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Arens-regularity of algebras arising from tensor
norms

Matthew Daws

Abstract. We investigate the Arens products on the biduals of certain alge-
bras of operators on nonreflexive Banach spaces. To be precise, we study the
α-nuclear operators, where α is a tensor norm. This includes the approximable
and nuclear operators, and we use these, together with the 2-nuclear operators,
as motivating examples. The structure of the two topological centres of the
bidual are studied, and typical results are that for the approximable operators,
the two topological centres are always distinct, neither contains the other, and
both strictly contain the original algebra. In contrast, on a nonpathological
Banach space, the topological centres of the bidual of the nuclear operators co-
incide. Our methods allow us to also study the algebra of compact operators,
even when the compacts are not equal to the approximable operators.
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1. Introduction

A Banach algebra A is a Banach space, and so embeds isometrically in its bidual
A′′. This raises the question of whether there exists a Banach algebra product
on A′′ extending the product on A. In [Are51], Arens showed that there are two
natural products � and ♦ on A′′ which extend the product on A. These are termed
the first and second Arens products, respectively, and when � and ♦ coincide, we
say that A is Arens regular. Arens regularity is an interesting property in that
it passes to closed subalgebras and quotient algebras: it is rare for properties of
Banach algebras to display such permanence.

If A is reflexive as a Banach space, then A is trivially Arens regular. Consider
the space l1(Z). If we define a product pointwise, then l1(Z) is Arens regular.
Conversely, if we use the convolution product on l1(Z) coming from the additive
group Z, then l1(Z) is not Arens regular: in fact, the two Arens products agree only
on the original algebra (see [Neu04] for an interesting proof of this result, which
was first considered in [LL88]). In the positive direction, every C∗-algebra is Arens
regular. We hence see that the relationship between the algebraic properties of A,
the Banach space geometry of A, and the Arens regularity of A is rather complex.

We shall be interested in algebras of operators. Let E be a Banach space, and
let B(E) be the algebra of all bounded linear operators on E. Then, if A ⊆ B(E) is
a closed subalgebra containing all the finite-rank operators, and A is Arens regular,
then E must be reflexive (see [You76]). Conversely, the author showed in [Daw04]
that if E is super-reflexive, then B(E) is Arens regular. Let K(E) be the ideal of
compact operators on E, and let A ⊆ K(E) be a closed algebra. Then A is Arens
regular when E is reflexive. Indeed, if A is any Arens regular Banach algebra,
then A is isometrically isomorphic to a closed subalgebra of B(E) for some reflexive
Banach space E (see [You76] or [Kai81]).

This paper considers the question of what happens when we consider such al-
gebras contained in the compact operators, and when E is not reflexive. To make
this question more precise, we shall consider the topological centres Z

(1)
t (A′′) and

Z
(2)
t (A′′), defined as

Z
(1)
t (A′′) = {Φ ∈ A′′ : Φ�Ψ = Φ♦Ψ (Ψ ∈ A′′)},

Z
(2)
t (A′′) = {Φ ∈ A′′ : Ψ�Φ = Ψ♦Φ (Ψ ∈ A′′)}.

We shall see below that A is contained in either topological centre, while if one
topological centre is equal to the whole of A′′, then A is Arens regular. We say that
A is left strongly Arens irregular if Z

(1)
t (A′′) = A; similarly we have right strongly

Arens irregular and strongly Arens irregular. These definitions were introduced in
[LÜ96], and studied in detail in [DL04], for example.

We shall study algebras of operators arising from tensor norms. Briefly, let F(E)
be the algebra of finite-rank operators on E, let E′ be the dual of E, and let E′⊗E
be the tensor product of E′ and E. Then E′ ⊗E is naturally identified with F(E)
(see below for further details). Let α be a, in some sense, reasonable norm on
E′ ⊗ E, and let E′⊗̂αE be the completion of the resulting normed space. Then
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E′⊗̂αE maps into K(E), and if we equip the image Nα(E) with the quotient norm,
we get a Banach algebra. It is this algebra which we shall study. The advantage
of this approach is that we can treat the algebras of approximable operators (the
closure of F(E)) and nuclear operators (arising from the “maximal” α allowed)
in a unified manner. The key tool is the Gröthendieck Composition Theorem,
which shows why calculations involving the approximable operators, or the nuclear
operators, often seem very similar, despite the rather different characterisations of
these algebras.

Let A(E), the approximable operators, be the closure of F(E) in K(E). As a
typical result, we show that when E is not reflexive, the topological centres of A(E)′′

are always distinct, that neither contains the other, and that both strictly contain
A(E). The same is true of K(E), even when A(E) �= K(E). The situation becomes
more complicated when we consider the nuclear operators, N (E) (see later for a
formal definition), where for well-behaved spaces E, we have that the topological
centres of N (E)′′ are equal, and strictly contain N (E). However, for other spaces
E, the topological centres of N (E)′′ can behave exactly like those of A(E)′′ (as it
is possible to have N (E) = A(E)). In fact, we show that for any reasonable tensor
norm α, Nα(E) is not (left or right) strongly Arens irregular (see Theorem 5.14).
The same holds for any tensor norm α when E′′ is well-behaved, but we leave open
the case when both E′′ and α are pathological.

In the next section, we shall define the Arens products and study the Arens
representations. We shall then quickly survey the definitions and results from the
theory of tensor norms. The rest of the paper then studies the topological centres of
algebras arising from tensor norms. One a first reading, the many long calculations
in the latter sections may be skipped, as we hope the results are easy accessible
without the proofs.

We note that many of the results in this area (especially for approximable opera-
tors) have been (re-)discovered multiple times, and that some results are “folklore”.
We hope that one function of this paper is to bring together some of these results
in a unified manner.

2. Arens products and representations

Let E be a Banach space, and denote by E′ its dual space. We use the dual-pair
notation 〈·, ·〉, so we write 〈μ, x〉 = μ(x) for μ ∈ E′ and x ∈ E. We write E[1] for
the closed unit ball of E, and more generally set E[t] = {x ∈ E : ‖x‖ ≤ t} for t > 0.
For a subspace F ⊆ E, we set

F ◦ = {μ ∈ E′ : 〈μ, x〉 = 0 (x ∈ F )}.
Similarly, for a subspace G ⊆ E′, we set

◦G = {x ∈ E : 〈μ, x〉 = 0 (μ ∈ G)}.
Then, for example, we naturally identify (E/F )′ with F ◦. Recall that there is a
canonical isometry κE : E → E′′ defined by 〈κE(x), μ〉 = 〈μ, x〉 for μ ∈ E′ and
x ∈ E. We say that E is reflexive if κE is a isomorphism.

Let A be a Banach algebra. A Banach left A-module E is a Banach space
together with a bilinear map A× E → E; (a, x) �→ a · x such that

a · (b · x) = ab · x, ‖a · x‖ ≤ ‖a‖‖x‖ (a, b ∈ A, x ∈ E).
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Then we get a norm-decreasing homomorphism π : A → B(E), that is, a represen-
tation, given by π(a)(x) = a · x for a ∈ A and x ∈ E. Similarly we get the notion
of a Banach right A-module. A Banach A-bimodule E is a Banach left A-module
which is also a Banach right A-module such that (a · x) · b = a · (x · b) for a, b ∈ A
and x ∈ E.

When E is a Banach left A-module, we define E′ to be a Banach right A-module
by setting

〈μ · a, x〉 = 〈μ, a · x〉 (a ∈ A, x ∈ E, μ ∈ E′).
Similar results hold for right- and bimodules. In particular, A is a bimodule over
itself, and so A′ is a Banach A-bimodule.

We define norm-decreasing bilinear maps A′′ ×A′ → A′ and A′ ×A′′ → A′ by

〈Φ · μ, a〉 = 〈Φ, μ · a〉, 〈μ · Φ, a〉 = 〈Φ, a · μ〉 (a ∈ A, μ ∈ A′,Φ ∈ A′′).

We then define norm-decreasing bilinear maps �,♦ : A′′ ×A′′ → A′′ by

〈Φ�Ψ, μ〉 = 〈Φ,Ψ · μ〉, 〈Φ♦Ψ, μ〉 = 〈Ψ, μ · Φ〉 (μ ∈ A′,Φ,Ψ ∈ A′′).

These are then the Arens products: we may check that these products are associa-
tive, and that κA : A → A′′ becomes a homomorphism when A′′ is given either
Arens product. Furthermore, we have that

a · Φ = κA(a)�Φ = κA(a)♦Φ (a ∈ A,Φ ∈ A′′),

and similarly with the orders reversed. This shows that κA(A) ⊆ Z
(i)
t (A′′) for

i = 1, 2.
A good survey of results about the Arens products is [DH79]; [CY61] is the

first systematic study of Arens products. See also [Dal00, Section 2.6] or [Pal94,
Section 1.4].

It follows from Goldstein’s Theorem that for Φ ∈ A′′, there exists a net (aα)
in A such that ‖aα‖ ≤ Φ for each α, and 〈Φ, μ〉 = limα 〈μ, aα〉 for each μ ∈ A′.
Similarly, let Ψ ∈ A′′ define a bounded net (bβ) in A. We may show that

〈Φ�Ψ, μ〉 = lim
α

lim
β

〈μ, aαbβ〉, 〈Φ♦Ψ, μ〉 = lim
β

lim
α

〈μ, aαbβ〉 (μ ∈ A′),

which illustrates why we get two, in general distinct, products which depend both
upon the algebraic structure of A, and the topological structure (so that, for ex-
ample, there exist commutative algebras A which are not Arens regular).

A bounded net (aα) in A is a bounded approximate identity when aaα → a and
aαa→ a for each a ∈ A. A functional Ξ ∈ A′′ is a mixed identity when

Φ�Ξ = Ξ♦Φ = Φ (Φ ∈ A′′).

A simple calculation shows that this condition is equivalent to

Ξ · μ = μ · Ξ = μ (μ ∈ A′), or a · Ξ = Ξ · a = κA(a) (a ∈ A).

Proposition 2.1. A Banach algebra A has a bounded approximate identity if and
only if A′′ has a mixed identity.

Proof. Give a bounded approximate identity (aα), any weak∗-limit point of this
net in A′′ will be a mixed identity. The converse follows by applying Goldstein’s
Theorem and Mazur’s Theorem on the weak closure of convex sets. See [Dal00,
Proposition 2.9.16] for further details. �
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2.1. Arens representations. We shall now define the Arens representations as
detailed in, for example, [Pal94, Section 1.4]. We use the language of modules, but
the results (once translated) are the same.

Let E and F be Banach spaces, and norm the tensor product E ⊗ F by

π(τ) = inf

{
r∑

i=1

‖xi‖‖yi‖ : τ =
r∑

i=1

xi ⊗ yi

}
(τ ∈ E ⊗ F ).

Then π(·) is the projective tensor norm, and the completion of (E ⊗ F, π) is E⊗̂F ,
the projective tensor product of E and F . In this section, we shall use the fact
that if φ : E × F → G is a bounded, bilinear map to some Banach space G, then
there is a unique bounded linear map ψ : E⊗̂F → G such that ‖ψ‖ = ‖φ‖ and
ψ(x⊗ y) = φ(x, y) for each x ∈ E and y ∈ F . When T ∈ B(E,F ) and S ∈ B(G,H)
for Banach spacesE,F,G andH , there is a unique linear map T⊗S : E⊗̂G→ F ⊗̂H
such that (T ⊗ S)(x⊗ y) = T (x) ⊗ S(y) for x ∈ E and y ∈ G.

Let A be a Banach algebra, and let F be a Banach left A-module. Then F ′ is
a Banach right A-module, and F ′′ is a Banach left A-module. Thus F ′⊗̂F and
F ′′⊗̂F ′ become Banach A-bimodules for the module actions

(μ⊗ x) · a = μ · a⊗ x, a · (μ⊗ x) = μ⊗ a · x,
(Λ ⊗ μ) · a = Λ ⊗ μ · a, a · (Λ ⊗ μ) = a · Λ ⊗ μ,

for a ∈ A, μ⊗ x ∈ F ′⊗̂F and Λ ⊗ μ ∈ F ′′⊗̂F ′.
Define a bilinear map φ1 : F ′′ × F ′ → A′ by

〈φ1(Λ, μ), a〉 = 〈a · Λ, μ〉 (Λ ∈ F ′′, μ ∈ F ′, a ∈ A).

Then φ1 extends to a norm-decreasing map F ′′⊗̂F ′ → A′. Similarly define φ2 :
F ′⊗̂F → A′ by

〈φ2(μ⊗ x), a〉 = 〈μ, a · x〉 (μ⊗ x ∈ F ′⊗̂F, a ∈ A).

We may check that φ1 and φ2 are A-bimodule homomorphisms.
Then φ′1 : A′′ → B(F ′′), with the action given by

〈φ′1(Φ)(Λ), μ〉 = 〈Φ, φ1(Λ ⊗ μ)〉 (Φ ∈ A′′,Λ ∈ F ′′, μ ∈ F ′).

Similarly, φ′2 : A′′ → B(F ′). We can also verify the following identities:

Φ · φ1(Λ ⊗ μ) = φ1(φ′1(Φ)(Λ) ⊗ μ) (Φ ∈ A′′,Λ ⊗ μ ∈ F ′′⊗̂F ′),

φ2(μ⊗ x) · Φ = φ2(φ′2(Φ)(μ) ⊗ x) (Φ ∈ A′′, μ⊗ x ∈ F ′⊗̂F ).

Definition 2.2. For a Banach space E, we have the isometric map B(E) →
B(E′); T �→ T ′, defined by

〈T ′(μ), x〉 = 〈μ, T (x)〉 (T ∈ B(E), x ∈ E, μ ∈ E′).

For a subset X ⊆ B(E) write

Xa = {T ′ : T ∈ X} ⊆ B(E′),

so that, in particular, B(E)a is a subalgebra of B(E′). We can show that B(E)a =
B(E′) if and only if E is reflexive. For a Banach algebra A and ψ ∈ B(A,B(E)),
we define ψa ∈ B(A,B(E′)) by ψa(b) = ψ(b)′ for b ∈ A.

Let θ1 = φ′1 and θ2 = (φ′2)a.
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Proposition 2.3. The maps θ1 : (A′′,�) → B(F ′′) and θ2 : (A′′,♦) → B(F ′′) are
norm-decreasing homomorphisms. Thus θ1 and θ2 induce a module structure on F ′′

so that we can, respectively, view F ′′ as a Banach left (A′′,�)-module or a Banach
left (A′′,♦)-module. For Φ ∈ A′′, we have θ1(Φ) ◦ κF = θ2(Φ) ◦ κF .

Proof. Let Φ,Ψ ∈ A′′ and Λ ⊗ μ ∈ F ′′⊗̂F ′. Then we have

〈θ1(Φ�Ψ)(Λ), μ〉 = 〈Φ,Ψ · φ1(λ⊗ μ)〉 = 〈Φ, φ1(φ′1(Ψ)(Λ) ⊗ μ)〉
= 〈φ′1(Φ)(φ′1(Ψ)(Λ)), μ〉 = 〈(θ1(Φ) ◦ θ2(Ψ)

)
(Λ), μ〉.

We will show that φ′2 is an anti-homomorphism, so that θ2 is a homomorphism.
For Φ,Ψ ∈ A′′ and μ⊗ x ∈ F ′⊗̂F , we have

〈φ′2(Φ♦Ψ)(μ), x〉 = 〈Ψ, φ2(μ⊗ x) · Φ〉 = 〈Ψ, φ2(φ′2(Φ)(μ) ⊗ x)〉
= 〈φ′2(Ψ)(φ′2(Φ)(μ)), x〉.

The final claim is a simple calculation. �

An alternative way to look at these maps is through the use of nets. For Φ,Ψ ∈
A′′, suppose that Φ = limα aα and Ψ = limβ bβ , with convergence in the weak∗-
topology on A′′. We then have that

θ1(Φ�Ψ)(Λ) = lim
α

lim
β
aαbβ · Λ (Λ ∈ F ′′),

where the limit is in the weak∗-topology on F ′′. Similarly, we have

φ′2(Φ♦Ψ)(μ) = lim
β

lim
α
μ · aαbβ (μ ∈ F ′),

where the limit is in the weak∗-topology on F ′.
For a general Banach algebra A and module F , the behaviour of θ1 applied to

♦ (or θ2 applied to �) has no simple description. However, in a large number of
cases, we can say something. Recall that an operator T : E → F is weakly-compact
when T maps the unit ball of E into a relatively weakly-compact subset of F . In
this case, we write T ∈ W(E,F ), and write W(E,E) = W(E).

Definition 2.4. For a ∈ A, define Ta ∈ B(F ) by Ta(x) = a · x for x ∈ F . We say
that the action of A on F is weakly-compact if Ta ∈ W(F ) for every a ∈ A.

The following definitions appear in [DL04], but we give a more general treatment
here; the use of these ideas appears to be “folklore” in that they are certainly
known, but there is no definitive source for them (see, for example, [Gro87], [Gro84]
or [Pal85], all of which deal with ideals of approximable operators). Let F be a
Banach space, and for T ∈ B(F ′′), define η(T ) ∈ B(F ′) and Q(T ) ∈ B(F ′′) by

η(T ) = κ′F ◦ T ′ ◦ κF ′ , Q(T ) = η(T )′ = κ′F ′ ◦ T ′′ ◦ κ′′F = κ′F ′ ◦ (T ◦ κF )′′.

Then note that η(T ′) = T for T ∈ B(F ′), so that B(F ′)a is a one-complemented
subspace of B(F ′′). Define a bilinear operation � on B(F ′′) by T � S = Q(T ) ◦ S
for T, S ∈ B(F ′′).

Proposition 2.5. The operation � is a Banach algebra product on B(F ′′). When
the action of A on F is weakly-compact, the map θ1 : (A′′,♦) → (B(F ′′), �) is a
homomorphism.
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Proof. We see immediately that � satisfies ‖T � S‖ ≤ ‖T ‖‖S‖, and that if suffices
to show that (T � S) � R = T � (S � R) for each R,S, T ∈ B(F ′′). We have

η(S) ◦ η(T ) = κ′F ◦ S′ ◦ κF ′ ◦ η(T ) = κ′F ◦ S′ ◦ η(T )′′ ◦ κF ′ = η(Q(T ) ◦ S),

and thus

(T � S) � R = Q(T � S) ◦R = Q(Q(T ) ◦ S) ◦R = η(Q(T ) ◦ S)′ ◦R
= η(T )′ ◦ η(S)′ ◦R = Q(T ) ◦ Q(S) ◦R = T � (S � R).

For a ∈ A and Λ ∈ F ′′, we can verify that a · Λ = T ′′
a (Λ). As Ta ∈ W(F ), by

Theorem 3.8, we have T ′′
a (Λ) ∈ κF (F ). Thus let κF (y) = a · Λ, so that for Φ ∈ A′′

and Λ ⊗ μ ∈ F ′′⊗̂F ′, we have

〈φ1(Λ ⊗ μ) · Φ, a〉 = 〈Φ, φ1(a · Λ ⊗ μ)〉 = 〈θ1(Φ)(a · Λ), μ〉 = 〈θ1(Φ)′κF ′(μ), a · Λ〉
= 〈θ1(Φ)′κF ′(μ), κF (y)〉 = 〈η(θ1(Φ))(μ), y〉
= 〈κF (y), η(θ1(Φ))(μ)〉 = 〈a · Λ, η(θ1(Φ))(μ)〉
= 〈φ1

(
Λ ⊗ η(θ1(Φ))(μ)

)
, a〉.

Thus for Φ,Ψ ∈ A′′ and Λ ⊗ μ ∈ F ′′⊗̂F ′, we have

〈θ1(Φ♦Ψ)(Λ), μ〉 = 〈Ψ, φ1(Λ ⊗ μ) · Φ〉 = 〈Ψ, φ1

(
Λ ⊗ η(θ1(Φ))(μ)

)〉
= 〈θ1(Ψ)(Λ), η(θ1(Φ))(μ)〉 = 〈Q(θ1(Φ))θ1(Ψ)(Λ), μ〉,

so that θ1(Φ♦Ψ) = θ1(Φ) � θ1(Ψ). �
Suppose that F is reflexive, so that the action of A on F is certainly weakly-

compact. Then � = ◦ on B(F ), so that θ1 is a homomorphism A′′ → B(F ) for either
Arens product. In particular, if θ1 is injective, then A must be Arens regular.

3. Tensor norms

We shall now sketch the definitions and results about tensor norms which we
shall need. We refer the reader to [Rya02] or [DF93] for more details on the topics
in these sections. We follow the notation of [Rya02], which occasionally clashes with
that of [DF93]. There is a short, self-contained account in [DU77, Chapter VIII]
of many of the more important ideas in this section. The reader who knows about
the projective and injective tensor norms, and about integral operators, is welcome
to skim this section, and to think purely about, say, the projective tensor norm,
instead of general tensor norms α.

We have already defined the projective tensor norm. For Banach spaces E and
F , we define the injective tensor norm ε on E ⊗ F by

ε(u,E ⊗ F ) = sup

{∣∣∣∣ n∑
i=1

〈μ, xi〉〈λ, yi〉
∣∣∣∣ : μ ∈ E′, λ ∈ F ′, ‖μ‖ = ‖λ‖ = 1

}
,

where u =
∑n

i=1 xi ⊗ yi ∈ E ⊗ F . We often denote the completion of E ⊗ F with
respect to ε by E⊗̌F . If we identify E′ ⊗F with F(E,F ), then it is a simple check
that E′⊗̌F is identified with A(E,F ). Furthermore, the norm ε on E ⊗ F agrees
with the norm induced by the natural embedding on E ⊗ F into F(E′, F ).

Let FIN be the class of finite-dimensional normed vector spaces. For a normed
vector space E, let FIN(E) be the collection of all finite-dimensional subspaces of
E, together with the norm induced by that of E.
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Definition 3.1. Let E and F be normed vectors spaces and α be a norm on E⊗F .
Then α is a reasonable crossnorm if ε(u) ≤ α(u) ≤ π(u) for each u ∈ E ⊗ F .

A uniform crossnorm is an assignment to each pair, (E,F ), of Banach spaces,
of a reasonable crossnorm α on E⊗F such that we have the following. Let D,E, F
and G be Banach spaces, and let T ∈ B(D,E), S ∈ B(G,F ). Then we form the
bilinear map

T ⊗ S : D ×G→ E ⊗ F ; (x, y) �→ T (x) ⊗ S(y) (x ∈ D, y ∈ G),

which extends to D ⊗G by the tensorial property. Then we insist that ‖T ⊗ S‖ ≤
‖T ‖‖S‖ with respect to the norm α on D ⊗G and on E ⊗ F .

For u ∈ E ⊗ F , we often write α(u,E ⊗ F ), instead of just α(u), to avoid
confusion. Let D be a closed subspace of E, let G be a closed subspace of F , and
let u ∈ D⊗G. By considering the inclusion maps D → E and G→ F , we identify
u with its image in E ⊗ F , and hence for a uniform crossnorm α, we see that

α(u,E ⊗ F ) ≤ α(u,D ⊗G) (u ∈ D ⊗G).

Definition 3.2. Let α be a uniform crossnorm. Then α is finitely generated if, for
each pair of Banach spaces E and F , and each u ∈ E ⊗ F , we have

α(u,E ⊗ F ) = inf{α(u,M ⊗N) : M ∈ FIN(E), N ∈ FIN(F ), u ∈M ⊗N}.
We call a finitely generated uniform crossnorm a tensor norm. We denote the

completion of the normed space (E ⊗ F, α) by E⊗̂αF .

Definition 3.3. For Banach spaces E and F , and u ∈ E ⊗ F , let ut ∈ F ⊗ E be
defined by ut =

∑n
i=1 yi ⊗ xi when u =

∑n
i=1 xi ⊗ yi. We call ut the transpose of

u and often refer to the map u �→ ut as the swap map. For a tensor norm α, define
αt by αt(u,E ⊗ F ) = α(ut, F ⊗ E), so that αt is a tensor norm.

Both the injective and projective tensor norms are tensor norms. They are also
symmetric, in that the swap map leaves them invariant, but this is not true for
general tensor norms. The injective tensor norm is injective in that ε(u,E ⊗ F ) =
ε(u,G ⊗ H) for each u ∈ E ⊗ F , E a subspace of G, and F a subspace of H .
Similarly, the projective tensor norm is projective in that, for u ∈ G/E ⊗H/F ,

ε(u,G/E ⊗H/F ) = inf{ε(v,G⊗H) : (QE ⊗QF )(v) = u},
where QE : G→ G/E and QF : H → H/F are the quotient maps. The projective
tensor norm is not, in general, injective (and vis versa).

3.1. Duals of tensor products and operator ideals. Let E,F ∈ FIN so that
E ⊗ F is finite-dimensional, and thus all norms on E ⊗ F are equivalent. There is
an isomorphism of vector spaces B(E,F ′) → (E ⊗ F )′ defined by

〈T, u〉 =
n∑

i=1

〈T (xi), yi〉
(
T ∈ B(E,F ′), u =

n∑
i=1

xi ⊗ yi ∈ E ⊗ F

)
.

