Abstract. Let $p_{n} / q_{n}=\left(p_{n} / q_{n}\right)(x)$ denote the $n^{\text {th }}$ simple continued fraction convergent to an arbitrary irrational number $x \in$ $(0,1)$. Define the sequence of approximation constants $\theta_{n}(x):=$ $q_{n}^{2}\left|x-p_{n} / q_{n}\right|$. It was conjectured by Lenstra that for almost all $x \in(0,1)$,

$$
\left.\left.\lim _{n \rightarrow \infty} \frac{1}{n} \right\rvert\,\left\{j: 1 \leq j \leq n \text { and } \theta_{j}(x) \leq z\right\} \right\rvert\,=F(z)
$$

where $F(z):=z / \log 2$ if $0 \leq z \leq 1 / 2$, and $\frac{1}{\log 2}(1-z+\log (2 z))$ if $1 / 2 \leq z \leq 1$. This was proved in [BJW83] and extended in [Nai98] to the same conclusion for $\theta_{k_{j}}(x)$ where k_{j} is a sequence of positive integers satisfying a certain technical condition related to ergodic theory. Our main result is that this condition can be dispensed with; we only need that k_{j} be strictly increasing.
[BJW83]W. Bosma, H. Jager, and F. Wiedijk, Some metrical observations on the approximation by continued fractions, Indag. Math. 45 (1983), 281-299, MR 85f:11059, Zbl 519.10043.
[Nai98]R. Nair, On metric diophantine approximation theory and subsequence ergodic theory, New York Journal of Mathematics 3A (1998), 117-124, MR 99b:11088, Zbl 894.11032.

