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Lang’s Conjectures, Fibered Powers, and
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Dan Abramovich and José Felipe Voloch

Abstract. We prove that the fibered power conjecture of Caporaso et al. (Con-
jecture H, [CHM], §6) together with Lang’s conjecture implies the uniformity
of rational points on varieties of general type, as predicted in [CHM]; a few
applications on the arithmetic and geometry of curves are stated.

In an opposite direction, we give counterexamples to some analogous results
in positive characteristic. We show that curves that change genus can have
arbitrarily many rational points; and that curves over Fp(t) can have arbitrarily
many Frobenius orbits of non-constant points.
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1. Introduction

Let X be a variety of general type defined over a number field K. It was con-
jectured by S. Lang that the set of rational points X(K) is not Zariski dense in X.
In the paper [CHM] of L. Caporaso, J. Harris and B. Mazur it is shown that the
above conjecture of Lang implies the existence of a uniform bound on the number
of K-rational points of all curves of fixed genus g over K.

The paper [CHM] has immediately created a chasm among arithmetic geome-
ters. This chasm, which sometimes runs right in the middle of the personalities
involved, divides the loyal believers of Lang’s conjecture, who marvel at this pow-
erful implication, and the disbelievers, who try to use this implication to derive
counterexamples to the conjecture.

In this paper we will attempt to deepen this chasm on both sides: first, using the
techniques of [CHM] and continuing [ℵ], we prove more implications, some of which
are very strong, of various conjectures of Lang. Along the way we will often use
the Fibered Power Conjecture, also known as Conjecture H (see [CHM], §6) about
higher dimensional varieties, which is regarded as very plausible among experts of
higher dimensional algebraic geometry.

Second, we will show by way of counterexamples that two natural candidates for
analogous statements in positive characteristic, are false.

Before we state any results, we need to specify various conjectures which we will
apply.

1.1. A Few Conjectures of Lang. Let X be a variety of general type over a
field K of characteristic 0. In view of Faltings’s proof of Mordell’s conjecture,
Lang has stated the following conjectures:

Conjecture 1.1. 1. (Weak Lang conjecture) If K is finitely generated over Q
then the set of rational points X(K) is not Zariski dense in X.

2. (Weak Lang conjecture for function fields) If k ⊂ K is a finitely generated
regular extension in characteristic 0, and if X(K) is Zariski dense in X, then
X is birational to a variety X0 defined over k and the “non-constant points”
X(K) \X0(k) are not Zariski dense in X.

3. (Geometric Lang conjecture) Assuming only Char(K) = 0, there is a proper
Zariski closed subset Z(X) ⊂ X, called in [CHM] the Langian exceptional set,
which is the union of all positive dimensional subvarieties which are not of
general type.

4. (Strong Lang conjecture) If K is finitely generated over Q then there is a
Zariski closed subset Z ⊂ X such that for any finitely generated field L ⊃ K
we have that X(L) \ Z(L) is finite.

These conjectures and the relationship between them are studied in [LangAMS],
[LangIII] and in the introduction of [CHM]. For instance, it should be noted that
the weak Lang conjecture together with the geometric conjecture imply the strong
Lang conjecture. We remark that in the case of subvarieties of abelian varieties
Lang’s conjectures have been proven by Faltings ([Fal 92]).
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1.2. The Fibered Power Conjecture. An important tool used by Caporaso et
al. in [CHM] is that of fibered powers. Let X → B be a morphism of varieties in
characteristic 0, where the general fiber is a variety of general type. We denote by
Xn
B the n-th fibered power of X over B.

Conjecture 1.2. (The fibered power conjecture, or Conjecture H of [CHM]) For
sufficiently large n, there exists a dominant rational map hn : Xn

B 99K Wn where
Wn is a variety of general type, and where the restriction of hn to the general fiber
(Xb)

n is generically finite.