As F ∈ FIN, B(E,F ′) = F(E,F ′) = E′⊗F ′, so that (E⊗F )′ = E′⊗F ′. Explicitly,
the duality is

〈u, v〉 =
n∑

i=1

m∑
j=1

〈μi, xj〉〈λi, yj〉,
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for u =
∑n

i=1 μi⊗λi ∈ E′⊗F ′ and v =
∑m

j=1 xj⊗yj ∈ E⊗F . As E′⊗F ′ = F(E,F ′)
and E ⊗ F = F(E′, F ), let Tu ∈ F(E,F ′) and Tv ∈ F(E′, F ) be the operators
represented by u and v, respectively. Then we have

Tu ◦ T ′
v =

m∑
j=1

yj ⊗ Tu(xj) ∈ F(F ′), 〈u, v〉 =
m∑

j=1

〈Tu(xj), yj〉 = tr(Tu ◦ T ′
v),

the trace of Tu ◦T ′
v. The duality using the trace is often referred to as trace duality.

Note that tr(Tu ◦ T ′
v) = tr(T ′

v ◦ Tu), a property which is useful in calculations.

Definition 3.4. Let α be a tensor norm. Then the dual tensor norm to α is α′,
and is given by setting

(E⊗̂αF )′ = E′⊗̂α′F ′

for E,F ∈ FIN, and extending α′ to all Banach spaces by finite-generation. Define
α̌ to be the tensor norm (α′)t, called the adjoint of α.

Of course, we can show that α′ is a tensor norm. We then have that α′′ = α,
ε′ = π and π′ = ε. So for E,F ∈ FIN, we have (E⊗̂F )′ = B(E,F ′) = E′⊗̌F ′ and
that B(E,F )′ = (E′⊗̌F )′ = E⊗̂F ′.

The picture is more complicated for infinite-dimensional Banach spaces, due to
our insisting that tensor norms are finitely-generated (which is necessary to ensure
that, for example, α′′ = α). For a tensor norm α define αs by the embedding
E⊗̂αsF → (E′⊗̂αF

′)′ for any Banach spaces E and F . Thus αs = α′ on FIN, but
not, in general, on infinite-dimensional spaces.

Definition 3.5. Let α be a tensor norm such that (α′)s = α′′ = α on E ⊗ F
whenever at least one of E and F are in FIN. Then α is said to be accessible.

Suppose further that we always have (α′)s = α. Then α is totally accessible.

We can show that ε is totally accessible, that π is accessible, and that α is
accessible if and only if α′ is accessible. Indeed, most common tensor norms are
accessible; certainly any defined in [Rya02] are. However, as shown in [DF93,
Section 31.6], there do exist tensor norms which are not accessible.

As shown in [Rya02, Chapter 2], for the projective tensor product, we have that
(E⊗̂F )′ = B(E,F ′) with the duality as defined above (this follows easily by the
definition of the projective tensor norm) for any Banach spaces E and F . As the
swap map E⊗̂F → F ⊗̂E is an isometry, we can naturally identify (E⊗̂F )′ with
B(F,E′) as well as with B(E,F ′).

Let α be some tensor norm. As α ≤ π for each pair of Banach spaces E and F ,
the formal identity map Iα : E⊗̂F → E⊗̂αF is norm decreasing. For μ ∈ (E⊗̂αF )′,
we then have

T := I ′α(μ) ∈ (E⊗̂F )′ = B(E,F ′).
A check shows that〈

μ

n∑
i=1

xi ⊗ yi

〉
=

n∑
i=1

〈T (xi), yi〉
(

n∑
i=1

xi ⊗ yi ∈ E ⊗ F

)
,

so that we can identify (E⊗̂αF )′ with a subspace of B(E,F ′), denoted by Bα′(E,F ′),
the α′-integral operators, and give it the norm ‖ · ‖α′ induced by the identification
of Bα′(E,F ′) with (E⊗̂αF )′. This notation is chosen because we have

Bα′(E,F ′) = (E⊗̂αF )′ = E′⊗̂α′F ′ (E,F ∈ FIN).
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Again, the duality can be explicitly defined by using the trace, at least when dual
spaces are being used. For let u =

∑n
i=1 μi ⊗yi ∈ E′⊗̂αF and T ∈ Bα′(E′, F ′), and

let S ∈ F(E,F ) be the operator induced by u. Then we have

〈T, u〉 =
n∑

i=1

〈T (μi), yi〉 = tr
( n∑

i=1

κF (yi) ⊗ T (μi)
)

= tr(T ◦ S′)

=
n∑

i=1

〈T ′κF (yi), μi〉 = tr
( n∑

i=1

T ′κF (yi) ⊗ μi

)
= tr(S′ ◦ T ).

The ε-integral operators are just the bounded operators. We call the π-integral
operators just the integral operators and denote them by I(E,F ′) = Bπ(E,F ′).

Proposition 3.6. Let E and F be Banach spaces, let T ∈ B(E,F ), and let α be a
tensor norm. The following are equivalent:

(1) T is an α-integral operator.
(2) κFT : E → F ′′ is an α-integral operator.
(3) T ′′ : E′′ → F ′′ is an α-integral operator.
(4) T ′ : F ′ → E′ is an αt-integral operator.

Furthermore ‖T ‖α = ‖κFT ‖α = ‖T ′′‖α = ‖T ′‖αt.
Let D and G be Banach spaces, let S ∈ B(D,E) and R ∈ B(F,G). Then

RTS ∈ Bα(D,G) and ‖RTS‖α ≤ ‖R‖‖T ‖α‖S‖.
Proof. See [Rya02, Section 8.1]. �

Hence we have the following isometric inclusions

Bα(E,F ) ⊆ (E⊗̂α′F ′)′ = Bα(E,F ′′) ⊆ Bα(E′′, F ′′),

noting that T ′′κE = κFT for any T ∈ B(E,F ). The final part of the above
proposition shows that the α-integral operators are an operator ideal in the sense
of Pietsch (see [Pie80]). In particular, Bα(E) is, algebraically, an ideal in B(E).

Definition 3.7. An operator ideal U is an assignment, to each pair of Banach
spaces E and F , a subspace U(E,F ) ⊆ B(E,F ) such that:

(1) There is a norm u on U(E,F ) such that (U(E,F ), u) is a Banach space.
(2) F(E,F ) ⊆ U(E,F ), and for μ ∈ E′ and x ∈ F , for the one-dimensional

operator μ⊗ x ∈ F(E,F ), we have that u(μ⊗ x) = ‖μ‖‖x‖.
(3) For Banach spaces D and G, T ∈ U(E,F ), S ∈ B(D,E) and R ∈ B(F,G),

RTS ∈ U(D,G), and u(RTS) ≤ ‖R‖u(T )‖S‖.
If U(E,F ) is always a closed subspace of B(E,F ), then we say that U is a closed
operator ideal.

Note that some sources give a more general definition for the term “operator
ideal”. For each tensor norm α, we see that Bα is an operator ideal for the norm
‖ · ‖α; it is rarely closed. The assignment A(E,F ) is a closed operator ideal, and
by condition (2) we see that it is the smallest closed operator ideal. An operator
T : E → F is compact if T maps the unit ball of E into a relatively norm-compact
subset of F . In this case we write T ∈ K(E,F ), and write K(E,E) = K(E). Then
K is a closed operator ideal. Similarly, the collection of weakly-compact operators,
W(E,F ), is also a closed operator ideal.
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Theorem 3.8. Let E and F be Banach spaces, and T ∈ B(E,F ). Then T ∈
K(E,F ) if and only if T ′ ∈ K(F ′, E′). Moreover, the following are equivalent:

(1) T ∈ W(E,F ).
(2) T ′ ∈ W(F ′, E′).
(3) T ′′(E′′) ⊆ κF (F ).

Proof. These are standard results, and are Schauder’s Theorem and Gantmacher’s
Theorem, respectively. �
Theorem 3.9. Let E and F be Banach spaces, and T ∈ B(E,F ). Then T ∈
W(E,F ) if and only if there exists a reflexive Banach space G, R ∈ B(E,G) and
S ∈ B(G,F ) with T = S ◦R. Furthermore, we can choose G,S and R so that R has
dense range and the same norm and kernel as T , and such that S is norm-decreasing
and injective.

Proof. This is [DFJP74]; see also the more accessible sketch proof in [Pal94, Sec-
tion 1.7.8]. �
3.2. Nuclear and integral operators; the approximation property.

Definition 3.10. Let E and F be Banach spaces, and let α be a tensor norm.
Then there is a natural, norm-decreasing map Jα : E′⊗̂αF → B(E,F ) given by

Jα(μ⊗ y)(x) = 〈μ, x〉y (x ∈ E, y ∈ F, μ ∈ E′),

and linearity and continuity. The image of Jα, equipped with the quotient norm, is
the set of α-nuclear operators, denoted Nα(E,F ), with norm ‖ · ‖Nα . The nuclear
operators, N (E,F ), are the π-nuclear operators.

We can check that the α-nuclear operators form an operator ideal. For E,F ∈
FIN, we have E′⊗̂αF = (E⊗̂α′F ′)′ = Bα(E,F ), so that the α-integral and α-
nuclear operators coincide for finite-dimensional spaces.

Proposition 3.11. Let E and F be Banach spaces. Then the map Jα : E′⊗̂αF →
B(E,F ) maps into Bα(E,F ), and the arising inclusion Nα(E,F ) → Bα(E,F ) is
norm-decreasing; that is, ‖T ‖Nα ≥ ‖T ‖α for each T ∈ Nα(E,F ).

Proof. This follows from the finite-generation of α-integral operators. There is a
short discussion in [Rya02, Section 8.1]. �

To say more on the relationship between Nα and Bα we need to study ideas
which have their roots in the initial study of tensor norms in [Grot53] and [Sch50].

Definition 3.12. Let E be a Banach space. Then E has the approximation property
if the map Jπ : E′⊗̂E → N (E) is injective.

There are numerous equivalent definitions of the approximation property: see
[Rya02, Proposition 4.6] or [DU77, Section 3, Chapter VIII] for example. We
can show that for 1 ≤ p ≤ ∞ and any measure μ, Lp(μ) and Lp(μ)′ have the
approximation property (indeed, they have the metric approximation property as
defined below). Furthermore, C(X) and C(X)′ have the (metric) approximation
property for each compact space X . There are spaces without the approximation
property (the first was constructed in [Enf73]). In fact, for p �= 2, lp contains
subspaces without the approximation property (see [Sza78]), and B(l2) does not
have the approximation property (see [Sza81]).
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Proposition 3.13. Let E and F be Banach spaces, and let T ∈ B(E,F ). Suppose
that E′ has the approximation property and T ′ ∈ N (F ′, E′). Then T ∈ N (E,F ).

Proof. This is [Rya02, Proposition 4.10]. �

We wish to give a more concrete description of I(E,F ).

Theorem 3.14. Let E and F be Banach spaces, and let T ∈ B(E,F ). Then the
following are equivalent:

(1) T ∈ I(E,F ).
(2) T ′ ∈ I(F ′, E′).
(3) There exists a finite measure space (Ω,Σ, ν) and operators S : E → L∞(ν)

and R : L1(ν) → F ′′ such that if I : L∞(ν) → L1(ν) is the formal identity
map, then RIS = κFT :

E
T ��

S

��

F
κF �� F ′′

L∞(ν) I �� L1(ν).

R

��

Furthermore, ‖T ‖π = ‖T ′‖π = inf ν(Ω)‖S‖‖R‖ where the infimum is taken
over all factorisations as above.

Proof. See [Rya02, Theorem 3.10]. �

Corollary 3.15. Let E be a Banach space, and let T ∈ I(E). Then T is weakly-
compact and completely continuous (that is, T takes weakly-convergent sequences
to norm-convergent sequences). Thus the composition of two integral operators is
compact, and so I(E) �= B(E) when E is infinite-dimensional.

Proof. This follows directly from the factorisation given in the above theorem. For
further details, see [Rya02, Proposition 3.20]. �

Note that for an infinite-dimensional Banach space, we have

(E′⊗̂E)′ = B(E′), (E′⊗̌E)′ = I(E′),

so we immediately see that π and ε are not equivalent norms on E′⊗E. A construc-
tion by Pisier, [Pis83] (or [Pis86] for a more readable account) gives a separable
Banach space P such that P ⊗̌P = P ⊗̂P . The space P does not have the approxi-
mation property, but it does satisfy N (P ) = A(P ). In particular, the integral norm
on I(P ′) is equivalent to the operator norm, as N (P )′ is isometrically a subspace
of B(P ′), namely (kerJπ)◦ = {T ∈ B(P ′) : 〈T, u〉 = 0 (Jπ(u) = 0)}.

Following the theme of factorising maps, we have the following.

Definition 3.16. Let E be a Banach space such that for each T ∈ B(L1([0, 1]), E),
there exists S ∈ B(L1([0, 1]), l1) and R ∈ B(l1, E) with R ◦ S = T . Then E has the
Radon–Nikodým property.

There are many equivalent formulations of the Radon–Nikodým property, see,
for example, [DU77, Chapter VII, Section 6]. In particular, we have the following.
Recall that a Banach space F is separable if F contains a dense, countable subset.

Theorem 3.17. Let E be a Banach space. Then the following are equivalent:
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(1) E′ has the Radon–Nikodým property.
(2) Every separable subspace of E has a separable dual.

In particular, l∞(I) does not have the Radon–Nikodým property for any infinite set
I. However, all separable dual spaces do have the Radon–Nikodým property.

Let E be a reflexive Banach space. Then E has the Radon–Nikodým property.

Proof. See [DU77, Chapter VII, Section 6]. �

To us, the Radon–Nikodým property is important because of the following.

Theorem 3.18. Let E be a Banach space such that E′ has the Radon–Nikodým
property. Then, for each Banach space F , N (F,E′) = I(F,E′) with the same
norm.

Proof. See [Rya02, Section 5.3]. �

Corollary 3.19. Let E and F be Banach spaces, with E′ or F ′ having the Radon–
Nikodým property. Then (F ⊗̌E)′ = I(F,E′) = N (F,E′). If E′ or F ′ have the
approximation property, then (F ⊗̌E)′ = F ′⊗̂E′.

In particular, if E is a Banach space with E′ or E′′ having the Radon–Nikodým
property, then A(E)′ = (E′⊗̌E)′ = N (E′).

Proof. For all Banach spaces E and F , we have (F ⊗̌E)′ = I(F,E′), so that
(F ⊗̌E)′ = N (F,E′) when E′ has the Radon–Nikodým property. As F ⊗̌E and
E⊗̌F are isometrically isomorphic, we also have the result when F ′ has the Radon–
Nikodým property. �

We hence see that, if E′ has the Radon–Nikodým property and the approxi-
mation property, then A(E)′ = E′′⊗̂E′. Thus A(E)′′ = (E′′⊗̂E′)′ = B(E′′). If
T ∈ A(E), and Φ ⊗ μ ∈ E′′⊗̂E′, we have

〈Φ ⊗ μ, T 〉 = 〈Φ, T ′(μ)〉 = 〈T ′′(Φ), μ〉 = 〈κA(E)(T ),Φ ⊗ μ〉.
We hence see that κA(E)(T ) = T ′′ for each T ∈ A(E). In particular, if E is
reflexive and has the approximation property (so that E′ has the Radon–Nikodým
property and the approximation property) then A(E)′′ = B(E) and κA(E) is just
the inclusion map A(E) → B(E). We shall shortly study these ideas in far greater
detail.

Definition 3.20. Let E be a Banach space. Then E has the bounded approximation
property if, for some M > 0, for each compact set K ⊆ E and each ε > 0, there
is T ∈ F(E) with ‖T ‖ ≤ M and ‖T (x) − x‖ < ε for each x ∈ K. If we can take
M = 1, then E has the metric approximation property.

There are Banach spaces with the approximation property, but without the
bounded approximation property (see [FJ73]). The following shows that the bound-
ed approximation property is really a statement about nuclear and integral opera-
tors.

Theorem 3.21. Let E be a Banach space. Then the following are equivalent:

(1) E has the bounded approximation property with bound M .
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(2) For each Banach space F , the map

E⊗̂F κE⊗κF�� E′′⊗̂F ′′ Jπ �� N (E′, F ′′) �� I(E′, F ′′) = A(E,F ′)′

is bounded below by M−1.
(3) The map

E⊗̂E′κE⊗IdE′�� E′′⊗̂F ′ Jπ �� N (E′) �� I(E′) = A(E)′

is bounded below by M−1.

Proof. This follows from the proof of [Rya02, Theorem 4.14]. �

Corollary 3.22. Let E be a Banach space such that E′ has the bounded approxi-
mation property. Then E has the bounded approximation property with a smaller
(or equal) bound.

Proof. Compare with [Rya02, Corollary 4.15], or see [DF93, Section 16.3]. �

Proposition 3.23. Let E be a Banach space such that E′ has the bounded approx-
imation property with bound M . Then, for every Banach space F , the map

E′⊗̂F
IdE′⊗κF�� E′⊗̂F ′′ Jπ �� N (E,F ′′) �� I(E,F ′′) = (E⊗̌F ′)′.

is bounded below by M−1.

Proof. This follows as above. �

Corollary 3.24. Let E and F be Banach spaces such that at least one of E′ or
F has the bounded approximation property. Then N (E,F ) = E′⊗̂F is a closed
subspace of I(E,F ).

Proof. If E′ has the bounded approximation property, then E′⊗̂F = N (E,F ),
and, by the above proposition, the map E′⊗̂F → I(E′, F ′′) is bounded below.
We can then show that this map takes values in I(E′, F ) and that I(E′, F ) is a
closed subspace of I(E′, F ′′). The argument in the case when F has the bounded
approximation property is similar. �

Proposition 3.25. Let E be a Banach space which has the approximation property,
does not have the bounded approximation property, and be such that E′ is separable.
Then there exists T ∈ B(E) \ N (E) with T ′ ∈ N (E′).

Proof. This is [FJ73, Proposition 3]. �

The metric approximation property also has links to accessibility of tensor norms.

Proposition 3.26. Let α be a tensor norm. Then α is accessible if and only if
(α′)s = α on E⊗F whenever at least one of E and F has the metric approximation
property.

If E or F has only the bounded approximation property, then (α′)s and α are
merely equivalent on E ⊗ F for an accessible tensor norm α.

Proof. See [Rya02, Section 7.1]. The statement about the bounded approximation
property is an obvious generalisation. �
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This allows us to extend Corollary 3.24. First note that this corollary actually
states that the π-nuclear operators form a closed subspace of the π-integral oper-
ators, at least under some conditions. The property of π which allows this is the
fact that π is accessible.

Proposition 3.27. Let α be an accessible tensor norm. Then Nα(E,F ) is a sub-
space of Bα(E,F ) whenever E′ or F has the metric approximation property.

Proof. It is enough to show that for T ∈ F(E,F ) we have α(T,E′⊗F ) = ‖T ‖α. We
have ‖T ‖α = ‖T ′′‖α, where T ′′ ∈ Bα(E′′, F ′′) = (E′′⊗̂α′F ′)′. Thus the embedding
E′ ⊗ F = F(E,F ) → Bα(E,F ) induces the same norm on E′ ⊗ F as does the
embedding E′ ⊗ F → (E′′⊗̂α′F ′)′. This, however, is precisely the definition of the
norm (α′)s. We are hence done, as we know that (α′)s = α on E′ ⊗ F , given that
α is accessible and E′ or F has the metric approximation property. �
Proposition 3.28. Let α be a totally accessible tensor norm. Then Nα(E,F ) is a
subspace of Bα(E,F ) for any Banach spaces E and F .

Proof. This is exactly the same as the above proof. �
Proposition 3.29. Let α be an accessible tensor norm. Then Nα(E,F ) is a closed
(but not necessarily isometric) subspace of Bα(E,F ) whenever E′ or F has the
bounded approximation property.

Proof. This follows by using Proposition 3.26. �
We now give another application of these sorts of argument.

Theorem 3.30. Let E be a reflexive Banach space, or let E = F ′ for some Banach
space F such that F ′ is separable. If E has the approximation property, then E has
the metric approximation property.

Proof. See [Rya02, Corollary 5.51] for the details of the following sketch. Suppose
that E = F ′, so that E has the Radon–Nikodým property by Theorem 3.17. By
Theorem 3.21, and using the fact that E has the approximation property, we wish
to prove that the map N (F ′) → I(F ′′) is an isometry onto its range. However, we
know that N (F ′) = I(F ′) and that the natural map I(F ′) → I(F ′′) is an isometry,
so we are done. The argument when E is reflexive is similar. �

Finally, we collect some miscellaneous results.

Theorem 3.31. Let E,F and G be Banach spaces. Then we have:
(1) If T ∈ I(E,F ) and S ∈ W(F,G), then ST ∈ N (E,G).
(2) If S ∈ W(E,F ) and T ∈ I(F,G), then κGTS ∈ N (E,G′′). Furthermore, if

E′ has the approximation property, then TS ∈ N (E,G).

Proof. For (1), from Theorem 3.9, we see that as S is weakly-compact, we can
find a reflexive Banach space D and S1 ∈ B(F,D), S2 ∈ B(D,G) so that S = S2S1.
Then S1T ∈ I(E,D), and as D is reflexive, I(E,D) = N (E,D). Thus S1T is
nuclear, so S2S1T = ST is also nuclear.

For (2), again factor S through a reflexive space D as S = S2S1. Then S′
2T

′ ∈
I(G′, D′) = N (G′, D′), as D′ is reflexive, so that S′T ′ ∈ N (G′, E′). Then κGTS =
T ′′S′′κG is also nuclear. When E′ has the approximation property, by Proposi-
tion 3.13, we see that as S′T ′ is nuclear, so is TS. �
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Theorem 3.32 (Gröthendieck Composition Theorem). Let α be a tensor norm,
E,F and G be Banach spaces, T ∈ Bα′(E,F ) and S ∈ Bαt(F,G). If α is accessible
or F has the metric approximation property, then ST ∈ I(E,G) = Bπ(E,G) with
‖ST ‖π ≤ ‖S‖αt‖T ‖α′. If F has the bounded approximation property with bound
M , then ST ∈ I(E,G) = Bπ(E,G) with ‖ST ‖π ≤M‖S‖αt‖T ‖α′.

Proof. See [Rya02, Theorem 8.5] while considering Proposition 3.26. The comment
about the bounded approximation property is again an obvious generalisation. �

3.3. 2-nuclear operators. We shall now introduce the Chevet–Saphar tensor
norms (see [Rya02, Section 6.2]) which lead to the p-nuclear operators in the same
way in which the projective tensor norm leads to the nuclear operators.

Following the notation of [AS93], let E be a Banach space, let 1 ≤ p ≤ ∞, let
(xi) be a sequence in E, and define

Np(xi) =

⎧⎨⎩
(∑

i ‖xi‖p
)1/p

: 1 ≤ p <∞,

supi ‖xi‖ : p = ∞.

Similarly, define

εp(xi) =

⎧⎨⎩sup
{(∑

i |〈μ, xi〉|p
)1/p

: μ ∈ E′, ‖μ‖ ≤ 1
}

: 1 ≤ p <∞,

supi ‖xi‖ : p = ∞.

We may check that εp(xi) agrees with the norm of the operator T : lq → E defined
by T (a) =

∑∞
n=1 anxn for a = (an) ∈ lq, where p−1 + q−1 = 1. This follows as by

lp − lq duality,

‖T ‖ = sup

{∣∣∣∣ ∞∑
n=1

an〈μ, xn〉
∣∣∣∣ : μ ∈ E′, ‖μ‖ ≤ 1, a ∈ lq, ‖a‖ ≤ 1

}
= εp(xi).

The Chevet–Saphar tensor norms are defined, for Banach spaces E and F , 1 ≤ p ≤
∞, and u ∈ E ⊗ F , as

dp(u) = inf

{
εq(xi)Np(yi) : u =

n∑
i=1

xi ⊗ yi

}
,

gp(u) = inf

{
Np(xi)εq(yi) : u =

n∑
i=1

xi ⊗ yi

}
.

Clearly we have that dt
p = gp. That these are tensor norms follows from a simple

calculation; see [Rya02, Proposition 6.6].
We shall be mainly interested in the tensor norms d2 and g2, as these have much

nicer properties than for other values of p. We say that an operator T : E → F
is p-summing if there exists some constant C > 0 such that for all finite sequences
(xi)n

i=1 in E, we have that Np(T (xi)) ≤ Cεp(xi), that is,
n∑

i=1

‖T (xi)‖p ≤ Cp sup
μ∈E′,‖μ‖≤1

n∑
i=1

|〈μ, xi〉|p.

The least such C > 0 is the p-summing norm of T , πp(T ). We denote the class
of p-summing operators from E to F as Pp(E,F ), and (Pp(E,F ), πp) is a Banach



Arens-regularity of algebras arising from tensor norms 231

space (see [Rya02, Section 6.3]). Indeed, we have that (E⊗̂dpF )′ = Pq(E,F ′), so
that the d′p-integral operators are precisely the p-summing operators.

