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Recursion in Curve Geometry

Joel Langer

Abstract. Recursion schemes are familiar in the theory of soliton equations,
e.g., in the discussion of infinite hierarchies of conservation laws for such equa-
tions. Here we develop a variety of special topics related to curves and curve
evolution in two and three-dimensional Euclidean space, with recursion as a
unifying theme. The interplay between curve geometry and soliton theory is
highlighted.
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1. Introduction

Among soliton equations, the filament model (FM), γt = γs×γss, is particularly
simple in form, and easy to interpret geometrically. FM describes a curve γ(s, t)
evolving in three-dimensional space E3, and arose as a model of thin vortex tubes
in ideal three-dimensional fluids. (In this context, FM is generally known as the
localized induction equation or the Betchov Da Rios equation—see [Ri] for historical
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background.) As we intend to illustrate, the structure of FM lends insight and a
rich set of examples to the study of curves; geometry repays the debt, providing a
setting for an elementary demonstration of some of the basic “miracles” of soliton
theory, in which many computations related to FM gain simple geometric meaning.

For soliton equations, the associated infinite hierarchies of commuting Hamil-
tonian flows, conserved variational integrals, and explicitly computable “soliton
solutions” are closely related, basic elements of integrable structure. In particular,
the FM recursion scheme, Equation 1, yields a sequence of differential operators,
X0, X1, . . . , Xn, . . . , such that the above Hamiltonian flows are defined by the
PDE’s γt = Xn[γ], and the stationary equations, 0 = Xn[γ], describe (initial con-
ditions for) the soliton solutions to FM. While recursion schemes are typically
“derived” in soliton theory from (presumably) more fundamental principles, Equa-
tion 1 is adopted here as starting point; the latter is simpler-looking than better-
known recursion schemes in soliton theory, leads more transparently to closed form
solution, and yields formulas which may be directly and systematically applied to
several interesting topics in curve geometry.

Nevertheless, we begin §2 with a brief motivation of the FM recursion scheme
itself, via the condition of unit speed parametrization, 〈γs, γs〉 = 1. We proceed
to develop basic results on the solution to the recursion scheme (see Theorem 2),
representing the general solution as a formal series of vectorfields (or vector-valued
operators), X =

∑∞
n=0 λ

nXn, starting with X0 = −γs, and depending on a se-
quence of ‘constants of integration’. As it turns out, the length of X is indepen-
dent of s, and normalization by the assumption of unit length—extending the unit
speed condition on γ itself—uniquely determines a special solution Y to the recur-
sion scheme. This normalization device, which conveniently fixes all constants of
integration (without reference to boundary conditions or any analytic machinery),
is used repeatedly throughout the paper, beginning with the description of planar
and binormal FM subhierarchies along planar curves (see Corollary 3).

In §3 we consider statics of curves belonging to the soliton class, Γ = {γ : some
Xn vanishes along γ}, beginning with formulas for first integrals, Killing fields, and
expression of Euclidean coordinates of γ ∈ Γ by quadrature, in terms of FM fields
Xn (see Theorem 4). We also observe that Y converges for such curves, suggesting
more geometrical interpretations of Y—e.g., as a canonical extension Y [T ] of closed
spherical curves T to spherical mappings of a cylinder. Next, we demonstate the
exceptionally good fit between the soliton class Γ and Frenet theory—using both
standard and natural Frenet systems. The latter introduce into the picture a second
parameter, σ, which ultimately (in §5) will be identified with the spectral parameter
in the standard sense of soliton theory. The lower order examples (beginning with
lines, helices, elastic rods and buckled rings) illustrate how Γ provides integrable geo-
metric variational problems and (finite dimensional) Hamiltonian systems—indeed,
integrable physical models. Here we present basic results on the soliton class, partly
with a view towards the broader potential of Γ as a significant class of curves; briefly,
Γ is large enough to represent arbitrary geometrical and topological complexity, yet
highly structured and admitting a variety of explicit constructions.

In §4, we take up curve dynamics, especially the PDE’s γt = Xn[γ] of the
FM hierarchy. There are brief discussions of non-stretching motions in general,
of the Hamiltonian nature of FM and the FM constants of motion, and of the
congruence solutions (special soliton solutions) associated to the soliton class Γ. The
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relationships to the non-linear Schrödinger (NLS) and modified Korteweg-de Vries
(mKdV) equations are derived as a corollary to the variation of natural curvatures
formula (Theorem 14), which gives the FM recursion operator a role in the geometry
of curves. We then proceed to consider equations which preserve planar, spherical,
and constant torsion curves, relating all these to the (real) mKdV hierarchy, and
the last to pseudospherical surfaces and the sine-Gordon equation. A closer look at
the constant torsion-preserving flows leads to a slight genereralization of the FM
recursion scheme, in which the parameters λ and σ may be allowed to interact;
a specialization yields a description of the FM vectorfields, in terms of covariant
constancy of a series Xσ.

Finally, Section 5 makes the bridge between the special topics on curves and the
more widely known formalism of soliton theory. First we recast the natural Frenet
system for curves in R3 in terms of the standard spectral problem for the non-linear
Schrödinger equation in the SU(2) setting. Then we recall the technique of differ-
entiation with respect to the spectral parameter (due to Sym and Pohlmeyer [Sym]),
which produces unit speed curves from a set of eigenfunctions. After briefly deriv-
ing the NLS hierarchy from the zero curvature condition, we explain the equivalence
between the FM and NLS recursion schemes—in a word, the two are related like
“body” and “space” coordinates. The simple conclusion deserves amplification, for
several reasons. First, another geometric interpretation of the spectral parameter
(as the inverse of a spherical radius—see [D-S]) has been proposed; however, it does
not admit the same clean translation between the linear systems underlying FM
and NLS. Second, in the context of curve geometry, natural frames are generally
considered only with σ = 0—these appear to suffice for many purposes, but the
discussion here suggests valuable information may be lost by so specializing too
quickly.

Which brings us back to the main technique, the common thread of the paper;
for the spectral parameter and recursion are two faces of a coin—continuous and
discrete aspects of an underlying symmetry, a key degree of freedom in a highly
structured system. The spectral parameter and the recursion are the slip and the
rattle by which the inner workings of the mechanism are heard.

2. The FM recursion scheme

In the Frenet theory of curves, the notion of arclength-parametrization is essen-
tial. Though one can compute expressions for curvature κ and torsion τ of a curve
γ using a more general parametrization, these quantities give very limited informa-
tion about γ, unless referred to a unit speed parameter. Ironically, in elementary
mathematics, arclength-parametrization is mostly an abstraction—one rarely en-
counters it in the flesh! Happily, soliton theory ultimately provides a large supply
of arclength-parametrized curves; especially, ways to deform a given such curve to
obtain many others.

Turning things around, we wish to motivate the FM recursion scheme by bor-
rowing a lemma of non-stretching curve dynamics (see Section 4.1):

Lemma 1. The curve-speed v = ‖∂γ∂u‖ = ∂s
∂u 6= 0 of an evolving regular curve

γ(u, t) is preserved—v(u, t) is independent of t—if and only if W = ∂γ
∂t satisfies the
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condition 〈T, ∂W 〉 = 0. Here, T = ∂γ
∂s is the unit tangent vector, and ∂ = ∇T is

the covariant derivative along γ.

Proof. The lemma is valid, as stated, in a Riemannian manifold. In the present
(Euclidean) context, we simply use partial derivative notation: (v2)t = ∂

∂t 〈γu, γu〉 =
2〈γu, γut〉 = 2〈γu,Wu〉 = 2v2〈T, ∂W 〉. �

To paraphrase, W is a locally arclength-preserving (LAP) vectorfield along γ if and
only if W satisfies JX = ∂W , for some vectorfield X; here, J = T× is the operator
which takes cross product with the unit tangent.

The most obvious way to satisfy this condition is to let W be the unit tangent
vector itself, W = T . Note that the corresponding motion of γ is just slipping of γ
along itself (shifting of parameter), without change of shape or position. Of course,
we would like to describe more interesting non-stretching motions. To do so, we
introduce the FM recursion scheme,

JXn = ∂Xn−1(1)

Here, the recursion starts with X0 = −γs = −T . Assuming we can determine
X1, X2, . . . , we should thus have a sequence of increasingly complicated non-
stretching motions (note Xn depends on n derivatives of T = γs).

We now show how to compute the Xn from Equation 1. Since J2 = −Id on
normal vectorfields, (1) implies

Xn = fnT − J∂Xn−1,(2)

for some fn. As it turns out, there are two ways to compute fn in terms of
X1, X2, . . . , Xn−1. This is a key fact.

First, replacing n by (n+ 1) in Equation 1, we obtain further information about
Xn; namely, 〈T, ∂Xn〉 = 0, so ∂fn = ∂〈T,Xn〉 = −〈∂X0, Xn〉, i.e.,

∂fn = 〈X1, JXn〉(3)

Since the normal part of Xn is already “known”, antidifferentiation of (3) yields fn,
uniquely, up to an arbitrary constant of integration. By this approach, one could
compute X1, X2, X3, explicitly, with the help of “good luck”: at each step, the
required antiderivative, fn, turns out to be computable in closed form.

