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Metric Diophantine Approximation and
Probability

Doug Hensley

Abstract. Let pn/qn = (pn/qn)(x) denote the nth simple continued fraction
convergent to an arbitrary irrational number x ∈ (0, 1). Define the sequence
of approximation constants θn(x) := q2

n|x − pn/qn|. It was conjectured by
Lenstra that for almost all x ∈ (0, 1),

lim
n→∞

1

n
|{j : 1 ≤ j ≤ n and θj(x) ≤ z}| = F (z)

where F (z) := z/ log 2 if 0 ≤ z ≤ 1/2, and 1
log 2

(1−z+log(2z)) if 1/2 ≤ z ≤ 1.

This was proved in [BJW83] and extended in [Nai98] to the same conclusion for
θkj (x) where kj is a sequence of positive integers satisfying a certain technical

condition related to ergodic theory. Our main result is that this condition can
be dispensed with; we only need that kj be strictly increasing.
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1. Introduction

Metric questions about Diophantine approximation can be approached by means
of ergodic theory, dynamical systems, weak mixing and so on. At the heart of this
approach lies the observation that not only is the map T : [0, 1]\Q→ [0, 1]\Q given
by T : x → 〈1/x〉 =: 1/x− [1/x] ergodic, but that T : Ω → Ω := ([0, 1]\Q)× [0, 1]
given by T : (x, y)→ (〈1/x〉, 1/([1/x]+y)) is ergodic with better mixing properties.
The associated measure, invariant under T assigns to measurable A ⊂ Ω mass∫
A

1
log 2

∫
A

dx dy
(1+xy)2 . Here we take a different tack. It goes back to the pioneering

work that led to the Gauss-Kuzmin theorem, and the thread continues with the
work of Wirsing and Babenko on the convergence rate in that theorem. Most
recently, Vallée et al have had signal success with this circle of ideas, analyzing for
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instance the lattice reduction algorithm in two dimensions [Val95]. This approach
uses functional analysis and classical probability. Discussion of linear operators,
eigenvalues, and eigenvectors requires that a linear space be specified. We shall get
around to this, but for now it suffices to note that the definition below of L would
make sense for any reasonable space of functions. At the heart of our approach
lies the fact that if X is a random variable on U := [0, 1]\Q with density f , then
TnX has density Lnf where Lf(t) =

∑∞
k=1(k + t)−2f(1/(k + t)) (for t ∈ [0, 1],

else zero) and that L has dominant eigenvalue 1 with corresponding eigenfunction
g(t) := 1/(log 2(1 + t)). From this it follows that well-separated values of TnX are
nearly independent random variables, so that the usual tools of classical probability
can be brought into play.

These statements about random variables and density can be rephrased so as to
avoid explicit mention of probability: X is a measurable function from U to U , and
φ : [0, 1] → [0, 1] is defined by φ(y) = m({x ∈ U : X(x) ≤ y}) where m denotes
Lebesgue measure. If φ is differentiable on [0, 1], then f := φ′ is the density of the
random variable X. Similarly, the density of TnX is

(d/dy)m({x ∈ U : TnX(x) ≤ y}) = Lnf,

a fact which is used in the pioneering work mentioned above and in all subsequent
developments along this line.

Recall (from the abstract) that pn/qn = (pn/qn)(x) denotes the nth simple
continued fraction convergent to an arbitrary irrational number x ∈ (0, 1), while
θn(x) := q2

n|x− pn/qn|. Also,

F (z) :=

{
z/ log 2 if 0 ≤ z ≤ 1/2

1
log 2 (1− z + log(2z)) if 1/2 ≤ z ≤ 1.

Our main result is

Theorem 1.1. If (kj) is a strictly increasing sequence of positive integers, and
0 < z < 1, then (with respect to Lebesgue measure)

lim
n→∞

1
n
|{j : 1 ≤ j ≤ n and θkj (x) ≤ z}| = F (z)

for almost all x ∈ (0, 1).