We recall that we have (E⊗̂αF )′ = Bα′(E,F ′) and hence that (F ⊗̂αtE)′ =
B(αt)′(F,E′). By definition, E⊗̂αF and F ⊗̂αtE are isometrically isomorphic, so
that Bα′(E,F ′) and B(αt)′(F,E′) are also isometrically isomorphic. We may check
that this isomorphism, φ : Bα′(E,F ′) → B(αt)′(F,E′), satisfies

φ(T ) = T ′ ◦ κF , φ−1(S) = S′ ◦ κE

(
T ∈ Bα′(E,F ′), S ∈ B(α′)t(E,F ′)

)
.

We hence see that T ∈ Bg′
p
(E,F ′) = (E⊗̂gpF )′ if and only if T ′κF ∈ Pq(F,E′),

which we write, slightly inaccurately, as (E⊗̂gpF )′ = Pq(F,E′).

Theorem 3.33 (Pietsch Domination Theorem). Let E and F be Banach spaces,
and let T ∈ B(E,F ). The following are equivalent:

(1) T is 2-summing.
(2) There exists a compact Hausdorff space K, a regular Borel probability mea-

sure ν on K, and operators U : E → C(K) and V : L2(K, ν) → F such that
the following diagram commutes:

E
T ��

V

��

F

C(K)
J2 �� L2(K, ν).

U

��

Here J2 : C(K) → L2(K, ν) is the inclusion map.
Furthermore, in this case, the infimum of ‖U‖‖V ‖ taken over all such factorizations
is π2(T ), and this infimum is obtained. We may replace C(K) by L∞(ν) if we so
wish.

Proof. See [Rya02, Theorem 6.19] and [Rya02, Proposition 6.23]. �

There is an analogous statement for p-summing operators, but here we have to
replace mapping from Lp(ν) to F by mapping from Lp(ν) to l∞(I) for some index
set I such that F embeds isometrically into l∞(I) (see [Rya02, Theorem 6.19]). It
is for this reason that we shall concentrate on 2-summing operators.

As a corollary, we immediately see that a p-summing operator is both weakly-
compact and completely-continuous, and hence that the identity operator on a
infinite-dimensional Banach space is never p-summing. For further details on p-
summing operators and their many uses in Banach space theory, see [DJT95].

The p-nuclear operators are then precisely the gp-nuclear operators, namely the
operators in the range of the quotient map

E′⊗̂gpF → A(E,F ).

We denote these by Np(E,F ). If we replace gp by dp, then we obtain the right p-
nuclear operators, which we shall (in a nonstandard way) denote by N r

p (E,F ). We
hence see that Np(E,F )′ is isometrically a subspace of Pq(F,E′), while N r

p (E,F )′

is isometrically a subspace of Pq(E,F ′). Furthermore, we see that when E has the
approximation property, Np(E) is equal to E′⊗̂gpE, and so Np(E)′ = Pq(E,E′′),
while N r

p (E)′ = Pq(E′), which is perhaps more natural.
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As d1 = g1 = π, we see that the (right) 1-nuclear operators are just the nuclear
operators. However, for other values of p, the p-nuclear operators (as we might
expect) have properties which differ from those of the nuclear (or approximable)
operators. For example, by [AS93, Corollary 3.2], when 1 < p ≤ ∞, the space
E⊗̂gpF is reflexive when E and F are. We hence see that Np(E) is reflexive when
E is, and 1 < p ≤ ∞. In particular, Np(E) is trivially Arens-regular in this case. It
is not known if N (E) or A(E) can be reflexive when E is infinite-dimensional, but
this is known to be impossible if E has the approximation property (see [Rya02,
Theorem 4.21]).

Proposition 3.34. The tensor norms dp and gp are accessible for every p. Fur-
thermore, d2 and g2 are totally accessible, and d′2 = g2 so that g′2 = d2.

Proof. See [Rya02, Proposition 7.21] and [Rya02, Corollary 7.16]. �

We shall also be interested in gp (and dp)-integral operators, that is, the dual
of E⊗̂g′

p
F . There are precisely the p-integral operators, defined as Ip(E,F ′) =

(E⊗̂g′
p
F )′ = Bgp(E,F ′) (we get the dp-integral operators by using the fact that dp =

gt
p). As for integral operators and p-summing operators, we have a factorization

scheme. Indeed, we simply replace the space L1(ν) occurring in Theorem 3.14 by
Lp(ν). For further details, see [Rya02, Theorem 7.22]. As any closed subspace of
a Hilbert space is 1-complemented, we see that the 2-integral operators are exactly
the 2-summing operators. This is not true for other values of p, unless the Banach
space in question has special properties.

Proposition 3.35. The composition of any two 2-summing operators is nuclear.

Proof. This is, for example, [Rya02, Corollary 8.6], but we sketch the proof here.
Let T ∈ P2(E,F ) = Bg2(E,F ) and S ∈ P2(F,G) = Bg2(F,G), so that by the
Gröthendieck Composition Theorem, as dt

2 = g2 = d′2, we see that S ◦ T is an
integral operator. Furthermore, we have a factorization:

E
T ��

U

��

F
S ��

W

���
��

��
��

� G

C(K)
JK
2 �� L2(K, ν)

V

�����������
C(L)

JL
2 �� L2(L, υ).

X

��

As JL
2 is a 2-summing operator, we see that JL

2 ◦W ◦ T is integral. Then X , as it
maps from a Hilbert space, is weakly-compact, so S ◦T = X ◦JL

2 ◦W ◦T is nuclear,
by Theorem 3.31. �

We finish by investigating the effect of the Radon–Nikodým property on 2-nuclear
operators, which was studied in [AS93].

Proposition 3.36. Let E and F be Banach spaces such that E′ has the Radon–
Nikodým property. Then N2(E,F ) = P2(E,F ) = Bg2(E,F ) and N r

2 (F,E′) =
Bd2(F,E′).

Proof. This follows from [AS93, Proposition 1.1], as in the notation of that paper,
for 1 ≤ p <∞, Np(E,F ) = SIp(E,F ), and from Theorem 3.33, we see immediately
that N2(E,F ) = P2(E,F ).
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As d2 is totally accessible, by Proposition 3.28, N r
2 (F,E′) is a closed subspace of

Bd2(F,E′). Let T ∈ Bd2(F,E′), so that T ′κE ∈ P2(E,F ′) = N2(E,F ′), and hence
κ′ET

′′ ∈ N r
2 (F ′′, E′). Thus T = κ′EκE′T = κ′ET

′′κF ∈ N r
2 (F,E′), as required. �

4. Arens products on operator ideals

We now make a first study of the Arens products on algebras of nuclear operators,
and more generally on operator ideals.

Let U be an operator ideal. The Arens regularity of U(E) is closely related to
the topology of E, a fact first shown (in less generality) in [You76, Theorem 3]. See
also [Dal00, Section 2.6].

Theorem 4.1. Let U be an operator ideal, and let E be a Banach space such that
U(E) is Arens regular. Then E is reflexive.

Proof. This follows from the proof of [Dal00, Theorem 2.6.23]. �

The converse is not true in full generality, for there exist reflexive Banach spaces
E such that B(E) is not Arens regular (see [You76, Corollary 1]). However, for
A(E) and K(E), we do have a converse, again first shown in [You76]. This will be
proved below, in Theorem 5.39.

We now combine the Arens representations (recall the definitions from Sec-
tion 2.1) with our knowledge of tensor norms. For most of the rest of this paper,
we shall study the algebras Nα(E) for various E and α. We shall now show how
to use the maps φ1 and θ1 defined in Section 2.1 to get an interesting picture of
Nα(E)′′, at least for “well-behaved” α and E.

We start by defining the map φ1 in a slightly more subtle manner. By the
tensorial property, φ1 is a map F ′′⊗F ′ → A′. We can use this to define a seminorm
on F ′′ ⊗ F ′ by

‖u‖0 = ‖φ1(u)‖ = sup{|〈φ1(u), a〉| : a ∈ A[1]} (u ∈ F ′′ ⊗ F ′).

Definition 4.2. Let A be a Banach algebra and F be a Banach left A-module.
Suppose that, for each u =

∑n
i=1 Λi ⊗ μi ∈ F ′′ ⊗ F ′, we have

sup

{∣∣∣∣ n∑
i=1

〈a · Λi, μi〉
∣∣∣∣ : a ∈ A[1]

}
≥ sup

{∥∥∥∥ n∑
i=1

〈Λi, λ〉μi

∥∥∥∥ : λ ∈ F ′
[1]

}
= ε(u, F ′′ ⊗ F ′).

Then we say that (A, F ) is tensorial.

The reason we make this definition is the following. Let (A, F ) be tensorial.
Then ‖ · ‖0 is a norm on F ′′⊗F ′, and clearly ε(u, F ′′⊗F ′) ≤ ‖u‖0 ≤ π(u, F ′′⊗F ′)
for each u ∈ F ′′ ⊗ F ′. Thus ‖ · ‖0 is a reasonable crossnorm on F ′′ ⊗ F ′.

Now, we might wonder if ‖ · ‖0 is a tensor norm. Of course, we have not defined
‖ · ‖0 on all spaces; this is a minor issue, as there are ways to extend to all pairs of
Banach spaces, just by using the mapping property. However, even then we might
not get a tensor norm, as we need ‖ · ‖0 to be finitely generated. However, for the
Banach algebras which we will study, we can say more.

Proposition 4.3. Let E be a Banach space, let α be a tensor norm, and let A =
Nα(E). Then (A, E) is tensorial. When α′ is totally accessible, or α is accessible
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and E′ has the metric approximation property, ‖ · ‖0 is actually the nuclear norm
‖·‖Nα′ . When α is accessible and E′ has the bounded approximation property, ‖·‖0

is equivalent to ‖ · ‖Nα′ .

Proof. As A = Nα(E) is a quotient of E′⊗̂αE, we see that A′ is, isometrically, a
subspace of Bα′(E′), namely

A′ = (kerJα)◦ = {T ∈ Bα′(E′) : 〈T, v〉 = 0 (v ∈ E′⊗̂αE, Jα(v) = 0)}.
By Proposition 3.11, for u ∈ E′′ ⊗ E′, we have

‖u‖0 = ‖u‖α′ ≤ ‖u‖Nα′ ≤ α′(u,E′′ ⊗ E′),

where we identify u with the operator in F(E′) it induces. Let u =
∑n

i=1 Λi ⊗ μi,
and let x ∈ E and μ ∈ E′. Then we have∣∣∣∣∣

n∑
i=1

〈Λi, μ〉〈μi, x〉
∣∣∣∣∣ = |〈u, μ⊗ x〉| ≤ ‖u‖0‖μ⊗ x‖Nα = ‖u‖0‖μ‖‖x‖,

so that ‖u‖0 ≥ ε(u,E′ ⊗ E), and thus we see that (A, E) is tensorial.
When α′ is totally accessible or α is accessible and E′ has the metric approxi-

mation property, by Propositions 3.27 and 3.28, we immediately have

‖u‖0 = ‖u‖α′ = ‖u‖Nα′ (u ∈ E′′ ⊗ E′),

so that ‖ · ‖0 = ‖ · ‖Nα′ . Similarly, Proposition 3.29 completes the proof. �

Let α be a tensor norm and E be a Banach such that α′ is totally accessible, or
E′ has the metric approximation property (we can generalise this to the bounded
approximation property in a simple way). Then ‖ · ‖0 = ‖ · ‖Nα′ , so that, by
continuity, φ1 extends to a map E′′⊗̂α′E′ → Nα(E)′, and we see that φ1 agrees
with the map Jα′ , so that φ1 is a quotient operator. Thus, in particular, θ1 :
Nα(E)′′ → Nα′(E′)′ = (kerJα′)◦ ⊆ Bα(E′′) is an isometry.

When α is a general tensor norm and E is a general Banach space, we only have
that ‖ · ‖0 ≤ ‖ · ‖Nα′ . However, we can still extend φ1 by continuity to a map
φ1 : E′′⊗̂α′E′ → Nα(E)′, but now φ1 is only norm-decreasing. We can check that
φ1 still agrees with the map Jα′ ; that is, for u ∈ E′′⊗̂α′E′, we have that φ1(u) and
Jα′(u) are the same operator in Bα′(E′), but the natural norms associated with
these operators are different. Thus we also still have θ1 : Nα(E)′′ → (kerJα′)◦ ⊆
Bα(E′′), but again, θ1 is no longer an isometry, merely norm-decreasing.

Example 4.4. Let E be a Banach space such that E′ has the bounded ap-
proximation property. Then φ1 : E′′⊗̂E′ → A(E)′ is an isomorphism onto its
range (if E′ has the metric approximation property, then φ1 is even an isome-
try). Thus θ1 : A(E)′′ → (kerJπ)◦ = {0}◦ = B(E′′) is surjective. As A(E)
clearly has weakly-compact action on E, we see that θ1 : (A(E)′′,�) → B(E′′) and
θ1 : (A(E)′′,♦) → (B(E′′),Q) are homomorphisms. In particular, let Ξ ∈ A(E)′′

be such that θ1(Ξ) = IdE′′ . Then we have

θ1(Φ�Ξ) = θ1(Φ), θ1(Ξ♦Φ) = Q(IdE′′) ◦ θ1(Φ) = θ1(Φ) (Φ ∈ A(E)′′).

In fact, using Proposition 5.3, we can show that Ξ is a mixed identity for A(E)′′.
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5. Topological centres of biduals of operator ideals

We shall continue the study of topological centres of biduals of operators ideals
which, in the case of the approximable operators, was started in [DL04]. This work
will also allow us to say when some operator ideals are Arens regular. We note
that some of the following work is similar to work done in [Gro87], where Grosser
studies multipliers of algebras of approximable operators. As Grosser points out
in this paper, many of these ideas and results have entered folklore (for example,
the maps η and Q). Grosser does not study topological centres, but presumably
he could have drawn the conclusions which are found in [DL04], for example. We
will instead develop the theory for general tensor norms, and study more general
Banach spaces than those studied in [Gro87] or [DL04].

Let E be a reflexive Banach space with the metric approximation property (this
is not much of a restriction, by Theorem 3.30). We shall see later, for example in
Corollary 5.27 (compare with Example 4.4 above), that A(E)′′ = B(E) both as
a Banach space and algebraically, so that A(E) is Arens regular, and A(E)′′ has
a mixed identity, so that A(E) has a bounded approximate identity (see Proposi-
tion 2.1). Actually, we can take a more direct (and less circular) route. In [GW93],
the question of when A(E) has a bounded approximate identity is investigated. It is
worth noting that a lot of parallel development has occurred in this area; [GW93] is
the best summary of available results, but many results were first proved elsewhere,
and we urge the interested reader to consult this paper for further details.

Theorem 5.1. Let E be a Banach space. Then the following are equivalent:

(1) E′ has the bounded approximation property.
(2) A(E) has a bounded approximate identity.
(3) A(E′) has a bounded left approximate identity.
(4) A(E)′′ has a mixed identity.

Proof. The first three equivalences follow from [GW93, Theorem 3.3]. The equiv-
alence of (4) and (2) follow by standard results (see Proposition 2.1). Alternatively,
these results follow from Example 4.4 and standard properties of nuclear and inte-
gral operators. �

We will now turn our attention to ideals of α-nuclear operators for tensor norms
α. Eventually we will come a full circle and use the above theorem. Our basic tool
will be the Gröthendieck Composition theorem (Theorem 3.32), which will allow
us, under many circumstances, to study integral operators (which are the dual
of approximable operators, which hints as to why the above theorem will become
useful).

Definition 5.2. Let E be a Banach space and α be a tensor norm. We say that
(E,α) is a Gröthendieck pair if α is accessible or E has the bounded approximation
property. In this case, K(E,α) is the constant arising from the Gröthendieck
Composition theorem, so that K(E,α) = 1 when α is accessible, and otherwise E
has the bounded approximation property with bounded K(E,α).

Let E be a Banach space and α be a tensor norm. As in Proposition 4.3,
Nα(E)′ is a subspace of Bα′(E′), and we can view φ1 : E′′⊗̂α′E′ → Nα(E)′ as a
norm-decreasing map, which agrees, algebraically, with Jα′ .
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Proposition 5.3. Let E be a Banach space and α be a tensor norm. Let A =
Nα(E), the α-nuclear operators on E, so that A′ is a subspace of Bα′(E′). Then
we have

S ·R = R′ ◦ S R · S = S ◦R′ (R ∈ A, S ∈ A′),

Φ · S = η(θ1(Φ) ◦ S′) S · Φ = η(θ1(Φ)) ◦ S (S ∈ A′,Φ ∈ A′′).

Furthermore, we have that θ1 : A′′ → Bα(E′′) is a norm-decreasing map.
When (E′, α) is a Gröthendieck pair, for S ∈ A′ and Φ ∈ A′′, we also have

Φ · S ∈ I(E′), ‖Φ · S‖π ≤ K(E′, α)‖S‖‖Φ‖.
Similarly, when (E′′, α) is a Gröthendieck pair, we have

S · Φ ∈ I(E′), ‖S · Φ‖π ≤ K(E′′, α)‖S‖‖Φ‖.
Proof. The first part is a simple calculation. For Φ ∈ A′′, S ∈ A′ and R = μ⊗x ∈
A, we have

〈Φ · S,R〉 = 〈Φ, φ1(R′ ◦ S)〉 = 〈Φ, φ1(S′(κE(x)) ⊗ μ)〉
= 〈θ1(Φ)(S′(κE(x))), μ〉 = 〈η(θ1(Φ) ◦ S′), R〉,

〈S · Φ, R〉 = 〈Φ, φ1(S ◦R′)〉 = 〈Φ, φ1(κE(x) ⊗ S(μ)〉
= 〈θ1(Φ)(κE(x)), S(μ)〉 = 〈η(θ1(Φ)) ◦ S,R〉.

Thus we get the second part by linearity and continuity. That θ1 : A′′ → Bα(E′′)
is norm-decreasing follows by the discussion after Proposition 4.3.

For Φ ∈ A′′, we have that θ1(Φ)′ ∈ Bαt(E′′′) and so

η(θ1(Φ)) = κ′E ◦ θ1(Φ)′ ◦ κE′ ∈ Bαt(E′)

with ‖η(θ1(Φ))‖αt ≤ ‖θ1(Φ)‖α. Then the Gröthendieck Composition theorem says
that, when (E′, α) is a Gröthendieck pair, for S ∈ A′ and Φ ∈ A′′, we have
S · Φ = η(θ1(Φ)) ◦ S ∈ I(E′), and

‖S · Φ‖π ≤ K(E′, α)‖S‖α′‖η(θ1(Φ))‖αt ≤ K(E′, α)‖S‖α′‖Φ‖.
Similarly, when (E′′, α) is a Gröthendieck pair, θ1(Φ) ∈ Bα(E′′) and S′ ∈

Bα̌(E′′), so that θ1(Φ)◦S′ ∈ I(E′′) and ‖θ1(Φ)◦S′‖π ≤ K(E′′, α)‖Φ‖‖S‖α′. Hence

Φ · S = κ′E ◦ S′′ ◦ θ1(Φ)′ ◦ κE′ ∈ I(E′),

and ‖Φ.S‖π ≤ K(E′′, α)‖S‖α′‖Φ‖. �

For a tensor norm α, we turn E′′′⊗̂αE
′′ into a Banach algebra in the obvious

way, by extending the multiplication from F(E′′). Thus, for u, v ∈ E′′′⊗̂αE
′′, we

have
u ◦ v = (IdE′′′ ⊗ Jα(u))(v).

In particular, Jα : E′′′⊗̂E′′ → Nα(E′′) becomes a homomorphism. We can also
define � as a Banach algebra multiplication on E′′′⊗̂αE

′′ by setting

u � v = (IdE′′′ ⊗Q(Jα(u)))(v) (u, v ∈ E′′′⊗̂αE
′′).

Theorem 5.4. Let E be a Banach space, α be a tensor norm and A = Nα(E).
There exist norm-decreasing homomorphisms

ψ1 : (E′′′⊗̂αE
′′, ◦) → (A′′,�), ψ2 : (E′′′⊗̂αE

′′, �) → (A′′,♦),
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such that θ1 ◦ψ1 = Jα and θ1 ◦ψ2 = Q◦Jα. For i = 1, 2 and T ∈ A, if u ∈ E′⊗̂αE
is such that T = Jα(u), then we have ψi(u′′) = ψi((κE′ ⊗ κE)(u)) = κA(T ).

Proof. For T ∈ F(E′′) and S ∈ A′ ⊆ Bα′(E′), we have that η(T ◦ S′), η(S′ ◦ T ) ∈
F(E′). Thus we can define

〈ψ1(T ), S〉 = tr(η(T ◦S′)), 〈ψ2(T ), S〉 = tr(η(S′ ◦T )) (T ∈ F(E′′), S ∈ A′).

We then have, recalling that F(E′′) = E′′′ ⊗ E′′, and that η(S′ ◦ T ) = η(T ) ◦ S,

|〈ψ1(T ), S〉| = | tr(κ′E ◦ S′′ ◦ T ′ ◦ κE′)| = | tr(κE′ ◦ κ′E ◦ S′′ ◦ T ′)|
= |〈κE′ ◦ κ′E ◦ S′′, T 〉| ≤ α(T,E′′′ ⊗ E′′)‖κE′ ◦ κ′E ◦ S′′‖α′

≤ α(T,E′′′ ⊗ E′′)‖S′′‖α′ = α(T,E′′′ ⊗ E′′)‖S‖α′ ,

|〈ψ2(T ), S〉| = | tr(η(T ) ◦ S)| = | tr(κ′E ◦ T ′ ◦ κE′ ◦ S)|
= | tr(κE′ ◦ S ◦ κ′E ◦ T ′)| ≤ α(T,E′′′ ⊗ E′′)‖κE′ ◦ S ◦ κ′E‖α′

≤ α(T,E′′′ ⊗ E′′)‖S‖α′.

Consequently, for i = 1, 2, ‖ψi(T )‖ ≤ α(T ), so that ψi extends by continuity to a
norm-decreasing map E′′′⊗̂αE

′′ → A′′.
For Λ ∈ E′′, μ ∈ E′ and T ∈ Nα(E′′), we have

〈θ1(ψ1(T ))(Λ), μ〉 = 〈ψ1(T ), φ1(Λ ⊗ μ)〉 = tr(η(T ◦ (κE′(μ) ⊗ Λ))) = 〈T (Λ), μ〉,
〈θ1(ψ2(T ))(Λ), μ〉 = 〈ψ2(T ), φ1(Λ ⊗ μ)〉 = tr(η(T ) ◦ φ1(Λ ⊗ μ)) = 〈Λ, η(T )(μ)〉.

Thus we see that θ1 ◦ ψ1 = Jα and θ1 ◦ ψ2 = Q ◦ Jα.
For T = μ⊗ x ∈ A and S ∈ A′, we have

〈ψ1(T ′′), S〉 = tr(η(T ′′ ◦ S′)) = tr(S ◦ T ′) = 〈S, T 〉 = 〈κA(T ), S〉,
〈ψ2(T ′′), S〉 = tr(η(T ′′) ◦ S) = tr(T ′ ◦ S) = tr(S ◦ T ′) = 〈κA(T ), S〉.

By linearity, for i = 1, 2, we have ψi(T ′′) = κA(T ) for T ∈ E′ ⊗ E. Thus, for
T = Jα(u) ∈ Nα(E), suppose that (un) is a sequence in E′⊗E with α(un−u) → 0.
For i = 1, 2, we have

ψi(u′′) = lim
n→∞ψi(u′′n) = lim

n→∞κA(un) = κA(T ),

as required.
We defer a calculation to Lemma 5.6 to follow. We claim that, for T1, T2 ∈ B(E′′)

and S ∈ B(E′), we have η(T1◦T2◦S′) = η(T1◦Q(T2◦S′)). Then, for T1, T2 ∈ F(E′′)
and S ∈ A′, we have

〈ψ1(T1)�ψ1(T2), S〉 = 〈ψ1(T1), η(θ1(ψ1(T2)) ◦ S′)〉 = 〈ψ1(T1), η(T2 ◦ S′)〉
= tr(η(T1 ◦ Q(T2 ◦ S′)) = tr(η(T1 ◦ T2 ◦ S′))

= 〈ψ1(T1 ◦ T2), S〉.

We see that ψ1 : (E′′′⊗̂αE
′′, ◦) → (A′′,�) is a homomorphism.