This conjecture is known for curves and surfaces:

Theorem FP 1. (Correlation Theorem of [CHM]) The fibered power conjecture
holds when X → B is a family of curves of genus > 1.

Theorem FP 2. (Correlation Theorem of [Has]) The fibered power conjecture holds
when X → B is a family of surfaces of general type.

Using their Theorem FP 1, and Lemma 1.1 of [CHM], Caporaso et al. have shown
that the weak Lang conjecture implies a uniform bound on the number of rational
points on curves (Uniform Bound Theorem, [CHM] Theorem 1.1).

Remark 1.3. It should be noted that the proofs of Theorems FP 1 and FP 2 give
a bit more: they describe a natural dominant rational map Xn

B 99K W . For the
case of curves, if B0 is the image of B in the moduli space Mg, then for sufficiently
large n the inverse image Bn ⊂ Mg,n in the moduli space of n-pointed curves
is a variety of general type. Therefore the moduli map Xn

B 99K Bn satisfies the
requirements. A similar construction works for surfaces of general type.

One may ask whether a description of this kind holds for higher dimensions.

It is convenient to make the following definitions when discussing Lang’s conjec-
tures:

Definition 1.4. 1. A variety X/K is said to be a Lang variety if there is a
dominant rational map XK 99KW , where W is a positive dimensional variety
of general type.

2. A positive dimensional variety X is said to be geometrically mordellic (In
short GeM) if XK does not contain subvarieties which are not of general type.

In [LangIII], in the course of stating even more far reaching conjectures, Lang
defined a notion of algebraically hyperbolic varieties, which is very similar, and con-
jecturally the same as that of GeM varieties. We chose to use a different terminology
here, to avoid confusion.

Note that the weak Lang conjecture directly implies that the rational points on
a Lang variety over a number field are not Zariski dense, and that there are only
finitely many rational points over a number field on a GeM variety.

1.3. Summary of Results on the Implication Side. As indicated in [CHM]
§6, the fibered power conjecture together with Lang’s conjectures should have very
strong implications for counting rational points on varieties of general type, similar
to the Uniform Bound Theorem of [CHM]. Here we will prove the following basic
result:
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Theorem 1.5. Assume that the weak Lang conjecture as well as the fibered power
conjecture hold. Let X → B be a family of GeM varieties over a number field K
(or any finitely generated field over Q). Then there is a uniform bound on ]Xb(K).

One may refine this theorem for arbitrary families of varieties of general type,
obtaining a bound on the number of points which do not lie in Langian exceptional
sets of the fibers. If one assumes the geometric Lang conjecture, one obtains a
closed subset Z(Xb) for every b ∈ B. A natural question which arises in such a
refinement is: how do these subsets fit together? An answer was given in [CHM],
Theorem 6.1, assuming the fibered power conjecture as well: the varieties Z(X)
are uniformly bounded. We will show that, using results of Viehweg, one does not
need to assume the fibered power conjecture:

Theorem 1.6. (Compare [CHM], Theorem 6.1.) Assume that the geometric Lang
conjecture holds. Let X → B be a family of varieties of general type. Then there is
a proper closed subvariety Z̃ ⊂ X such that for any b ∈ B we have Z(Xb) ⊂ Z̃.

Using Theorem 1.6, we can apply Theorem 1.5 to any family X → B of varieties
of general type, assuming that the geometric Lang conjecture holds: we can bound
the rational points in the complement of Z̃.

We will apply our Theorem 1.5 in various natural cases. An immediate but
rather surprising application is the following theorem:

Theorem 1.7. Assume that the weak Lang conjecture as well as the fibered power
conjecture hold. Let X → B be a family of GeM varieties over a field K finitely
generated over Q. Fix a number d. Then there is an integer Nd such that for any
field extension L of K of degree d and every b ∈ B(L) we have ]Xb(L) < Nd.

As a corollary, we see that Lang’s conjecture together with fibered power con-
jecture imply the existence of a bound on the number of points on curves of fixed
genus g over a number field L which depends only on the degree of the number field
[L : Q].