For the second approach, it’s convenient to consider formal power series, X =∑∞
n=0 λ

nXn, and to make use of the natural extensions to such series of the vector
operations ∂, J , 〈 , 〉, etc. For instance, we can write JX =

∑∞
n=1 λ

nJXn, and
λ∂X =

∑∞
n=0 λ

n+1∂Xn =
∑∞
n=1 λ

n∂Xn−1. Evidently, (1) can be rewritten as

JX = λ∂X(4)

This invites the product rule: λ∂〈X,X〉 = 2〈λ∂X,X〉 = 2〈JX,X〉 = 0, by skew-
adjointness of J . In other words,

〈X,X〉 = p(λ),(5)

where p(λ) = 1 +
∑∞
n=1 Cnλ

n is a series in λ, with coefficients Cn which do not
depend on s. Thus, for fixed real λ, X describes a spherical curve (assuming
convergence). Note that the λn term of (5) is

∑n
k=0〈Xk, Xn−k〉 = Cn; hence, for
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n = 2, 3, . . . ,

2fn = −Cn +
n−1∑
k=1

〈Xk, Xn−k〉(6)

This equation is clearly the preferred way to compute fn; in fact, comparison with
Equation 3 explains the “perfect derivative phenomenon” by way of the following
interesting identity (whose significance is explained in §4.1):

∂

n−1∑
k=1

〈Xk, Xn−k〉 = 2〈X1, JXn〉(7)

We will often use the convenient normalization p(λ) = 1—all Cn are zero—and
denote by Y =

∑∞
n=0 λ

nYn the resulting series (which corresponds to the “obvious”
choices of antiderivatives in the first approach). For convenient reference, we list
the first few terms before summarizing the main conclusions of this section:

Y0 = −γs,
Y1 = γs × γss,
Y2 =

3
2
〈γss, γss〉γs + γsss,

Y3 = 〈γs × γss, γsss〉γs − γs × γssss − 3
2
〈γss, γss〉γs × γss

Theorem 2. Let X =
∑∞
n=0 λ

nXn satisfy JXn = ∂Xn−1, with X0 = −γs. Then
〈X,X〉 = p(λ) does not depend on s. Further,

a) The normalized solution, Y =
∑∞
n=0 λ

nYn, is given inductively by

Yn = (
1
2

n−1∑
k=1

〈Yk, Yn−k〉) T − J∂Yn−1,(8)

which uniquely defines Yn[γ] as an (n+ 1)st-order differential operator on reg-
ular curves γ.

b) In the general case, p(λ) = 1 +
∑∞
n=1 Cnλ

n, X may be written

X =
∞∑
n=0

λn
n∑
k=0

An−kYk = (
∞∑
i=0

Aiλ
i)(
∞∑
j=0

λjYj) =
√
p(λ) Y(9)

c) For 1 ≤ m < n, the following derivative identity holds:

∂

n−m∑
k=1

〈Xm+k−1, Xn−k〉 = 2〈Xm, JXn〉(10)

Proof. Equation 8 just combines Equations (2) and (6), with Cn = 0. Note that,
in terms of Euclidean coordinates, γ = (x1, x2, x3), each component of Yn is a
polynomial in the 3(n + 1) quantities, ∂jxi, i = 1, 2, 3, j = 1, . . . , (n + 1); this
locality result is an immediate but fundamental consequence of Equation 8.

For part b), note that Equations (2) and (3) imply that the general solution to
Equation 4 has the form X =

∑∞
n=0 λ

nXn =
∑∞
n=0 λ

n
∑n
k=0An−kYk. The remain-

ing formulas for X now follow by formal multiplication and the normalization of Y .
In particular, p(λ) = (

∑∞
k=0Akλ

k)2, i.e., the “integration constants” A1, A2, . . . ,
are related to the Cm by Cm =

∑m
k=0AkAm−k (with A0 = 1). We remark that, in



30 Joel Langer

the expansion of 〈X,X〉 = p(λ), only the 〈Y0, Y0〉 terms contribute; the remaining
terms must cancel for the result to be independent of s.

Part c) directly generalizes Equation 7, and can be proved as follows. For
m = 0, 1, . . . , let X(m) denote the shifted series, X(m) =

∑∞
n=0 λ

nXn+m. Not-
ing J(X(m) −Xm) = λ∂X(m), one obtains λ∂〈X(m), X(m)〉 = 2〈Xm, JX

(m)〉. The
λn−m-term yields Equation 10. �

Corollary 3. Along a planar curve γ, the even fields Y2n[γ] are planar, while
the odd fields Y2n+1[γ] are “binormal” (perpendicular to the plane of γ). Fur-
ther, the planar subhierarchy, Y2n[γ], may be computed inductively by: Y2n+2 =
J2∂2Y2n+f2n+2T , where 2f2n+2 =

∑n
k=1〈Y2k, Y2(n+1−k)〉+

∑n
k=0〈∂Y2k, ∂Y2(n−k)〉,

n = 1, 2, . . . .

Proof. Assuming γ is planar, we use induction to prove Y2j−1 is binormal and Y2j is
planar, for j = 1, 2, . . . . Assume this holds for 1 ≤ j ≤ n (obviously valid when n =
1). Then f2n+1 = 1

2

∑2n
k=1〈Yk, Y2n+1−k〉 = 0, since each term is the dot product of a

planar field with a binormal field. Therefore, Y2n+1 = f2n+1T−J∂Y2n = −J∂Y2n is
binormal, and Y2n+2 = f2n+2T −J∂Y2n+1 is planar, and the induction argument is
concluded. Further, we can write Y2n+2 = f2n+2T +J∂J∂Y2n = f2n+2T +J2∂2Y2n,
since (∂T )× (∂Y2n) = 0. The sum f2n+2 = 1

2

∑2n+1
k=1 〈Yk, Y2n+2−k〉 may be split into

terms with even and odd indices; applying Equation 1 to the odd (binormal) terms,
〈Y2k+1, Y2(n−k)+1〉 = 〈JY2k+1, JY2(n−k)+1〉, yields the given formula. �

We remark that the even and odd parts, Xe = 1
2 (Xλ + X−λ) and Xo = 1

2 (Xλ −
X−λ), of X = Xλ have constant formal dot product, 〈Xe, Xo〉 = 1

4 (p(λ)− p(−λ)),
vanishing for p(λ) even; along planar γ, Xe is then planar and Xo binormal. The
corollary will be extended to constant torsion curves, via introduction of the spectral
parameter (in §4.3, where all the main formulas of this section will be generalized).

The FM recursion scheme was considered in earlier work with Ron Perline
([L-P 1]), in terms of a recursion operator (see §4.2). We subsequently found the
closed form inductive solution (Equation 8), in collaboration with Annalisa Calini
and David Singer. In the present paper, we have adopted a formal power series
approach (as in Equations (4), (5), (9)); systematic use of this formalism not only
clarifies some technical issues (especially those related to “constants of integra-
tion”), but also invites geometric interpretation of the recursion scheme and its
solution Y .

3. Statics of soliton curves

3.1. The soliton class Γ. The nthsoliton class, Γn = {γ : 0 = Xn}, is defined
by an nth-order ODE for T = γs, depending on n arbitrary constants: 0 = Xn =∑n
k=0An−kYk, A0 = 1. For instance, Γ1 = {straight lines}, Γ2 = {helices},

Γ3 = {Kirchhoff elastic rods}, and the closed planar curves in Γ4 describe buckled
rings (see Examples 7–10, below). The stationary problems 0 = Xn can be formu-
lated also as geometric variational problems; e.g., elastic rods are critical for linear
combinations of length, total torsion, and total squared curvature (see [L-S 4]). The
first two parts of the following theorem provide basic computational tools for soliton
curves, while part c) gives geometric meaning to the formal series Y = Y [γ].
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Theorem 4. Let γ ∈ Γn ( γ 6∈ Γn−1) satisfy 0 = Xn =
∑n
k=0An−kYk. Then

a) The following m− 1 first integrals are also satisfied :
n−m∑
k=1

〈Xm+k−1, Xn−k〉 = constant, m = 1, 2, . . . , (n− 1),(11)

b) The vectorfields Xn−1 and Xn−2 are the restrictions to γ of Killing fields
on E3. In fact, Xn−1 is a translation (constant) field, and Xn−2 is a screw
field; the two fields commute, hence, associate to γ a system of cylindrical
coordinates, r, θ, z. As functions along γ, these coordinates satisfy

r2 = α−2‖Xn−2‖2 − β2, zs = α−1fn−1, r2θs = α−1(βfn−1 − fn−2),(12)

where α = ‖Xn−1‖ and β = α−2〈Xn−1, Xn−2〉 are constants.
c) Y = Y [γ] converges. In fact, X = X[γ] may be assumed to terminate, p(λ) =
〈X,X〉 is a non-vanishing polynomial, and T (s;λ) = −Y = −X/√p(λ) defines
a homotopy of curves in the unit sphere, deforming the tangent indicatrix,
T (s; 0) = T (s), of γ to the point(s) T (s;±∞) = −(±1)n−1α−1Xn−1, as λ →
±∞.

Proof. Part a) follows at once from part c) of Theorem 2. Part b) is established
by the following sequence of elementary observations.

i) 0 = JXn = ∂Xn−1, so Xn−1 = constant 6= 0 i.e., Xn−1 is the restriction to γ
of a translation (constant) vectorfield on E3. Thus, we may set Xn−1 = α∂z, where
α is the constant α = ‖Xn−1‖.

ii) ∂(γ×Xn−1) = JXn−1 = ∂Xn−2, so Xn−2 = γ×Xn−1 +V , for some constant
vector V . In fact, by translating coordinates (γ 7→ γ − α−2Xn−1 × V ), we can
write Xn−2 = γ ×Xn−1 + βXn−1, with β = α−2〈Xn−1, V 〉 = constant, hence also
〈Xn−1, Xn−2〉 = α2β = constant. Note that Xn−2 is the restriction to γ of a screw
field (translation field plus rotation field) on E3, with axis ∂z. Thus we may write
Xn−2 = α(β∂z − ∂θ).

iii) The equation ‖Xn−2‖2 = α2(β2 + r2) may be regarded as a formula for r(s),
the first cylindrical coordinate along γ. Similarly, writing T = rs∂r+θs∂θ+zs∂z, we
obtain the formulas αzs = α〈T, ∂z〉 = 〈T,Xn−1〉 = fn−1, and fn−2 = 〈T,Xn−2〉 =
βfn−1−αr2θs. Thus, z(s) and θ(s) are given by quadrature, in terms of ‖Xn−2‖2,
fn−1, fn−2, α, and β.

To prove part c), note that the differential operators X1, X2, . . . are uniquely
specified by constants A0 = 1, A1, A2, . . . , according to X =

∑∞
r=0 λ

rXr =∑∞
r=0 λ

r
∑r
k=0Ar−kYk. The theorem assumes A1, A2, . . . , An are such thatXn[γ] =

0. An induction argument shows that Am+1 = 〈T,∑m
k=0Am−kYk+1〉, m ≥ n, de-

fines constants An+1, An+2, . . . such that X evaluates to the terminating series
X[γ] =

∑n−1
r=0 λ

rXr[γ]. (The fact that the remaining constants are not taken to be
zero points out why the interpretation of the Ak as “constants of integration” re-
quires one to be careful.) Note that p(λ) is non-vanishing, since otherwise X[γ] = 0
for some λ, implying γ ∈ Γn−1. The remaining statements now follow easily from
Theorem 2, and Xn−1 = constant. �

Note antidifferentiation in part c) yields a regular homotopy, γ(s;λ) =
∫ −Y ds,

deforming γ to a straight line as λ → ±∞. We consider this canonical straight-
ening process for soliton curves in [La], where explicit examples are worked out
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and topological and geometrical behavior are considered. This is an example of a
parametrized family construction—a recurring theme.