Similarly, for T1, T2 ∈ F(E′′) and S ∈ A′, we have

η(Q(T1) ◦ T2) = η(η(T1)′ ◦ T2) = η(T2) ◦ η(T1),
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so that

〈ψ2(T1)♦ψ2(T2), S〉 = 〈ψ2(T2), η(θ1(ψ2(T1))) ◦ S〉 = 〈ψ2(T2), η(T1) ◦ S〉
= tr(η(T2) ◦ η(T1) ◦ S) = tr(η(Q(T1) ◦ T2) ◦ S)

= tr(η(T1 � T2) ◦ S) = 〈ψ2(T1 � T2), S〉.
We see that ψ2 : (E′′′⊗̂E′′, �) → (A′′,♦) is a homomorphism. �

It would have been more natural to define the above maps from Nα(E′′). How-
ever, in general we cannot do this, as the next example shows.

Example 5.5. Let E be a Banach space with the approximation property such
that E′ does not have the approximation property. For example, let E = l2⊗̂l2, so
that E′ = B(l2) does not have the approximation property by [Sza81], but E does
by [Rya02, Section 4.3]. Then let A = N (E) = E′⊗̂E, so that A′ = B(E′). Thus,
if we had defined ψ1 : N (E′′) → B(E′)′, then we would have defined a trace on
N (E′), by

tr(T ) = tr(η(T ′)) = 〈ψ1(T ′), IdE′〉 (T ∈ N (E′)).
This is impossible, as N (E′) �= E′′⊗̂E′, so that N (E′)′ � B(E′′) and thus Id′

E′ =
IdE′′ �∈ N (E′)′.

Lemma 5.6. Let E be a Banach space. For T1, T2 ∈ B(E′′) and S ∈ B(E′), we
have η(T1 ◦ T2 ◦ S′) = η(T1 ◦ Q(T2 ◦ S′)).

Proof. For T1, T2 ∈ B(E′′), S ∈ B(E′), x ∈ E and μ ∈ E′, we have

〈(T2 ◦ S′ ◦ κE)(x), μ〉 = 〈κE′(μ), (T2 ◦ S′ ◦ κE)(x)〉 = 〈(κ′E ◦ S′′ ◦ T ′
2 ◦ κE′)(μ), x〉

= 〈κE(x), η(T2 ◦ S′)(μ)〉 = 〈(Q(T2 ◦ S′) ◦ κE)(x), μ〉.
We hence see that T2 ◦ S′ ◦ κE = Q(T2 ◦ S′) ◦ κE . Thus we have

η(T1 ◦ Q(T2 ◦ S′)) = κ′E ◦ Q(T2 ◦ S′)′ ◦ T ′
1 ◦ κE′ = (T2 ◦ S′ ◦ κE)′ ◦ T ′

1 ◦ κE′

= κ′E ◦ S′′ ◦ T ′
2 ◦ T ′

1 ◦ κE′ = η(T1 ◦ T2 ◦ S′),

as required. �

The maps ψ1 and ψ2 allow us to study the topological centres of Nα(E)′′, as
they give us a concrete way of getting at interesting subalgebras of Nα(E)′′.

Lemma 5.7. Let E be a Banach space and T ∈ B(E′′). Then the following are
equivalent:

(1) Q(T ) = T .
(2) T ∈ B(E′)a.
(3) Q(T ) ◦R = T ◦R for each R ∈ F(E′)a.

The following are also equivalent:
(a) T (E′′) ⊆ κE(E).
(b) Q(R) ◦ T = R ◦ T for each R ∈ B(E′′).
(c) Q(R) ◦ T = R ◦ T for each R ∈ F(E′′).

Proof. (1)⇔(2) is clear. Then, setting R = κE′(μ) ⊗ Λ ∈ F(E′)a, we have

Q(T ) ◦R = κE′(μ) ⊗Q(T )(Λ), T ◦R = κE′(μ) ⊗ T (Λ),

so that we clearly have (1)⇔(3).
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For the second equivalence, we clearly have (b)⇒(c). If (a) holds, then we can
find T0 ∈ B(E′′, E) with κE ◦ T0 = T . We can verify that κ′′E ◦ κE = κE′′ ◦ κE .
Then, for R ∈ B(E′′),

Q(R)T = κ′E′R′′κ′′EκET0 = κ′E′κE′′RκET0 = RκET0 = RT,

so that (a)⇒(b). Finally, if (c) holds but (a) does not, then for some Λ ∈ E′′,
M ∈ κE(E)◦ ⊆ E′′′, 〈M,T (Λ)〉 = 1, say. Let R = M ⊗ Λ ∈ F(E′′), so that
η(R) = Λ ⊗ κ′E(M) = 0, as M ∈ κE(E)◦. Thus Q(R) ◦ T = 0, but R(T (Λ)) =
Λ〈M,T (Λ)〉 = Λ �= 0. This contradiction shows that (c)⇒(a). �

For a Banach space E and a tensor norm α, define the following subsets of
Bα(E′′):

Z0
1(E,α) = {T ′ : T ∈ Bαt(E′), T ◦ κ′E ◦ S′′ = κ′E ◦ T ′′ ◦ S′′ (S ∈ Nα(E)′)},

Z0
2(E,α) = {T ∈ Bα(E′′) : T (E′′) ⊆ κE(E), T ◦ S′ ∈ W(E)aa (S ∈ Nα(E)′)}.

Proposition 5.8. Let E be a Banach space, let α be a tensor norm, and let A =
Nα(E). Then

θ1(Z
(1)
t (A′′)) ⊆ Z0

1 (E,α), θ1(Z
(2)
t (A′′)) ⊆ Z0

2 (E,α).

Furthermore,

ψ2(T ) ∈ Z
(1)
t (A′′) (T ∈ F(E′′) ∩ Z0

1 (E,α)),

ψ1(T ) ∈ Z
(2)
t (A′′) (T ∈ F(E′′) ∩ Z0

2 (E,α)).

Proof. By the homomorphism properties of θ1, we see that

θ1(Φ) ◦ θ1(Ψ) = Q(θ1(Φ)) ◦ θ1(Ψ) (Φ ∈ Z
(1)
t (A′′),Ψ ∈ A′′),

θ1(Ψ) ◦ θ1(Φ) = Q(θ1(Ψ)) ◦ θ1(Φ) (Φ ∈ Z
(2)
t (A′′),Ψ ∈ A′′).

Then, as θ1 ◦ ψ1 is the identity on F(E′′), setting Ψ = ψ1(R) for R ∈ F(E′′), we
have

θ1(Φ) ◦R = Q(θ1(Φ)) ◦R (Φ ∈ Z
(1)
t (A′′), R ∈ F(E′′)),

R ◦ θ1(Φ) = Q(R) ◦ θ1(Φ) (Φ ∈ Z
(2)
t (A′′), R ∈ F(E′′)).

So Lemma 5.7 immediately gives us

θ1(Z
(1)
t (A′′)) ⊆ B(E′)a, θ1(Z

(2)
t (A′′)) ⊆ {T ∈ B(E′′) : T (E′′) ⊆ κE(E)}.

Recall that θ1(A′′) ⊆ Bα(E′′), so that, for example, θ1(Z
(1)
t (A′′)) ⊆ Bαt(E′)a.

Furthermore, for R = M ⊗ Λ ∈ E′′′ ⊗ E′′, S ∈ A′ and Φ ∈ Z
(1)
t (A′′), let

T = η(θ1(Φ)) so that θ1(Φ) = T ′, so that

〈Φ�ψ1(R), S〉 = 〈Φ, η(R ◦ S′)〉 = 〈Φ,Λ ⊗ κ′E(S′′(M))〉 = 〈θ1(Φ)(Λ), κ′E(S′′(M))〉
= 〈(T ′′ ◦ κE′ ◦ κ′E ◦ S′′)(M),Λ〉 = 〈(κE′ ◦ T ◦ κ′E ◦ S′′)(M),Λ〉
= 〈Λ, (T ◦ κ′E ◦ S′′)(M)〉

〈Φ♦ψ1(R), S〉 = 〈ψ1(R), η(θ1(Φ)) ◦ S〉 = 〈ψ1(R), T ◦ S〉 = tr(η(R ◦ S′ ◦ T ′))

= tr
(
η
(
T ′′(S′′(M)) ⊗ Λ

))
= 〈Λ, (κ′E ◦ T ′′ ◦ S′′)(M)〉.

Thus we have T ◦ κ′E ◦ S′′ = κ′E ◦ T ′′ ◦ S′′, so that θ1(Z
(1)
t (A′′)) ⊆ Z0

1 (E,α).
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For S ∈ A′ and Φ ∈ Z
(2)
t (A′′), letting T ∈ B(E′′, E) be such that κE ◦T = θ1(Φ),

we have
η(θ1(Φ) ◦ S′) = κ′E ◦ S′′ ◦ (κE ◦ T )′ ◦ κE′ = κ′E ◦ S′′ ◦ T ′.

For R = Λ ⊗ μ ∈ E′′ ⊗ E′, we hence have

〈ψ1(R′)�Φ, S〉 = 〈ψ1(R′), η(θ1(Φ) ◦ S′)〉 = 〈ψ1(R′), κ′E ◦ S′′ ◦ T ′〉
= tr(κ′E ◦ S′′ ◦ T ′ ◦R) = 〈Λ, (κ′E ◦ S′′ ◦ T ′)(μ)〉

〈ψ1(R′)♦Φ, S〉 = 〈Φ, R ◦ S〉 = 〈Φ, S′(Λ) ⊗ μ〉 = 〈(κE ◦ T ◦ S′)(Λ), μ〉
= 〈μ, (T ◦ S′)(Λ)〉 = 〈(S′′ ◦ T ′)(μ),Λ〉.

Thus we have κE′ ◦κ′E ◦S′′ ◦T ′ = S′′ ◦T ′. By Lemma 5.9 below, this is if and only
if κE ◦ T ◦ S′ ∈ B(E′)a. By Lemma 5.10 below, we have

B(E′)a ∩ {T ∈ B(E′′) : T (E′′) ⊆ κE(E)} = W(E)aa,

which implies that θ1(Z
(2)
t (A′′)) ⊆ Z0

2 (E,α).
Suppose that R = Λ⊗μ ∈ F(E′) is such that R′ ∈ Z0

1 (E,α), so that for S ∈ A′,
we have R ◦ κ′E ◦ S′′ = κ′E ◦R′′ ◦ S′′; that is

(S′′′ ◦ κ′′E)(Λ) ⊗ μ = (S′′′ ◦ κE′′)(Λ) ⊗ μ.

Thus, for Φ ∈ A′′, we have

〈ψ2(R′)�Φ, S〉 = 〈ψ2(R′), η(θ1(Φ) ◦ S′)〉 = tr(R ◦ η(θ1(Φ) ◦ S′))

= 〈Λ, η(θ1(Φ) ◦ S′)(μ)〉 = 〈Λ, (κ′E ◦ S′′ ◦ θ1(Φ)′ ◦ κE′)(μ)〉
= 〈(S′′′ ◦ κ′′E)(Λ), (θ1(Φ)′ ◦ κE′)(μ)〉
= 〈(S′′′ ◦ κE′′)(Λ), (θ1(Φ)′ ◦ κE′)(μ)〉
= 〈(S′′ ◦ θ1(Φ)′ ◦ κE′)(μ),Λ〉 = 〈(θ1(Φ) ◦ S′)(Λ), μ〉
= 〈Φ, S′(Λ) ⊗ μ〉 = 〈Φ, R ◦ S〉 = 〈ψ2(R′)♦Φ, S〉.

Thus ψ2(Z0
1 (E,α) ∩ F(E′′)) ⊆ Z

(1)
t (A′′).

Similarly, for R = M ⊗ κE(x) ∈ F(E′′)∩Z0
2 (E,α) and S ∈ A′, we have R ◦S′ ∈

W(E)aa, which is if and only if S′′(M) ⊗ κE(x) ∈ W(E)aa. This is if and only if
S′′(M) = κE′(μ) for some μ ∈ E′. Then, for Φ ∈ A′′, we have

〈Φ♦ψ1(R), S〉 = 〈ψ1(R), η(θ1(Φ)) ◦ S〉 = tr
(
η
(
R ◦ S′ ◦ Q(θ1(Φ))

))
= tr

(
κ′E ◦ η(θ1(Φ))′′ ◦ (κE′(μ) ⊗ κE(x))′ ◦ κE′

)
= tr

(
κ′E ◦ η(θ1(Φ))′′ ◦ (κE(x) ⊗ κE′(μ))

)
= 〈κE(x), (κ′E ◦ η(θ1(Φ))′′ ◦ κE′)(μ)〉
= 〈η(θ1(Φ))(μ), x〉 = 〈(κ′E ◦ θ1(Φ)′ ◦ κE′)(μ), x〉
= 〈θ1(Φ)(κE(x)), μ〉 = 〈Φ, κE(x) ⊗ μ〉 = 〈Φ, η(S′′(M) ⊗ κE(x))〉
= 〈Φ, η(R ◦ S′)〉 = 〈Φ�ψ1(R), S〉.

Thus ψ1(F(E′′) ∩ Z0
2 (E,α)) ⊆ Z

(2)
t (A′′). �

Lemma 5.9. Let S ∈ B(E′) and T ∈ B(E′′, E). Then κE′ ◦ κ′E ◦S′′ ◦ T ′ = S′′ ◦ T ′

if and only if κE ◦ T ◦ S′ ∈ B(E′)a.
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Proof. We have that κE ◦T ◦S′ ∈ B(E′)a if and only if Q(κE ◦T ◦S′) = κE ◦T ◦S′.
Now, for Λ ∈ E′′ and μ ∈ E′, we have

〈Q(κE ◦ T ◦ S′)(Λ), μ〉 = 〈Λ, η(κE ◦ T ◦ S′)(μ)〉 = 〈Λ, (κ′E ◦ S′′ ◦ T ′ ◦ κ′E ◦ κE′)(μ)〉
= 〈Λ, (κ′E ◦ S′′ ◦ T ′)(μ)〉 = 〈(κE′ ◦ κ′E ◦ S′′ ◦ T ′)(μ),Λ〉,

and also

〈(κE ◦ T ◦ S′)(Λ), μ〉 = 〈μ, (T ◦ S′)(Λ)〉 = 〈(S′′ ◦ T ′)(μ),Λ〉.
Thus κE ◦T ◦S′ ∈ B(E′)a if and only if S′′ ◦T ′ = κE′ ◦κ′E ◦S′′ ◦T ′, as required. �

Note that the above proof (and the lemma below) shows that

Z0
2(E,α) = {T ∈ Bα(E′′) : T (E′′) ⊆ κE(E), T ◦ S′ ∈ B(E′)a (S ∈ Nα(E)′)}.

Lemma 5.10. For a Banach space E and a tensor norm α, we have

Z0
1 (E,α) ∩ Z0

2 (E,α) = (W (E) ∩ Bα(E))aa,

B(E′)a ∩ {T ∈ B(E′′) : T (E′′) ⊆ κE(E)} = W(E)aa.

Proof. Firstly, for T ∈ B(E′), suppose that T ′(E′′) ⊆ κE(E). Then we can find
T0 ∈ B(E′′, E) with κE ◦ T0 = T ′. Then, for x ∈ E and μ ∈ E′, we have

〈μ, T0(κE(x))〉 = 〈T ′(κE(x)), μ〉 = 〈T (μ), x〉,
so that (T0 ◦ κE)′ = T . Furthermore, (T0 ◦ κE)′′(E′′) = T ′(E′′) ⊆ κE(E), so that
by Theorem 3.8, (T0 ◦ κE) ∈ W(E). Thus we have the second equality.

Now suppose that T ′ ∈ Z0
1 (E,α)∩Z0

2 (E,α), so that we immediately have T = R′

for some R ∈ W(E). Then R′′ ∈ Bα(E′′), so that R ∈ Bα(E), by Proposition 3.6.
Conversely, let R ∈ W(E) ∩ Bα(E). Then, for S ∈ B(E′), we have

R′ ◦ κ′E ◦ S′′ = (κE ◦R)′ ◦ S′′ = (R′′ ◦ κE)′ ◦ S′′ = κ′E ◦R′′′ ◦ S′′,

so that R′ ∈ Z0
1 (E,α). We clearly have that R′′ ∈ Z0

2 (E,α), completing the
proof. �

In some special cases, we can say more than the above proposition.

Theorem 5.11. Let E be a Banach space, α be a tensor norm and A = Nα(E).
Suppose that A′ ⊆ W(E′). Then

Z0
1 (E,α) = Bαt(E′)a, Z0

2 (E,α) = κE ◦ Bα(E′′, E),

where κE ◦ B(E′′, E) = {T ∈ B(E′′) : T (E′′) ⊆ κE(E)}.
Consequently, we have

ψ2(T ′) ∈ Z
(1)
t (A′′) (T ∈ F(E′)),

ψ1(κE ◦ T ) ∈ Z
(2)
t (A′′) (T ∈ F(E′′, E)).

When E is not reflexive, the two topological centres of A′′ are distinct, neither
contains the other, and both strictly contain κA(A).

Proof. For S ∈ A′, as S ∈ W(E′), S′′(E′′′) ⊆ κE′(E′). Hence we have

κE′ ◦ κ′E ◦ S′′ = S′′,
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as κ′E is a projection of E′′′ onto E′. We immediately have Z0
1 (E,α) = Bαt(E′)a.

Similarly, for S ∈ A′ and T ∈ κE ◦ B(E′′, E), we have that T = κE ◦ T0 for some
T0 ∈ B(E′′, E). As κE′ ◦ κ′E ◦ S′′ = S′′, for μ ∈ E′ and Λ ∈ E′′, we have

〈(T0 ◦ S′ ◦ κE)′′(Λ), μ〉 = 〈Λ, (κ′E ◦ S′′ ◦ T ′
0)(μ)〉 = 〈(S′′ ◦ T ′

0)(μ),Λ〉
= 〈μ, (T0 ◦ S′)(Λ)〉 = 〈(κE ◦ T0 ◦ S′)(Λ), μ〉.

Thus κE ◦ T0 ◦ S′ = (T0 ◦ S′ ◦ κE)′′ ∈ W(E)aa, so that T ∈ Z0
2 (E,α). We conclude

that Z0
2 (E,α) = κE ◦ Bα(E′′, E).

Suppose that E is not reflexive, so that A is not Arens regular. Let Λ ∈ E′′

and μ ∈ E′ be nonzero, and let T1 = Λ ⊗ μ ∈ F(E′), so that ψ2(T ′
1) ∈ Z

(1)
t (A′′).

Suppose that ψ2(T ′
1) = κA(T ) for some T ∈ A, so that T ′

1 = θ1(ψ2(T ′
1)) = T ′′, which

is a contradiction. Also, θ1(ψ2(T ′
1)) = T ′

1 �∈ Z0
2 (E,α), so that ψ2(T ′

1) �∈ Z
(2)
t (A′′).

Thus the first topological centre strictly contains κA(A) and is not contained in the
second topological centre.

Similarly, let M ∈ κE(E)◦ ⊆ E′′′ and x ∈ E be nonzero, and let T2 = M ⊗ x ∈
F(E′′, E), so that ψ1(κE ◦T2) ∈ Z

(2)
t (A′′). Again, we see that ψ1(κE ◦T2) �∈ κA(A),

and that ψ1(κE ◦ T2) �∈ Z
(1)
t (A′′), so that the second topological centre strictly

contains κA(A) and is not contained in the first topological centre. �

The above certainly applies when α = ε, as then A′ = A(E)′ = I(E′) ⊆ W(E′)
(by Corollary 3.15). Similarly, it applies to the (right) p-nuclear operators. This is
clear for the right p-nuclear operators by Theorem 3.33. For the p-nuclear operators,
as Np(E) is a quotient of E′⊗̂gpE, we see that Np(E)′ is a subspace of Bg′

p
(E′). By

the discussion before Theorem 3.33, T ∈ Bg′
p
(E′) if and only if T ′κE ∈ Pq(E,E′′),

which implies that T ′κE ∈ W(E,E′′). Thus T = κ′EκE′T = (T ′κE)′κE′ is also
weakly-compact, as required.

However, the above does not apply when α = π in the interesting case of when E
is not reflexive, for when E has the approximation property, A = N (E) = E′⊗̂E,
and so A′ = B(E′) �= W(E′). We shall see later (Corollary 5.27) that this is a real
problem, and not just an artifact of the method of proof.

The key to extending the above theorem is to look at the map θ1.

Proposition 5.12. Let E be a Banach space, α be a tensor norm and A = Nα(E).
Let

I1 = ker θ1 ⊆ A′′, I2 = ker(Q ◦ θ1) ⊆ A′′.

Then I1 is a closed ideal for either Arens product, and I2 is a closed ideal in (A′′,♦).
Furthermore, we have

A′′�I1 = I1♦A′′ = I2♦A′′ = {0}.
In particular, I1�I1 = I1♦I1 = I2♦I2 = {0}. For i = 1, 2, we have

I1�ψi(E′′′⊗̂αE
′′) = ψi(E′′′⊗̂αE

′′)♦I1 = I2�ψi(κE′(E′)⊗̂ακE(E)) = {0}.
Proof. By the homomorphism properties of θ1, we see that I1 is a closed ideal in
A′′, with respect to either Arens product. By (the proof of) Proposition 2.5, for
T, S ∈ B(E′′), we have Q(T )◦Q(S) = Q(Q(T )◦S), and so, for Φ ∈ I2 and Ψ ∈ A′′,



Arens-regularity of algebras arising from tensor norms 243

we have

Q(θ1(Φ♦Ψ)) = Q(Q(θ1(Φ)) ◦ θ1(Ψ)) = 0,

Q(θ1(Ψ♦Φ)) = Q(Q(θ1(Ψ)) ◦ θ1(Φ)) = Q(θ1(Ψ)) ◦ Q(θ1(Φ)) = 0,

so that I2 is a closed ideal in (A′′,♦).
For S ∈ A′, Ψ ∈ A′′ and Φ ∈ I1, we have

〈Ψ�Φ, S〉 = 〈Ψ, η(θ1(Φ) ◦ S′)〉 = 0, 〈Φ♦Ψ, S〉 = 〈Ψ, η(θ1(Φ)) ◦ S〉 = 0.

Thus we see that Ψ�Φ = Φ♦Ψ = 0. Similarly, for Φ ∈ I2 and Ψ ∈ A′′, we have

〈Φ♦Ψ, S〉 = 〈Ψ, η(θ1(Φ)) ◦ S〉 = 0 (S ∈ A′),

so that Φ♦Ψ = 0 for each Ψ ∈ A′′.
For u ∈ E′′′⊗E′′ and S ∈ A′, we have that ψi(u) ·S and S ·ψi(u) are in E′′⊗E′,

for i = 1, 2. Thus, for Φ ∈ I1 and i = 1, 2, we have

〈Φ�ψi(u), S〉 = 〈Φ, ψi(u) · S〉 = 0 = 〈Φ, S · ψi(u)〉 = 〈ψi(u)♦Φ, S〉.
Similarly, for u = κE′(μ)⊗κE(x) ∈ E′′′ ⊗E′′, S ∈ A′, Φ ∈ I2 and i = 1, 2, we have

〈Φ�ψi(u), S〉 = 〈Φ, S ◦ (κE(x) ⊗ μ)〉 = 〈(θ1(Φ)′ ◦ κE′ ◦ S)(μ), κE(x)〉
= 〈(η(θ1(Φ)) ◦ S)(μ), x〉 = 0. �

Theorem 5.13. Let E be a Banach space, α be a tensor norm and A = Nα(E).
Suppose that (E′, α) and (E′′, α) are both a Gröthendieck pair (in particular, this
holds if α is accessible). Then the two topological centres of A′′ strictly contain
κA(A). Suppose that the two sets

lin{S · Φ : S ∈ A′, Φ ∈ A′′}, lin{Φ · S : S ∈ A′, Φ ∈ A′′}
are distinct, and neither contains the other. Then the topological centres are distinct
and neither contains the other.

Proof. By the Theorem 5.11, we may suppose that A′ �⊆ W(E′). Furthermore, by
continuity, we may suppose that W(E′)∩A′ is not dense in A′. By Proposition 5.3,
we have

{S · Φ : S ∈ A′, Φ ∈ A′′} + {Φ · S : S ∈ A′, Φ ∈ A′′} ⊆ I(E′) ⊆ W(E′).

Note also that φ1(E′′⊗E′) = F(E′) ⊆ W(E′). Consequently, by the Hahn–Banach
theorem, we can find a nonzero Φ ∈ A′′ so that

〈Φ, φ1(u)〉 = 0 (u ∈ E′′ ⊗ E′),

〈Φ, S · Ψ〉 = 〈Φ,Ψ · S〉 = 0 (Ψ ∈ A′′, S ∈ A′).

Then θ1(Φ) = 0 so that Φ ∈ I1 (and hence Φ �∈ κA(A)), and thus, for Ψ ∈ A′′ and
S ∈ A′, we have

〈Φ�Ψ, S〉 = 〈Φ,Ψ · S〉 = 0 = 〈Φ♦Ψ, S〉,
as Φ♦A′′ = {0}. Hence Φ ∈ Z

(1)
t (A′′). Similarly, we have

〈Ψ♦Φ, S〉 = 〈Φ, S · Ψ〉 = 0 = 〈Ψ�Φ, S〉,
as A′′�Φ = {0}, so that Φ ∈ Z

(2)
t (A′′).

