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Three Results on Mixing Shapes

T� Ward

Abstract� Let � be a Zd
action �d � �� by automorphisms of a compact
metric abelian group� For any non
linear shape I � Zd� there is an � with the
property that I is a minimal mixing shape for �� The only implications of the
form 
I is a mixing shape for � �� J is a mixing shape for �� are trivial
ones for which I contains a translate of J�

If all shapes are mixing for �� then � is mixing of all orders� In contrast to
the algebraic case� if � is a Zd
action by measure
preserving transformations�

then all shapes mixing for � does not preclude rigidity�
Finally� we show that mixing of all orders in cones � a property that

coincides with mixing of all orders for Z�actions � holds for algebraic mixing
Z�
actions�
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�� Introduction

Let � be a measure�preserving action of Zd on a standard probability space
	X�B� �
 	d � �
� If X is a compact metrizable abelian group� � is Haar measure�
and each �n is a group automorphism� then � is an algebraic dynamical system 	as
studied in ��
�� where the notions below are found
�

The action � is rigid if there is a sequence nj � � 	going to in�nity means
leaving �nite sets
 with the property that �	A � �njA
 � �	A
 as j � � for all
A � B� The action � is mixing of all orders if for all r � � and for all sets B�� � � � � Br

in B�
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The shape F � fn�� � � � �nrg is mixing for � if for all sets B�� � � � � Br in B�
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The shape F is a minimal non�mixing shape for � if F is non�mixing but any subset
of F is mixing� A shape is admissable if it does not lie on a line in Zd� it contains

� and for any k � � the set �

kS contains non�integral points�
For the last mixing property� take d � � for simplicity and let � be a measure�

preserving Z��action on 	X�B� �
 as before� An oriented line through the origin in
Z� is a half�line starting at the origin� An oriented cone C � 	��� ��
 in Z� is the
region between an ordered pair 	��� ��
 of oriented half lines� including the edges�
Notice that if �� � �� then the cone 	��� ��
 comprises exactly a half�line� The cone
de�ned by no lines is all of Z�� Given a collection f�jg of half�lines� there is an
associated collection of oriented cones fCjg where Cj is the cone associated to the
ordered pair 	�j � �j��
 	if there are n lines� with j � � reduced mod n
�

The Z��action � is mixing of all orders in the oriented cone C if for every r � �
and all sets B�� � � � � Br in B�
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Theorem ���� If S is any admissable shape� then there is an algebraic Zd�action
for which S is a minimal non�mixing shape� If S and T are admissable shapes� then

there is an algebraic Zd�action that is mixing on S and not mixing on T unless a

translate of T is a subset of S�

That is� the poset formed by equivalence classes 	under translation
 of admissable
shapes in Zd� partially ordered by inclusion� embeds in the hierarchy of mixing
properties for Zd�actions�

Theorem ���� If � is an algebraic Zd�action for which every shape is mixing� then

� is mixing of all orders� In general� a measure�preserving Zd�action for which every

shape is mixing can be rigid�

Notice that the notion of mixing shapes still makes sense for d � �� and there it
is not clear whether in general all shapes mixing implies mixing of all orders�

For the next theorem� notice that if an action � is mixing of all orders in the
oriented cones associated to a family of lines L� then the same is true of any larger
family L� � L� It follows that the object of interest is the smallest set of lines for
which the property holds� Examples related to parts 	b
 and 	c
 of Theorem ���
are given below 	Example ���
�

Theorem ���� Let � be a mixing algebraic Z��action on the compact abelian group

X� Then there is a collection L � f�jg of half�lines in Z� with the property that

� is mixing of all orders in the oriented cones associated to the family of lines�

Moreover�

	a
 if X is connected then L may be taken to be empty�

	b
 if � is expansive then L may be taken to be �nite�

	c
 if � is not expansive and X is not connected� then the smallest such set L
may contain a line through every point in Z��
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�� Proofs of Theorems ��� and ���

Let R be any ring� a polynomial f � R�u��� � � � � � u��d � may be written
P
n�S cnu

n�
where each cn � Rnf
g� and un is the monomial un�� � � � undd � The set S � Supp	f

is the support of f � If R is an integral domain� then the polynomial f is absolutely
irreducible if f is irreducible over an algebraic closure of the �eld of fractions of R�
A polynomial is primitive if its support includes the origin and is not an integer
dilate of another set�

Let R � Z�u��� � � � � � u��d � and Rp � Fp �u
��
� � � � � � u��d �� Following ��
�� if M is

a module over R� then the d commuting automorphisms given by multiplication

by u�� � � � � ud have as duals d commuting automorphism of X � cM� de�ning an
algebraic Zd�action �M on X � Conversely� any algebraic action is of the form �M

for some R�module M� Notice that any Rp�module is an R�module�

Proof of Theorem ���� The following result is proved in Section � of ���� if the
polynomials

f �k�	u�� � � � � ud
 � f	uk� � � � � � u
k
d


have no primitive irreducible factors for any k � � 	apart from k a power of p
� and
the support of f is the admissable shape S� then S is a minimal non�mixing shape
for the Zd�action �Rp�hfi�

So it is enough to show that for any admissable shape S there is a prime p�
and a polynomial f over Fp whose support is S and with the property that f �k� is
absolutely irreducible for all k � �� By Lemma ���
 of ��� 	see also Theorem I�II in
���
� if Supp	f
 is admissable� then there is an N	Supp	f

 with the property that
if f �k� has no primitive irreducible divisors over �Fp for � � k � N	Supp	f

� then

f �k� has no primitive irreducible divisors for all k not a power of p�
Fix an admissable shape S with s � jSj� an integral domain R� and a generic

polynomial h � R�u��� � � � � � u��d � with support S� Then h � h	u
 � h	u�� � � � � ud
 is
a polynomial h		u� a
 � R�u� a�� � � � � as� in which the variables a�� � � � � as all appear
with degree one� By the Bertini�Noether Theorem 	Proposition ���� in ���
� there
exist polynomials R�� � � � � Rt � R�a� with the property that h		u� a�
 is absolutely
irreducible if and only if at least one of R�	a

�
� � � � � Rt	a
�
 is not zero� So� if

the polynomial h	u� a
 is absolutely irreducible over Q	a
� then the polynomials
R�� � � � � Rt don�t vanish identically� Therefore� in this case there exists a� integral
such that for all but �nitely many primes p� �h	u� a�
 is absolutely irreducible over Fp
and Supp	�h	u� a�
 � S� where g 	� �g is the canonical map Z� Fp � Now consider
the collection of all the polynomials h		u� a
 with support S� By Bertini�s Theorem
	see Theorem I������ of ��� or Theorem IX����� of ����
� the generic member of this
linear system 	of dimension greater than or equal to �
 is irreducible if and only
if the general member is not composite with a pencil 	h	 is composite with a
pencil if h		u� a
 � P 	Q	u

 with P � Q	a
���
� Assume the general member is
composite with a pencil� and let P 	�
 �

Pn
i�� ai�

i and Q	u
 �
P
n�S�

cnu
n� Then

h		u� a
 �
Pn

i�� ai
�P

n�S�
cnu

n

�i
� Now count the number of coe�cients that may

be chosen freely in the family� in h		u� a
 there are s� in P 	Q	u

 there are n�
so s � n� On the other hand� the support of the family P 	Q	u

 has cardinality
jS�j � j�S�j � 
 
 
 � jnS�j where �S� � fn �m j n � S��m � S�g and so on� If
jS�j � �� then it follows that the cardinality of the support of the family of P 	Q	u


exceeds s� which is impossible� If jS�j � �� then Q is a monomial� so the shape S
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is not admissable� contrary to our assumption� We deduce that the family h		u� a

is not composite with a pencil� and therefore is generically absolutely irreducible�
Now apply the bound N	Supp	f

 to deduce that the generic specialization h	u� a�

has the property that for all but �nitely many primes� the reduction mod p is a
polynomial f with Supp	f
 � S and with f �k� absolutely irreducible for all k � �
not a power of p� By the remarks above� this shows that there is an algebraic
Zd�action for which S is a minimal non�mixing shape�

Now �x two admissable shapes S and T � with the properties that for all n � Zd�
T � n �� S� and 
 � S � T � By the construction above� we can �nd a polynomial f
in the ring R with the property that� for a generic prime p� the reduction mod p of
f gives a polynomial �f in Rp whose support is S and which has the property that

f �k� has no primitive irreducible factors for k not a power of p�
It follows from Proposition ���� in ��
� that for a generic prime p� the Zd�action

�Rp�h �fi has S as its unique extremal non�mixing set 	see De�nition ���� in ��
�
�
We now need to show that� for an appropriate choice of the prime p� the shape T is

a mixing set for �Rp�h �fi� This is not guaranteed because of possible cancellations
mod p�

The following example 	Example ����
	�
 in ��
�
 illustrates the problem� If
f	u�� u�
 � � � u� � u�� and p is chosen to be �� then f	
� 

� 	�� 

� 	
� �
g is the

unique extremal non�mixing set for �R��h �fi� but the identity

	� � u� � u�
	� � u�
 � � � u�� � u� � u�u� mod �

shows that the set f	
� 

� 	�� 

� 	
� �
� 	�� �
g is also a minimal non�mixing set for

�R��h �fi� However� choosing for the �xed shape T � f	
� 

� 	�� 

� 	
� �
� 	�� �
g a
su�ciently large prime p 	in this case� p � � will su�ce
� this cancellation will not

occur mod p and so the shape T will be mixing for �Rp�h �fi�
Similarly� by Proposition ���� in ��
� if the prime p is chosen large enough for

the given shape T � the shape T will be mixing for the action �Rp�h �fi� �

Proof of Theorem ���� The �rst part follows from characterisations of higher�
order mixing and mixing shapes for algebraic dynamical systems in Sections �� and
�� of ��
��

Before turning to the second part of Theorem ���� we assemble some basic facts
about Gaussian processes 	see for instance ����
� The entropy of a d�dimensional
Gaussian process has been computed in ���� De�ne a measure space by 	��F�
 �Q
n�Zd	R�B
 where B is the Borel ��algebra on R� Let 	n	

 be the nth coordi�

nate of 
 � �� Let � be a probability measure on 	��F�
 with the property that
for any k�tuple of integer vectors n�� � � � �nk of the k�dimensional random variable
		n� � � � � � 	nk 
 is a k�dimensional Gaussian law� and the joint distribution is sta�
tionary in the sense that ��n��m�����nk�m� � ��n������nk� for any m � Zd� Let F
denote the completion of F� under �� Then 	��F � �� f	ngn�Zd
 is a d�dimensional
Gaussian stationary sequence� Assume that Ef	ng � 
 for each n � Zd� The
covariance function R � Zd � C may be expressed in terms of a 	symmetric

spectral measure � on Td via Khinchine�s decomposition� R	n
 � Ef	n�m	mg �R �
� 
 
 


R �
� e���i�n�s������ndsd��	ds� � � � dsd
� Conversely� if � is a symmetric �nite mea�

sure on Td� then there is a unique d�dimensional Gaussian stationary sequence
whose spectral measure is ��
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Associated to any Gaussian stationary sequence of the above form there is a
measure�preservingZd�action �� de�ned by the shift on �� Standard approximation
arguments 	see ����
 give the following� Let C denote the class of functions f � ��
C with the property that f	

 � F 		m�

	

� � � � � 	mt
	


 for some m�� � � � �mt and

some bounded continuous function F � Rt � C � Let � be a Gaussian Zd�action�
Then� in order to check any mixing property� it is su�cient to check it for functions
in the class C�

For each n � Zd� the Z�action generated by the tranformation �n is again Gauss�
ian� on 	��Fn
� where Fn is the sub���algebra of F generated by the projections
f	kngk�Z� The spectral measure of �n is �n � ����

n
� where �n � Td � T is given

by �n	s�� � � � � sd
 � n�s� � 
 
 
� ndsd mod ��
To exhibit an example for the second part of Theorem ���� we simply check

that a simple modi�cation of the construction of Ferenci and Kaminski in ��� has
the stated properties� Choose Q�independent numbers �� 
�� � � � � 
d� and let f	t
 �
	