3.2. FM and Frenet theory. Next, we recall the Frenet equations of classical
curve theory: Ts = κN, Ns = −κT + τB, Bs = −τN ; here, the curvature
κ(s) 6= 0 and torsion τ(s) describe the shape of γ, and the tangent T (s), normal
N(s), and binormal B(s) form an (adapted) orthonormal frame along γ. Using
these equations, we can write the Xn in the form Xn = anT + bnN + cnB, where
an = fn, bn, cn are expressed as polynomials in ∂iκ, i = 0, 1, . . . , (n − 1), and
∂jτ, j = 0, 1, . . . , (n− 2). In view of Theorem 4, we therefore have:

Corollary 5. The Frenet equations for a curve γ in Γ are integrable by quadrature;
γ(s) = (r(s) cos θ(s), r(s) sin θ(s), z(s)), where r and zs are polynomial in κ(s), τ(s),
and derivatives of these functions, while θs is rational in the same.

We will be making even more frequent use of natural Frenet systems:

Ts = u1U1 + u2U2, (U1)s = −u1T + σU2, (U2)s = −u2T − σU1,(13)

where σ is a constant. The relationship to the classical Frenet system can be
written u1 + iu2 = κeiθ, and U1 + iU2 = (N + iB)eiθ, where θ =

∫ s
τ(u) − σdu;

also, κ2 = u2
1 + u2

2 and τ = u−2(u1(u2)s − u2(u1)s) + σ. While κ, τ and {T,N,B}
are uniquely defined along a regular space curve γ (with κ 6= 0), the curvatures
u1, u2 and frame vectors U1, U2 are determined (given σ) only up to multiplication
by a complex unit, eiθ0 – this freedom corresponds to the choice of antiderivative
in the above formulas. Bishop [Bi] pointed out the virtues of natural frames (with
σ = 0), including, e.g., the following.

Lemma 6. The following conditions on a curve γ ⊂ E3 are equivalent:
a) γ lies on a sphere of radius R = 1/c, and has geodesic curvature κg. Here,

c = 0 is allowed, for the planar case.
b) There exists a natural frame along γ having natural curvatures u1, u2 with

σ = 0, such that u2 = c = constant, and u1 = κg.
c) If u1, u2 are natural curvatures along γ with σ = 0, then the function ψ(s) =

u1(s) + iu2(s) maps into a line in the complex plane, and ‖ψ(s)‖2 = κ2
g + c2,

with c equal to the distance from the line to the origin.

Proof. If u2 = c = constant 6= 0, then (γ + U2/c)s = T − cT/c = 0, so γ lies on a
sphere of radius 1/c. The rest of the proof is also quite easy. �

So-called frames of least rotation (again σ = 0) have been considered also in the
context of computer-aided design (see e.g., [W-J]), where the smoother or more
regular behavior of natural frames is an advantage. Presently, natural Frenet sys-
tems will be seen to be intimately related to the structure of FM. Here it becomes
important to include the spectral parameter σ—the reason for the term will be
made clear in §5—and to allow σ-frames with σ 6= 0. For the moment, we sim-
ply note that σ-frames have distinct topological advantages: while 0-frames along
a closed regular curve are generally not periodic, σ-frames realize the (p,q)-cable
construction producing a new knot from an old knot, in the form γ(p,q) = γ + εU1,
with

∫
γ
σ(p, q)− τds = 2πp/q (or one can produce non-cable knots, using larger ε).

Of course, one can also “desingularize” a planar knot (which the standard Frenet
frame cannot do).
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Returning now to the FM hierarchy, we can obtain another version of Corollary 5
by applying Theorem 4 to the expressions Xn = fnT+gnU1+hnU2; here, gn and hn
are polynomials in the ui and their derivatives of order up to (n− 1), and fn is one
order lower. This is a good place to observe also that the normalized vectorfields
Yn = anT + bnN + cnB = fnT + gnU1 + hnU2 have homogeneous coefficients with
respect to both types of Frenet systems: an, bn, cn (respectively, fn, gn, hn) all
have weight n, each “factor” κ, τ , and ′ = ∂

∂s (u1, u2, σ, and ′) contributing one.
For example (using κ2 = u2

1 + u2
2 for brevity):

Y0 = −T,
Y1 = κB = −u2U1 + u1U2,

Y2 =
κ2

2
T + κ′N + κτB =

κ2

2
T + u′1U1 + u′2U2 + σY1,

Y3 = κ2τT + (2κ′τ + κτ ′)N + (κτ2 − κ′′ − κ3

2
)B

= (u1u
′
2 − u2u

′
1)T + (u′′2 + u2

κ2

2
)U1 − (u′′1 + u1

κ2

2
)U2 + 2σY2 − σ2Y1,

Y4 = a4T + (−κ′′′ + 3κττ ′ + 3κ′τ2 − 3
2
κ2κ′)N + (−κτ ′′ + κτ3 − 3(κ′τ)′ − 3

2
κ3τ)B

= f4T − (u′′′1 +
3
2
κ2u′1)U1 − (u′′′2 +

3
2
κ2u′2)U2 + 3σY3 − 3σ2Y2 + σ3Y1

In the last term, a4 = −κκ′′+ 1
2 (κ′)2 + 3

2κ
2τ2− 3

8κ
4, and f4 = −1

2 (κ2)′′+ 3
2 ((u′1)2 +

(u′2)2)− 3
8κ

4. In the above formulas one observes a slipping phenomenon associated
with the spectral parameter σ. This will play a role in later sections.

Example 7. (Spinning Lines) Γ1 = {γ : 0 = X1 = A1Y0 + Y1} gives at once 0 =
κ = u1 = u2 = A1 and γ ∈ Γ1 is a straight line. While the classical Frenet system is
not defined along γ, σ-frames satisfy Ts = 0 and (U1 + iU2)′ = −iσ(U1 + iU2). The
trigonometric solution U1 + iU2 = e−iσs(U1(0) + iU2(0)) imparts a “spin” to the
straight line γ = sT +γ(0), which allows us to interpret γ as an asymptotic helix, as
in the next example. Also (as pointed out by Tom Ivey), Bäcklund transformations
of spinning lines give Hasimoto filaments (described below).

Example 8. (Helices) Γ2 = {γ : 0 = X2 = A2Y0 +A1Y1 +Y2}, and γ ∈ Γ2 is either
a straight line, or satisfies 0 = (−A2 + κ2/2)T + κsN + (A1 + τ)κB. So γ 6∈ Γ1

has constant curvature κ and torsion τ = −A1. Equations 12 give r = κα−2,
zs = τα−1, θs = α, using α =

√
κ2 + τ2 and β = −τα−2. Thus, γ = (x, y, z) =

(κα−2 cos θ, κα−2 sin θ, α−1τs+ z0), with θ = αs+ θ0. Note X1 = τT + κB = α∂z
is a translation field, and X0 = −T is a screw field along the helix γ.

For n = 2, γ(s;λ) =
∫ −Y ds turns out to be a homotopy of helices, whose nice

behavior at λ = ±∞ completes the family of helices with spinning lines. Specifically,
we have X = X0 + λX1 = −T + λα∂z, and p = 1 − 2λτ + λ2α2, from which
we compute the tangent, T (s;λ) = p−1/2(T − λα∂z), normal, N(s;λ) = N(s),
curvature, κ(s;λ) = p−1/2κ, and torsion, τ(s;λ) = p−1/2(λα2 − τ), of the helix
γ(s;λ) = p−1/2(γ(s) − λαs∂z). The framed curve defined by the Frenet lift has a
limit at λ = ±∞: it is the spinning line γ(s;±∞) = ∓s∂z, with σ = ±α.

Example 9. (Elastic Rods) Γ3 = {γ : 0 = X3 = A3Y0 + A2Y1 + A1Y2 + Y3}.
Reading off normal and binormal components (γ 6∈ Γ1), one obtains the pair of
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equations: 2κsτ + κτs + A1κs = 0, and κτ2 − κss − κ3

2 + A1κτ + A2κ = 0. The
first integrals are: 〈X1, X2〉 = κ2(τ + A1

2 ) + A1A2 and 〈X2, X2〉 = (κs)2 + κ2τ2 +
κ2( 1

4κ
2 + 2A1τ + A2

1 − A2) + A2
2. (The tangential component of 0 = X3 is just

the lowest order first integral.) These equations can be solved for κ, τ , in terms
of elliptic functions. Combined with Corollary 5, this provides one approach to
integration of the equation X3 = 0, to obtain an explicit parametrization γ(s) of
an elastic rod in terms of elliptic integrals.

Alternatively, the U1 and U2 components of the equation 0 = X3 give the follow-
ing system for u1, u2: 0 = ∂2u2 +u2(u2

1 +u2
2)/2+(A1 +2σ)∂1u1−(A1σ+σ2 +A2)u2,

and 0 = ∂2u1 + u1(u2
1 + u2

2)/2− (A1 + 2σ)∂1u2 − (A1σ + σ2 +A2)u1. This can be
rewritten as a classical Hamiltonian system with two degrees of freedom, qi = ui,
conjugate momenta p1 = ∂q1 − ( 1

2A1 + σ)q2, p2 = ∂q2 + ( 1
2A1 + σ)q1, Hamiltonian

H = 1
2 〈X2, X2〉 − (A1 + σ)〈X1, X2〉 = 1

2 (p2
1 + p2

2) + 1
8 (q2

1 + q2
2)2 + (1

2A1 + σ)(q2p1 −
q1p2)+( 1

4A
2
1−A2)(q2

1 +q2
2)/2+const.. Further, K = 〈X1, X2〉 = q1p2−q2p1+const.

is a constant of motion for this system, which is therefore completely integrable.
The details are too lengthy to include here (see [L-S 4] and [I-S]). However, in

the special case of the Hasimoto filament, the elliptic functions for curvature and
torsion degenerate to κ(s) = 2b sech bs, τ = τ0, with b and τ0 arbitrary constants.
Further, one easily determines A1 = −2τ , A2 = α = b2 + τ2, X1 = 2τT + κB

(a screw field), and X2 = (κ
2

2 − α)T + κsN − τκB (a translation field). Finally,
Equations 12 give r = κ/α, zs = κ2

2α − 1 = (2bα−1 tanh bs− s)s, θs = −τ .