2. Probabilities and operators

The probability Qr,f (z) that θr(X) ≤ z, when the initial density for X is f , is
essentially F (z), as we shall see. In the case f ≡ 1, this is due to Knuth. [BJW83].
What is new here is that there is a kind of near-independence of these events for
widely separated values of r, and uniformly over a certain class of initial probability
distributions f .

Let Vr denote the r-fold Cartesian product of the positive integers. For an
arbitrary sequence v ∈ Vr of r positive integers, let [v] := [0; v1, v2, . . . vr] = pr/qr,
let {v} := [0; vr, vr−1, . . . v1] = qr−1/qr, and let |v| := qr. Let v− := (v2, . . . vr) and
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let v− := (v1, . . . vr−1), so that pr = |v−| and qr−1 = |v−|. Then for x ∈ [0, 1]\Q,

x =
pr + (T rx)pr−1

qr + (T rx)qr−1
(1)

θr(x) =
T rx

1 + {v}T rx
Lr[(1 + ut)−2] =

∑
v∈Vr

|v|−2(1 + u[v])−2(1 + ({v}+ u{v−})t)−2

(Lrf)(t) =
∑
v∈Vr

|v|−2(1 + {v}t)−2f([v + t])

where [v + t] := [0; v1, v2, . . . vr−1, vr + t]. (Thus if f is a convex combination of
probability density functions of the form (1+u)(1+ut)−2, then so is Lf .) The claim
above about the dominant eigenvalue of L can now be given specific content. For an
arbitrary function f of bounded variation and zero except in [0, 1], (which we will
call good) let ‖f‖ be the total variation of f on the real line. (Thus any probability
density function has norm at least 2). We have (specializing from Lemma 6 [Hen92,
p 346])

Lemma 2.1. Uniformly over 0 ≤ t ≤ 1 and good probability density functions f of
bounded variation, Lrf = 1

log 2(1+t) +O(((
√

5− 1)/2)r‖f‖).
Again let f be a good probability density function. Let I(S) := 1 if S is a true

statement, else zero. Let X be a random variable on [0, 1] with density f . Then
the density of T rX is Lrf . Let v = v(x, r) denote the sequence of the first r partial
quotients in the continued fraction expansion of x, so that x = [v+t] where t = T rx.

We now consider the probability Pr,z,f that {v(X, r)} ≤ z. In the case r = 1,
this is

P1,z,f =
∫ 1

x=0

f(x)I(b1/xc ≤ z) dx =
∑

{k:1/k≤z}

∫ 1

t=0

(k + t)−2f(1/(k + t)) dt

on substituting x = 1/(k + t). The similar substitution

x = [v + t] = [v1, v2, . . . vr−1, vr + t]

has dx/dt = |v|−2(1 + {v}t)−2, so the probability Pr,z,f that {v} ≤ z is given by

Pr,z,f =
∫ 1

t=0

∑
v∈Vr,{v}≤z

|v|−2(1 + {v}t)−2f([v + t]) dt.(2)

Much of what lies ahead has to do with conditional probabilities, conditional
random variables, and their associated conditional densities. If E1 is an event
(measurable subset of U) with positive probability (that is, m(E1) > 0), then the
conditional probability of another event E2 given E1 is by definition

prob(E1 and E2)/prob(E1) = m(E1 ∩ E2)/m(E1).

Most of our events have to do with some random variable X on U with density f ,
and some function τ : U → U . Suppose D1 ⊂ R and let E1 = X−1D1 = {x ∈ U :
X(x) ∈ D1}. The conditional probability that τ(X) ∈ D2 given X ∈ D1 is then
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m((τ ◦X)−1D1 ∩X−1D2)/m(X−1D1), and the conditional density for τ(X) given
that X ∈ D1 is the function

t→ (d/dt)m({x : τ(X(x)) ≤ t and X(x) ∈ D1})/m(X−1(D1)).

The conditional density given that {v(X, r)} ≤ z, for T rX is

gr,z,f :=
∑

v∈Vr,{v}≤z
|v|−2(1 + {v}t)−2f([v + t])/Pr,z,f .(3)

Let hr,z,f (t) := gf,r,z(t)Pr,z,f . By convention both f and g take the value 0 off
[0, 1].

