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Irrational Numbers of Constant Type —
A New Characterization

Manash Mukherjee and Gunther Karner

Abstract. Given an irrational number α and a positive integer m, the dis-
tinct fractional parts of α, 2α, · · · ,mα determine a partition of the interval
[0, 1]. Defining dα(m) and d′α(m) to be the maximum and minimum lengths,
respectively, of the subintervals of the partition corresponding to the integer

m, it is shown that the sequence

(
dα(m)

d′α(m)

)∞
m=1

is bounded if and only if α

is of constant type. (The proof of this assertion is based on the continued
fraction expansion of irrational numbers.)
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1. Introduction

Let α be a real irrational number, and α − [α] = {α} be the fractional part of
α (where [·] is the greatest integer function). For k = 1, 2, · · · ,m, consider the
sequence of distinct points {kα} in [0, 1], arranged in increasing order:

0 < {k1α} < · · · < {kjα} < {kj+1α} < · · · < {kmα} < 1

where 1 ≤ kj ≤ m for j = 1, 2, · · · ,m.
Let dα(m) and d′α(m) denote, respectively, the maximum and minimum lengths

of the subintervals determined by the above partition of [0, 1]. Using the con-
tinued fraction expansion of α (see Section 2), and the Three Distance Theorem
(Theorem 1, Section 3), we obtain a new characterization of irrational numbers of
constant type (defined as irrationals with bounded partial quotients). We show in
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Theorem 2 (The Main Theorem, Section 3), that the sequence
(
dα(m)
d′α(m)

)∞
m=1

is

bounded if and only if α is an irrational number of constant type.
Other characterizations of irrational numbers of constant type can be found in

the survey article by J. Shallit [3]. In the investigation of certain dynamical systems,
Theorem 2 is essential for the formulation of stability criteria for orbits of so-called
quantum twist maps [2].

2. Basic Properties of Continued Fractions

Throughout this paper, N, Z, Q, R denote the natural numbers, integers, ratio-
nal numbers, and real numbers, respectively, and α denotes an irrational number.
Proofs of the facts 1 and 2 below can be found in [1, p. 30].

Fact 1. α ∈ R\Q if and only if α has infinite (simple) continued fraction expansion:

α = [a0; a1, a2, · · · , an, · · · ] = a0 +
1

a1 +
1

a2 +
. . .

where a0 ∈ Z and an ∈ N for n ≥ 1. �

Definition 1. An irrational number, α, is of constant type provided there exists a
positive number, B(α), such that B(α) = sup

n≥1
(an) <∞. (See reference [3].)

Fact 2. Define integers pn and qn by:

p−1 = 1 ; p0 = a0 ; pn = anpn−1 + pn−2 , n ≥ 1
q−1 = 0 ; q0 = 1 ; qn = anqn−1 + qn−2 , n ≥ 1

Then, for n ≥ 0, gcd(pn, qn) = 1, and 0 < q1 < q2 < · · · < qn < qn+1 < · · · .
Furthermore, (qnα− pn) and (qn+1α− pn+1) are of opposite sign for all n ≥ 0. �

Note:
(
pn
qn

)
n≥0

are called the principal convergents to α.

Lemma 1. Define ηn = |qnα − pn|. For all n ≥ 0, ηn−1 = an+1ηn + ηn+1, and
hence, ηn < ηn−1.

Proof. From Fact 2, we have

|qn−1α− pn−1| = |(qn+1α− pn+1)− an+1(qnα− pn)|
The lemma follows from the fact that an > 0 for n ≥ 1, and that (qnα − pn) and
(qn+1α− pn+1) have opposite signs. �

3. The Main Theorem

For α ∈ R \ Q and m ∈ N, the fractional parts, {α}, {2α}, . . . , {mα}, define a
partition, Pα(m), of [0, 1]:

0 = d0 < d1 < · · · < dj < dj+1 < · · · < dm < dm+1 = 1



Irrational Numbers of Constant Type 33

The maximum and minimum lengths of the subintervals of Pα(m) are denoted,
respectively, by

dα(m) := max
0≤i≤m

(di+1 − di)
d′α(m) := min

0≤i≤m
(di+1 − di)