Example 10. (Buckled Rings) For γ ∈ Γ4, we have the equation X3 = A3Y0 +
A2Y1 +A1Y2 + Y3 = const. Here we consider only the planar curves in Γ4(γ 6∈ Γ3),
and note that the odd constants A2k+1 vanish for planar soliton curves, as a general
proposition (a simple consequence of Corollary 3). Thus, X3 is the binormal field
X3 = A2Y1 + Y3 = (A2κ − κss − κ3

2 )B = PB, for some constant P 6= 0. The
ODE κss + κ3

2 − A2κ = P is precisely the equation for the curvature of an elastic
ring buckled under constant pressure P , according to a standard model (see [T-O]).
(One may prefer to imagine the cross section of a symmetrically buckled cylindrical
pipe under hydrostatic pressure.) In the present case, the first integral 〈X3, X2〉 is
trivial (X2 is planar), and 〈X2, X2〉+2〈X3, X1〉 = const. turns out to be equivalent
to the obvious integral, (κs)2 + κ4

4 −A2κ
2 − 2Pκ = c. Noting β = 0 , Equation 12

gives the pair of equations: α2r2 = 2Pκ + d, and α2r2θs = κ2

2 − A2 (where the
integral has been used to simplify the first, and we have set d = c + A2

2). It
follows that κ(s), r(s), and θ(s) may be expressed in terms of elliptic functions and
integrals; likewise for the closure condition, ∆θ = 2πp/q—a rationality condition
for the change in the angle θ over a period of κ. More detailed computations for
closed solutions and the related bifurcation problem (with pressure as bifurcation
parameter) are given in [L-M-V].

The slipping phenomenon noted above (further illustrated in Example 9) hints
at the following basic fact about the soliton class:

Proposition 11. The class of all σ-natural curvature functions ui for curves in Γn
does not depend on σ. Thus, if γ ∈ Γn has curvature κ and torsion τ , there exists
also a curve γσ ∈ Γn with curvature κ and torsion τ + σ, for any σ. In particular,
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to any planar soliton curve γ = γ0, we can associate the family of ‘planar-like’
soliton curves γτ with constant torsion τ and the same curvature function.

It is convenient to defer the proof itself to §4.3, where it follows at once from
Proposition 18. (Note, however, the second statement follows from the first, using
the above formula for τ in terms of ui and σ.) The associated parametrized family
construction for the curves γσ will be discussed more explicitly in §5.1. The planar-
like solitons—helices and Hasimoto filaments are the simplest examples—will play
an important role in §4.4.

We remark also that the integrability statement in Example 9 is complementary
to (not contained in) the integrability result of Corollary 5. On the other hand, the
entire system 0 = Xn for γ may be cast as a Hamiltonian system on a cotangent
bundle of the form T ∗(E(3)×Rk), where E(3) is the group of Euclidean motions.
Using this formulation, the problems up to 0 = X5 were exhibited in [L-S 3] as
completely integrable Hamiltonian systems in the Liouville sense.

The nice variational and Hamiltonian descriptions of soliton curves lend them-
selves to detailed computations for curves in Γ =

⋃
Γn. Such computations may be

found in [L-S 2], [C-I 1], [C-I 2], and [I-S], where issues of closure and knottedness
are discussed for the class Γ3. Whereas knots in Γ3 are precisely the torus knots,
more exotic knots in higher Γn have been constructed recently by Calini and Ivey
using Bäcklund transformations of Γ3 knots. In this connection, an interesting open
problem is to prove a density result for Γ as a subset of smooth curves (say, closed
or asymptotically linear); in particular, all knot types should be represented in Γ.

4. Dynamics of curves

4.1. PDE’s for curve motion. We begin by collecting some of the immediate
consequences of Theorems 2, 4, Lemma 1, and Corollary 3 for curve dynamics:

Proposition 12. a) For n = 0, 1, 2, . . . , the equation γt = Yn[γ] may be regarded
as an (n + 1)st order polynomial partial differential equation for an evolving
unit speed curve, γ(s, t). The even equations γt = Y2n[γ] restrict to planar
curves.

b) Suppose γ(s) satisfies Xn+1[γ] = 0. Then γ is an initial curve for a ‘translation
solution’ to γt = Xn[γ]. Similarly, suppose γ satisfies Xn+2[γ] = 0. Then γ
yields a ‘congruence solution’ of the equation γt = Xn[γ]; i.e., γ evolves by a
one-parameter group of rigid motions (generally ‘screw motion’).

In the case n = 1 of b), the conclusion is that helices translate, and elastic rods
perform screw motions, under the evolution γt = X1 = γs×γss−A1γs = κB−A1T
(where the constant A1 depends on the curve). Since the term A1T just induces
sliding of the curve along itself, elastic rods are seen to correspond in a simple way
to congruence solutions to FM. In particular, the screw motion of the Hasimoto
filament was the first step towards the discovery of the soliton nature of FM ([Ha]).

For general curves, γt = Y1, γt = Y2, etc., describe interesting evolutions of
non-stretching filaments. It’s worth taking a moment to contrast such equations
with the well-known curve shortening flow (CS), γt = ∂2

∂s2 γ = κN (see, e.g., [G-H]).
Often described as the (negative) gradient flow of arclength (in a formal L2 sense),
CS is a natural and interesting example of a geometric evolution equation. But it
should not be mistaken for a PDE describing γ(s, t) directly; rather, CS is compact
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notation for the PDE γt = 1
v
∂
∂u ( 1

v
∂
∂uγ), describing a curve γ(u, t) of variable speed

v = ‖∂γ/∂u‖. In this respect, CS should be regarded as typical among geometric
curve evolution equations— γt = Yn is exceptionally nice.

Of course, any curve motion γ(u, t) can be made (locally) non-stretching by
reparametrization, leaving the shape of γ unchanged for each t. In fact, Lemma 1
shows how to define a reparametrization operator, P, which modifies the tangential
component of a general variation field γt = W to make it LAP. Since P plays an
important role in §4.2, we give formulas in terms of the various notations W =
aT + bN + cB = fT + gU1 + hU2:

PW = (∂−1〈∂2γ,W 〉) T +W⊥

= (∂−1κb) T + bN + cB = (∂−1(u1g + u2h)) T + gU1 + hU2

(the appropriate specification of antiderivative ∂−1 depending on the application).
For example, one may consider the normalized curve shortening flow, γt = P(κN) =∫
κ2ds T + κN (this approach was used in [A-L]); the resulting γ(s, t) is perhaps

better behaved analytically than γ(u, t) (but again, γ(s, t) is not described by a
PDE).

We remark that the LAP property of Yn is closely related to the first FM
conservation law ; namely, if γ is a closed curve, its evolution under γt = Yn
will preserve the arclength functional, L[γ] =

∫
γ
ds. As we now briefly indi-

cate, Equation 10 is key to a whole infinite hierarchy of conservation laws for
FM. First we recall that Marsden and Weinstein [M-W] introduced a Poisson
structure, {F ,G} =

∫
γ
〈J∇F ,∇G〉ds, on the space Ω of regular curves in E3, giv-

ing FM a Hamiltonian form. Here we are considering geometric (parametrization-
independent) functionals on Ω given by variational integrals F(γ) =

∫
γ
F [γ](s)ds

and G(γ) =
∫
γ
G[γ](s)ds, with respective Euler operators ∇F and ∇G. Since Euler

operators of geometric functionals have no tangential components, we may just as
well write {F ,G} =

∫
γ
〈J∇F ,∇G〉ds, where J = PJ . For instance, the length

functional L has Euler operator ∇L = −γss, and the Hamiltonian flow of L in-
duced by { , } may be written γt = −J∇L = γs × γss (FM). In fact, all the
equations in the FM hierarchy (after γt = Y0) are Hamiltonian with respect to this
structure; as proved by Yasui and Sasaki [Y-S], the Hamiltonians are given simply
by Fn = 1

n−2

∫
γ
fn−1ds, for n = 1, 3, 4, 5, . . . . That is, one has Yn = YFn = J∇F .

Modulo this result, we easily prove:

Proposition 13. For n = 1, 3, 4, 5, . . . , the integrals Fn = 1
n−2

∫
γ
fn−1ds are FM

constants of motion in involution. In terms of curvature and torsion, the first
few conserved quantities are: L =

∫
γ
ds, F2 =

∫
γ
−τds, F3 = 1

2

∫
γ
κ2ds, F4 =

1
2

∫
γ
κ2τds, F5 = 1

2

∫
γ
(κ′)2 + κ2τ2 − 1

4κ
4ds.

Proof. By Equation 10, {Fm,Fn} =
∫
γ
〈J∇Fm,∇Fn〉ds =

∫
γ
〈Ym, JYn〉ds =∫

γ
∂ 1

2

∑n−m
k=1 〈Ym+k−1, Yn−k〉ds, for 1 ≤ i ≤ j. For suitable boundary/decay con-

ditions, the Poisson brackets {Fi,Fj+1} will therefore vanish. The curious special
case n = 2 may be verified directly. �

4.2. The recursion operator and variation formulas. The filament hierarchy
may also be written as Xn = RnX0, in terms of the integro-differential recursion
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operator,

RX = −J ∂X = −PJ∂X = (∂−1〈∂2γ,W 〉) T − J∂X(14)

(The antidifferentiation ∂−1 leads to the arbitrary constants of integrationA1, . . . An
in Xn.)

It is an interesting fact that R has geometric meaning, quite independent of the
filament hierarchy:

Theorem 14. Let γ(s, t) be a variation of unit speed curves in E3. Let {T, U1, U2}
be a natural frame along γ(s, t). Consider the complex curvature ψ = u1 + iu2 =
Z(γss), where, Z is the normal coordinate map Z(fT + gU1 +hU2) = g+ ih. Then
the infinitesimal curve variation W = ∂γ

∂t induces curvature variation ∂ψ
∂t according

to the formula

(
∂

∂t
− iµ)ψ = −ZR2W(15)

Here, µ is an arbitrary constant in a “gauge term” iµψ which may be associated
with the non-uniqueness of the natural frame.

Proof. Writing W = fT + gU1 +hU2, with fs = u1g+u2h (W is LAP), and using
the natural Frenet equations, we compute the useful formulas:

(R− σ)W = αT + (hs + u2f)U1 − (gs + u1f)U2(16)

(R− σ)2W = βT − ((gs + u1f)s − u2α)U1 − ((hs + u2f)s + u1α)U2,(17)

where αs = u1hs − u2gs, and βs = −u1(gss + κ2g)− u2(hss + κ2h)− 1
2 (κ2)sf .

On the other hand, let ω = AT + BU1 + CU2 be the angular velocity of the
natural frame; i.e., Ft = ω × F for F = T , U1, or U2. Using γst = γts, one
finds B = −(hs + u2f + σg) and C = gs + u1f − σg. Further, the U2-component of
(U1)st = (U1)ts yields As = −(α+σf)s. We thus obtain a noteworthy intermediate
result: ω = −RW − µT, for some constant µ.