Because gr,z,f is the conditional density of T rX given v(x, r) ≤ z, where X is a
random variable on (0, 1) with density f , it follows that if Y is a random variable
on (0, 1) with density g := gr,z,f and B is a measurable subset of [0, 1) then

prob[{v(X, r)} ≤ z and T rX ∈ B]/prob[{v(X, r)} ≤ z] = prob[Y ∈ B](4)

We are now in a position to state and prove

Theorem 2.1. Uniformly over good probability density functions f , over 0 ≤ z ≤
1, and over 0 ≤ t ≤ 1,

hr,z,f :=
∑

v∈Vr,{v}≤z
|v|−2(1 + {v}t)−2f([v + t])

is good and satisfies

hr,z,f (t) =
z

log 2(1 + tz)
+O(rz((

√
5− 1)/2)r‖f‖)

Proof. It is clear that the resulting function again has bounded variation. The
real issue is whether it satisfies the estimate. We begin by proving a weaker version
of the theorem, in which the z in the error term is replaced with 1. For this weaker
version, the ground floor of induction is trivial. Let λ = (

√
5 − 1)/2. Let Vr(z)

denote the set of all v ∈ Vr so that {v} = qr−1/qr ≤ z. Now assume that for some
r, ∣∣∣∣∣∣

∑
v∈Vr(z)

|v|−2(1 + t{v})−2f([v + t])− z

log 2(1 + tz)

∣∣∣∣∣∣ ≤ Crλr
Then∑
v∈Vr+1(z)

|v|−2(1 + t{v})−2 =

=
∞∑

n=[1/z]+1

n−2
∑
v∈Vr

|v|−2(1 + {v}/n)−2(1 + t/(n+ {v}))−2f([v, n+ t])

+
∑

v∈Vr\Vr(〈1/z〉)
|v|−2([1/z] + t+ {v})−2

=
∞∑

n=[1/z]

(n+ t)−2
∑
v∈Vr

|v|−2(1 + {v}/(n+ t))−2f([v + t])

−
∑

v∈Vr(〈1/z〉)
|v|−2([1/z] + t)−2(1 + {v}/([1/z] + t))−2f([v, [1/z] + t)
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The first term here is
∞∑

n=[1/z]

(n+ t)−2 · g(1/(n+ t)) +O(λrz‖f‖)

from Lemma 2.1, while the second term is

−
(

[1/z] + t)−2 · ( 1
log 2

〈1/z〉
1 + 〈1/z〉/([1/z] + t)

+ ΘCr(λr‖f‖)
)

where |Θ| ≤ 1, on the induction hypothesis. The total thus simplifies to

z/(log 2(1 + tz)) +O(λr‖f‖) + ΘCr[1/z]−2‖f‖.
This leads to a recurrence Cr+1 = Cr +O(1) from which it follows that (r−1Cr) is
bounded and the weak version of the theorem follows. For the strong version, we
just note that given the weak version, the strong version follows immediately since
the two error terms in passing from r to r + 1 were O(λrz + Cr[1/z]−2). �
Corollary 2.2. Uniformly over good probability density functions f , over 0 ≤ z ≤
1, and over 0 ≤ t ≤ 1,∑
v∈Vr,{v}≥z

|v|−2(1 + {v}t)−2f([v + t]) =
1

log 2
1− z

(1 + t)(1 + tz)
+O(r(1− z)λr‖f‖).

In view of Corollary 2.2, the conditional density for T rX given initial density
f and given that qr−1/qr(X) ≤ z is, on the one hand, a good density, and on the
other hand, z/((1+ tz) log(1+z))+O(rλr‖f‖), while the conditional density, given
that qr−1/qr(X) ≥ z, is again on the one hand a good density, and on the other,
(1− z)/((log 2− log(1 + z))(1 + t)(1 + tz)) +O(rλr‖f‖). Now consider a sequence
kj of positive integers such that k1 ≥ r and kj+1 − kj ≥ r for all j.