Define

X1 = lin{S · Φ : S ∈ A′,Φ ∈ A′′}, X2 = lin{Φ · S : S ∈ A′,Φ ∈ A′′}.
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When X1 �⊆ X2, we can find a nonzero Φ ∈ A′′ with θ1(Φ) = 0, 〈Φ, λ〉 = 0 for
each λ ∈ X2, and 〈Φ, S0 · Φ0〉 �= 0 for some S0 ∈ A′ and Φ0 ∈ A′′. As above,
we see that Φ ∈ Z

(2)
t (A′′), but we have 〈Φ0♦Φ, S0〉 = 〈Φ, S0 · Φ0〉 �= 0, while

〈Φ0�Φ, S0〉 = 0 as A′′�Φ = {0}. Thus Φ �∈ Z
(1)
t (A′′). Similarly, when X2 �⊆ X1,

we have Z
(1)
t (A′′) �⊆ Z

(2)
t (A′′). �

We shall show later, in Corollary 5.27, that we cannot hope to completely remove
the second condition in the above theorem.

To conclude, in slightly less than full generality, we have the following.

Theorem 5.14. Let E be a Banach space which is not reflexive, let α be an acces-
sible tensor norm and let A = Nα(E). The topological centres of A′′ both strictly
contain κA(A), and are both strictly contained in A′′. When A′ ⊆ W(E′), the
topological centres are distinct and neither contains the other. �

5.1. When the dual space has the bounded approximation property. To
say more about the topological centres of Nα(E)′′, we need to impose some condi-
tions on the Banach space E. Following Grosser, we shall now study the case when
E′ has the bounded approximation property. It turns out that this is an important
special case which makes up, in some sense, for the fact that E is not assumed to be
reflexive. For example, in [Gro87], the concept of Arens semiregularity is studied.

Definition 5.15. Let A be a Banach algebra. A multiplier on A is a pair (L,R)
of maps in B(A) such that

L(ab) = L(a)b, R(ab) = aR(b), aL(b) = R(a)b (a, b ∈ A).

The collection of multipliers on A is denoted by M(A).

Definition 5.16. Let A be a Banach algebra with a bounded approximate identity,
let Ξ ∈ A′′ be a mixed identity, and let

D(Ξ) = {L′′(Ξ) : (L,R) ∈ M(A)}.
Then A is Arens semiregular if and only if the Arens products coincide on D(Ξ),
for each mixed identity Ξ (see [Gro84]).

In [Gro87], Grosser shows that A(E) (when E′ has the bounded approximation
property) is Arens semiregular when I(E′) = N (E′). He also demonstrates (see
[Gro87, Section 4]) that when E′ has the bounded approximation property, we have
A(E)′′ = B(E′′) ⊕ ker θ1.

This last property can be generalised to the α-nuclear case, and we shall see that,
when E′ has the bounded approximation property, we can completely identify the
topological centres of Nα(E)′′, at least when α is accessible.

Throughout this section, E will be a Banach space such that E′ has the bounded
approximation property. For a tensor norm α, as E has the bounded approximation
property as well, A = Nα(E) = E′⊗̂αE and so A′ = Bα′(E′). Suppose that α
is accessible (so that α′ is also accessible). As in Proposition 4.3, we see that
φ1 : Nα′(E′) = E′′⊗̂α′E′ → A′ is an isomorphism onto its range, and so θ1 : A′′ →
Bα(E′′) is surjective. When E′ has the metric approximation property, or α′ is
totally accessible, φ1 is actually an isometry onto its range, and so θ1 is a quotient
operator (metric surjection).
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Theorem 5.17. Let E be a Banach space such that E′ has the bounded approxima-
tion property. Let α be an accessible tensor norm, and A = Nα(E). There exists a
homomorphism, which is also an isomorphism onto its range, ψ1 : (Bα(E′′), ◦) →
(A′′,�) such that θ1 ◦ ψ1 = IdBα(E′′). There also exists a bounded homomorphism
ψ2 : (Bα(E′′), �) → (A′′,♦) such that θ1 ◦ ψ2 = Q. For i = 1, 2 and T ∈ A, we
have ψi(T ′′) = κA(T ). When E′ has the metric approximation property, ψ1 can
be chosen to be an isometry and ψ2 can be chosen to be norm-decreasing. Further-
more, these maps extend the maps defined in Theorem 5.4, when they are restricted
to F(E′′).

Proof. As in Example 4.4, as E′ has the bounded approximation property, we
can find Ξ ∈ I(E′)′ = A(E)′′ with θ1(Ξ) = IdE′′ . As α is accessible, by the
Gröthendieck Composition theorem, for T ∈ Bα(E′′) and S ∈ Bα′(E′) = A′, we
have that S′ ∈ Bα̌(E′′), so that T ◦ S′ ∈ I(E′′), and hence η(T ◦ S′) ∈ I(E′).
Similarly, η(T ) ∈ Bα(E′), and so η(T ) ◦ S = η(S′ ◦ T ) ∈ I(E′). Define, for i = 1, 2,
ψi : Bα(E′′) → A′′ by

〈ψ1(T ), S〉 = 〈Ξ, η(T ◦ S′)〉, 〈ψ2(T ), S〉 = 〈Ξ, η(T ) ◦ S〉

for T ∈ Bα(E′′) and S ∈ Bα′(E′). Then we have

|〈ψ1(T ), S〉| ≤ ‖Ξ‖‖η(T ◦ S′)‖π ≤ ‖Ξ‖‖T ◦ S′‖π ≤ ‖Ξ‖‖T ‖α‖S‖α′,

so that ‖ψ1‖ ≤ ‖Ξ‖. Similarly, ‖ψ2‖ ≤ ‖Ξ‖. As we form Ξ from a bounded
approximate identity for A(E), by results in [GW93], we see that the smallest we
can make ‖Ξ‖ is the bound for which E′ has the bounded approximation property.
In particular, if E′ has the metric approximation property, then ψ1 and ψ2 can be
constructed to be norm-decreasing.

For T ∈ F(E′′) and S ∈ A′, we have

〈ψ1(T ), S〉 = 〈Ξ, η(T ◦ S′)〉 = tr(η(T ◦ S′)),

〈ψ2(T ), S〉 = 〈Ξ, η(T ) ◦ S〉 = tr(η(T ) ◦ S),

so that the maps ψi extend those defined in Theorem 5.4.
For Λ ∈ E′′, μ ∈ E′ and T ∈ Bα(E′′), we have

η(T ◦ φ1(Λ ⊗ μ)′) = η(κE′(μ) ◦ T (Λ)) = φ1(T (Λ) ⊗ μ).

Thus we have

〈θ1(ψ1(T ))(Λ), μ〉 = 〈Ξ, η(T ◦ φ1(Λ ⊗ μ)′)〉 = 〈Ξ, φ1(T (Λ) ⊗ μ)〉 = 〈T (Λ), μ〉,

as θ1(Ξ) = IdE′′ . Thus θ1 ◦ ψ1 = IdBα(E′′). As θ1 is norm-decreasing, we see
that ψ1 is an isomorphism onto its range, and an isometry when E′ has the metric
approximation property (for a suitably chosen Ξ). Similarly, we have

〈θ1(ψ2(T ))(Λ), μ〉 = 〈Ξ, η(T ) ◦ φ1(Λ ⊗ μ)〉 = 〈Λ, η(T )(μ)〉,

so that θ1 ◦ ψ2 = Q.
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For T ∈ A = E′⊗̂αE, we have T ∈ Bα(E), so that T ′′ ∈ Bα(E′′). Suppose that
T = μ⊗ x. Then, for S ∈ Bα′(E′), we have

〈ψ1(T ′′), S〉 = 〈Ξ, η(T ′′ ◦ S′)〉 = 〈Ξ, S ◦ T ′〉 = 〈Ξ, κE(x) ⊗ S(μ)〉
= 〈κE(x), S(μ)〉 = 〈S, T 〉 = 〈κA(T ), S〉,

〈ψ2(T ′′), S〉 = 〈Ξ, T ′ ◦ S〉 = 〈Ξ, S′(κE(x)) ⊗ μ〉
= 〈S′(κE(x)), μ〉 = 〈S(μ), x〉 = 〈S, T 〉 = 〈κA(T ), S〉.

By linearity and continuity, we see that ψi(T ′′) = κA(T ) for T ∈ A and i = 1, 2.
By Lemma 5.6, for T1, T2 ∈ B(E′′) and S ∈ B(E′), we have η(T1 ◦ T2 ◦ S′) =

η(T1 ◦ Q(T2 ◦ S′)). Then, for T1, T2 ∈ Bα(E′′) and S ∈ A′, we have

〈ψ1(T1)�ψ1(T2), S〉 = 〈ψ1(T1), η(θ1(ψ1(T2)) ◦ S′)〉 = 〈ψ1(T1), η(T2 ◦ S′)〉
= 〈Ξ, η(T1 ◦ Q(T2 ◦ S′))〉 = 〈Ξ, η(T1 ◦ T2 ◦ S′)〉
= 〈ψ1(T1 ◦ T2), S〉.

We see that ψ1 : (Bα(E′′), ◦) → (A′′,�) is a homomorphism. Similarly, we have

〈ψ2(T1 � T2), S〉 = 〈ψ2(Q(T1) ◦ T2), S〉 = 〈Ξ, η(Q(T1) ◦ T2) ◦ S〉
= 〈Ξ, η(S′ ◦ Q(T1) ◦ T2)〉 = 〈Ξ, κ′E ◦ T ′

2 ◦ η(T1)′′ ◦ S′′ ◦ κE′〉
= 〈Ξ, κ′E ◦ T ′

2 ◦ κE′ ◦ η(T1) ◦ S〉 = 〈Ξ, η(T2) ◦ η(T1) ◦ S〉
= 〈Ξ, η(T2) ◦ η(S′ ◦ T1)〉 = 〈ψ2(T2), η(S′ ◦ T1)〉
= 〈ψ2(T2), η(T1) ◦ S〉 = 〈ψ2(T1)♦ψ2(T2), S〉.

We see that ψ2 : (Bα(E′′), �) → (A′′,♦) is a homomorphism. �

There is evidently some choice in the construction of ψ1 and ψ2, as we are free
to choose a mixed identity Ξ ∈ A(E)′′. However, below we shall see that this is
unimportant as far as the study of topological centres go.

As θ1◦ψ1 = IdBα(E′′), we have that ψ1◦θ1 is a projection of A′′ onto ψ1(Bα(E′′)).
Thus we can write

A′′ = Bα(E′′) ⊕ ker θ1 = Bα(E′′) ⊕ I1,

with reference to Proposition 5.12.
For a Banach space E (such that E′ has the bounded approximation property)

and an accessible tensor norm α, define

Z1(E,α) = {T ′ : T ∈ Bαt(E′), T ◦ S ∈ Nα′(E′),

κE′ ◦ T ◦ κ′E ◦ S′′ = T ′′ ◦ S′′ (S ∈ Bα′(E′))},
Z2(E,α) = {T ∈ Bα(E′′) : T (E′′) ⊆ κE(E), T ◦ S′ ∈ Nα′(E′)a (S ∈ Bα′(E′))},
X1(E,α) = lin{η(T ◦ S′) : S ∈ Bα′(E′), T ∈ Bα(E′′)} ⊆ Bα′(E′),

X2(E,α) = lin{T ◦ S : S ∈ Bα′(E′), T ∈ Bαt(E′)} ⊆ Bα′(E′).

By the Gröthendieck Composition Theorem, we see that X1 and X2 are subsets of
I(E′), where the closure is taken with respect to the norm on Bα′(E′). Notice that
in the definition of Z1, for T ∈ Bαt(E′) and S ∈ Bα′(E′), T ◦S ∈ I(E′) by another
application of the Gröthendieck Composition Theorem. If a reflexive Banach space
can be interpolated somewhere (compare with the proof of Theorem 3.31) then we
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may even conclude that T ◦ S ∈ N (E′), so that as α′ ≤ π, we automatically have
that T ◦ S ∈ Nα′(E′). A similar remark holds for Z2(E,α).

Theorem 5.18. Let E be a Banach space such that E′ has the bounded approxi-
mation property, let α be an accessible tensor norm, and let A = Nα(E). Then

Z
(1)
t (A′′) = {ψ2(T ) + Φ : T ∈ Z1(E,α), Φ ∈ X1(E,α)◦}.

Proof. Let Φ ∈ Z
(1)
t (A′′), so that we can write Φ = Φ0 + ψ1(T ′) for some Φ0 ∈ I1

and T ∈ Z0
1 (E,α), by Proposition 5.8, and the discussion above. Similarly, for

Ψ ∈ A′′, let Ψ = Ψ0 + ψ1(R), for some Ψ0 ∈ I1 and R ∈ Bα(E′′). Then we have,
with reference to Proposition 5.12,

Φ�Ψ = Φ�ψ1(R) = Φ0�ψ1(R) + ψ1(T ′ ◦R),

Φ♦Ψ = ψ1(T ′)♦Ψ = ψ1(T ′)♦Ψ0 + ψ1(T ′)♦ψ1(R).

Setting Ψ0 = 0, we have

(1) Φ0�ψ1(R) + ψ1(T ′ ◦R) = ψ1(T ′)♦ψ1(R) (R ∈ Bα(E′′)),

and so we also have
ψ1(T ′)♦Ψ0 = 0 (Ψ0 ∈ I1).

For S ∈ Bα′(E′) = A′, we thus have 〈Ψ0, S · ψ1(T ′)〉 = 〈Ψ0, T ◦ S〉 = 0 for each
Ψ0 ∈ I1. By the Hahn–Banach theorem, this holds if and only if

T ◦ S ∈ φ1(E′′⊗̂α′E′) = Nα′(E′) (S ∈ Bα′(E′)),

as φ1(E′′⊗̂α′E′) = Nα′(E′) is a closed subspace of A′, by Proposition 3.29, given
that E′ has the bounded approximation property. As Nα′(E′) ⊆ W(E′), we thus
have that κE′ ◦ κ′E ◦ T ′′ ◦ S′′ = T ′′ ◦ S′′, and so we see that

Z0
1(E,α) ∩ {T ′ : T ∈ Bαt(E′), T ◦ S ∈ Nα′(E′) (S ∈ Bα′(E′)} = Z1(E,α).

Then, for S ∈ Bα′(E′) = A′ and R ∈ Bα(E′′), we have

〈Φ0�ψ1(R) + ψ1(T ′ ◦R), S〉 = 〈Φ0, η(R ◦ S′)〉 + 〈Ξ, η(T ′ ◦R ◦ S′)〉
= 〈Φ0, η(R ◦ S′)〉 + 〈ψ1(T ′), η(R ◦ S′)〉,

as η(T ′ ◦R ◦ S′) = η(R ◦ S′) ◦ T = η(η(R ◦ S′)′) ◦ T = η(T ′ ◦ η(R ◦ S′)′). We also
know that T ◦ κ′E ◦ S′′ = κ′E ◦ T ′′ ◦ S′′, so that

〈ψ1(T ′)♦ψ1(R), S〉 = 〈ψ1(R), T ◦ S〉 = 〈Ξ, η(R ◦ S′ ◦ T ′)〉
= 〈Ξ, κ′E ◦ T ′′ ◦ S′′ ◦R′ ◦ κE′〉 = 〈Ξ, T ◦ κ′E ◦ S′′ ◦R′ ◦ κE′〉
= 〈Ξ, T ◦ η(R ◦ S′)〉 = 〈ψ2(T ′), η(R ◦ S′)〉.

By Equation (1), we see that

〈Φ0, η(R ◦ S′)〉 = 〈ψ2(T ′) − ψ1(T ′), η(R ◦ S′)〉 (R ∈ Bα(E′′), S ∈ Bα′(E′)).

Thus, for S ∈ X1(E,α), we have

〈Φ, S〉 = 〈ψ1(T ′) + Φ0, S〉 = 〈ψ2(T ′), S〉,
and so Φ − ψ2(T ′) ∈ X(E,α)◦. Hence Z

(1)
t (A′′) ⊆ ψ2(Z1(E,α)) +X1(E,α)◦.
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Conversely, for T ′ ∈ Z1(E,α) and Φ ∈ X1(E,α)◦, for Ψ0 ∈ I1, R ∈ Bα(E′′) and
S ∈ A′, we have

〈(Φ + ψ2(T ′))�(Ψ0 + ψ1(R)), S〉 = 〈(Φ + ψ2(T ′))�ψ1(R), S〉
= 〈Φ + ψ2(T ′), ψ1(R).S〉
= 〈Φ + ψ2(T ′), η(R ◦ S′)〉
= 〈ψ2(T ′), η(R ◦ S′)〉 = 〈Ξ, T ◦ η(R ◦ S′)〉.

As Nα′(E′) ⊆ X1(E,α), we have that Φ ∈ I1, and as T ′ ∈ Z1(E,α), we have
T ◦ S ∈ Nα′(E′), so that

〈(Φ + ψ2(T ′))♦(Ψ0 + ψ1(R)), S〉 = 〈ψ2(T ′)♦(Ψ0 + ψ1(R)), S〉
= 〈Ψ0 + ψ1(R), T ◦ S〉 = 〈ψ1(R), T ◦ S〉
= 〈Ξ, η(R ◦ S′ ◦ T ′)〉 = 〈Ξ, T ◦ η(R ◦ S′)〉,

again using the fact that T ∈ Z1(E,α). Hence Φ +ψ2(T ′) ∈ Z
(1)
t (A′′), and we have

Z
(1)
t (A′′) = ψ2(Z1(E,α)) +X(E,α)◦,

as required. �

Theorem 5.19. Let E be a Banach space such that E′ has the bounded approxi-
mation property, let α be an accessible tensor norm, and let A = Nα(E). Then

Z
(2)
t (A′′) = {ψ1(T ) + Φ : T ∈ Z2(E,α), Φ ∈ X2(E,α)◦}.

Proof. Let Φ ∈ Z
(2)
t (A′′). With reference to Proposition 5.8, we can write Φ =

Φ0 + ψ1(T ) for some Φ0 ∈ I1 and T ∈ Z0
2 (E,α). Similarly, for Ψ ∈ A′′, let

Ψ = Ψ0 +ψ1(R), for some Ψ0 ∈ I1 and R ∈ Bα(E′′). Then we have, with reference
to Proposition 5.12,

Ψ�Φ = (Ψ0 + ψ1(R))�ψ1(T ) = Ψ0�ψ1(T ) + ψ1(R ◦ T ),

Ψ♦Φ = ψ1(R)♦(Φ0 + ψ1(T )) = ψ1(R)♦Φ0 + ψ1(R)♦ψ1(T ).

Setting Ψ0 = 0 gives us

(2) ψ1(R ◦ T ) = ψ1(R)♦Φ0 + ψ1(R)♦ψ1(T ) (R ∈ Bα(E′′)),

and thus also that Ψ0�ψ1(T ) = 0 for each Ψ0 ∈ I1. Again, this holds if and only
if, for each S ∈ Bα′(E′), we have ψ1(T ) · S = η(T ◦ S′) ∈ Nα′(E′).

As T ∈ Z0
2 (E,α), for S ∈ Bα′(E′), we have T ◦ S′ ∈ B(E′)a, so that

〈ψ1(R)♦ψ1(T ), S〉 = 〈Ξ, η(T ◦ S′ ◦ Q(R))〉 = 〈Ξ, η(R) ◦ η(T ◦ S′)〉.
Then, as T = κE ◦ T0 for some T0 ∈ B(E′′, E), we have

η(R ◦ T ◦ S′) = κ′E ◦ S′′ ◦ T ′ ◦R′ ◦ κE′ = κ′E ◦ S′′ ◦ T ′
0 ◦ κ′E ◦R′ ◦ κE′

= κ′E ◦ S′′ ◦ T ′
0 ◦ κ′E ◦ κE′ ◦ η(R) = η(T ◦ S′) ◦ η(R).

Thus we get

〈ψ1(R ◦ T ), S〉 = 〈Ξ, η(R ◦ T ◦ S′)〉 = 〈Ξ, η(T ◦ S′) ◦ η(R)〉.
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Now, for S ∈ Bα′(E′), we have η(T ◦ S′) = φ1(u) for some u ∈ E′′⊗̂α′E′. By
Equation (2), we have

〈ψ1(R)♦Φ0, S〉 = 〈Φ0, η(R) ◦ S〉 = 〈ψ1(R ◦ T ) − ψ1(R)♦ψ1(T ), S〉
= 〈Ξ, η(T ◦ S′) ◦ η(R) − η(R) ◦ η(T ◦ S′)〉
= 〈Ξ, φ1(u) ◦ η(R) − η(R) ◦ φ1(u)〉 = 0.

Thus Φ0 ∈ X2(E,α)◦, and we see that Z
(2)
t (A′′) ⊆ ψ1(Z2(E,α)) +X2(E,α)◦.

Conversely, for T ∈ Z2(E,α) and S ∈ Bα′(E′), we have η(T ◦ S′) = φ1(u) for
some u ∈ E′′⊗̂α′E′, and that T ◦S′ = η(T ◦S′)′. Thus, for Φ0 ∈ X2(E,α)◦, Ψ0 ∈ I1
and R ∈ Bα(E′′), we have

〈(Ψ0 + ψ1(R))�(Φ0 + ψ1(T )), S〉 = 〈Ψ0�ψ1(T ), S〉 + 〈ψ1(R ◦ T ), S〉
= 〈Ψ0, η(T ◦ S′)〉 + 〈Ξ, η(R ◦ T ◦ S′)〉
= 〈Ψ0, φ1(u)〉 + 〈Ξ, η(T ◦ S′) ◦ η(R)〉
= 〈Ξ, φ1(u) ◦ η(R)〉 = tr(φ1(u) ◦ η(R)),

by using the same calculation as above, given that T (E′′) ⊆ κE(E). Similarly, as
Φ0 ∈ X2(E,α)◦, we have

〈(Ψ0 + ψ1(R))♦(Φ0 + ψ1(T )), S〉 = 〈ψ1(R)♦Φ0, S〉 + 〈ψ1(R)♦ψ1(T ), S〉
= 〈Φ0, η(R) ◦ S〉 + 〈ψ1(T ), η(R) ◦ S〉
= 〈Ξ, η(T ◦ S′ ◦ Q(R))〉 = 〈Ξ, η(φ1(u)′ ◦ Q(R))〉
= 〈Ξ, η(R) ◦ φ1(u)〉 = tr(φ1(u) ◦ η(R)).

Consequently, Φ0 + ψ1(T ) ∈ Z
(2)
t (A′′), and so we conclude that

Z
(2)
t (A′′) = ψ1(Z2(E,α)) +X2(E,α)◦,

as required. �

These results (that is, the definitions of Zi(E,α) and Xi(E,α), for i = 1, 2)
might seem overly complicated. However, the next couple of corollaries (and their
proofs) will show that, in the general case, we cannot remove any of the conditions.

Corollary 5.20. Let E be a Banach space such that E′ has the bounded approxi-
mation property, and let A = N2(E), the 2-nuclear operators. Then we have

Z
(1)
t (A′′) = ψ2

(P2(E′′) ∩ B(E′)a
)

+ Nd2(E
′)◦,

Z
(2)
t (A′′) = ψ1

(
κE ◦ P2(E′′, E)

)
+ Nd2(E

′)◦,

Z
(1)
t (A′′) ∩ Z

(2)
t (A′′) = ψ1(P2(E)aa) + Nd2(E

′)◦.

Here we treat Nd2(E′) as a subspace of Bd2(E′) = A′, so that Nd2(E′)◦ is a subspace
of Bd2(E′)′ = A′′.

Proof. We have that A = E′⊗̂g2E, so that A′ = Bd2(E′) = P2(E,E′′), where, as
in the comment after Theorem 5.11, the isometric isomorphism between Bd2(E′)
and P2(E,E′′) is S �→ S′ ◦ κE . Furthermore, we see that S ∈ Bd2(E′) implies that
S′ ∈ Bdt

2
(E′′) = Bg2(E′′) = P2(E′′), which in turn implies that S′◦κE ∈ P2(E′′, E).

Thus S ∈ Bd2(E′) if and only if S′ ∈ P2(E′′).



250 Matthew Daws

We shall show that X1(E, g2) is the closure of N (E′) = E′′⊗̂E′, with respect to
the norm ‖ · ‖d2 on Bd2(E′). Indeed, let S ∈ Bd2(E′), so that S′ ◦ κE ∈ P2(E,E′′),
and let T ∈ Bg2(E′′) = P2(E′′). Then, by Proposition 3.35, we see that T ◦ S′ ◦
κE ∈ N (E,E′′), so that η(T ◦ S′) = κ′E ◦ S′′ ◦ T ′ ◦ κE′ ∈ N (E′), as required.
Clearly X1(E,α) contains F(E′), so we see that X1(E, g2) = N (E′). An analogous
calculation shows that X2(E, g2) = N (E′).

