either Cϕ(E) = ∞ or P̃ψ(F ) = ∞, then there is nothing to prove.
So assume both are finite. Write μ for the restriction of Cϕ to E and ν for the
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restriction of P̃ψ to F . By Corollaries 4.17(a) and 5.31 we have μ(E1) = μ(E) and
ν(F1) = ν(F ), where

E1 =
{
x ∈ E : D

ϕ

μ(x) ≥ 1
}
, F1 =

{
y ∈ F : Dψ

ν (y) ≥ 1
}
.

So on the set E1 × F1 we have D
ϕψ

μ×ν(x, y) ≥ 1 by (16). Therefore, by Corol-
lary 4.19(b) we conclude vϕψ(E1×F1) ≤ Cϕ(E)P̃ψ(F ). Finally, by our assumption
for the “null” case, we get the result with E × F . �

As before, with proper hypotheses we can prove variants, such as the ones below.

Proposition 6.8. Let X and Y be complete separable metric, let X × Y have the
maximum metric, and let ϕ, ψ be two Hausdorff functions. Assume that Y has the
SVP. Assume that ϕψ is blanketed. Then

Cϕψ(E × F ) ≤ Cϕ(E) Pψ(F ).

is true for all Borel sets E ⊆ X and F ⊆ Y provided it is true in the “null” cases
when one of the factors on the right is zero.

A variant will use the inequality

lim sup
r→0

[
μ
(
Br(x)

)
ϕ(r)

μ
(
Br(y)

)
ψ(r)

]
≥ lim sup

r→0

[
μ
(
Br(x)

)
ϕ(r)

]
lim inf
r→0

[
μ
(
Br(y)

)
ψ(r)

]
so that

(17) Δ
ϕψ

μ×ν(x, y) ≥ Δ
ϕ

μ(x) Dψ
ν (y).

Proposition 6.9. Let X and Y be complete separable metric, let X × Y have the
maximum metric, and let ϕ, ψ be two Hausdorff functions. Then

vϕψ(E × F ) ≤ Cϕ(E) P̃ψ(F ).

is true for all Borel sets E ⊆ X and F ⊆ Y provided it is true in the “null” cases
when one of the factors on the right is zero.

Nullset lemmas. Of course the assumption of the “null” case is a blemish on this
proof. Under the right conditions there are “nullset lemmas” to prove these cases.
But I do not know proofs in terms of densities. As a sample, the nullset lemmas for
the inequality Cϕψ(E × F ) ≤ Cϕ(E)P̃ψ(F ) are given next. But (as far as I know,
in general) nullset lemmas are unfortunately no simpler to prove than the general
theorems.

Lemma 6.10. Let X and Y be complete separable metric spaces, let ϕ, ψ be
Hausdorff functions, let E ⊆ X, F ⊆ Y be Borel sets. Assume Cϕ(E) = 0
and P̃ψ(F ) < ∞. Then Cϕψ0 (E × F ) = 0. If ϕψ is blanketed we may conclude
Cϕψ(E × F ) = 0.

Proof. First, P̃ψ(F ) < ∞, so F is the union of countably many sets Fn with
P̃ψ0 (Fn) < ∞. So we may assume P̃ψ0 (F ) < ∞. By Proposition 5.25, F is totally
bounded. There is δ > 0 so that P̃ψδ (F ) <∞.

Let ε > 0 be given. Write ε1 = ε/P̃ψδ (F ).
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Now Cϕ(E) = 0, so Cϕ0 (E) = 0. There is a centered closed ball cover {(xi, ri)}
of E with ri < δ such that

∑
i ϕ(ri) < ε1. For each i, by the total boundedness

of F there is a maximal finite set { yij : 1 ≤ j ≤ Ki } subject to ρ(yij , yij′ ) > ri for
all j �= j′. So { (yij , ri) : 1 ≤ j ≤ Ki } is a centered closed ball weak packing with
equal radii, and F =

⋃
j Bri(yij). So we have Kiψ(ri) ≤ P̃ψδ (F ). Now we may form

a cover for the product E × F :

E × F ⊆
∞⋃
i=1

Ki⋃
j=1

Bri(xi, yij).

But
∞∑
i=1

Ki∑
j=1

ϕψ(ri) ≤M P̃ψδ (F )
∞∑
i=1

ϕ(ri) < ε.

This is true for every ε, so Cϕψδ (E × F ) = 0. Thus Cϕψ0 (E × F ) = 0. If ϕψ is
blanketed, then by Corollary 4.3 we get Cϕψ(E × F ) = 0. �

Lemma 6.11. Let X and Y be complete separable metric spaces, let ϕ, ψ be
Hausdorff functions, let E ⊆ X, F ⊆ Y be Borel sets. Assume Cϕ(E) < ∞
and P̃ψ(F ) = 0. Then Cϕψ0 (E × F ) = 0. If ϕψ is blanketed, we may conclude
Cϕψ(E × F ) = 0.