Next, the T -component of (U1)st = (U1)ts yields Cs + u2A = (u1)t − σB, which
can be expressed as (u1)t = −〈U1,R2W 〉 − µu2. Similarly, (U2)st = (U2)ts gives
(u2)t = −〈U2,R2W 〉+ µu1, and the result follows. �

This formula (in case σ = 0) appeared in [L-P 1], and was generalized in [L-P 3] to
the context of Hermitian symmetric Lie algebras. Such results appear to argue in
favor of natural curvatures (especially in higher dimensions, where they seem to be
particularly advantageous). Nevertheless, κ and τ play important roles, below.

Returning to the FM hierarchy, a remarkable fact now emerges. The hierar-
chy Yn not only determines distinguished geometric evolution equations for curves,
but it simultaneously provides the corresponding evolution equations for natural
curvatures. Namely, we have the following

Corollary 15. If γt = Yn, then ψt = −ZYn+2. (Here we have suppressed the
term iµψ, which vanishes for appropriately chosen natural frames.) In particular,
a curve evolving by FM, γt = γs × γss = κB, has complex curvature ψ(s, t) (with
σ = 0) satisfying the nonlinear Schrödinger equation,

ψt = i(ψss +
1
2
|ψ|2ψ)(18)
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Similarly, γt = 3
2 〈γss, γss〉γs + γsss = κ2

2 T + κsN + κτB induces the (complex)
modified Korteweg-de Vries equation,

ψt = ψsss +
3
2
|ψ|2ψs.(19)

Proof. We use the table in §3.2. For FM, ψt = −ZY3 = −(∂2u2 + u2
κ2

2 ) −
i(−∂2u1−u1

κ2

2 ) = i(ψss+ 1
2 |ψ|2ψ). The case n = 4 is simpler to read off (and we’ll

have more to say about even n, below.) �

Corollary 16. The variations of curvature and torsion induced by an LAP curve
variation γt = W are given by: κt = −〈R2W,N〉, and τt = −[ 1

κ 〈R2W,B〉]s. In
particular, W is constant torsion-preserving if and only if 〈R2W,B〉 = Cκ, where
C is constant along γ.

Proof. The formulas follow easily from Equation 15 using ψ = κeiθ, U1 + iU2 =
(N + iB)eiθ, θs = τ − σ, ψt = (κt + iκθt)eiθ, etc. Note that the ambiguous gauge
term iµψ drops out of the formulas, as does σ. �

4.3. FM vectorfields preserving special classes of curves. Here we discuss
special sequences of vectorfields belonging to the FM hierarchy which preserve the
classes of planar, spherical, or constant torsion curves. This topic well illustrates
the approach of §2; while the formulas (16), (17) will be very helpful heuristically,
we require here exact specification of constants of integration (e.g., via the normal-
ization 〈Y, Y 〉 = 1). Corollary 3 easily implies the desired results, for the planar
case, while spherical curves require additional inductive formulas. The constant
torsion case is the most interesting, not only because of the connection to pseu-
dospherical surfaces, but also because this case leads to further insight into the
recursion process itself (as discussed in §5).

We begin by recalling that, along planar curves, the normalized FM hierarchy
alternates between planar vectorfields, Y2m = a2mT + b2mN and binormal fields
Y2m+1 = c2m+1B, and that the even equations γt = Y2m[γ] therefore restrict to
planar flows. In particular, for m = 1, we have the planar curve evolution and
corresponding curvature evolution equations:

γt =
κ2

2
T + κsN, κt = (κss +

1
2
κ3)s(20)

The second equation is the well-known (real) mKdV equation. The first equation,
arguably the simplest geometric realization of a soliton equation, has been consid-
ered as a model of planar vortex patch dynamics [G-P]. We mention that a (unit
speed) solution γ(s, t) = (x(s, t), y(s, t)) of this equation yields a solution z = x+ iy
of the Schwarzian KdV equation, zt = S(z)z′, while the Schwarzian derivative it-
self, u = S(z) = (z′′/z′)′ − 1

2 (z′′/z′)2, satisfies the (complex) Korteweg-de Vries
equation, ut = u′′′ + 3uu′. (We recall that the Schwarzian derivative is the basic
differential invariant of Möbius transformations.)

The higher order equations of the planar subhierarchy, γt = Y2m[γ], satisfy the
LAP condition, a′2m = κb2m, and also b2m+2 = −(b′2m+κa2m)′ (an easy consequence
of Corollary 3). Thus, the coefficients Bj = b2j , Aj = a2j constitute a (normalized)
solution to the mKdV recursion scheme:

A′j = κBj , Bj = −(B′j−1 + κAj−1)′, A0 = −1, B0 = 0(21)
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Further, Corollary 16 implies γt = Y2m[γ] induces the curvature evolution equation
κt = −Bm+1[κ]—the mth higher order equation of the mKdV hierarchy. [These
equations may also be written as κt = Kmκs, in terms of the recursion operator
K = −(∂2 + κ2 + κs∂

−1κ). The corresponding operator on the curve level has
the simpler appearance, R2 = −P∂2. The antidifferentiation operator introduces
the usual ambiguity; however, starting with A1 = κ2

2 , Corollary 3 yields local
expressions for the (normalized) coefficients: 2Aj =

∑j−1
i=1 (AiAj−i + BiBj−i) +∑j

i=1(B′i−1 + κAi−1)(B′j−i + κAj−i), j = 2, 3, . . . . Finally, for comparison with
the better known Lenard recursion scheme for the Korteweg-de Vries equation, we
observe that the Aj satisfy ∂Aj+1 = DAj , where D is the third order operator
D = −κ∂[∂ 1

κ∂ + κ], and the mth equation may be written κt = 1
κ∂Am+1.]

Note the Bm are perfect derivatives—all equations in the mKdV hierarchy are
in conservation form (unlike Equations (18), (19)). Consequently, all planar flows
preserve the (algebraic) enclosed area A(γ) of a closed planar curve: since the
Euler operator of enclosed area is the normal, ∇A = N , we have ∂

∂tA(γ(s, t)) =∫ 〈Y2m, N〉 ds =
∫
Bmds = 0, for closed curves. One could say the results just

mentioned are topologically obvious! Namely, the total curvature is a topological
invariant for closed curves,

∫
γ
κds = 2πInd[γ], where Ind[γ] is the rotation index of

γ. Thus, for eachm, we can write 0 = ∂
∂t

∫
κds =

∫
Bm+1[κ]ds—the only reasonable

explanation being that Bm+1[κ] is a perfect derivative (null Lagrangian).
Next, we observe that there are two ways to generalize planar curves slightly—

maintaining a single functional shape parameter κ(s). Regarding planar curves as
having u1(s) = κ(s), and u2 = σ = 0, we can extend either to spherical curves
by allowing u2 = constant 6= 0, or to constant torsion curves by allowing σ =
constant 6= 0. We begin with the former.

Proposition 17. The even FM flows γt = Y2n restrict to spherical curves, and
induce evolution of geodesic curvature by equations in the mKdV hierarchy. The
algebraic area of a closed spherical curve is preserved under each of these flows.

Proof. Expressing Yn = fnT + gnU1 + hnU2 in terms of a natural Frenet frame
with σ = 0, the FM recursion scheme may be written:

f ′n = u1gn + u2hn, gn = h′n−1 + u2fn−1, −hn = g′n−1 + u1fn−1(22)

We specialize these equations to spherical curves with natural curvatures u = u1 =
κg (geodesic curvature) and v = u2 = 1/R (R = spherical radius). Using also
our closed form expression for fn = 〈T, Yn〉 (in Equation 8), and f1 = 0, g1 =
−v, one establishes the following set of formulas by induction: f2n+1 = −vg2n,
g2n+1 = vf2n, h2n+2 = 0. Thus, Y2n+2 is tangent to the sphere. Further, one
easily checks: h2n+1 = −(g′2n + uf2n), g2n+2 = −(g′2n + uf2n)′ − v2g2n. The latter
shows inductively that the g2n are perfect derivatives—in fact, linear combinations
of the mKdV operators Bm (applied to u). The results on area and evolution of
curvature now follow as in the planar case, the only difference being that the u-
evolutions include linear combinations of lower order mKdV equations. Note that
a topological argument is not available here; by the Gauss-Bonnet Theorem, total
curvature and enclosed area are the same functional! �

We mention two minor variations on the equations just described. One may
define an “intrinsic spherical recursion operator” S = −P∇2

T—simply replacing ∂
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in the planar recursion operator R2 with the covariant derivative in the sphere.
Since the Frenet equations (∇TT = κgN , ∇TN = −κgT ) have not changed form,
the resulting (normalized) hierarchy, γt = Sv2m = a2mT + b2mN , involves the very
same differential operators, a2m, b2m, as above. The evolution equations for κg will
again belong to the mKdV hierarchy; however, there is a “slippage” relative to the
planar hierarchy, due to the curvature variation formula (κg)t = 〈N, (∇2

T + G)W 〉
for curves in a surface of constant Gauss curvature G. Now, as it turns out, the
vectorfields Sv2m are just linear combinations of the Y2n, restricted to the spherical
curves. Finally, we note that by taking slightly different combinations of the Y2n,
one can arrange for κg to evolve by the normalized equations of the mKdV hierarchy,
as in the planar case.

Turning now to constant torsion curves, one might attempt to use the binormal
indicatrix construction—we recall this sets up a correspondence γ ↔ B between unit
speed curves of curvature κ and constant torsion τ = 1, and unit speed curves with
geodesic curvature κg = κ in the unit sphere—to define unit speed and constant
torsion-preserving flows, inducing the mKdV hierarchy for κ. It is perhaps not a
priori clear that the implied flows are given directly by FM vectorfields along such
curves (or that the flows are even PDE’s on the curve level). In any event, we
choose to ‘start from scratch’, for the following reason: though spherical curves
may at first appear to be a simpler generalization of the planar case, we discover
in the end a much more satisfactory explanation of the constant torsion case. Part
of what’s at stake is the correct geometric interpretation of the spectral parameter
(see the discussion at the end of §5.2).

We begin with the observation, due to Lamb [L], that the following curve evo-
lution (a special case of a vortex model considered by Fukumoto and Miyazaki)
preserves constant torsion, with curvature evolving by mKdV:

γt = (
κ2

2
− 3τ2)T + κsN − 2τκB(23)

In fact, letting Z2 denote the vectorfield on the right-hand-side of this equation,
one straightforwardly obtains R2Z2 = a(s)T − (κss + 1

2κ
3)sN + cκB, where c is

constant. (This computation involves many cancellations, a few of which require
τ = constant) Then the claim follows at once from Corollary 16.