For the partition Pα(m), the differences (di+1−di) can be completely characterized
[4] in terms of ηn = |qnα − pn|. Collecting the relevant results in reference [4], we
have

Theorem 1 (Three Distance Theorem). Let α ∈ R \Q and m ∈ N.
(a) m can be uniquely represented as m = rqk + qk−1 + s, for some k ≥ 0,

1 ≤ r ≤ ak+1, and 0 ≤ s < qk (where ak’s are the partial quotients of α and
qk’s are given in Fact 2).

(b) For the partition Pα(m), there are (r − 1)qk + qk−1 + s + 1 subintervals of
length ηk, s+1 subintervals of length ηk−1−rηk, and qk− (s+1) subintervals
of length ηk−1− (r− 1)ηk, where the unique integers k, r and s are as in part
(a).

Remark 1. From Theorem 1, we observe
(a) ηk−1 − rηk = ηk+1 + (ak+1 − r)ηk, by Lemma 1
(b) ηk−1 − (r − 1)ηk = ηk + ηk−1 − rηk
(c) When qk = s+ 1, there are no subintervals of length ηk−1 − (r − 1)ηk.

Corollary 1. For m ∈ N and α ∈ R \Q, the maximum length, dα(m), and mini-
mum length, d′α(m), of the subintervals of partition Pα(m), are given by:

(a) When qk > s+ 1,

dα(m) =
{

ηk+1 + ηk , r = ak+1

ηk+1 + (ak+1 − r + 1)ηk , r < ak+1

When qk = s+ 1,

dα(m) =
{

ηk , r = ak+1

ηk+1 + (ak+1 − r)ηk , r < ak+1

(b) For all qk ≥ s+ 1,

d′α(m) =
{
ηk+1 , r = ak+1

ηk , r < ak+1

where k, r, s, ak, and ηk are as in Theorem 1.

Proof. From Remark 1(a) and Lemma 1 we have,

ηk−1 − rηk =
{
ηk+1 < ηk , r = ak+1

ηk+1 + (ak+1 − r)ηk > ηk , r < ak+1

Now, the corollary follows from Theorem 1, Remark 1(b) and Remark 1(c). �
Theorem 2 (Main Theorem). Let α ∈ R \ Q, m ∈ N, and let dα(m), d′α(m) be,
respectively, the maximum and minimum lengths of the subintervals of the partition

Pα(m). The sequence
(
dα(m)
d′α(m)

)∞
m=1

is bounded if and only if α is an irrational

number of constant type.



34 Manash Mukherjee and Gunther Karner

Proof. Let m = rqk + qk−1 + s, where k, r, and s are the unique integers given by
Theorem 1. From Corollary 1 and Lemma 1, we have

dα(m)
d′α(m)

=


ε+

ηk+2

ηk+1
+ ak+2 , r = ak+1

ε+
ηk+1

ηk
+ (ak+1 − r) , r < ak+1

where ε = 1 for qk > s+ 1 and ε = 0 for qk = s+ 1.

(a) If α is of constant type (Definition 1), then the partial quotients, an, of α,
satisfy an ≤ B(α) < ∞ for all n ≥ 1. Since

ηj+1

ηj
< 1 for all j ≥ 0 (by Lemma 1),

dα(m)
d′α(m)

< B(α) + 2 for all m ∈ N. Hence,
(
dα(m)
d′α(m)

)∞
m=1

is bounded.

(b) Suppose
dα(m)
d′α(m)

< B0 where 0 < B0 <∞ for all m ∈ N. In particular, for m =

qk+1 [corresponding to r = ak+1, s = 0], we have
dα(qk+1)
d′α(qk+1)

= ε+
ηk+2

ηk+1
+ ak+2 < B0

for all k ≥ 0. Hence, ak+2 < B0 for all k ≥ 0. Setting B = max{B0, a1}, we have
an ≤ B for all n ≥ 1, and hence α is of constant type. �
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