Proof. Let ε > 0 be given. First, Cϕ0 (E) ≤ Cϕ(E) <∞. Fix a number c > Cϕ0 (E).
Let ε1 = ε/c. Now P̃ψ(F ) = 0, so there exist sets Fn with F ⊆ ⋃

Fn such that∑ P̃ψ0 (Fn) < ε1. Choose numbers pn > P̃ψ0 (Fn) with
∑
pn < ε1. Fix n. There

exists δ > 0 (depending on n) so that P̃ψδ (Fn) < pn. Now Cϕδ (E) ≤ Cϕ0 (E) < c, so
there is a centered closed ball cover {(xi, ri)} of E with ri < δ and

∑
ϕ(ri) < c.

Now by Proposition 5.25 Fn is totally bounded, so for each i there is a maximal finite
ri-separated set { yij : 1 ≤ j ≤ Ki } ⊆ Fn. (That is: with ρ(yij , yij′) > ri for j �= j′

and the set is maximal subject to that restriction.) So { (yij , ri) : 1 ≤ j ≤ Ki } is
a centered closed ball weak packing of Fn, so Kiψ(ri) ≤ P̃ψδ (Fn) < pn. By the
maximality, Fn ⊆ ⋃Ki

j=1 Bri(yij). So we have a δ-fine cover of E × Fn:

E × Fn ⊆
∞⋃
i=1

Ki⋃
j=1

Bri

(
(xi, yij)

)
.

But
∑∞

i=1Kiϕψ(ri) ≤ cpn. So Cϕψδ (E×Fn) ≤ cpn. This is true for all small enough
δ, so Cϕψ0 (E × Fn) ≤ cpn. This is true for all n and Cϕψ0 is countably subadditive,
so Cϕψ0 (E × F ) ≤ c

∑
pn < ε. This holds for all ε > 0, so Cϕψ0 (E × F ) = 0. If ϕψ

is blanketed, then by Corollary 4.3 we get Cϕψ(E × F ) = 0. �

Example 6.12 (Ultrametric product space: Counterexample for a nullset lemma:
Cϕψ(X × Y ) ≤ Cϕ(X)Pϕ(Y ) fails in general). Let X be the ultrametric product
space with kn = 2, Kn = 2n. Let Y be the ultrametric product space with k′n = n3,
K ′
n = (n!)3. These are compact metric spaces. Let ϕ be the Hausdorff function

with ϕ(r) = 1/(n2n) for all r with 1/2n+1 < r ≤ 1/2n. Let ψ be the Hausdorff
function with ψ(r) = n/(n!)3 for all r with 1/2n+1 < r ≤ 1/2n. Let E = X and
F = Y . These are Borel sets. The Cartesian product X ×Y is another ultrametric
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product space with k′′n = 2n3, K ′′
n = 2n(n!)3. The product ϕψ is the Hausdorff

function with ϕψ(r) = 1/(2n(n!)3) for all r with 1/2n+1 < r ≤ 1/2n. But we claim
Cϕ(E) = Pψ(F ) = 0 and Cϕψ(E × F ) > 0. Indeed:

(a) Knϕ(1/2n) = 2n/(n2n) → 0, so by (9) we have Cϕ(X) = 0.
(b) K ′

n−1ψ(1/2n−) = ((n − 1)!)3n/(n!)3 = 1/n2 and
∑

1/n2 < ∞, so by (12)
we have Pϕ(Y ) = V

ϕ
(Y ) = 0.

(c) K ′′
nϕψ(1/2n+1 +) = (2n(n!)3)/(2n(n!)3) = 1, so by (9) we have

Cϕψ(X × Y ) ≥ 1.

6c. Generalizing Cs(E)Pt(F ) ≤ Ps+t(E × F ).
For this generalization, we use the inequality

u lim inf
r→0

[
μ
(
Br(x)

)
ϕ(r)

μ
(
Br(y)

)
ψ(r)

]
≤ u lim sup

r→0

[
μ
(
Br(x)

)
ϕ(r)

]
u lim inf
r→0

[
μ
(
Br(y)

)
ψ(r)

]
so that

(18) Dϕψ
μ×ν(x, y) ≤ D

ϕ

μ(x) Dψ
ν (y).

Theorem 6.13. Let X and Y be complete separable metric, let X × Y have the
maximum metric, let E ⊆ X and F ⊆ Y be Borel sets, and let ϕ, ψ be two Hausdorff
functions. Assume vϕ(E) <∞ and Pψ(F ) <∞. Then

vϕ(E) Pψ(F ) ≤ P̃ϕψ(E × F ).