Underlying this example is the slipping phenomenon mentioned in §3.2: the
coefficients of Yn = fnT +gnU1 +hnU2 depend on σ in a very simple way, involving
lower order Yk with binomial coefficients. In fact, the formulas (16), (17) suggest
the definition of a hierarchy, Y σn+1 = (R − σ)nY1, n = 0, 1, . . . , whose σ-frame
coefficients, fn, gn, hn, do not depend on σ. Now we regard the Frenet frame along
a curve of constant torsion as a σ-frame with σ = τ , u1 = κ, u2 = 0, U1 = N ,
and U2 = B; the coefficients of the shifted hierarchy Y τn = fnT + gnN + hnB
must therefore be independent of torsion, and ought to resemble the planar case. It
follows that vectorfields Z2m defined so as to satisfyR2Z2m = Y τ2m+2+aT+cκB, for
constants a and c, will preserve constant torsion, and induce evolution of curvature
by equations of the mKdV hierarchy.

Actually, as noted above, the precise definition of Y σn should not use R, because
of the ambiguities in constants of integration. Thus, we instead define the shifted
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FM hierarchy by:

Y σn =
n−1∑
k=0

(
n− 1
k

)
(−σ)kYn−k, n = 1, 2, . . .(24)

Proposition 18. a) The vectorfields Y σ0 = Y0, Y σn , n = 1, 2, . . . , satisfy the
shifted FM recursion scheme, ∂Y σn = J(Y σn+1 + σY σn ). The series Y σ =∑∞
n=0 λ

nY σn satisfies λ∂Y σ = (1+σλ)JY σ, and the normalization 〈Y σ, Y σ〉 =
1 (which uniquely determines Y σ).

b) Along a curve of constant torsion τ , the odd vectorfields of the shifted FM
hierarchy are binormal and even fields are osculating : Y τ2m = a2mT + b2mN ,
Y τ2m+1 = c2m+1B. Here, a2m[κ], b2m[κ], and c2m+1[κ], are precisely the dif-
ferential operators associated with planar curves, above.

c) For n = 1, 2, . . . , the equation γt = Zτ2n =
∑2n
k=0

(
2n+ 1
k

)
(−τ)kY2n−k pre-

serves constant torsion τ and induces evolution of curvature κ by the equation
of the mKdV hierarchy, κt = −Bn+1[κ].

Proof. The recursion equation for the Y σn follows from Equation 1 and the recur-
sion rule for binomial coefficients. The equation for Y σ and ∂〈Y σ, Y σ〉 = 0 then
follow nearly as before. The general solution to the shifted recursion scheme may
then be written: Xσ

n = fnT+J(σJ−∂)Xσ
n−1, with 2fn = −Cn+

∑n−1
k=1〈Xσ

k , X
σ
n−k〉.

The fact that the coefficients in the σ-frame expression for Xσ
n do not involve σ

may be proved inductively. Using this fact, and setting σ = 0 in the definition of
Y σn establishes the normalization.

Now let γ have curvature κ and constant torsion τ . Using the above, one es-
tablishes the direct analogue of Corollary 3 by almost the same proof, and then b)
follows easily. Finally, noting R2Z2n = Y τ2n+2 + aT + cκB, for constants a, c, the
rest of the claim follows from Corollary 16 as above. �

We remark that setting λ = −σ−1 in the shifted series Y σ gives ∂Y σ = 0;
such a condition of covariant constancy could have been used as definition of the
Y σn (writing Y σ =

∑∞
n=0(−σ)−nY σn =

∑∞
n=0(−σ)−n(fnT + gnU1 + hnU2), where

{T,U1, U2} is a σ-frame, and the coefficients fn, gn, hn are assumed not to depend
on σ). For illustration, suppose γ has curvature κ and constant torsion τ . Term by
term differentiation of the following series results in telescope cancellations:

Y τ = −T − τ−1κB + τ−2(
κ2

2
T + κ′N) + τ−3(κ′′ +

κ3

2
)B

−τ−4((κκ′′ − 1
2

(κ′)2 +
3
8
κ4)T + (κ′′′ +

3
2
κ2κ′)N) . . .

Of course, convergent examples may be constructed, using the soliton class.
The hierarchies preserving planar, spherical, and constant torsion curves were

described in [L-P 2] (however, without the benefit of the detailed information on
solutions to the FM and shifted FM recursion schemes). We mention also that soli-
ton curves for the spherical evolutions are naturally viewed from an intrinsic point
of view, as above; thus one considers geodesics, elastica, buckled rings, etc., in a
Riemannian manifold M (as in [L-S 1], [L-S 3], [L-M-V]). Such special curves have
some remarkable connections to objects of Euclidean geometry; e.g., using Hopf
lifts of elastica in S2, U. Pinkall [Pi] gave the first examples of Willmore surfaces in
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R3 (critical surfaces for the total squared mean curvature integral) not coming from
stereographic projections of minimal surfaces in S3; in a similar spirit, buckled rings
in the hyperbolic plane H2 (and the hyperbolic analogue of Equation 20) have been
used ([G-L]) to construct explicit examples of the Konopelchenko-Taimanov mo-
tions of immersed Riemann surfaces in R3 ([Ta 1], [Ta 2])- these surface evolutions
preserve conformal type, the Willmore functional, and the infinite list constants of
motion of the modified Novikov-Veselov equation.

4.4. The swept-out surfaces. Thus far, we have considered γ(s, t) as an evolving
unit speed curve. Of course, the (generally singular) parametrized surface swept-out
by γ(s, t) may also be interesting, to the extent that features of the curve geometry
and evolution are closely related to the surface geometry. The following proposition
identifies relevant cases of curve evolution from this standpoint.

Proposition 19. Let Σ be the surface swept out by γ(s, t), where γ satisfies the
LAP curve evolution γt = W [γ]. Let Σ have Gaussian curvature G = κ1κ2 and
mean curvature H = 1

2 (κ1 + κ2), where κ1, κ2 are the principal curvatures of Σ.
Let γ as a curve have curvature κ, torsion τ , and Frenet frame {T,N,B}. Then

a) If W = aT + bN , then γ(s, t) foliates Σ by asymptotic curves. Further, G =
−τ2, and H = (b2τ)s/2b2κ.

b) If W = aT + cB, then γ(s, t) foliates Σ by geodesics, G = −css/c, and H =
(cκ2 + cτ2 − css)/2κc.

c) If W = fT +gU , then γ(s, t) foliates Σ by principal curves, G = (v∂−1vgs)/g,
and H = (vg + ∂−1vgs)/2g; here, γ has natural curvatures u, v and frame U ,
V , and ∂−1vgs is the appropriate antiderivative of vgs.

We omit the proof, which uses basic definitions and formulas of surface theory.
However, we note that part a) is essentially the Beltrami-Enneper Theorem (see
[Sp], vol. III, which also gives a general discussion of the three special classes of
curves in a surface, appearing in a)–c)). We also note that variation formulas for
Frenet frames (as that included in the proof of Theorem 14, for natural frames)
may be used as the main computational technique for establishing several of the
above formulas.

Now we observe, for instance, that FM yields surfaces (Hasimoto surfaces) fo-
liated by geodesics, as in b), while c) includes the spherical curve evolutions of
Proposition 17 with G = v2 = constant. However, we will focus here on using part
a) to give a dynamical description of pseudospherical surfaces.

We begin with a simple observation, based on the proposition and on our vari-
ation formula for torsion: to sweep out a surface of constant negative curvature
G = −τ2, it suffices to find an eigenvector of R along a curve of constant torsion τ .
In fact, one easily checks that the vectorfield W = cos νT − sin νN , νs = κ, is such
an eigenvector (up to an unimportant gauge term): RW = τW + µT . Combining
this with our variation formula for κ, we thus obtain a dynamical description of a
pseudospherical surface in terms of curve evolution by the trigonometric flow, and
corresponding evolution of ν = ∂−1κ by the sine-Gordon equation:

γt = cos νT − sin νN,
∂2ν

∂s∂t
= τ2 sin ν(25)
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In fact, γ(s, t) describes the well-known foliation of a pseudospherical surface of
constant curvature G = −τ2 by one family of asymptotic curves (and ν is the angle
between the two asymptotic directions).

As the trigonometric vectorfield may be applied to any constant torsion curve, it
does not necessarily point the way to explicit examples. However, the shifted FM
hierarchy provides a more concrete realization of the above strategy.

Proposition 20. Let γ ∈ Γ2n+1 be a planar-like soliton curve of constant torsion
τ . I.e., γ satisfies an equation of the form 0 = Xτ

2n+1[γ] =
∑n
k=0A2n−kY τ2n+1[γ] =

(
∑n
k=0A2n−kc2n+1[κ])B. Then Xτ

2n =
∑n
k=0A2(n−k)Y

τ
2n =

∑n
k=0A2(n−k)(a2nT +

b2nN) is an eigenvector of R along γ (modulo the usual aY0 term), and the evolution
γt = Xτ

2n[γ], with initial condition γ(s, 0) = γ(s), describes a foliation of a surface
of constant curvature G = −τ2, by asymptotic curves of unit speed. In fact, Xτ

2n

is a vectorfield of constant length which, up to scaling, may be identified with the
trigonometric field along γ.

Proof. We know from Proposition 11 and §4.3 that the curvature of a planar-like
soliton curve satisfies one of the mKdV stationary equations,

∑n
k=0A2n−kc2n+1[κ] =

0. By Proposition 18, this can be re-expressed in the form 0 = Xτ
2n+1[γ] as above,

where Xτ
0 = Y0, X

τ
1 , . . . X

τ
2n+1 satisfy the shifted FM recursion scheme, ∂Xσ

n =
J(Xσ

n+1 + σXσ
n ). In particular, we have RXτ

2n = (R− τ)Xτ
2n + τXτ

2n = Xτ
2n+1 +

aY0+τXτ
2n. Thus, along γ, RXτ

2n = τXτ
2n+aY0, as claimed. To complete the proof,

one needs to observe that the stationary equation 0 =
∑n
k=0A2n−kc2n+1[κ] remains

satisfied as γ evolves. This is a consequence of the fact that all the FM flows com-
mute, which in turn follows from the FM conservation laws given in Proposition 13;
we omit the relevant arguments, which are part of the standard abstract theory of
Hamiltonian systems. The last comment is obtained by writing Xτ

2n = f2nT+g2nN .
Then f ′2n − κg2n = 0 is the LAP condition, while g′2n + κf2n = −〈B,X2n+1〉 = 0
follows by recursion. But the resulting linear ODE, (f2n+ ig2n)′ = −iκ(f2n+ ig2n),
is exactly that satisfied by e−iν , with ν′ = κ. �

The trigonometric flow was discussed in [L-P 2] and also in [Mc-S]. The technique
using planar-like FM solitons to generate pseudospherical surfaces was developed by
R. Perline ([Pe 1]), who went on to construct closely related examples of Weingarten
systems of triply orthogonal coordinates ([Pe 2]); the description of the latter makes
use of both osculating and binormal vectorfields to evolve a constant torsion curve.
Finally, it should be noted that the pseudospherical surface/sine-Gordon equation
relationship is one of the oldest and most famous connections between geometry
and soliton equations. We have merely described a particular aspect of the latter
topic tying it to our discussion of FM; for a treatment of pseudospherical surfaces
using modern methods of soliton theory, we refer the reader to [M-S].