We now note that Nd2(E′) = E′′⊗̂d2E
′, so that from Proposition 3.28, it follows

that the closure of F(E′) (and hence N (E′)) in Bd2(E′) is simply Nd2(E′).
Now let S, T ∈ Bd2(E′), which is equivalent to S′, T ′ ∈ P2(E′′). As S is weakly-

compact, we have that κE′ ◦ κ′E ◦ S′′ = S′′, so that T ′′ ◦ S′′ = T ′′ ◦ κE′ ◦ κ′E ◦ S′′ =
κE′ ◦ T ◦ κ′E ◦ S′′. As above, T ◦ S is nuclear, so that certainly T ◦ S ∈ Nd2(E′).
Thus Z1(E, g2) = P2(E′′) ∩ B(E′)a = Bd2(E′)a.

Let T ∈ Bg2(E
′′) = P2(E′′), and let S ∈ Bd2(E

′), so that S′ ∈ P2(E′′). Sup-
pose that T (E′′) ⊆ κE(E), so that for some T1 ∈ B(E′′, E), T = κE ◦ T1. By
Theorem 3.33, and the fact that any closed subspace of a Hilbert space is 1-
complemented, we see that T1 ∈ P2(E′′, E). Thus T1S

′ is nuclear, by another
application of Proposition 3.35. Then

η(TS′) = κ′ES
′′T ′κE′ = κ′ES

′′T ′
1κ

′
EκE′ = κ′ES

′′T ′
1 = (T1S

′κE)′

so that as S is weakly-compact,

Q(TS′) = T ′′
1 S

′′′κ′′E = T ′′
1 κE′′κ′E′S′′′κ′′E = κET1(κE′S)′κ′′E = TS′κ′E′κ′′E = TS′.

Hence TS′ ∈ B(E)aa and as T1S
′κE ∈ N (E), we see that TS′ ∈ N (E)aa so that

certainly T ◦ S′ ∈ Nd2(E′)a. Consequently, Z2(E, g2) = κE ◦ P2(E,E′′).
Finally, it follows from Lemma 5.10 that(P2(E′′) ∩ B(E′)a

) ∩ (κE ◦ P2(E′′, E)
) ⊆ W(E)aa.

Then using Proposition 3.6, we have that T ∈ P2(E) if and only if T ′′ ∈ P2(E′′);
notice also that T ∈ P2(E) implies that T ∈ W(E). It hence follows that(P2(E′′) ∩ B(E′)a

) ∩ (κE ◦ P2(E′′, E)
) ⊆ P2(E)aa.

The proof is hence complete if we can show that ψ1 and ψ2 agree on P2(E)aa.
Let Ξ ∈ A(E)′′ be a mixed identity, let T ∈ P2(E) and let S ∈ Bd2(E′) (that is,
S′ ∈ P2(E′′)) so that ST ′ and T ′S are both nuclear. Consequently

〈ψ1(T ′′) − ψ2(T ′′), S〉 = 〈Ξ, S ◦ T ′ − T ′ ◦ S〉 = 〈IdE′′ , S ◦ T ′ − T ′ ◦ S〉,
so that an application of Lemma 5.23 below completes the proof. �

Corollary 5.21. Let E be a Banach space such that E′ has the Radon–Nikodým
property and the bounded approximation property, and let A = N2(E). Then

Z
(1)
t (A′′) = ψ2

(P2(E′′) ∩ B(E′)a
)
,

Z
(2)
t (A′′) = ψ1

(
κE ◦ P2(E′′, E)

)
,

Z
(1)
t (A′′) ∩ Z

(2)
t (A′′) = κA(A).

Proof. Apply the above with Proposition 3.36, which shows that Nd2(E′) =
Bd2(E′) under our conditions on E. We claim that N2(E) = P2(E). Let T ∈
P2(E), so that T ′ ∈ Bd2(E′) = N r

2 (E′) = E′′⊗̂d2E
′. We wish to show that

T ∈ N2(E) = E′⊗̂g2E, which will follow if T ′ ∈ κE(E)⊗̂d2E
′ which is a closed
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subspace of E′′⊗̂d2E
′, by [Rya02, Corollary 6.25]. By the Hahn–Banach Theorem,

it is sufficient to show that if S ∈ (E′′⊗̂d2E
′)′ = P2(E′′) vanishes on κE(E)⊗̂d2E

′,
then 〈S, T ′〉 = 0 as well. Now, if S vanishes on κE(E)⊗̂d2E

′, then SκE = 0. As
T is weakly-compact, there exists T0 ∈ P2(E′′, E) such that T ′′ = κET0. By using
Proposition 3.35, we see that

〈S, T ′〉 = tr(ST ′′) = tr(SκET0) = 0,

as required. Hence P2(E) = A, and so ψ1(P2(E)aa) = κA(A), completing the
proof. �

The interested reader can try to generalise the above results to p-summing op-
erators. In the case p �= 2, we find that the more complicated characterisation
of p-summing operators means that we can, for a general Banach space E, say
surprisingly little. Obviously more could be said for specific examples of Banach
spaces.

Corollary 5.22. Let E be a Banach space such that E′ has the bounded approxi-
mation property, and let A = A(E). Then we have

Z
(1)
t (A′′) = {ψ2(T ′) : T ∈ B(E′), T ◦ S ∈ N (E′) (S ∈ I(E′))},

Z
(2)
t (A′′) = {ψ1(T ) : T ∈ B(E′′), T (E′′) ⊆ κE(E), T ◦ S′ ∈ N (E′′) (S ∈ I(E′))},

Z
(1)
t (A′′) ∩ Z

(2)
t (A′′) = ψ1(W(E)aa) = ψ2(W(E)aa).

Proof. We see that A′′ = B(E′′)⊕I1, A′ = Bπ(E′) = I(E′), and Bα(E′′) = B(E′′).
It is then clear that X1(E, ε) = X2(E, ε) = I(E′), and so X1(E, ε)◦ = X2(E, ε)◦ =
{0}. Then, for S ∈ I(E′), as I(E′) ⊆ W(E′), we have that κE′ ◦κ′E ◦S′′ = S′′, and
so, for T ∈ B(E′′), we have κE′ ◦ T ◦ κ′E ◦ S′′ = T ′′ ◦ κE′ ◦ κ′E ◦ S′′ = T ′′ ◦ S′′. Thus

Z1(E, ε) = {T ′ : T ∈ B(E′), T ◦ S ∈ N (E′) (S ∈ I(E′))},
which gives the result for Z

(1)
t (A′′).

Similarly, for T ∈ B(E′′) with T = κE ◦ T0 for some T0 ∈ B(E′′, E), and S ∈
I(E′), μ ∈ E′ and Λ ∈ E′′, we have

〈Λ, (κ′E ◦ S′′ ◦ T ′ ◦ κE′)(μ)〉 = 〈(κE′ ◦ κ′E ◦ S′′ ◦ T ′
0 ◦ κ′E ◦ κE′)(μ),Λ〉

= 〈(S′′ ◦ T ′
0)(μ),Λ〉 = 〈μ, (T0 ◦ S′)(Λ)〉

= 〈(T ◦ S′)(Λ), μ〉.
Thus η(T ◦ S′)′ = T ◦ S′, and so we have

Z2(E, ε) = {T ∈ B(E′′) : T (E′′) ⊆ κE(E), T ◦ S′ ∈ N (E′′) (S ∈ I(E′))},
as required.

We apply Lemma 5.10 and Theorem 3.31 to see that

{T ′ : T ∈ B(E′), T ′(E′′) ⊆ κE(E), T ◦ S, S ◦ T ∈ N (E′) (S ∈ I(E′))} = W(E)aa.

To complete the proof, we need to show that ψ1(T ′′) = ψ2(T ′′) for T ∈ W(E). This
follows exactly as in the case for the 2-nuclear operators. �

The following was known to Grosser (see [Gro89]) although he seems to have
been unaware of Theorem 3.9, and so does not use the following simple factorisation
argument.
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Lemma 5.23. Let E be Banach space such that E′ has the approximation property.
Let T ∈ W(E′) and S ∈ I(E′). Then T ◦ S, S ◦ T ∈ N (E′) = E′′⊗̂E′ and
〈IdE′′ , T ◦ S〉 = 〈IdE′′ , S ◦ T 〉.
Proof. We follow the proof of Theorem 3.31, and again use Theorem 3.9. As T
is weakly-compact, we can find a reflexive Banach space F , T1 ∈ B(E′, F ) and
T2 ∈ B(F,E′) so that T = T2 ◦T1. Then, as F is reflexive, N (E′, F ) = I(E′, F ), so
that T1◦S ∈ N (E′, F ). Similarly, T ′

2◦S′ ∈ N (E′′, F ′), so that S′′◦T ′′
2 ∈ N (F ′′, E′′′).

As F is reflexive, we identify F ′′ with F , and we have that T ′′
2 = κE′ ◦ T2. Thus

S′′ ◦ T ′′
2 = S′′ ◦ κE′ ◦ T2 = κE′ ◦ S ◦ T2 ∈ N (F,E′′′). As S ∈ W(E′), we have that

S ◦ T2 = κ′E ◦ κE′ ◦ S ◦ T2 ∈ N (F,E′).
Immediately, we have T ◦S = T2◦T1◦S ∈ N (E′) and S◦T = S◦T2◦T1 ∈ N (E′).

We also have, as S ◦ T2 ∈ E′′⊗̂E′ and T1 ◦ S ∈ E′′⊗̂E′,

〈IdE′′ , S ◦ T 〉 = tr(S ◦ T2 ◦ T1) = tr(T1 ◦ S ◦ T2) = tr(T2 ◦ T1 ◦ S) = 〈IdE′′ , T ◦ S〉,

as required. �

Note that Z1(E, ε) = B(E′)a if and only if N (E′) = I(E′). When E = F ′ for
some Banach space F , we have that κE ◦κ′F ∈ Z2(E, ε) if and only if κE ◦κ′F ◦S′ ∈
N (E′′) for each S ∈ I(E′). This is if and only if

η(κE ◦ κ′F ◦ S′) = κ′E ◦ S′′ ◦ κ′′F ◦ κ′E ◦ κE′ = κ′F ′ ◦ S′′ ◦ κ′′F ∈ N (E′)

for each S ∈ I(E′). In particular,

κ′F ′ ◦ S′′′ ◦ κ′′F = (S′′ ◦ κF ′)′ ◦ κ′′F = (κF ′ ◦ S)′ ◦ κ′′F = S′ ∈ N (F ′′) (S ∈ I(F ′)).

Thus we have that κE ◦ κ′F ∈ Z2(E, ε) implies that S = η(S′) ∈ N (F ′) for each
S ∈ I(F ′), that is, I(F ′) = N (F ′). We see that we cannot, in general, remove any
of the conditions which define Z1(E, ε) and Z2(E, ε).

Example 5.24. The above considerations all apply to l1 whose dual, l∞, has the
metric approximation property, but not the Radon–Nikodým property. It is folklore
that N (l∞) �= I(l∞), which can be seen by studying operators on C(X) spaces,
as detailed in [DU77] (and performed explicitly in [Daw(2)04]). Thus Z1(l1, ε)
and Z2(l1, ε) are nontrivial, in the sense just described. However, it is well-known
(see [LL03]) that A(l1) is the unique, closed, two-sided ideal in B(l1), so that
A(l1) = W(l1), and hence A = A(l1) satisfies

Z
(1)
t (A′′) ∩ Z

(2)
t (A′′) = κA(A).

This is an example of a rather concrete Banach space not dealt with in [DL04].

Corollary 5.25. Let E be a Banach space such that E′ has the bounded approxi-
mation property, and let A = N (E) = E′⊗̂E. Then we have

Z
(1)
t (A′′) = {ψ2(T ′′) : T ∈ I(E) ∩ A(E)} + I(E′)◦,

Z
(2)
t (A′′) = {ψ1(T ′′) : T ∈ I(E) ∩ A(E)} + I(E′)◦.
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Proof. We have α = π so that A′′ = Bπ(E′′) ⊕ I1 = I(E′′) ⊕ I1. We also have
A′ = B(E′) and Nα′(E′) = Nε(E′) = A(E′). Thus we have

X1(E, π) = lin{η(T ◦ S′) : S ∈ B(E′), T ∈ I(E′′)} = I(E′),

X2(E, π) = lin{T ◦ S : S ∈ B(E′), T ∈ I(E′)} = I(E′),

Z1(E, π) = {T ′ : T ∈ I(E′), T ◦ S ∈ A(E′),

κE′ ◦ T ◦ κ′E ◦ S′′ = T ′′ ◦ S′′ (S ∈ B(E′))},
Z2(E, π) = {T ∈ I(E′′) : T (E′′) ⊆ κE(E), T ◦ S′ ∈ A(E′)a (S ∈ B(E′))}.

Note that I(E′) means closure with respect to the topology on B(E′).
Letting S = IdE′ in the expression for Z1(E, π) above yields Z1(E, π) ⊆ I(E′)∩

A(E′) and that T ∈ Z1(E, π) implies that κE′ ◦ T ◦ κ′E = T ′′. For M ∈ κE(E)◦,
we have κ′E(M) = 0, so that T ′′(M) = 0. Thus a Hahn–Banach argument tells us
that T ′(E′′) ⊆ κE(E). As in the proof of Lemma 5.10, we have B(E′)a ∩ (κE ◦
B(E′′, E)) = B(E)aa, so that T ∈ I(E)a. Thus we have Z1(E, π) = {T ′′ : T ∈
I(E), T ′ ∈ A(E′)}, noting that for T ∈ I(E), we have κE′ ◦ T ′ ◦ κE′ = T ′′′. Now,
by [Rya02, Proposition 5.55], we know that T ′ ∈ A(E′) if and only if T ∈ A(E).
Thus

Z1(E, π) = {T ′′ : T ∈ I(E) ∩ A(E)},
as required.

For T ∈ Z2(E, π), we similarly see that T ∈ A(E′)a and that T ∈ W(E)aa, as
before. Thus we can again conclude that

Z2(E, π) = {T ′′ : T ∈ I(E) ∩ A(E)},
as required. �

The space I(E) ∩ A(E) is easily seen to a closed subspace of I(E); indeed, let
(Tn) be a sequence in I(E) ∩A(E) with ‖Tn − T ‖π → 0 for some T ∈ I(E). Then
‖Tn −T ‖ ≤ ‖Tn − T ‖π → 0, so that T ∈ A(E). Note that, when E is not reflexive,
I(E′) ⊆ W(E′) � B(E′), so that X1(E, π) = X2(E, π) is a nontrivial subspace of
N (E)′.

Example 5.26. Again, it is folklore that when E = C([0, 1]), we can find T ∈
I(E) ∩ A(E) with T �∈ N (E), and so that E′ has the bounded approximation
property. Hence the conditions in the above theorem are not vacuous, as we do not
have N (E) = I(E) ∩ A(E).

Corollary 5.27. Let E be a Banach space such that E′ has the bounded approx-
imation property and N (E′) = I(E′). Then we can identify A(E)′′ with B(E′′),
and we have

Z
(1)
t (A(E)′′) = B(E′)a, Z

(2)
t (A(E)′′) = κE ◦ B(E′′, E).

Furthermore, we have N (E)′′ = B(E′)′ and

Z
(1)
t (N (E)′′) = Z

(2)
t (N (E)′′) = κN (E)(N (E)) + ker θ1.

In particular Z
(1)
t (N (E)′′) ∩ Z

(2)
t (N (E)′′) strictly contains κN (E)(N (E)).
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Proof. For A(E)′′, the result was first shown in [DL04], and follows immediately
from Corollary 5.22, given that N (E′) = I(E′) = E′′⊗̂E′.

For N (E)′′, we have that N (E) = E′⊗̂E and N (E)′ = B(E′). Then I(E′) =
N (E′) = A(E′) = E′′⊗̂εE

′ in B(E′). These agree with the image of φ1, so that
I(E′)

◦
= ker θ1 = A(E′)◦. As E is infinite-dimensional, ker θ1 �= {0}. For T ∈

I(E)∩A(E), we have T ′ ∈ N (E′), so that by Proposition 3.13, T ∈ N (E) ⊆ A(E).
Hence I(E)∩A(E) = N (E). Clearly ψ1 and ψ2 agree on N (E), so we are done. �

Example 5.28. Following [DL04], consider c0, so that c′0 = l1, as a separable dual
space, has the Radon–Nikodým property, and thus we have I(l1) = N (l1) = l∞⊗̂l1,
as l∞ has the metric approximation property. Thus the above corollary holds, and
we have A(c0)′′ = B(l∞). By Corollary 5.22, we have that

Z
(1)
t (A(c0)′′) ∩ Z

(2)
t (A(c0)′′) = W(c0)aa.

Again, B(c0) contains only one proper, closed two-sided ideal, namely A(c0). In
particular, A(c0) = W(c0), so (as in the l1 case) we again have, for A = A(c0),
that Z

(1)
t (A′′) ∩ Z

(2)
t (A′′) = κA(A).

We can also apply the above corollary to N (c0) = l1⊗̂c0 to see that

Z
(1)
t (N (c0)′′) = Z

(2)
t (N (c0)′′).

We have that φ1 : l∞⊗̌l1 → B(l1) = N (c0)′ is an isometry onto its range, which is
A(l1), so that

ker θ1 = {Φ ∈ N (c0)′′ = B(l1)′ : 〈Φ, S〉 = 0 (S ∈ A(l1))}
is large with respect to N (c0)′′.

Example 5.29. Let P be Pisier’s space, as constructed in [Pis83], so that A(P ) =
N (P ). Applying Theorem 5.14, we see that the topological centres of A(P )′′ are
distinct and neither contains the other. Hence this also holds for N (P )′′, and we
conclude that, in general, we cannot say that the topological centres of the bidual
of the nuclear operators are equal.

Example 5.30. Again, following [DL04], consider J , the James space, which was
defined in [Jam51]. Let c00 be the vector space of sequences of complex numbers
which are eventually zero, and for x = (xn) ∈ c00, let

‖x‖J = sup

⎧⎨⎩
(

n∑
i=1

|xri − xri+1 |2 + |xrn+1 − xr1 |2
)1/2

⎫⎬⎭ ,

where the supremum is taken over all integers n and increasing sequences of integers
(ri)n+1

i=1 . We can show that ‖ · ‖J is a norm; let J be the completion of (c00, ‖ · ‖J).
We can show that J is {x ∈ c0 : ‖x‖J < ∞}. Then, as shown in [Jam51], J is
isometric with J ′′, but J ′′/κJ(J) is isomorphic to C. The standard unit vector
basis (en) is a basis for J .

So, for some Λ0 ∈ J ′′, the map J ⊕ C → J ′′; (x, α) �→ κJ (x) + αΛ0 is an
isomorphism. Let M0 ∈ κJ(J)◦ ⊆ J ′′′ be such that 〈M0,Λ0〉 = 1, so that we may
define a projection P : J ′′ → κJ(J) by P (Φ) = Φ−〈M0,Φ〉Λ0 for Φ ∈ J ′′. We may
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check that the maps

B(J) ⊕ J ′ → B(J ′); (T, μ) �→ T ′ + Λ0 ⊗ μ,

B(J) ⊕ J → κJ ◦ B(J ′′, J); (T, x) �→ P ◦ T ′′ +M0 ⊗ κJ(x)

are isomorphisms.
By [DU77, Chapter VII], J ′ has the Radon–Nikodým property, so that N (J ′) =

I(J ′). As J has a basis, it has the bounded approximation property (and thus J ′′

has the bounded approximation property, so that J ′ also does). We can thus again
apply the above corollaries, and so we have A(J)′′ = B(J ′′). Thus we have, given
the identifications above,

Z
(1)
t (A(J)′′) = B(J ′)a ∼= B(J) ⊕ J ′,

Z
(2)
t (A(J)′′) = κJ ◦ B(J ′′, J) ∼= B(J) ⊕ J,

Z
(1)
t (A(J)′′) ∩ Z

(2)
t (A(J)′′) = W(J)aa.

It is reasonably simple to show that W(J) is a maximal closed ideal in B(J) (in fact,
it is the unique maximal closed ideal in B(J), as shown by Laustsen in [Lau02])
and that W(J) has co-dimension one in B(J). As summarised in [LL03, Section 3],
A(J) = K(J) is not equal to W(J), so that

Z
(1)
t (A(J)′′) ∩ Z

(2)
t (A(J)′′) �= κA(J)(A(J)),

a fact shown in [DL04].
We can apply the above to study N (J ′) = J ′′⊗̂J ′. We have N (J ′)′ = B(J ′′)

and so ker θ1 = A(J ′′)◦, and

Z
(1)
t (N (J ′)′′) = Z

(2)
t (N (J ′)′′) = κN (J′)(N (J ′)) + A(J ′′)◦.

Now, we have A(J)′ = N (J ′) and A(J)′′ = B(J ′′), so that κ′A(J) : N (J ′)′′ → N (J ′)
is an projection. Hence we can write

N (J ′)′′ = B(J ′′)′ = κN (J′)(N (J ′)) ⊕ kerκ′A(J) = κN (J′)(N (J ′)) ⊕ κA(J)(A(J))◦

= κN (J′)(N (J ′)) ⊕ (A(J)aa)◦.

Notice that as κA(J)(A(J)) = A(J)aa ⊆ A(J ′′), we have A(J ′′)◦ ⊆ (A(J)aa)◦, and
so we have

N (J ′)′′/Z(1)
t (N (J ′)′′) = (A(J)aa)◦/A(J ′′)◦.

5.2. When the integral and nuclear operators coincide. We now drop the
requirement that E′ have the bounded approximation property. Motivated by the
fact that, for many Banach spaces E, we have A(E)′ = I(E′) = N (E′), we might
consider studying the case when Nα(E)′ = Nα′(E′). However, this seems too strong
a condition (for example, it seems unlikely that it is ever true for α = π). This
said, we can again use the Gröthendieck Composition theorem to show that, when
A = Nα(E) for an accessible α, we have A′′ · A′ + A′ · A′′ ⊆ I(E′). Thus the
case when N (E′) = I(E′) should be interesting to study, and it is certainly not a
vacuous condition to impose upon E, by the following lemma.

For a Banach space E, recall that E[n] is the nth iterated dual of E, so that
E[1] = E′ etc.

Lemma 5.31. Let E be a Banach space such that E[n] has the Radon–Nikodým
property for some n ∈ N. Then I(E[m]) = N (E[m]) for each 1 ≤ m ≤ n.
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Proof. By Theorem 3.18, if E′ has the Radon–Nikodým property, then N (E′) =
I(E′).

Suppose that F is a Banach space such that N (F ′′) = I(F ′′). For T ∈ I(F ′), we
have T ′ ∈ I(F ′′) = N (F ′′), and so T = η(T ′) = κ′F ◦ T ′ ◦ κF ′ ∈ N (F ′). Thus, by
induction, if N (E[n+1]) = I(E[n+1]) for some n ∈ N, then N (E[m]) = I(E[m]) for
each 1 ≤ m ≤ n+1. We are thus done by another application of Theorem 3.18. �
Example 5.32. Let JT be the James Tree Space (defined in [Jam74]), so that each
even dual of JT has the Radon–Nikodým property, but each odd dual does not (see
[DU77, Chapter VII, Section 5]). Thus, by the above lemma, I(JT ′) = N (JT ′)
while JT ′ does not have the Radon–Nikodým property.

Let E be a Banach space and α be a tensor norm. With reference to Proposi-
tion 4.3, we treat φ1 as a map E′′⊗̂α′E′ → Nα′(E′) ⊆ Nα(E)′ ⊆ Bα′(E′). Then
θ1 : Nα(E)′′ → Bα(E′′) actually maps into

Nα′(E′)′ = (kerJα′)◦ = {T ∈ Bα(E′′) : 〈T, u〉 = 0 (u ∈ E′′⊗̂α′E′, Jα′(u) = 0)}.
The next lemma tells us that, in this case, (ker Jα′)◦ is a right ideal in (Bα(E′′), ◦)
and a left ideal in (Bα(E′′), �).

Lemma 5.33. Let E be a Banach space and α be a tensor norm. Then (kerJα′)◦

is a right ideal in (Bα(E′′), ◦). Furthermore, for T ∈ (kerJα′)◦ and S ∈ Bαt(E′)a,
we have S ◦ T ∈ (kerJα′)◦.