Proof. Let μ be the restriction of vϕ to E and ν the restriction of Pψ to F .
By Corollary 4.20(a), we have D

ϕ

μ(x) ≤ 1 almost everywhere on E. By Corol-
lary 5.11(a), we have Dψ

ν (y) ≤ 1 almost everywhere on F . Write

E1 =
{
x ∈ E : D

ϕ

μ(x) ≤ 1
}
, F1 =

{
y ∈ F : Dψ

ν (y) ≤ 1
}
,

so μ(E1) = μ(E) and ν(F1) = ν(F ). Therefore, by (18), for all (x, y) ∈ E1 × F1 we
have Dϕψ

μ×ν(x, y) ≤ 1. So by Corollary 5.30 we have

P̃ϕψ(E1 × F1) ≥ (μ× ν)(E1 × F1) = μ(E1)ν(F1) = μ(E)ν(F ),

so that P̃ϕψ(E × F ) ≥ P̃ϕψ(E1 × F1) ≥ μ(E)ν(F ) = vϕ(E)Pψ(F ). �
And of course with hypotheses we can prove variants, such as the following.

Theorem 6.14. Let X and Y be complete separable metric, let X × Y have the
maximum metric, let E ⊆ X and F ⊆ Y be Borel sets, and let ϕ, ψ be two
Hausdorff functions. Assume that ϕ is blanketed. Assume X × Y has the SVP.
Assume Cϕ(E) <∞ and Pψ(F ) <∞. Then

Cϕ(E) Pψ(F ) ≤ Pϕψ(E × F ).

For the alternate densities, we get a variant

lim inf
r→0

[
μ
(
Br(x)

)
ϕ(r)

μ
(
Br(y)

)
ψ(r)

]
≤ lim sup

r→0

[
μ
(
Br(x)

)
ϕ(r)

]
lim inf
r→0

[
μ
(
Br(y)

)
ψ(r)

]
so that

Δϕψ
μ×ν(x, y) ≤ D

ϕ

μ(x) Δψ
ν (y).
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But we have not done density inequalities for the density Δϕ
μ(x), so we do not yet

have a way to apply it.

Proposition 6.15. Let X and Y be complete separable metric, let X×Y have the
maximum metric, let E ⊆ X and F ⊆ Y be Borel sets, and let ϕ, ψ be two Hausdorff
functions. Assume X × Y has the SVP. Assume vϕ(E) < ∞ and Pψ(F ) < ∞.
Then

vϕ(E) Pψ(F ) ≤ Pϕψ(E × F ).

As before, we may avoid the restriction to finite measure by adding hypotheses
to make the semifiniteness theorems applicable.

6d. Generalizing Ps+t(E × F ) ≤ Ps(E)Pt(F ).
For this generalization, we use the inequality

lim inf
r→0

[
μ
(
Br(x)

)
ϕ(r)

μ
(
Br(y)

)
ψ(r)

]
≥ lim inf

r→0

[
μ
(
Br(x)

)
ϕ(r)

]
lim inf
r→0

[
μ
(
Br(y)

)
ψ(r)

]
so that

(19) Dϕψ
μ×ν(x, y) ≥ Dϕ

μ(x) Dψ
ν (y).

Theorem 6.16. Let X and Y be complete separable metric, let X × Y have the
maximum metric, and let ϕ, ψ be two Hausdorff functions. Then

Pϕψ(E × F ) ≤ P̃ϕ(E) P̃ψ(F )

for all Borel sets E ⊆ X and F ⊆ Y provided it is true in the “null” cases when
one of the factors on the right is zero.

Proof. If P̃ϕ(E) = ∞ or P̃ψ(F ) = ∞, there is nothing to prove, so assume they
are both finite. Let μ be the restriction of P̃ϕ to E and ν the restriction of P̃ψ to
F . By Corollary 5.31 we have Dϕ

μ(x) ≥ 1 almost everywhere on E and Dψ
ν (y) ≥ 1

almost everywhere on F . So if

E1 =
{
x ∈ E : Dϕ

μ(x) ≥ 1
}
, F1 =

{
y ∈ F : Dψ

ν (y) ≥ 1
}
,

then μ(E) = μ(E1) and ν(F ) = ν(F1). Then by (19), for every (x, y) ∈ E1 ×
F1 we have Dϕψ

μ×ν(x, y) ≥ 1. So by Corollary 5.10(b) we have Pϕψ(E1 × F1) ≤
μ(E1)ν(F1) = P̃ϕ(E)P̃ψ(F ). By the assumption for the “null” cases, we get the
result with E × F . �

Variants are possible, for example:

Theorem 6.17. Let X and Y be complete separable metric, let X × Y have the
maximum metric, and let ϕ, ψ be two Hausdorff functions. Assume that X and Y
both have the SVP. Then

Pϕψ(E × F ) ≤ Pϕ(E) Pψ(F )

for all Borel sets E ⊆ X and F ⊆ Y provided it is true in the “null” cases when
one of the factors on the right is zero.
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As usual, there is a variant

lim inf
r→0

[
μ
(
Br(x)

)
ϕ(r)

μ
(
Br(y)

)
ψ(r)

]
≥ lim inf

r→0

[
μ
(
Br(x)

)
ϕ(r)

]
lim inf
r→0

[
μ
(
Br(y)

)
ψ(r)

]
so that

(20) Δϕψ
μ×ν(x, y) ≥ Δϕ

μ(x) Δψ
ν (y).

But we have not proved density inequalities that can be applied to this case.
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