The probability Qr,f (z) that θr(X) ≤ z, when the initial density for X is f , is

Qr,f (z) =
∑
v∈Vr

|v|−2

∫ 1

t=0

(1 + {v}t)−2f([v + t])I(t/(1 + {v}t) ≤ z) dt

=
∫ 1

t=0

∑
v∈Vr

|v|−2(1 + {v}t)−2f([v + t])(1− I({v} ≤ 1/z − 1/t)) dt

Let u∗ := 0 if u < 0, u if 0 ≤ u ≤ 1, and 1 if u > 1. Taking (1/z − 1/t)∗ in place of
t in Theorem 2.1 breaks into two cases. If z ≤ 1/2 we get

Qr,f (z) = 1− 1
log 2

(∫ z/(1−z)

z

(1/t− z/t2) dt+
∫ 1

z/(1−z)

1
1 + t

dt

)
+O(λr‖f‖)

=
z

log 2
+O(λr‖f‖).

For z > 1/2 we get instead

Qr,f (z) = 1− 1
log 2

∫ 1

z

(1/t− z/t2) dt+O(λr‖f‖)
In either case, this says

Qr,f (z) = F (z) +O(λr)‖f‖(5)

as claimed at the outset of this section.
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Next we consider the conditional density ρr,z,f,ε(t) of T rX when the initial den-
sity for X is f , given that θr(X)><z according to whether ε = 0 or 1. This is again
a good density, with norm not more than a constant multiple of ‖f‖, (the multiple
may and does depend on z) we claim.

We first note that the probability, on initial density f , that θr(X) ≤ z is at least
Cz+O(λr). So for fixed z > 0, and r sufficiently large, it is at least Kz. Similarly,
the probability that θr(X) ≥ z is at least K(1 − z) for r sufficiently large. Next,
we need some estimate of the possible growth of ‖ρr,z,f,ε‖/‖f‖ with increasing r.
The scaling factor that results from dividing∑

v∈Vr
|v|−2(1 + {v}t)−2f([v + t])(1− I({v} ≤ 1/z − 1/t))

by Qr,f (z) or by (1−Qr,f (z)), according to whether ε = 0 or 1, is at most O(1/z)
or O(1/(1− z)). Apart from this effect, we have a norm of at most∑

v∈Vr
|v|−2‖(1 + {v}t)−2f([v + t])I({v}><z−1 − t−1)‖.

A lemma on total variation is now needed.

Lemma 2.2. If g is a positive function of bounded variation on R and is zero
outside [0, 1] and h is a positive, increasing function on R with h(1) = 1, or positive
and decreasing with h(0) = 1, then the total variation of gh is no more than that
of g.

Proof. Write g as g1 − g2 where both are zero on (−∞, 0), increasing, and con-
stant on (1,∞), so that the total variation of g is equal to 2g1(1) = 2g2(1). Then
gh = g1h − g2h. This gives a representation of gh as the difference of two in-
creasing functions, both zero on (−∞, 0) and both equal and constant on (1,∞).
By reflecting g we see that the same holds if h is positive and decreasing with
h(0) = 1. �

Now by repeated application of the lemma, and taking into account that the
total variation of f([v + t]) is no more than that of f , we calculate that∑

v∈Vr
|v|−2‖(1 + {v}t)−2f([v + t])I({v}><z−1 − t−1)‖(6)

≤
∑
v∈Vr

|v|−2‖(1 + {v}t)−2f([v + t])‖

≤
∑
v∈Vr

|v|−2‖f([v + t])‖ ≤ (
∑
v∈Vr

|v|−2)‖f‖ ≤ 2‖f‖

From this it follows that for all δ ∈ (0, 1/2), and whether we require θr(X) < z
or θr(X) > z, there exists R(δ) > 0 and K(δ) > 0 so that ‖fr,z‖ ≤ K(δ)‖f‖,
uniformly in δ ≤ z ≤ 1− δ for r ≥ R(δ).