Proof. Let T ∈ (kerJα′)◦ and u ∈ kerJα′ . Let (un) be a sequence in F(E′) such
that

∑∞
n=1 un = u in E′′⊗̂α′E′. Let S ∈ Bα(E′′), and let v = (S ⊗ IdE′)(u). Then,

for μ ∈ E′ and Λ ∈ E′′, we have

〈Λ, Jα′(v)(μ)〉 =
∞∑

n=1

〈Λ, Jα′((S ⊗ IdE′)(un))(μ)〉 =
∞∑

n=1

〈Jα′((S ⊗ IdE′)(un))′(Λ), μ〉

=
∞∑

n=1

〈S′(κE′(μ)), Jα′(un)′(Λ)〉 = 〈S′(κE′(μ)), Jα′(u)′(Λ)〉 = 0,

as Jα′(u) = 0. Thus v ∈ kerJα′ . We then have

〈T ◦ S, u〉 =
∞∑

n=1

〈T ◦ S, un〉 =
∞∑

n=1

tr(T ◦ S ◦ u′n) =
∞∑

n=1

tr
(
T ◦ ((S ⊗ IdE′)(un))′

)
=

∞∑
n=1

〈T, (S ⊗ IdE′)(un)〉 = 〈T, v〉 = 0,

as T ∈ (kerJα′)◦. Thus T ◦ S ∈ (kerJα′)◦.
Similarly, for T ∈ (kerJα′)◦, S ∈ Bαt(E′) and u ∈ kerJα′ , let v = (IdE′′ ⊗S)(u).

We can show that v ∈ kerJα′ , and similarly that

〈S′ ◦ T , u〉 = 〈T, (IdE′′ ⊗ S)(u)〉 = 〈T, v〉 = 0,

so that S′ ◦ T ∈ (kerJα′)◦. �
For a Banach space E and a tensor norm α, recall the following definitions:

Z0
1(E,α) = {T ′ : T ∈ Bαt(E′), T ◦ κ′E ◦ S′′ = κ′E ◦ T ′′ ◦ S′′ (S ∈ Nα(E)′)},

Z0
2(E,α) = {T ∈ Bα(E′′) : T (E′′) ⊆ κE(E), T ◦ S′ ∈ W(E)aa (S ∈ Nα(E)′)}.
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Theorem 5.34. Let E be a Banach space such that N (E′) = I(E′), let α be an
accessible tensor norm, and let A = Nα(E). Then, for i = 1, 2, we have

Z
(i)
t (A′′) = θ−1

1 (Z0
i (E,α)).

Proof. For Φ ∈ A′′ and S ∈ A′ ⊆ Bα′(E′), by Proposition 5.3, we have

Φ · S = η(φ1(Φ) ◦ S′) ∈ N (E′), S · Φ = η(φ1(Φ)) ◦ S ∈ N (E′),

as N (E′) = I(E′). Then, as α′ ≤ π on E′′ ⊗ E′, we clearly have that Φ · S and
S · Φ are in Nα′(E′) ⊆ A′.

Then, for Φ,Ψ ∈ A′′ and S ∈ A′, we have

〈Φ�Ψ, S〉 = 〈Φ, η(θ1(Ψ) ◦ S′)〉 = tr
(
θ1(Φ) ◦ Q(θ1(Ψ) ◦ S′)

)
,

〈Φ♦Ψ, S〉 = 〈Ψ, η(θ1(Φ)) ◦ S〉 = tr
(
θ1(Ψ) ◦ S′ ◦ Q(θ1(Φ))

)
,

as, for example, η(θ1(Ψ) ◦ S ∈ Nα′(E′) = φ1(E′′⊗̂α′E′). We thus see that Φ ∈
Z

(1)
t (A′′) if and only if

tr
(
θ1(Φ) ◦ Q(θ1(Ψ) ◦ S′)

)
= tr

(
θ1(Ψ) ◦ S′ ◦ Q(θ1(Φ))

)
(S ∈ A′,Ψ ∈ A′′),

and that Φ ∈ Z
(2)
t (A′′) if and only if

tr
(
θ1(Ψ) ◦ Q(θ1(Φ) ◦ S′)

)
= tr

(
θ1(Φ) ◦ S′ ◦ Q(θ1(Ψ))

)
(S ∈ A′,Ψ ∈ A′′).

Suppose that θ1(Φ) ∈ Z0
1 (E,α), so that θ1(Φ) = Q(θ1(Φ)). Taking adjoints, we

also have
S′′′ ◦ κ′′E ◦ θ1(Φ) = S′′′ ◦ θ1(Φ)′′ ◦ κ′′E (S ∈ A′).

Thus, for S ∈ A′ and Ψ ∈ A′′, we have

tr
(
θ1(Φ) ◦ Q(θ1(Ψ) ◦ S′)

)
= tr

(
κ′E′ ◦ θ1(Ψ)′′ ◦ S′′′ ◦ κ′′E ◦ θ1(Φ)

)
= tr

(
κ′E′ ◦ θ1(Ψ)′′ ◦ S′′′ ◦ θ1(Φ)′′ ◦ κ′′E

)
,

noting that η(θ1(Ψ) ◦ S′) ∈ Nα′(E′), a fact which allows us to alter the order of
maps inside the trace. As η(θ1(Φ)) ◦ S ∈ Nα′(E′) ⊆ K(E′) ⊆ W(E′), we have
κE′ ◦ κ′E ◦ η(θ1(Φ))′′ = η(θ1(Φ))′′. Thus we have

tr
(
κ′E′ ◦ θ1(Ψ)′′ ◦ S′′′ ◦ θ1(Φ)′′ ◦ κ′′E

)
= tr

(
θ1(Ψ)′′ ◦ S′′′ ◦ η(θ1(Φ))′′′ ◦ κ′′E ◦ κ′E′

)
= tr

(
θ1(Ψ)′′ ◦ S′′′ ◦ η(θ1(Φ))′′′

)
= tr

(
θ1(Ψ) ◦ S′ ◦ Q(θ1(Φ))

)
.

Hence Φ ∈ Z
(1)
t (A′′). Applying Proposition 5.8 allows us to conclude that

Z
(1)
t (A′′) = θ−1

1 (Z0
1 (E,α)).

Similarly, suppose that θ1(Φ) ∈ Z0
2 (E,α). Then θ1(Φ)(E′′) ⊆ κE(E) and

θ1(Φ) ◦ S′ ∈ B(E′)a (S ∈ A′).

Let T ∈ B(E′′, E) be such that κE ◦ T = θ1(Φ). Then, for S ∈ A′, we have
κE ◦T ◦S′ = R′

S for some RS ∈ B(E′). As R′
S(E′′) ⊆ κE(E), by the argument used

in Lemma 5.10, RS = R′ where R = T ◦ S′ ◦ κE ∈ W(E). Then RS = η(R′
S) =
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η(θ1(Φ) ◦ S′) ∈ Nα′(E′). In particular, RS ∈ W(E′) and so κE′ ◦ κ′E ◦ R′′
S = R′′

S ,
and so, for Ψ ∈ A′′, we have

tr
(
θ1(Ψ) ◦ Q(θ1(Φ) ◦ S′)

)
= tr

(
θ1(Ψ) ◦ θ1(Φ) ◦ S′) = tr

(
θ1(Ψ) ◦R′

S

)
= tr

(
R′′

S ◦ θ1(Ψ)′
)

= tr
(
κE′ ◦ κ′E ◦R′′

S ◦ θ1(Ψ)′
)

= tr
(
κ′E ◦R′′

S ◦ θ1(Ψ)′ ◦ κE′
)

= tr
(
κ′E ◦ S′′ ◦ T ′ ◦ κ′E ◦ θ1(Ψ)′ ◦ κE′

)
= tr

(
R′ ◦ η(θ1(Ψ))

)
= tr

(
RS ◦ η(θ1(Ψ))

)
= tr

(
η(θ1(Ψ)) ◦RS

)
= tr

(
θ1(Φ) ◦ S′ ◦ Q(θ1(Ψ))

)
.

Hence Φ ∈ Z
(2)
t (A′′), and another application of Proposition 5.8 allows us to con-

clude that
Z

(2)
t (A′′) = θ−1

1 (Z0
2 (E,α)). �

Theorem 5.35. Let E be a Banach space such that N (E′) = I(E′), let α be a
tensor norm, and let A = Nα(E). Suppose that E′′ has the bounded approximation
property. Then, for i = 1, 2, we have

Z
(i)
t (A′′) = θ−1

1 (Z0
i (E,α)).

Proof. As E′′ has the bounded approximation property, so does E′. Thus, in the
language of Proposition 5.3, (E′, α) and (E′′, α) are Gröthendieck pairs. The rest
of the proof runs exactly as above. �

We can then apply the same sort of arguments used in, for example, Theo-
rem 5.11, to state some corollaries. Rather than do this, we state the most inter-
esting case.

Corollary 5.36. Let E be a Banach space such that N (E′) = I(E′). Let A =
A(E), and let

X = (kerJπ)◦ = {T ∈ B(E′′) : 〈T, u〉 = 0 (u ∈ E′′⊗̂E′, Jπ(u) = 0)}.
Then θ1 : A′′ → X is an isometry, and, when we identify A′′ with X, we have

Z
(1)
t (A′′) = X ∩ B(E′)a, Z

(2)
t (A′′) = X ∩ (κE ◦ B(E′′, E)).

Proof. We have A′ = I(E′) = N (E′) so that φ1 : E′′⊗̂E′ → A′ is a quotient map,
and thus θ1 is an isometry. The results now follow from the calculations done in
the proof of Theorem 5.11, and the results of the above theorem. �
Corollary 5.37. Let E be a Banach space such that N (E′) = I(E′), and let
A = N2(E). Then

Z
(1)
t (A′′) = θ−1

1 (P2(E′′) ∩ B(E′)a), Z
(2)
t (A′′) = θ−1

1 (κE ◦ P2(E′′, E)).

Suppose that E′ has the Radon–Nikodým property (this applies, in particular, when
E′ is separable), and let

X = (kerJd2)
◦ = {T ∈ P2(E′′) : 〈T, u〉 = 0 (u ∈ E′′⊗̂d2E

′, Jd2(u) = 0)}.
Then θ1 : A′′ → X is an isometry.

Proof. As before, in this case, A′ ⊆ W(E′), so that by Theorem 5.11, Z0
1 =

Bd2(E′)a = P2(E′′) ∩ B(E′)a and Z0
2 = κE ◦ Bg2(E′′, E) = κE ◦ P2(E′′, E).

When E′ has the Radon–Nikodým property, by Proposition 3.36, A′ = Bd2(E′) =
Nd2(E′), and thus φ1 : E′′⊗̂d2E

′ → A′ is a quotient operator, and hence θ1 is an
isometry onto its range, as claimed. �
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In the case of the nuclear operators, we cannot say much more than the above
theorem gives, as, in general, we have no good description of N (E)′ (see Exam-
ple 5.29). However, the next example shows that in special cases we can say more
than we could before.

Example 5.38. By [FJ73] and Proposition 3.25, we can find a Banach space E0

with the approximation property, such that N (E′
0) = I(E′

0), and such that there
exists T0 ∈ I(E0) \ N (E0) with T ′

0 ∈ N (E′
0). Then let A = N (E0) = E′

0⊗̂E0, so
that A′ = B(E′

0), and we have

Z0
1 (E0, π) = {T ′ : T ∈ I(E′

0), T ◦ κ′E0
= κ′E0

◦ T ′′},
Z0

2 (E0, π) = {T ∈ I(E′′
0 ) : T (E′′

0 ) ⊆ κE0(E0), T ∈ W(E0)aa} = I(E0)aa.

As argued before, for T ′ ∈ Z0
1 (E0, π), we have T ′′(M) = 0 for each M ∈ κE0(E0)◦,

so that T ′(E′′
0 ) ⊆ κE0(E0), and thus T ′ ∈ W(E0)aa. Thus we conclude

Z0
1 (E0, π) = I(E0)aa = Z0

2 (E0, π),

Z
(1)
t (N (E0)′′) = Z

(2)
t (N (E0)′′) = θ−1

1 (I(E)aa).

Examining the proof of Proposition 3.25, we see that N (E0) �= I(E0), so that we
directly verify that A is not strongly Arens irregular. Of course, this fact also follows
from Theorem 5.14. Finally, we note that φ1 : E′′

0 ⊗̂εE
′
0 = A(E′

0) → B(E′
0) = A′

certainly does not have dense range, so that θ1 is not injective (thereby giving yet
another way to show that A is not strongly Arens irregular).

5.3. Arens regularity of ideals of nuclear operators. We have so far not
discussed when Nα(E) is Arens regular. This is because we needed the above work
to build up the necessary machinery.

Theorem 5.39. Let E be a reflexive Banach space, let α be a tensor norm, and let
A = Nα(E). Suppose that either α is accessible, or that E has the approximation
property. Then A is Arens regular.

Proof. The case when α = ε is well-known: see, for example, [You76, Theorem 3].
The case when α = π is [Dal00, Theorem 2.6.23], where the result is attributed to
A. Ülger.

Suppose α is accessible. Then we simply apply Theorem 5.34. As E is reflexive,
E′ has the Radon–Nikodým property, and so N (E′) = I(E′). Then, identifying E
with E′′, we have W(E) = B(E), and so

Z0
1 (E,α) = Bα(E) = Z0

2 (E,α).

As the image of θ1 is contained in Bα(E), we immediately see that

Z
(1)
t (A′′) = θ−1(Bα(E)) = A′′,

so that A is Arens regular.
When E has the approximation property, E and E′ have the metric approxima-

tion property by Theorem 3.30. We then simply apply Theorem 5.35. �

Is it possible that for a nonaccessible α and a Banach space E which is reflexive,
but lacks the approximation property, we have that Nα(E) is not Arens regular?
The scarcity of examples of such α or E makes this question hard to address.
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6. Radicals of biduals of operator ideals

We now study the radical of Nα(E)′′ for either Arens product. This is quite
simple, essentially because of Proposition 5.12. Recall the definition of the radical
of a Banach algebra A,

radA = {a ∈ A : eA� − ba ∈ InvA� (b ∈ A�)}.
Here A� is the conditional unitisation of A. The radical of A is the intersection
of the kernels of the simple representations of A, and hence represents the part of
A which a certain representation theory cannot address. See [Dal00, Section 1.5]
or [Pal94, Section 2.3] and [Pal94, Section 4] for further details about radicals of
(Banach) algebras.

Lemma 6.1. Let A be a nonunital Banach algebra. Then the following are equiv-
alent:

(1) a ∈ radA.
(2) For each b ∈ A and β ∈ C, we have c− bac− βac = c− cba− βca = ba+ βa

for some c ∈ A.
(3) For each b ∈ A and β ∈ C, we have c− abc− βac = c− cab− βca = ab+ βa

for some c ∈ A.

Proof. An arbitrary element b0 ∈ A� can be uniquely written as b0 = b+ βeA� for
some b ∈ A and β ∈ C. Similarly, let c0 = c+ γeA� ∈ A�, so that

(eA� − b0a)c0 = c+ γeA� − bac− γba− βac− βγa,

c0(eA� − b0a) = c+ γeA� − cba− γba− βca− βγa.

Thus eA� − b0a ∈ InvA� if and only if, for some c ∈ A,

c− bac− ba− βac− βa = 0 = c− cba− ba− βca− βa.

The equivalence of (1) and (3) follows in an entirely analogous manner. �

Recall the maps ψ1 and ψ2 defined in Theorem 5.4, and the sets I1 and I2 defined
in Proposition 5.12.

Theorem 6.2. Let E be a Banach space, α be a tensor norm and A = Nα(E).
Then

rad(A′′,�) = I1, rad(A′′,♦) = I2.

In particular, when E is not reflexive, rad(A′′,�) � rad(A′′,♦).

Proof. Suppose that Φ �∈ I1, so that θ1(Φ) �= 0. Then, for some Λ ∈ E′′ and
M ∈ E′′′, we have 〈M, θ1(Φ)(Λ)〉 = 1. Let R = M ⊗Λ ∈ F(E′′), and suppose that
Φ ∈ rad(A′′,�). Then, for some Ψ ∈ A′′, we have

ψ1(R)�Φ = Ψ − Ψ�ψ1(R)�Φ.

Applying θ1, we have

R(θ1(Φ)(Λ)) = θ1(Ψ)(Λ) − (θ1(Ψ) ◦R ◦ θ1(Φ))(Λ),

which is Λ = θ1(Ψ)(Λ) − θ1(Ψ)(Λ), a contradiction, as Λ �= 0.
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Conversely, suppose that Φ ∈ I1. Fix β ∈ C, and let Υ = βΦ. By Proposi-
tion 5.12, we have A′′�Φ = 0, so for Ψ ∈ A′′, we have

Υ − Ψ�Φ�Υ − βΦ�Υ = βΦ − β2Φ�Φ = βΦ,
Υ − Υ�Ψ�Φ− βΥ�Φ = βΦ,

Ψ�Φ + βΦ = βΦ,

which verifies condition (2) in the above lemma. Thus Φ ∈ rad(A′′,�).
Similarly, suppose that, for Φ ∈ A′′, we have Q(θ1(Φ)) �= 0. Then, for some

Λ ∈ E′′, we have Λ0 := Q(θ1(Φ))(Λ) �= 0. Let μ ∈ E′ be such that 〈Λ0, μ〉 = 1, and
set R = Λ ⊗ μ ∈ F(E′). Suppose that Φ ∈ rad(A′′,♦), so that for some Ψ ∈ A′′,
we have

Φ♦ψ2(R′) = Ψ − Φ♦ψ2(R′)♦Ψ.
Applying θ1, we have

Q(θ1(Φ)) ◦R′ = θ1(Ψ) −Q(θ1(Φ)) ◦R′ ◦ θ1(Ψ),

where Q(θ1(Φ)) ◦R′ = κE′(μ) ⊗ Λ0, so that applying the above to Λ0, we get

〈Λ0, μ〉Λ0 = θ1(Ψ)(Λ0) − 〈θ1(Ψ)(Λ0), μ〉Λ0.

Applying μ to this gives us, as 〈Λ0, μ〉 = 1,

1 = 〈θ1(Ψ)(Λ0), μ〉 − 〈θ1(Ψ)(Λ0), μ〉 = 0,

a contradiction.
Conversely, suppose that Φ ∈ I2, so that Q(θ1(Φ)) = 0, and Φ♦A′′ = {0}. Then,

for Ψ ∈ A′′ and β ∈ C, let Υ = βΦ, so that we have

Υ − Φ♦Ψ♦Υ − βΦ♦Υ = Υ = βΦ,

Υ − Υ♦Φ♦Ψ − βΥ♦Φ = Υ − β2Φ♦Φ = βΦ,
Φ♦Ψ + βΦ = βΦ,

which verifies condition (3) in the above lemma. Thus Φ ∈ rad(A′′,♦). �
Corollary 6.3. Let E be an infinite-dimensional Banach space with the approxi-
mation property. Then N (E)′′, with either Arens product, is not semisimple.

Proof. We need to show that I1 is not zero, as I2 contains I1. That is, we wish to
show that θ1 : N (E)′′ → I(E′′) is not injective; that is, φ1 : A(E′) → N (E)′ does
not have dense range, which in this case is equivalent to N (E)′ = A(E′). As E has
the approximation property, N (E)′ = (E′⊗̂E)′ = B(E′), so we are done. �
Corollary 6.4. Let E be a Banach space with N (E′) = I(E′). Then (A(E)′′,�)
is semisimple while (A(E)′′,♦) is not semisimple. �

7. Algebras of compact operators

We have not dealt yet with K(E), except when E has the approximation property,
in which case K(E) = A(E). In particular, we shall now generalise Theorem 5.14
and Theorem 5.39.

We can get surprisingly far in this process by just working with A(E). We first
collect some general results about ideals and Arens products. Let A be a Banach
algebra, and let I be a closed subalgebra in A. Then I ′ = A′/I◦, and so we can
isometrically identify I′′ with I◦◦ ⊆ A′′. We may check that the actions of I and
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I ′′ on I ′ respect the identification of I ′ with A′/I◦, and that the Arens products
respect the identification of I ′′ with I◦◦. We immediately see that

Z
(i)
t (A′′) ∩ I′′ ⊆ Z

(i)
t (I ′′) (i = 1, 2).

Proposition 7.1. Let E be a Banach space. Then there is an isometry ψ1 :
A(E′′) → K(E)′′ and a norm-decreasing map ψ2 : A(E′′) → K(E)′′ such that
θ1 ◦ ψ1 = IdA(E′′) and θ1 ◦ ψ2 = Q. Furthermore, ψ1 : A(E′′) → (K(E)′′,�) and
ψ2 : (A(E′′), �) → (K(E)′′,♦) are homomorphisms.

Proof. By the preceding discussion, we can use Theorem 5.4 to define homo-
morphisms ψ1 : A(E′′) → (A(E)′′,�) ⊆ (K(E)′′,�) and ψ2 : (A(E′′), �) →
(A(E)′′,♦) ⊆ (K(E)′′,♦).

Temporarily, let φ2 : E′′⊗̂E′ → A(E)′ be the map φ1, as applied to A(E), and
let θ2 = φ′2. Clearly φ1 : E′′⊗̂E′ → K(E)′ is such that, for u ∈ E′′⊗̂E′, φ1(u) is
equal to φ2(u) when restricted to A(E) ⊆ K(E). Hence θ1 and θ2 agree on A(E)◦◦,
and so θ1 ◦ ψ1 = IdA(E′′) and θ1 ◦ ψ2 = Q, as required. �

Proposition 7.2. Let E be a Banach space. Then we have

θ1(Z
(1)
t (K(E)′′)) ⊆ B(E′)a, θ1(Z

(2)
t (K(E)′′)) ⊆ κE ◦ B(E′′, E).

Furthermore, we have

ψ2(T ′) ∈ Z
(1)
t (K(E)′′) (T ∈ A(E′)a),

ψ1(T ) ∈ Z
(2)
t (K(E)′′) (T ∈ κE ◦ A(E′′, E)).

As such, when E is not reflexive, the topological centres of K(E)′′ are distinct,
neither contains the other, and both lie strictly between κK(E)(K(E)) and K(E)′′.

Proof. The calculations for θ1(Z
(i)
t (K(E)′′), for i = 1, 2, follow exactly as for A(E),

as in Proposition 5.8.
Let T = Λ⊗ μ ∈ F(E′) and let (xα) be a bounded net in E which tends to Λ in

the weak∗-topology. Let λ ∈ K(E)′, and let S ∈ I(E′) be such that 〈λ,R〉 = 〈S,R〉
for R ∈ A(E). Then we see that

〈ψ2(T ′), λ〉 = tr(TS) = 〈Λ, S(μ)〉 = lim
α

〈S(μ), xα〉 = lim
α

〈λ, μ⊗ xα〉.

Thus, for K ∈ K(E),

〈λ · ψ2(T ′),K〉 = 〈ψ2(T ′),K · λ〉 = lim
α

〈K · λ, μ⊗ xα〉
= lim

α
〈λ,K ′(μ) ⊗ xα〉 = 〈Λ, SK ′(μ)〉 = 〈φ1(S′(Λ) ⊗ μ),K〉.

For x ∈ E and K ∈ K(E), we have that

〈λ · (μ⊗ x),K〉 = 〈λ,K ′(μ) ⊗ x)〉 = 〈SK ′(μ), x〉 = 〈φ1(S′κE(x) ⊗ μ),K〉,
〈(μ⊗ x) · λ,K〉 = 〈λ, μ⊗K(x)〉 = 〈K ′′κE(x), S(μ)〉 = 〈φ1(κE(x) ⊗ S(μ)),K〉.
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As S is weakly-compact, there exists S0 ∈ B(E′′′, E′) such that S′′ = κE′ ◦ S0, and
so, for Φ ∈ K(E)′′,

〈ψ2(T ′)�Φ, λ〉 = lim
α

〈Φ · λ, μ⊗ xα〉 = lim
α

〈Φ, λ · (μ⊗ xα)〉
= lim

α
〈Φ, φ1(S′κE(xα) ⊗ μ)〉 = lim

α
〈θ1(Φ)S′κE(xα), μ〉

= lim
α

〈S0θ1(Φ)′κE′(μ), xα〉 = 〈Λ, S0θ1(Φ)′κE′(μ)〉
= 〈θ1(Φ)S′(Λ), μ〉 = 〈Φ, φ1(S′(Λ) ⊗ μ)〉 = 〈ψ2(T ′)♦Φ, λ〉.

As λ and Φ were arbitrary, we see that ψ2(T ′) ∈ Z
(1)
t (K(E)′′), as required.

Now let T = M ⊗ κE(x) ∈ κE ◦ F(E′′, E), and let (μα) be a bounded net in E′

tending to M in the weak∗-topology. Let λ ∈ K(E)′ and S ∈ I(E′) be as before,
so that

〈ψ1(T ), λ〉 = tr(η(TS′)) = tr
(
κ′E′κE′′κE(x) ⊗ κ′ES

′′(M)
)

= 〈S′′(M), κE(x)〉
= 〈M,S′κE(x)〉 = lim

α
〈S(μα), x〉 = lim

α
〈λ, μα ⊗ x〉,

again using that S is weakly-compact. Then, for K ∈ K(E), as K is weakly-
compact,

〈ψ1(T ) · λ,K〉 = lim
α

〈λ ·K,μα ⊗ x〉 = lim
α

〈S(μα),K(x)〉
= 〈M,S′κEK(x)〉 = 〈φ1(κE(x) ⊗ κ′ES

′′(M)),K〉.
Thus for Φ ∈ K(E)′′,

〈Φ♦ψ1(T ), λ〉 = lim
α

〈λ · Φ, μα ⊗ x〉 = lim
α

〈Φ, φ1(κE(x) ⊗ S(μα))〉
= lim

α
〈θ1(Φ)κE(x), S(μα)〉 = 〈M,S′θ1(Φ)κE(x)〉

= 〈θ1(Φ)κE(x), κ′ES
′′(M)〉 = 〈Φ�ψ1(T ), λ〉.