5. The SU(2) spectral problem; curves and NLS

5.1. Lie equations on SU(2) and representations for curves. Up to this
point, it has been convenient to formulate everything in E3 and to use vector
notation—most notably, the cross product. Of course, the rotation group SO(3)
and its Lie algebra so(3) have been lurking in the background all along, but this
point would have been little more than a distraction in the foregoing discussion! In
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this last section, however, we wish to describe some constructions related to curves
which tie our subject more directly to the standard machinery of soliton theory.

Thus, we need to introduce notation for the rotation group—or rather, its double

cover, SU(2). An element of the latter will be written as Φ =

(
α β

−β̄ ᾱ

)
, where

αᾱ+ ββ̄ = 1; thus, Φ ∈ SU(2) is a 2× 2 unitary matrix with determinant +1. For
the Lie algebra su(2), consisting of 2× 2 skew-Hermitian matrices of trace zero, we
use the su(2) basis e0 = −i

2 σ
3, e1 = −i

2 σ
1, e2 = −i

2 σ
2, where σ1, σ2, σ3 are the

Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
The commutator bracket [A,B] = AB − BA on su(2) may be written [ei, ej ] =
εijkek, where εijk is skewsymmetric in i, j, k and εijk = 1, with the convention
that repeated indices are summed over. Using the Cartan-Killing form, K(B,C) =
tr(adBadC), su(2) is naturally identified with E3; in fact, e0, e1, e2 form an or-
thonomal basis with respect to the Euclidean inner product, 〈 , 〉 = −1

2K. Further,
the adjoint representation, AdΦB = ΦBΦ−1, defines the well-known two-to-one
homomorphism of SU(2) onto SO(3).

As usual, the tangent space to G = SU(2) at the identity will be identified with
su(2), and the tangent space at Φ ∈ SU(2) may be represented as GΦ = {BΦ :
B ∈ su(2)}. Further, a matrix differential equation of the form Φs = QΦ with
Q = Q(s) ∈ su(2) may be regarded as an ODE on SU(2), to which the usual
existence/uniqueness theorems apply, with SU(2) as the underlying manifold. Of
course, the simplest case for such a Lie equation occurs whenQ(s) = Q0 = constant,
in which case the general solution has the form Φ(s) = esQ0Φ0. In particular, the
choices Q = ej , with initial condition Φ(0) = Id, result in the standard one-
parameter subgroups:

ese0 =

(
e−i

s
2 0

0 ei
s
2

)
, ese1 =

(
cos s2 −i sin s

2

−i sin s
2 cos s2

)
, ese2 =

(
cos s2 − sin s

2

sin s
2 cos s2

)
By virtue of the adjoint representation, SU(2) Lie equations may be used to

induce Frenet systems for curves in E3. We will use a non-standard notation
to discuss this construction. Namely, we consider a given su(2)-valued curvature
function, Q(s) =

∑2
j=0 qj(s)ej , and corresponding Φ(s) solving the Lie system

Φs = QΦ (with arbitrarily specified initial conditions). Now let B = B(s) be
any su(2)-valued function, and let {B} denote the corresponding E3-valued vector
function, defined by {B} = AdΦ−1B = Φ−1BΦ. Also, we will use the shorthand
{B,C} = {[B,C]}. In this situation, one has the following computational fact
(which is standard, and easy to verify):

Lemma 21. absolute velocity = relative velocity + transferred velocity

{B}s = {Bs}+ {B,Q}
In particular, by Ad-invariance of the Cartan-Killing form, we may define an

orthonormal frame in E3 according to Ei = {ei}, and by antidifferentiation, we
may regard T = E0 as the tangent indicatrix of a curve γ in E3. By the lemma,
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we then obtain (generalized) Frenet equations for γ:

E′i = {ei, Q} = εijkqjEk.

Further, computing T = AdΦ−1e0 in terms of the usual quadratic expressions in
α, β, one obtains the following “Weierstrass representation” for the resulting curve
γ =

∫
Tds = x0e0 + x1e1 + x2e2:

x0 =
∫
αᾱ− ββ̄ds, x1 + ix2 =

∫
2αβ̄ds

The classical Frenet equations for {T = E0, N = E1, B = E2} are recovered in
the special case Q = −τe0−κe2, while the choice Q = −σe0 +u2e1−u1e2 yields the
natural Frenet system, Equation 13, for {T = E0, U1 = E1, U2 = E2}. By analogy
with rigid body mechanics, one may also write the Frenet equations as E′j = Ω×Ej ,
where the Darboux vector is given by Ω = −{Q}; for the standard Frenet system,
Ω = τT + κB, and for natural frames, Ω = σT − u2U1 + u1U2.

We note that if Φ satisfies the Lie equation Φs =
∑2
j=0 qj(s)ejΦ as above, then

the ratio z = β/ᾱ solves the Riccati equation iz′ = 1
2 (q1− iq2)+q0z− 1

2 (q1 + iq2)z2.
For the standard Frenet frame, this becomes z′ = iτz+ κ

2 (1+z2), and for the natural
frame one gets z′ = 1

2 ψ̄ + iσz + 1
2ψz

2, where ψ = u1 + iu2. As is well known, such
equations are not integrable by quadrature for general coefficients. On the other
hand, it follows from our earlier discussion that for invariants κ, τ (or ψ) of a soliton
curve, the above Riccati equations are indeed integrable by quadrature. In fact, if
the Frenet frame F has been constructed (say, using Corollary 5), then one can lift
F to a curve Φ in SU(2) via the adjoint representation, and set z = β/ᾱ; from one
solution, the general solution can be constructed by quadrature. Solutions z may
also be described more geometrically as stereographic images of fixed Euclidean
basis vectors, say, projecting from the pole T onto the equatorial complex plane
determined by the remaining frame vectors.

We remark that the theory of Riccati equations reflects the richer setting of the
Möbius group, and the representation of a curve γ in terms of a general solution
z = aP+Q

aR+S leads to consideration of curves in C3 ∼= sl(2, C). This representa-
tion, developed by Lie and Darboux (see [Ei], [St]), expresses the coordinates of
γ = (x0, x1, x2) as antiderivatives of ratios of quadratic expressions in P,Q,R, S,
resulting in xj which are generally complex.

Still on the theme of representations of unit speed curves, we consider now the
Sym-Pohlmeyer construction (see [Sym]), which takes advantage of the spectral
parameter σ in the Lie system for the natural Frenet equations.

Lemma 22. Let q = u2(s)e1 − u1(s)e2, A = e0, let Φ(s;σ) solve the Lie equation

Φs = (q − σA)Φ(26)

for each value of σ (with initial conditions possibly depending on σ), and define a
family of curves in su(2) by

γ(s;σ0) = −
[
Φ−1 ∂Φ

∂σ

]
σ=σ0

(27)

Then for each fixed σ0, γ(s;σ0) is a unit speed curve with natural curvatures u1, u2

and spectral parameter σ0.
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Proof. Applying the formula , ∂
∂sΦ−1 = −Φ−1ΦsΦ−1, we compute ∂

∂sΦ−1Φσ =
−Φ−1ΦsΦ−1Φσ + Φ−1Φσs = −Φ−1(q − σA)Φσ + Φ−1 ∂

∂σ (q − σA)Φ = −Φ−1AΦ.
It follows that s is indeed a unit speed parameter for γ(s, σ0), whose unit tangent
vector may be written T = {A}. Further differentiation recovers the natural Frenet
equations, as above. �

Note that this construction realizes the parametrized family γσ of Proposi-
tion 11—in particular, it may be used to represent a family of planar-like solitons
with a single formula. It has the further interesting feature that no final antidif-
ferentiation is required to produce the curve, after the frame equations have been
solved. (Of course, one must first solve the σ-dependent Lie system, but for many
purposes, analytic dependence of solutions on the parameter may be invoked.) We
mention that the technique is actually rather general, as may be inferred from the
proof; starting with appropriate Lie groups and making suitable specializations,
one obtains useful representations of curves in higher dimensional Euclidean spaces
(see [L-P 3]), as well as spherical, hyperbolic, and Lorentzian geometries. Return-
ing to curves in R3, one could also adapt the technique for standard Frenet systems
(though introduction of the parameter appears more artificial), or one could use
SO(3) Lie equations. But the above version is of particular relevance here, because
Equation 26 is precisely the spectral equation for NLS, to be discussed below.

We conclude this section by describing a Bäcklund transformation for constant
torsion curves, followed by simple examples. Our treatment of this interesting
topic is cursory; we include it to tie together a number of previous topics and
examples. (For more extensive discussions and interesting applications, see [Ca],
[C-I 1], [Iv].) The construction we describe here is really just the classical Bäcklund
transformation for pseudospherical surfaces (i.e., for the sine-Gordon equation),
restricted to a single asymptotic curve. We recall that transformation moves a
fixed distance from the “old” curve (surface) to the “new” one, preserving unit
speed parametrization.