Now the probability, on initial density f , that θk1(X) ≤ z, is F (z) +O(λr‖f‖).
(Recall, all kj > r). The conditional density of T k1X = Y (say) given this event is
a normalized version of the sum of all terms (with v ∈ V (k1)) of the form |v|−2(1 +
{v}t)−2I[t ≤ z/(1 − z{v})]f([v + t]), or given instead the complementary event,
the same expression but with I[t ≥ z/(1 − z{v})] in place of I[t ≤ z/(1 − z{v})].
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In either case, this is a function of bounded variation. In either case, provided
z ∈ [δ, 1− δ], that variation is bounded by K(δ)‖f‖.

Fix n large, and consider the sequence T kjX, 1 ≤ j ≤ n. Fix γ > 0. To satisfy a
technical condition at the end of the paper, we also require that γ/(F (z)+γ) < 1/4.
Consider the probability that more than (F (z) + 2γ)n of the j have θkj ≤ z. For
large n, we can break this finite sequence into O(n3/4) subsequences, each of which
has kj+1 > kj + n3/4, and each of which has at most, but on the order of, (n1/4)
entries. This way, r = n3/4 is comfortably larger than the number of trials O(n1/4)
in a subsequence. The initial density f0 is the density of T k1, where k is the least of
the kj in our subsequence. For each such subsequence of length N say (N depends
on the subsequence), the event E(ε1, . . . εN ), where (ε1, ε2, . . . εN ) ∈ {0, 1}N , is the
set of all x ∈ [0, 1)\Q for which θkj < z if and only if εj = 0, 1 ≤ j ≤ N .

Let rj := kj+1 − kj , with r0 := k1. A step consists of replacing fj with fj+1 :=
ρrj ,z,fj ,εj+1 , the conditional density, given that θkj (Y ) >

<z, of T rjY where Y is a
random variable on U with density fj . Thus the input to the next step is again a
good density, with a certain norm. The norm of the ‘working’ fj may increase, by
at most a factor of K(δ) each time. If the number N of steps is small compared
to the minimum rj , this is not much of a problem, because at each stage, the
working ‘initial’ probability density function fj has norm no greater than Kj . The
probability, at each trial within the subsequence, and for any prior history of trials
within that subsequence, that θkj > z, is less than F (z)+γ. That is, the conditional
probability that θkjm > z, given that θkjl < z exactly when εl = 0 for 1 ≤ l ≤ m,
is less than F (z) + γ.

(We take n large enough that K(δ)n
1/4
λn

3/4
< γ/2). The probability that a

particular subsequence has more than its own length, multiplied by F (z)+2γ, cases
of θkj > z, can be shown (see below) to be bounded above by O(exp(−Cγ2n1/4)).
Keeping in mind that this claim has yet to be established, we continue with the
main line of the proof.

The probability that any one of the subsequences has such an atypical success
ratio, is O(n3/4 exp(−Cγ2n1/4)) which tends to zero. This shows that the probabil-
ity of an atypically high success ratio is asymptotically zero. The same arguments
apply to the case of an atypically low success ratio, simply by redefining success to
mean θkj < z. This proves that Nair’s theorem1 holds for any strictly increasing
sequence (kj) of positive integers, as claimed.

3. Non-independent trials are good enough.

‘The probability that a particular subsequence has more than its own length,
multiplied by F (z) + 2γ, cases of θkj > z, can be shown (see below) to be bounded
above by O(exp(−Cγ2n1/4)).’ We now make good on this claim. For the remainder
of this section, we shall use n to mean the number of trials. This new value of n
will be on the order of the old value of n1/4.

We have a kind of near-independence: If

E := E(k1, k2, . . . kn, ε1, ε2, . . . εn) = {x ∈ [0, 1]\Q : θkj (x) < z iff εj = 0}(7)

then the conditional probability that θkn+1 < z given that x ∈ E is F (z) + O(λr)
and so less than F (z) + γ. Thus if (a0, a1) is the sequence

(a0, a1) := (prob(θk1(x) < z),prob[θk1(x) > z])

1See http://nyjm.albany.edu:8000/j/1998/3A-9.html.

http://nyjm.albany.edu:8000/j/1998/3A-9.html
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and (b0, b1) the sequence (1− γ − F (z), F (z) + γ), then a0 > b0 and a0 + a1 = 1 =
b0 + b1.