As λ and Φ were arbitrary, we see that ψ1(T ) ∈ Z
(2)
t (K(E)′′), as required. �

We need a good description of K(E)′, for which we use an idea from [FS75]. Let
E be a Banach space and let I ⊆ E′

[1] be a norming subset, that is

‖x‖ = sup{|〈μ, x〉| : μ ∈ I} (x ∈ E).

For example, when E is separable, we can take I to be countable. Then let ι : E →
l∞(I) be the map

ι(x) =
(〈μ, x〉)

μ∈I
∈ l∞(I),

so that ι is an isometry. Let J : K(E) → K(E, l∞(I)) be given by J(T ) = ι ◦ T
for T ∈ K(E), so that J is an isometry. As l∞(I)′ has the metric approximation
property, we have

K(E, l∞(I)) = A(E, l∞(I)) = E′⊗̌l∞(I),

so that K(E, l∞(I))′ = I(E′, l∞(I)′). Thus J ′ : I(E′, l∞(I)′) → K(E)′ is a quotient
operator, and J ′′ : K(E)′′ → I(E′, l∞(I)′)′ is an isometry onto its range.

Lemma 7.3. Let E be a Banach space and I, ι, J be as above. For each λ ∈ K(E)′,
there exists S ∈ I(E′, l∞(I)′) with ‖S‖π = ‖λ‖ and J ′(S) = λ. For Φ ∈ K(E)′′, let
Φ · λ = J ′(S1) and λ · Φ = J ′(S2) for some S1, S2 ∈ I(E′, l∞(I)′). Then we have

ι′ ◦ S1 = ι′ ◦ κ′l∞(I) ◦ S′′ ◦ θ1(Φ)′ ◦ κE′ , ι′ ◦ S2 = η(θ1(Φ)) ◦ ι′ ◦ S.
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Proof. As J isometrically identifies K(E) with a subspace of A(E, l∞(I)), for
λ ∈ K(E)′, we can extend λ to a member of A(E, l∞(I))′ by the Hahn–Banach
theorem. This gives us the required S ∈ I(E′, l∞(I)′).

Let R = μ⊗ x ∈ K(E) so that, for T ∈ K(E), we have

〈λ ·R, T 〉 = 〈J ′(S), R ◦ T 〉 = 〈S, T ′(μ) ⊗ ι(x)〉 = 〈(κl∞(I) ◦ ι)(x), (S ◦ T ′)(μ)〉
= 〈φ1

(
(S′ ◦ κl∞(I) ◦ ι)(x) ⊗ μ

)
, T 〉,

〈R · λ, T 〉 = 〈J ′(S), T ◦R〉 = 〈S, μ⊗ ι(T (x))〉 = 〈S(μ), ι(T (x))〉
= 〈φ1

(
κE(x) ⊗ (ι′ ◦ S)(μ)

)
, T 〉.

Thus we have

〈S1(μ), ι(x)〉 = 〈S1, J(μ⊗ x)〉 = 〈J ′(S1), R〉 = 〈Φ · λ,R〉 = 〈Φ, λ ·R〉
= 〈Φ, φ1((S′ ◦ κl∞(I) ◦ ι)(x) ⊗ μ)〉 = 〈(θ1(Φ) ◦ S′ ◦ κl∞(I) ◦ ι)(x), μ〉
= 〈(κ′l∞(I) ◦ S′′ ◦ θ1(Φ)′ ◦ κE′)(μ), ι(x)〉,

〈S2(μ), ι(x)〉 = 〈λ · Φ, R〉 = 〈Φ, R · λ〉 = 〈(θ1(Φ) ◦ κE)(x), (ι′ ◦ S)(μ)〉
= 〈(κ′E ◦ θ1(Φ)′ ◦ κE′ ◦ ι′ ◦ S)(μ), x〉,

as required. �

Proposition 7.4. Let E be a Banach space and θ1 : K(E)′′ → B(E′′) be as before.
Let

I1 = ker θ1 ⊆ K(E)′′, I2 = ker(Q ◦ θ1) ⊆ K(E)′′.

Then I1 is a closed ideal for either Arens product, and I2 is a closed ideal in
(K(E)′′,♦). Furthermore, we have

K(E)′′�I1 = I1♦K(E)′′ = I2♦K(E)′′ = {0}.
Proof. The first part follows exactly as in Proposition 5.12. Fix λ ∈ K(E)′ and
let S ∈ I(E′, l∞(I)′) be such that J ′(S) = λ. For Φ ∈ I1, let S1 ∈ I(E′, l∞(I)′) be
such that J ′(S1) = Φ · λ, so that

ι′ ◦ S1 = ι′ ◦ κ′l∞(I) ◦ S′′ ◦ θ1(Φ)′ ◦ κE′ = 0.

Hence we have, for T ∈ K(E),

〈Φ · λ, T 〉 = 〈J ′(S1), T 〉 = 〈S1, ι ◦ T 〉 = tr(S1 ◦ T ′ ◦ ι′) = tr(ι′ ◦ S1 ◦ T ′) = 0,

so that Φ · λ = 0, and hence

〈Ψ�Φ, λ〉 = 〈Ψ,Φ · λ〉 = 0 (Ψ ∈ K(E)′′).

As λ was arbitrary, we have K(E)′′�I1 = {0}. Similarly, let S2 ∈ I(E′, l∞(I)′) be
such that J ′(S2) = λ · Φ, so that

ι′ ◦ S2 = η(θ1(Φ)) ◦ ι′ ◦ S = 0.

Hence we have

〈λ · Φ, T 〉 = 〈J ′(S2), T 〉 = 〈S2, J(T )〉 = tr(T ′ ◦ ι′ ◦ S2) = 0 (T ∈ K(E)),

so that λ · Φ = 0. Thus I1♦K(E)′′ = {0}.
Similarly, let Φ ∈ I2, so that η(θ1(Φ)) = 0, and hence ι′ ◦ S2 = 0 when J ′(S2) =

λ · Φ. Following the previous paragraph, we see that I2♦K(E)′′ = {0}. �
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As before, we now turn our attention to when we can use nuclear and not integral
operators. This takes us to a result shown in [FS75].

Theorem 7.5. Let E and F be Banach spaces such that E′′ or F ′ has the Radon–
Nikodým property. Define V : E′′⊗̂F ′ → K(E,F )′ by

〈V (Φ ⊗ μ), T 〉 = 〈Φ, T ′(μ)〉 (Φ ⊗ μ ∈ E′′⊗̂F ′, T ∈ K(E,F )).

Then V is a quotient operator, and furthermore, for λ ∈ K(E,F )′, there exists
u ∈ E′′⊗̂F ′ with V (u) = λ and ‖u‖ = ‖λ‖. Also, given Jπ : E′′⊗̂F ′ → N (E′, F ′) ⊆
I(E′, F ′), we have kerV ⊆ kerJπ.

Proof. This is [FS75, Theorem 1]. We will sketch the easier case, which is when
E′′ has the Radon–Nikodým property. Form I and ι : F → l∞(I) in a similar way
to above, and define J : K(E,F ) → A(E, l∞(I)) by J(T ) = ι ◦ T for T ∈ K(E,F ).
Then

(l∞(I)⊗̌E′)′ = I(l∞(I), E′′) = N (l∞(I), E′′) = l∞(I)′⊗̂E′′,
as E′′ has the Radon–Nikodým property and l∞(I) is a dual space with the ap-
proximation property. By applying the swap map to both sides, we see that

K(E, l∞(I))′ = (E′⊗̌l∞(I))′ = E′′⊗̂l∞(I)′.

Thus J ′ : E′′⊗̂l∞(I)′ → K(E,F )′. Hence we have the following diagram.

E′′⊗̂l∞(I)′
J′

��

IdE′′⊗ι′

��

K(E,F )′

E′′⊗̂F ′

V

�������������

.

We can verify that this diagram commutes, so as J is an isometry, J ′ is a quotient
operator. As IdE′′ ⊗ ι′ is norm-decreasing, V must also be a quotient operator.
We can then easily verify the other claims, and the case when F ′ has the Radon–
Nikodým property follows in a similar manner. �

In particular, when E′ or E′′ has the Radon–Nikodým property, we have a
quotient operator V : E′′⊗̂E′ → K(E)′, and this respects the usual identification
of A(E)′ = I(E′) = N (E′). It is clear that V agrees with the map φ1, and
so θ1 : K(E)′′ → B(E′′) is an isometry onto its range which contains A(E′′) by
Proposition 7.1. Indeed, we have

θ1(K(E)′′) = (kerφ1)◦ = {T ∈ B(E′′) : 〈T, τ〉 = 0 (τ ∈ E′′⊗̂E′, φ1(τ) = 0)}.
Theorem 7.6. Let E be a Banach space such that E′ or E′′ has the Radon–
Nikodým property. Then K(E)′′ is identified isometrically with X = θ1(K(E)′′) ⊆
B(E′′) and we have

Z
(1)
t (K(E)′′) = X ∩ B(E′)a, Z

(2)
t (K(E)′′) = X ∩ (κE ◦ B(E′′, E))

Z
(1)
t (K(E)′′) ∩ Z

(2)
t (K(E)′′) = X ∩W(E)aa.

Proof. This follows exactly as in the A(E) case, Corollary 5.36. �

Notice that we cannot easily generalise Lemma 5.33 as we have no simple de-
scription of kerφ1. Indeed, it is hard to say whether kerφ1 is trivial or not.



266 Matthew Daws

Definition 7.7. Let E be a Banach space such that for each compact subsetK ⊆ E
and each ε > 0, there exists T ∈ K(E) with ‖T (x)−x‖ < ε for each x ∈ K. Then E
has the compact approximation property. When we can control the norm of T , E has
the bounded compact approximation property or the metric compact approximation
property, as appropriate.

We might be tempted to suppose that φ1 is injective when E′ has the compact
approximation property. This does not seem to be true in general, unlike the A(E)
case.

The paper [GW93] is a good source of information on the compact approximation
property, when applied to algebraic questions about K(E). We will come back to
this, but for now, we need a definition from [GW93].

Definition 7.8. Let E be a Banach space. Then E′ has the K(E)a-approximation
property if, for each compact subset K ⊆ E′ and each ε > 0, there exists T ∈ K(E)
such that ‖T ′(μ) − μ‖ ≤ ε for each μ ∈ K. Similarly, we have the idea of the
bounded K(E)a-approximation property.

Thus the K(E)a-approximation property is stronger than E′ having the compact
approximation property, and [GW93, Example 4.3] shows that, in general, these
properties do not coincide. In [GW93, Section 3], a sufficient condition on E is given
for these properties to be the same, but given the lack of examples of Banach spaces
without the (compact) approximation property, it is left open if this condition on
E is common or not.

Then [GW93, Corollaries 2.6, 2.7] states that E′ has the bounded K(E)a-approx-
imation property if and only if K(E) has a bounded right approximate identity, or
equivalently, a bounded approximate identity.

Proposition 7.9. Let E be a Banach space such that E′ or E′′ has the Radon–
Nikodým property, so that K(E)′′ is identified with a subalgebra of B(E′′). When
φ1 is injective, E′ has the metric K(E)a-approximation property. Conversely, when
E′ has the K(E)a-approximation property, we have that B(E)aa ⊆ K(E)′′ and that
E′ has the metric K(E)a-approximation property.

Proof. Given the above, we see that E′ has the bounded K(E)a-approximation
property if and only if K(E)′′ has a mixed identity. As K(E)′ = φ1(E′′⊗̂E′), we
see that φ1 is injective if and only if φ1 is an isometry E′′⊗̂E′ → K(E)′, which is if
and only if θ1 : K(E)′′ → B(E′′) is surjective. We can easily see that Ξ ∈ K(E)′′ is
a mixed identity if and only if θ1(Ξ) = IdE′′ , in which case, as θ1 is an isometry, we
have that E′ has the metric K(E)a-approximation property. We see immediately
that when φ1 is injective, E′ has the metric K(E)a-approximation property.

Conversely, suppose that τ ∈ E′′⊗̂E′ is such that φ1(τ) = 0. We can find
a representative τ =

∑∞
n=1 Λn ⊗ μn with

∑∞
n=1 ‖Λn‖ < ∞ and ‖μn‖ → 0 as

n → ∞. Let S ∈ B(E). Then (S′(μn))∞n=1 is a compact subset of E′, so as E′ has
the K(E)a-approximation property, for each ε > 0, there exists R ∈ K(E) with
‖S′(μn) −R′(S′(μn))‖ < ε for each n. As S ◦R ∈ K(E), we hence have

|〈S′′, τ〉| = |〈S′′, τ〉 − 〈φ1(τ), S ◦R〉|

=

∣∣∣∣∣
∞∑

n=1

〈Λn, S
′(μn) −R′(S′(μn))〉

∣∣∣∣∣ ≤ ε
∞∑

n=1

‖Λn‖.
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As ε > 0 was arbitrary, we see that 〈S′′, τ〉 = 0, and as τ ∈ kerφ1 was arbitrary,
we see that S′′ ∈ θ1(K(E)′′), as required. Then IdE′′ = Id′′

E ∈ θ1(K(E)′′), so again,
E′ has the metric K(E)a-approximation property. �

This result is very similar to [GS88, Corollary 1.6], which in turn is an improve-
ment of the argument used in [CJ85]. This gives yet another example of parallel
development in this area, as the authors of [GW93] seem to have been unaware of
these results.

The reason this is weaker than the corresponding result for A(E) is that we can
easily show that A(E′′) ⊆ A(E)′′, but we do not know that K(E′′) ⊆ K(E)′′. Of
course, when E is reflexive, this is not a problem.

Theorem 7.10. Let E be a reflexive Banach space. Then K(E) is Arens regular,
and K(E)′′ is identified, by θ1, with an ideal in B(E). Furthermore, K(E)′′ = B(E)
if and only if E has the compact approximation property.

Proof. AsE is reflexive, E′ has the Radon–Nikodým property, and so φ1 : E⊗̂E′ →
K(E)′ is a quotient operator, and θ1 : K(E)′′ → B(E) is an isometry onto its range.
We immediately see that K(E) is Arens regular (this is also shown in [Dal00, The-
orem 2.6.23], and, in a more limited case, in [Pal85, Theorem 3]). The proof is
complete by applying the above proposition. �

Corollary 7.11. Let E be a reflexive Banach space with the compact approximation
property. Then E has the metric compact approximation property. �

Example 7.12. In [Wil92], Willis constructs a reflexive Banach spaceW which has
the metric compact approximation property, but which does not have the approxi-
mation property. Thus we see that K(W )′′ = B(W ), while A(W )′′ is, isometrically,
a proper ideal in B(W ). This example answers, in the affirmative, the question
asked before Theorem 3 in [Pal85].

There do exist Banach spaces without the compact approximation property, for
example, those constructed in [Sza78]. In general, however, we do not have a good
supply of Banach spaces without the compact approximation property, a fact which
explains the slightly hesitant approach taken in this section.

We finish this section by looking at the radicals of K(E)′′. This is simple, given
the work we have already done.

Theorem 7.13. Let E be a Banach space. Then we have

rad(K(E)′′,�) = I1 = ker θ1, rad(K(E)′′,♦) = I2 = ker(Q ◦ θ1).
Proof. Examining the proof of Theorem 6.2, we see that we only use properties
of I1, I2, ψ1 and ψ2 which have been established for K(E)′′ in Proposition 7.4 and
Proposition 7.1. Thus we simply use the same argument. �

8. Conclusion

We have given a fairly complete classification of the topological centres arising
from algebras of operators associated with tensor norms. In seems likely that given
any concrete Banach space, the calculations to determine the topological centres can
be carried out. However, we fall short of giving the complete range of behaviour of
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the topological centres, because of a lack of examples of “extreme” Banach spaces,
namely, Banach spaces lacking the approximation property.

In recent years, building on the work of [GM93], there has been considerable
interest and progress in the study of Banach spaces with a “small” space of operators
(usually meaning that the strictly singular operators are of finite-codimension in
the algebra of all operators). It is the author’s opinion that a similar (although no
doubt very hard) programme studying the known constructions of Banach spaces
failing the approximation property could yield new constructions of spaces which
fail the approximation property, and yet are more amenable to study than those
currently known.

A more tentative line of enquiry would be to generalise the key idea of Section 7.
Namely, we use the fact that if ι : E → l∞(I) is an isometry, then T ∈ B(E) is
compact if and only if ι ◦ T is approximable. We might then define, for a tensor
norm α, T ∈ Kα(E) if and only if ι◦T ∈ Nα(E, l∞(I)). Does this lead to interesting
algebras of operators, and are they amenable to study? Again, it seems likely that
one would first need a good supply of Banach spaces without the approximation
property.
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[LÜ96] Lau, Anthony To Ming; Ülger, Ali. Topological centers of certain dual alge-
bras. Trans. Amer. Math. Soc. 348 (1996) 1191–1212. MR1322952 (96h:43003),
Zbl 0859.43001.

[Lau02] Laustsen, Niels Jakob. Maximal ideals in the algebra of operators on certain Ba-
nach spaces. Proc. Edinb. Math. Soc. 45 (2002) 523–546. MR1933735 (2003i:47080),
Zbl 1029.47046.

[LL03] Laustsen, Niels Jakob; Loy, Richard J. Closed ideals in the Banach algebra of op-
erators on a Banach space. Topological algebras, their applications, and related topics,
245–264. Banach Center Publ., 67. Polish Acad. Sci., Warsaw, 2005. MR2143930.

[Meg98] Megginson, Robert E. An introduction to Banach space theory. Graduate Texts
in Mathematics, 183. Springer-Verlag, New York, 1998. MR1650235 (99k:46002),
Zbl 0910.46008.

[Neu04] Neufang, Matthias. A unified approach to the topological centre problem for certain
Banach algebras arising in abstract harmonic analysis. Arch. Math. 82(2004) 164–171.
MR2047670 (2005g:22004), Zbl 1052.22004.

[Pal85] Palmer, Theodore W. The bidual of the compact operators. Trans. Amer. Math.
Soc. 288 (1985) 827–839. MR0776407 (86f:47027), Zbl 0537.47027.

http://www.emis.de/cgi-bin/MATH-item?0537.47027
http://www.ams.org/mathscinet-getitem?mr=0776407
http://www.emis.de/cgi-bin/MATH-item?1052.22004
http://www.ams.org/mathscinet-getitem?mr=2047670
http://www.emis.de/cgi-bin/MATH-item?0910.46008
http://www.ams.org/mathscinet-getitem?mr=1650235
http://www.ams.org/mathscinet-getitem?mr=2143930
http://www.emis.de/cgi-bin/MATH-item?1029.47046
http://www.ams.org/mathscinet-getitem?mr=1933735
http://www.emis.de/cgi-bin/MATH-item?0859.43001
http://www.ams.org/mathscinet-getitem?mr=1322952
http://www.emis.de/cgi-bin/MATH-item?0608.43002
http://www.ams.org/mathscinet-getitem?mr=0939122
http://www.emis.de/cgi-bin/MATH-item?0501.46043
http://www.ams.org/mathscinet-getitem?mr=0628827
http://www.emis.de/cgi-bin/MATH-item?0286.46018
http://www.ams.org/mathscinet-getitem?mr=0417763
http://www.emis.de/cgi-bin/MATH-item?0042.36102
http://www.ams.org/mathscinet-getitem?mr=0044024
http://www.emis.de/cgi-bin/MATH-item?0074.32303
http://www.ams.org/mathscinet-getitem?mr=0094682
http://www.emis.de/cgi-bin/MATH-item?0685.47037
http://www.ams.org/mathscinet-getitem?mr=1021948
http://www.emis.de/cgi-bin/MATH-item?0611.47016
http://www.ams.org/mathscinet-getitem?mr=0909783
http://www.emis.de/cgi-bin/MATH-item?0546.46039
http://www.ams.org/mathscinet-getitem?mr=0771833
http://www.emis.de/cgi-bin/MATH-item?0794.46017
http://www.ams.org/mathscinet-getitem?mr=1205894
http://www.emis.de/cgi-bin/MATH-item?0827.46008
http://www.ams.org/mathscinet-getitem?mr=1201238
http://www.emis.de/cgi-bin/MATH-item?0631.46015
http://www.ams.org/mathscinet-getitem?mr=0955384
http://www.emis.de/cgi-bin/MATH-item?0289.46015
http://www.ams.org/mathscinet-getitem?mr=0341032
http://www.emis.de/cgi-bin/MATH-item?0325.47028
http://www.ams.org/mathscinet-getitem?mr=0377591
http://www.emis.de/cgi-bin/MATH-item?0267.46012
http://www.ams.org/mathscinet-getitem?mr=0402468
http://www.emis.de/cgi-bin/MATH-item?0427.46028
http://www.ams.org/mathscinet-getitem?mr=0559675
http://www.emis.de/cgi-bin/MATH-item?0369.46039
http://www.ams.org/mathscinet-getitem?mr=0453964


270 Matthew Daws

[Pal94] Palmer, Theodore W. Banach algebras and the general theory of ∗-algebras. Vol.
1. Algebras and Banach algebras. Encyclopedia of Mathematics and its Applica-
tions, 49. Cambridge University Press, Cambridge, 1994. MR1270014 (95c:46002),
Zbl 0809.46052.

[Pie80] Pietsch, Albrecht. Operator ideals. North-Holland Mathematical Library, 20.
North-Holland, Amsterdam, 1980. MR0582655 (81j:47001), Zbl 0434.47030.

[Pis83] Pisier, Gilles. Counterexamples to a conjecture of Grothendieck. Acta Math. 151
(1983) 181–208. MR0723009 (85m:46017), Zbl 0542.46038.

[Pis86] Pisier, Gilles. Factorization of Linear Operators and Geometry of Banach Spaces.
CBMS Regional Conference Series in Mathematics, 60. Published for the Conference
Board of the Mathematical Sciences, Washington, DC; by the American Mathematical
Society, Providence, RI, 1986. MR0829919 (88a:47020), Zbl 0588.46010.

[Rya02] Ryan, Raymond A. Introduction to tensor products of Banach spaces. Springer Mono-

graphs in Mathematics. Springer-Verlag, London, 2002. MR1888309 (2003f:46030).
[Sch50] Schatten, Robert. A theory of cross-spaces. Annals of Mathematics Studies,

26. Princeton University Press, Princeton, N. J., 1950. MR0036935 (12,186e),
Zbl 0041.43502.

[Sza78] Szankowski, A. Subspaces without the approximation property. Israel J. Math. 30
(1978) 123–129. MR0508257 (80b:46032), Zbl 0384.46008.

[Sza81] Szankowski, Andrzej. B(H) does not have the approximation property. Acta Math.
147 (1981) 89–108. MR0631090 (83a:46033), Zbl 0486.46012.

[Wil92] Willis, George. The compact approximation property does not imply the ap-
proximation property. Studia Math. 103 (1992) 99–108. MR1184105 (93i:46035),
Zbl 0814.46017.

[You76] Young, N. J. Periodicity of functionals and representations of normed algebras on
reflexive spaces. Proc. Edinburgh Math. Soc. (2) 20 (1976/77) 99–120. MR0435849
(55 #8800), Zbl 0331.46042.

St. John’s College, Oxford, OX1 3JP

matt.daws@cantab.net

This paper is available via http://nyjm.albany.edu/j/2007/13-13.html.

http://nyjm.albany.edu/j/2007/13-13.html
mailto:matt.daws@cantab.net
http://www.emis.de/cgi-bin/MATH-item?0331.46042
http://www.ams.org/mathscinet-getitem?mr=0435849
http://www.emis.de/cgi-bin/MATH-item?0814.46017
http://www.ams.org/mathscinet-getitem?mr=1184105
http://www.emis.de/cgi-bin/MATH-item?0486.46012
http://www.ams.org/mathscinet-getitem?mr=0631090
http://www.emis.de/cgi-bin/MATH-item?0384.46008
http://www.ams.org/mathscinet-getitem?mr=0508257
http://www.emis.de/cgi-bin/MATH-item?0041.43502
http://www.ams.org/mathscinet-getitem?mr=0036935
http://www.ams.org/mathscinet-getitem?mr=1888309
http://www.emis.de/cgi-bin/MATH-item?0588.46010
http://www.ams.org/mathscinet-getitem?mr=0829919
http://www.emis.de/cgi-bin/MATH-item?0542.46038
http://www.ams.org/mathscinet-getitem?mr=0723009
http://www.emis.de/cgi-bin/MATH-item?0434.47030
http://www.ams.org/mathscinet-getitem?mr=0582655
http://www.emis.de/cgi-bin/MATH-item?0809.46052
http://www.ams.org/mathscinet-getitem?mr=1270014


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


