 

Peter A. Linnell and Michael J. Puls
Zero Divisors and L^{p}(G), II


Published: 
June 4, 2001

Keywords: 
zero divisor, free group, Fourier transform, radial function, free abelian group 
Subject: 
Primary: 43A15; Secondary: 43A25, 42B99 


Abstract
Let G be a discrete group, let p ≧ 1,
and let L^{p}(G) denote the
Banach space {∑_{g∈ G} a_{g} g
 ∑_{g∈ G} a_{g}^{p} < ∞}. The following problem will
be studied: Given 0 ≠ α ∈ CG and
0 ≠ β ∈ L^{p}(G), is α * β ≠ 0? We will
concentrate on the case G is a free abelian or
free group.


Author information
Peter A. Linnell:
Math, VPI, Blacksburg, VA 240610123
linnell@math.vt.edu
http://www.math.vt.edu/people/linnell/
Michael J. Puls:
New Jersey City University, Jersey City, NJ 073051597
mpuls@njcu.edu
http://ellserver3.njcu.edu/math/puls/Puls.htm