Given two sequences (a0, a1, . . . an) and (b0, b1, . . . bn) of non-negative numbers
summing to 1, we say that a :> b if for all k < n,

∑k
0 aj >

∑k
0 bj .

Lemma 3.1. If a :> b, if (uk) and (vk) are sequences of numbers in [0, 1] with
uk < vk for all k, and if a′ is given by a′j = (1 − uj)aj + uj−1aj−1 and b′ by
b′j = (1− vj)bj + vj−1bj−1, (setting a−1 = b−1 := 0), then a′ :> b′.

Proof. We have
k∑
j=0

a′j − b′j =
k∑
j=0

(1− uj)aj + uj−1aj−1 − (1− vj)bj − vj−1bj−1

= (1− vk)
k∑
0

(aj − bj) + vk

k−1∑
0

(aj − bj) + ak(vk − uk) > 0.

�
We apply this lemma with a = (a0, a1, . . . an)[k1, k2, . . . kn, ε1, ε2, . . . εn, z], de-

fined by

am := prob[#{j : 1 ≤ j ≤ n and θkj < z} = m] for 0 ≤ m ≤ n, and

b := (b0, b1, . . . bn), where

bm :=
(
n
m

)
(F (z) + γ)m(1− F (z)− γ)n−m, 0 ≤ m ≤ n.

The claim is that with this a and b, a :> b. The proof is inductive, using Lemma 3.1
n times.

We shall be using a succession of a’s and b’s, which will be denoted by super-
scripts.

a1 := (a1
0, a

1
1) = (prob[θk1 ≥ z],prob[θk1 < z]), while

b1 := (1− F (z)− γ, F (z) + γ).

We have a1 :> b1 because prob[θk1 ≥ z] > 1− F (z)− γ. This so far uses only the
definition of :> and earlier material but not Lemma 3.1

Now let a2
0 := (prob[θk1 ≥ z and θk2 ≥ z], a2

1 := prob[one small theta], and
a2

2 := prob[θk1 ≤ z and θk2 ≤ z]),
a2 := (a2

0, a
2
1, a

2
2), and

b2 := ((1− F (z)− γ)2, 2(1− F (z)− γ)(F (z) + γ), (F (z) + γ)2).

We take a = a1, b = b1, a′ = a2, and b′ = b2 in Lemma 3.1. Then we have

a′0 = (1− u0)a0, a
′
1 = (1− u1)a1 + u0a0, a

′
2 = (1− u2) · 0 + u1a1

where u0 = prob[θk2 < z given θk1 ≥ z] and u1 = prob[θk2 < z given θk1 < z],
while v0 = v1 = F (z) +γ. Applying Lemma 3.1 gives a2 :> b2. Inductively, it gives
an :> bn which says that a :> b.

Thus the probability that more than n(F (z) + 2γ) cases of θkj < z out of the
first n values of θkj is less than the probability, with a Bernoulli process which gives
‘heads’ with probability F (z) + γ, that more than n(F (z) + 2γ) of the first n trials
come up heads.
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By standard exponential centering, this probability is, we claim, less than
exp(−(3/8)nγ2). Let Yj be independent Bernoulli trials with a coin taking heads
with probability α = F (z)+γ. (If F (z)+γ > 1 the probability in question is zero.)
Now for ζ > 0,

Prob[
n∑
j=1

Yj ≥ n(α+ γ)]

≤ e−ζn(α+γ)
∑

k≥n(α+γ)

ekζProb[
n∑
j=1

Yj = k]

≤ e−ζn(α+γ)
n∑
k=0

ekζProb[
n∑
j=1

Yj = k] = e−ζn(α+γ)(1− α+ αeζ)n

We take ζ = log(1 + γ/α) and recall that γ/α < 1/4. Thus

Prob[
n∑
j=1

Yj ≥ n(α+ γ)] ≤ (1 + γ/α)−n(α+γ)enγ .

Using the first two terms in the series expansion of log(1 + γ/α), this is less than
exp(−(3/8)nγ2/α) < exp(−nγ2/4). This completes the proof of the theorem.
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