�t� � � � � 
dt
 	mod �
 for t � T the additive circle� Let � � Td � Td be the involution
�	t�� � � � � td
 � 	� 
 t�� � � � � � 
 td
� and let � be Lebesgue measure on Td� De�ne
a symmetric� singular� continuous measure � on Td by � � �

�

�
�f�� � �	� � f
��

�
�

Let � be the Gaussian Zd�action with spectral measure �� The covariance function
is given by

R	n
 �
sin	��	n�
� � 
 
 
� nd
d



��	n�
� � 
 
 
� nd
d

�	�


Choose a sequence nj � 	n
�j�
� � � � � � n

�j�
d 
 � � for which n

�j�
� 
� � 
 
 
 � n

�j�
d 
d � 


as j ��� Then R	nj
� � as j ��� It follows that the �t�dimensional random
Gaussian vector

�j	

 �
�
	m�

	

� � � � � 	mt
	

� 	m��nj 	

� � � � � 	mt�nj 	



�
has covariance matrix

�
V
�j�
�� V

�j�
��

V
�j�
�� V

�j�
��

�
� where V

�j�
�� � V

�j�
�� is the covariance matrix V

of 		m�
	

� � � � � 	mt

	


� and V
�j�
�� has 	p� q
th entry

Ef	mp
	mq�njg � R	mp 
mq � nj
� R	mp 
mq


as j �� by our choice of nj � Thus V
�j�
�� � V � similarly V

�j�
�� � V � By the remark

above� this shows that �	�nj 	A
 � A

� �	A
 for all A � F � so � is rigid�
Let S � fn�� � � � �nrg� and de�ne a random vector of dimension r� t by �k	

 ��

	mi�knj 	

 j i � �� � � � � t� j � �� � � � � r
�
� This vector is Gaussian with zero mean

and covariance matrix

Vk �

�	
V
��
k V ��

k � � � V �r
k

���
���

V r�
k V r�

k � � � V rr
k

��
 �
where V jl

k is the t� t matrix whose 	p� q
th element is

v
�j�l�
�p�q�	k
 � E

�
	mp�knj 	mq�knl

�
�

�
R	mp 
mq
 if j � l

R	mp 
mq � knl 
 knj
 if j �� l�
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Notice that V� � V jj
k is the covariance matrix of 		n� � � � � � 	nt
� For j �� l� it is clear

from 	�
 that

lim
k��

v
�j�l�
�p�q�	k
 � 
�

so that

lim
k��

Vk �

�			

V� 
 � � � 


 V� � � � 


� � �


 
 � � � V�

����
 �
It follows that � is mixing for all shapes� �

�� Proof of Theorem ���

As in the proof of Theorem ���� the 	countable
 dual groupM � bX is a module
over the ring R � Z�u��� � u��� ��

Following ����� expanding the characteristic functions of the sets appearing in
	�
 as Fourier series on X shows that property 	�
 is equivalent to the following�
for any non�zero r�tuple 	m�� � � � �mr
 �M

r�

un�m� � un��n�m� � 
 
 
� un��n������nrmr �� 
	�


whenever n�� � � � �nr � C lie outside some su�ciently large �nite set in Z� 	how
large depending on the characters 	m�� � � � �mr
 �M

r
�
Recall that a prime ideal p � R is associated with the module M if there is

an element m � M for which p � ff � R j f 
 m � 
 � Mg� The basic mixing
behaviour is governed by the following lemmas�

Lemma ���� The following conditions are equivalent�

	i
 �M is mixing�

	ii
 �M
n

is ergodic for every n �� 
�
	iii
 No prime ideal associated with the module M contains a polynomial of the

form um�	un
 where � is cyclotomic�

Proof� See Proposition ���	�
 in ��
� �

Lemma ���� The following conditions are equivalent�

	i
 �M is mixing of all orders in the cone C�
	ii
 For every prime ideal p associated with M� �R�p is mixing of all orders in

the cone C�

Proof� This follows from the proof of Theorem ��� in ���� or Theorem ���� in ��
�
by restricting those proofs to the special sequence of mixing times in the cone� �

Lemma ���� If X � XM is connected� and �M is mixing� then �M is mixing of

all orders�

Proof� This is proved in ����� �

According to Lemma ���� in order to prove Theorem ��� it is su�cient to consider
mixing actions of the form �R�p on XR�p� If XR�p is connected� then by Lemma
��� the action �R�p is mixing of all orders� which proves Theorem ��� 	a
�

Assume therefore that XR�p is not connected� It follows that p � char 	R�p
 is
a rational prime� Let Rp � Fp �u

��
� � u��� �� then R�p becomes Rp�q for a prime ideal
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q � Rp� Notice that the ideal q may be f
g� in this case the original ideal p must

have been p 
Z�u��� � u��� �� The corresponding Z��action is the full two�dimensional
shift on p symbols which is mixing of all orders� From now on we therefore assume
that q is non�zero� By Proposition ���� of ��
�� if � is ergodic then q must be
principal� so it is enough to look at mixing Z��actions of the form �Rp�hfi� where
f � Rp� For any polynomial g � Rp� let CH	g
 denote the convex hull of Supp	g
�
Choose a �nite set of oriented lines through the origin L	f
 with the following
properties�

	i
 For each extreme point n of CH	f
� there is a line �	n
 � L	f
 such that
CH	f
nfng is entirely contained in one of the open half�planes de�ned by
the line parallel to �	n
 through n�

	ii
 All the cones de�ned by L	f
 are strictly acute�

The group X � XRp�hfi has the following form� If f �
P
n�Supp�f� fnu

n� then

XRp�hfi � fx � FZ
�

p j
X

n�Supp�f�

fnxn�m � 
 � Fp for all m � Z�g�	�


When described in this way� the Z��action �Rp�hfi is the shift on the closed shift�

invariant subgroup of FZ
�

p de�ned by 	�
�

Lemma ���� If C is a cone determined by the lines L	f
 and �Rp�hfi is mixing�

then �Rp�hfi is mixing of all orders in C�

Proof� First notice that the set Supp	f
 does not lie on a line � if it did� then
f would be a polynomial in a single monomial t � un say� In this case the action

of �
Rp�hfi
n is isomorphic to the in�nite direct product of one�dimensional systems

determined by the Z�t����moduleZ�t����hp� fi� Since the ideal hp� fi is non�principal
and Z�t��� � Q is a principal ideal domain� the group Z�t����hp� fi is �nite 	see

Examples ����	�
 in ��
�
� It follows that �
Rp�hfi
n is periodic and therefore cannot

be mixing�
Fix the cone C� With the chosen ordering described in Section �� the cone C

is de�ned by a �bottom� half�line �� and a �top� half�line ��� Each polynomial
h � Rp de�nes a character on X � XRp�hfi� Two polynomials h� and h� will

de�ne the same character if h� 
 h� � hfi� Denote by h a single character on X �
and let h denote any polynomial that de�nes that character� Each character h with

Supp	h
 � C has a distinguished representative eh� de�ned as follows� Let Bf 	C

denote the half�open strip along the bottom 	� ��
 edge of C� with width exactly

equal to the width of CH	f
 in the direction orthogonal to ��� The polynomial eh
is de�ned by the following two properties�

	i
 eh de�nes the character h�

	ii
 Supp	eh
 � Bf 	C
�

There is such a representative� by construction there is a line parallel to �� that
meets Supp	f
 in a singleton and has the property that any other line parallel
to �� above it does not meet Supp	f
� It follows that if n � Supp	h
nBf 	C
� an
appropriate multiple 	of the form cumf with c � Fp 
 of f may be added to h to
give h� with n �� Supp	h�
 and with the top edge of Supp	h�
 the same as the top
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edge of Supp	h
 at all points other than n� After �nitely many such additions� we

end up with the desired polynomial eh�
claim �� The representative eh is unique� That is� h� � h� if and only if fh� �fh��

To see this� �rst notice that if fh� � fh�� then h� � h�� Now the set Bf 	C
 has�

by construction� the following property� given any element y � F
Bf �C�
p � there is an

element y	 � X such that y	 restricted to Bf 	C
 coincides with y� This is clear

from 	�
� If then fh� �� fh�� there is a point n � Bf 	C
 with 	h�
n �� 	h�
n� choose

y � FBf �C�
p with the property that the characters de�ned by h� and h� di er on

this point� Then h� and h� must di er on y
	�

For a character h with Supp	h
 � C de�ne a number r	h
 by r	h
 � k if the line

orthogonal to �� most distant from the origin that intersects Supp	eh
 meets �� at
distance k from the origin�
claim �� If n � C� then r	unh
 � r	h
�

This is clear� the polynomial un em has an associated representative�un em obtained
by adding multiples of monomials times f � There is a face of CH	f
 orthogonal to
��� so the support of the resulting polynomial moves further away from the origin�

Now consider property 	�
� Letm�� � � � �mr be a collection of polynomials� not all
zero� with Supp	mi
 � C 	if this is not the case� multiply all of them by a monomial
un to ensure their supports move into C
� By the second claim� if n�� � � � �nr � C

are large enough� then for each j � �� � � � � r the set Supp	 �un������njmj
 contains
points not in

Supp	�un�m� � �un��n�m� � 
 
 
� �un������nj��mj��
�

By the �rst claim� it follows that the character

un�m� � un��n�m� � 
 
 
� un��n������nrmr

is non�trivial� proving Lemma ���� �

Proof of Theorem ���� Let M be the R�module associated to the action � on
X � As pointed out above� 	a
 follows from Lemma ���� so we may assume that X is
not connected and � acts expansively� By Corollary ���� of ��
�� it follows that the
R�moduleM is Noetherian� so there are only �nitely many prime ideals associated
to M 	see Theorem ���� Chapter � of ���
� Let L be the �nite set of lines given by
the union of the set of lines chosen before Lemma ��� for each of the associated
prime ideals� Then any cone C de�ned by L is a sub�cone of a cone in Lemma ����
so by Lemma ��� the action � � �M is mixing of all orders in C� proving 	b
�

Finally� 	c
 follows from Example ���	�
 below� �

Example ���� 	�
 An example to illustrate Theorem ���	b
 is given by Ledrap�
pier�s example ��� for which the shape f	
� 

� 	
� �
� 	�� 

g is non�mixing� In the
R�module description� Ledrappier�s example corresponds to the module

R

h�� � � u� � u�i
�

In the notation of Section �� this means that the prime p is � and the polynomial
g is � � u� � u�� The convex hull is CH	g
 � f	s� t
 � R� j 
 � s� t � �� s� t � �g
with extreme points 	
� 

� 	
� �
� and 	�� 

� A suitable set of lines that satisfy
properties 	i
 and 	ii
 are the �ve oriented lines through the origin and the points
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	�� 

� 	
�� �
� 	
��
�
� 	��
�
 and 	�� �
� Notice that there are many other possible
choices� though all of them have at least �ve lines� The statement 	b
 for this
example is then that mixing of all orders in the sense of equation 	�
 occurs in each
of the �ve associated cones�
	�
 Without the assumption that the group be connected or that the action be
expansive� there may be no cones in which mixing of all orders can occur� An
example to show this starts again with Ledrappier�s example ��� for which the
shape f	
� 

� 	
� �
� 	�� 

g is non�mixing� and applies linear maps in Z� to produce
similar examples for which any given triangle is a non�mixing shape� Since any cone
subtending a positive angle contains some triangle� the product of these 	countably
many
 examples gives the required example� Let

M �
M

a�Znf�g�b�Z

R

h�� � � ua�u
b
� � ua�u

b��
� i

�

Then the Z��action corresponding to the module M is not mixing on the shapes
f	
� 

� 	a� b
� 	a� b��
g for each a �� 
� b � Z� It follows that �M cannot be mixing
of all orders in any cone subtending a positive angle�

�� Remarks

I thank Prof� Fried for pointing out ��� and the connection between the Bertini�
Noether Theorem and irreducibility� The Gaussian construction above is based on
that of Ferenci and Kami!nski� who used it to exhibit a rigid Z��action each of whose
elements is a Bernoulli shift� I thank Prof� Kami!nski for showing me a preprint of
the paper ���� Mixing properties in the positive quadrant and their relationship to
mixing properties of a complete Z��action are discussed in ����
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