Given the representation Equation 27, it is natural to try to make use of a gauge
transformation: namely, if a curve γ corresponds to Φs = QΦ, we can ask what new
curve γ̃ and new curvature vector Q̃ correspond to Φ̃ = GΦ, for a given G. Writing
Gs = gG and Gσ = Gδ, one finds that Φ̃s = Q̃Φ̃ holds for Q̃ = g +AdGQ, and one
obtains γ̃ = −

[
Φ̃−1 ∂Φ̃

∂σ

]
= γ −AdΦ−1δ and T̃ = AdΦ−1(e0 + δs + [δ,Q]). Evidently,

we are looking for a special G, depending on Q, such that δ and (e0 + δs + [δ,Q])
have constant norm. The actual story is a bit subtle; however, the following result
can also be verified by direct computation:

Proposition 23. Let γ be a unit speed curve in R3, with curvature κ, constant
torsion τ , and Frenet frame T,N,B. For C a constant, let w = tan(η/2) satisfy
the Riccati equation

ws = Cw +
κ

2
(1 + w2), i.e., ηs = C sin η − κ(28)

Then the formulas

γ̃ = γ +
2C

C2 + τ2
(cos ηT + sin ηN), κ̃ = κ− 2C sin η(29)

describe a new unit speed curve γ̃ with curvature κ̃, and torsion τ .
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Now we observe that Equation 28 would be exactly that satisfied by z = β/ᾱ
given earlier, if only γ had constant imaginary torsion τ = −iC! (Which would
mean γ actually lies in the Lorentz space R2

1.) More to the point, if the starting
curve γ is known, solving Equation 28 for w amounts to analytic continuation in τ
of a known quantity z.

Example 24. (Lines and loops, circles and rings) Since we’re doing geometry, one-
parameter subgroups of SU(2) are not all alike! For Q = −σe0, the Lie equation
Φs = QΦ has solution Φ = e−σse0Φ0, and AdΦ−1 yields (the frame of) a spinning
line γ. The Riccati equation for z = α/β̄ reduces to z′ = iσz. The Bäcklund trans-
form of γ is quick to compute, and gives Hasimoto loops γ̃ ∈ Γ3; the appearance
of hyperbolic functions should be no surprise, since one just replaces iσ by C in
z = z0e

iσs, to go from solutions of one Riccati equation to the other.
On the other hand, for Q = −κ0e2, κ0 = constant, the Lie equation has solution

Φ = e−κ0se2Φ0, and AdΦ−1 yields a circle γ ∈ Γ2. This time, the Bäcklund trans-
form gives (not necessarily closed) “buckled rings” γ̃ ∈ Γ4, with curvature functions
given by rational expressions in sines and cosines or exponential functions. To do
the computations by analytic continuation, one needs to use the “spinning circle”,
which satisfies z′ = iσz + κ0

2 (1 + z2), and again replace iσ by C.

Example 25. (Helices and the Clifford torus) For Q = −σe0 + u2e1 − u1e2 =
constant, we obtain all helices, and can interpolate between circles and spinning
lines. The computations for Bäcklund transforms of helices are not essentially differ-
ent from the circular case, and give either quasiperiodic or asymptotic perturbations
of the original helix (examples of which are pictured in [C-I 1]).

We now reconsider how the homotopy of Theorem 4c) achieves the interpolation
just mentioned (essentially continuing Example 8), with a normalization fixing κ2 +
τ2. Starting from a given helix γ(s), the standard Frenet frame F (s;λ) of γ(s;λ)
may be regarded as an immersed cylinder in SO(3), such that the projection p :
SO(3) 7→ S2, p(F ) = T , is onto and one-to-one, except that the boundary circles
F (s;±∞) project to north and south poles T (s;±∞). Now F (s;λ) lifts to SU(2)
and then extends as follows. Set θ = αs, cotφ = τ−λα2

κ , and let Φ(θ, φ) = eφe1e−θe2 .
Then one can check that Φ and F are identified via the mapping Φ 7→ AdΦ−1.
Further, the new variables θ, φ allow us to extend Φ fourfold by formula; the result is
a conformal parametrization of the Clifford torus—a flat minimal submanifold of S3.
As a two-dimensional surface in C2 ∼= R4, Φ = (α, β) = (X1, X2, X3, X4) satisfies
not only αᾱ+ ββ̄ = 1, but also Im[α2 + β2] = 0. A more standard representation
of this surface is obtained by making the isometric coordinate transformation Y1 =
1√
2
(X1 + X2), Y2 = 1√

2
(X3 + X4), Y3 = 1√

2
(X1 − X2), Y4 = 1√

2
(X3 − X4), and

the conformal change of angular variables θ = η + ζ, and ϕ = η − ζ. Then Φ =
(Y1, Y2, Y3, Y4) = 1√

2
(cos ζ, sin ζ, cos η, sin η) parametrizes the Clifford torus, with

angular range −π ≤ ζ, η < π. It would be interesting to know if Y is similarly well-
behaved at λ = ±∞ for a large class of (quasiperiodic) soliton curves—in particular,
whether corresponding constructions result in immersed tori Φ : T 2 7→ S3, as above.

5.2. The NLS hierarchy. We begin by recalling the setting of the NLS hierar-
chy as a family of compatibility conditions for the following overdetermined linear
system (see [Pa] for more background, and a survey of related topics in soliton
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theory):

Φs = QΦ = (q − σA)Φ, Φt = PΦ(30)

Here, the eigenfunction Φ(s, t;σ) is SU(2)-valued while Q(s, t;σ) and P (s, t;σ) have
values in the Lie algebra su(2). Further, A is the fixed element A = e0, and the
potential, q = q(s, t) = q1e1 + q2e2, is meant to evolve isospectrally—this may be
regarded as the essence of integrability—hence the lack of dependence on the the
spectral parameter σ. (Note that both equations may be regarded as SU(2)-Lie
equations, depending on parameters.) Cross-differentiating the pair of equations
gives the zero curvature condition (ZCC), Qt − Ps + [Q,P ] = 0, i.e.,

qt = Ps + [P, q] + σ[A,P ](31)

The procedure for finding suitable P satisfying this compatibility condition begins
with the polynomial ansatz P =

∑m
j=0 X̃j(s, t)(−σ)m−j . (One may prefer to write

X̃j [q]—we are actually seeking ordinary differential operators, acting on potentials
q.) Substituting into the zero curvature condition and solving for the coefficients
of σ1, σ2, . . . , σm, one straightforwardly obtains the NLS recursion scheme,

J̃X̃n = ∂X̃n−1 + [X̃n−1, q], n = 1, . . . ,m(32)

Here, ∂ = ∂
∂s , and J̃ is the operator on su(2) defined by J̃B = adAB = [A,B], and

the starting term for the recursion is X̃0 = −A (forced, up to scalar factor, by the
σm+1-term in the expansion). Finally, the constant (σ0) term describes isospectral
evolution of the potential: qt = ∂X̃m + [X̃m, q].

To express the latter in the usual scalar form, we use the linear map Z̃ : su(2)→
C defined by Z̃(ae0 + be1 + ce2) = b+ ic. In particular, restriction of Z̃ to the two-
dimensional subspace m = span(e1, e2) gives a convenient identification of m with
the complex plane. Thus, e.g., we may associate to q the complex-valued function
ψ = u1 + iu2 = iZ̃q = −q2 + iq1. Note that with the identification m ∼= C, J̃ |m
corresponds to multiplication by i. The equations of the NLS hierarchy take the
form ψt = iZ̃(∂X̃m + [X̃m, q]) = −Z̃X̃m+1.

Proposition 26. The nth equation in the NLS hierarchy is an (n − 1)st-order
polynomial partial differential equation for ψ(s, t). In fact, applying our usual nor-
malization, it may be written

ψt = −ZYn = −(gn + ihn)[ψ],(33)

where gn and hn are the operators computed in §3.2. This yields exactly NLS for
n = 3, mKdV for n = 4, and for n even, reality of an initial function ψ(s, t0)
is preserved in time. Finally, Equations 30 and 27 may be used to construct an
evolving curve γ(s, t) with complex curvature satisfying 33.

Proof. We may solve the NLS recursion scheme by imitating the argument for FM.
Setting X̃ =

∑∞
n=0 λ

nX̃n, (32) becomes J̃X̃ = λ∂X̃ + λ[X̃, q], hence, λ∂〈X̃, X̃〉 =
2〈λ∂X̃, X̃〉 = 2〈J̃X̃−λ[X̃, q], X̃〉 = 0.One then solves for f̃n in terms of X̃1, . . . , X̃n−1

just as in §2, and obtains the inductive formula X̃n = f̃ne0−J̃(∂X̃n−1+λ[X̃n−1, q]).
The first claim follows.

Alternatively, writing X̃n = f̃ne0 + g̃ne1 + h̃ne2, we note that (32) gives precisely
Equation 22, with f̃n = fn, g̃n = gn, h̃n = hn. Thus, with the normalization
〈Ỹ , Ỹ 〉 = 1, we can identify coefficients of Ỹ with 0-frame coefficients of Y . For the
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last claim, we solve Equation 30 for Φ(s, t;σ) and then apply Equation 27 for each
time t, using σ0 = 0. The result still depends on the choice of initial condition, say
Φ(0, t;σ), and one may conveniently choose to eliminate the usual gauge term. �

For simplicity, we have used σ = 0 in the above proposition; however, a fuller
interpretation of the FM-NLS recursion scheme equivalence is obtained by the fol-
lowing observation. Assume X̃0 = −A, X̃1, . . . , X̃n . . . satisfy (32). Define corre-
sponding Xσ

n = {X̃n} = Φ−1X̃nΦ using a solution Φ to the Lie system (26), with
σ not necessarily zero. Then

∂Xσ
n−1 = {∂X̃n−1 + [X̃n−1, q − σA]} = {J̃(X̃n + σX̃n−1} = J(Xσ

n + σXσ
n−1)

In other words, the Xσ
n solve the shifted FM recursion scheme, discussed in §4.3

(and this one-line computation might have sufficed as a proof of the proposition).
To pursue this one more step, we can define vectorfields Zσn (as in §4.3) so that

R2Zσn = Y σn (ignoring the gauge terms). Then the evolution equations γt = Zσn
have the property that the evolution of σ-curvatures is independent of σ—a version
of isospectrality on the curve level. In any event, one could choose to regard the
FM recursion scheme as a consequence of this (or the usual) isospectrality ansatz.

Thus we have come full circle. We have not touched on interesting geometric
aspects of many closely related topics—e.g., analogues of the FM hierarchy in hy-
perbolic, Lorentzian, and other geometric settings, connections to the Schwarzian
KdV equation [C-L]. Certainly, much of our discussion could be merged nicely with
these areas; however, to maintain the direct approach and narrow focus of this pa-
per, we have disallowed topics which might argue for a broader synthesis (say, in
the SL(2, C) context). We have also not begun to introduce many of the power-
ful techniques of soliton theory into the picure—Lie algebraic, algebraic geometric,
analytic—which are obviously relevant, but well beyond the scope of this paper.
Some of these related topics may be found amoung the references, but we have not
attempted to compile a comprehensive or representative bibliography.
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