These results have natural analogues for function fields. We will state a few of
these, notably:

Theorem 1.8. Assume that Lang’s conjecture for function fields holds. Fix an
integer g > 1. Then there is an integer N(g) such that for any generically smooth
fibration of curves C → D where the fiber has genus g and the base D is a hyper-
elliptic curve, there are at most N non-constant sections s : D → C.

We remind the reader that the gonality of a curve D is the minimal degree of a
nonconstant rational function on D (so a curve of gonality 2 is hyperelliptic). One
expects the above theorem to be generalized to the situation where “hyperelliptic
curve” is replaced by “curve of gonality ≤ d ” for fixed d.

Historical remark 1.9. The idea that the number of solutions of members of
a family of diophantine equations should be uniformly bounded, when finite, goes
back to Siegel (see [Siegel], §II.7, page 262). The reasoning seems based on the
naive idea of eliminating coefficients (see e.g. [Chowla]). This idea, coupled with
the generalized abc conjecture can be made to work in some cases, for function fields
of characteristic zero (see [Mueller], [Bo-Muel]). Lapin (see [Lapin] and references
there) has proposed an argument suggesting that uniform bounds should fail over
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C(t) (contradicting the geometric Lang conjecture, and in particular Theorem 1.8),
but we have been informed in private communications that there are gaps in the
arguments there.

1.4. Summary of Results: Examples in Positive Characteristic. It has
been a long tradition to test the plausibility of conjectures in arithmetic geometry
by finding analogous results for function fields in positive characteristic. Our results
here are negative: two natural analogues of the Uniform Bound Theorem and of
our results in characteristic 0 are false.

One may try to transpose Lang’s conjectures to the case of positive charac-
teristic, but they are trivially false already in the case of curves. Two natural
approaches to restore the conjecture, which work for curves, are either to insist on
non - isotriviality of the variety or to look at points which are not in the image
of the Frobenius map. A general statement for subvarieties of abelian varieties
was studied in [A-V] and completed in [Hru]. Unfortunately both these approaches
fail already for surfaces. In fact, there are unirational surfaces of general type
in positive characteristic, and even non-constant families of those, which provide
counterexamples to such conjectures.

One may try to look at varieties with non-zero Kodaira - Spencer class, which
is a condition slightly stronger than non - isotriviality, but there seem to be coun-
terexamples here as well. Again the problem is due to unirational varieties. In all
these examples the surfaces have a large set of birational endomorphisms (coming
either from the Frobenius or from birational endomorphisms of P2), and one may
try to take these into account in stating a Lang type conjecture. A rather drastic
approach is to look only at varieties which are not covered by non-general type
varieties, but this would be an unsatisfactory and almost unverifiable conjecture
due to the fact that it not known how to tell whether a variety of general type can
be covered by a variety which is not of general type. See some related discussion
in [Vol-surv].

One may still ask, to what extent the statments which are implied by Lang’s
conjecture in characteristic 0 can be transposed to positive characteristics. Here
we will address the question of uniformity of rational points on curves.

By a classical result of Samuel [Samuel], if K is a function field in characteristic
p > 0 and C is a non-isotrivial curve of genus > 1, then C(K) is finite; and if C is
isotrivial, then there are only finitely many points which are not defined over the
field of p-th powers Kp.

Supposing C as above is a smooth curve with non-zero Kodaira-Spencer class, it
is not known if one can obtain a uniform bound on the number of rational points
C(K) (but see [Bu-Vol] for a strong bound on ]C(K) depending on the Mordell-
Weil rank of J(C)). In our first example, we will consider the case of non-smooth
curves, or curves that change genus (see discussion in 4.1). It was shown in [Vol-91],
analogously to Samuel’s Theorem, that a curve C that changes genus has a finite
set of rational points. We will show (Theorem 4.1) that such curves may have
arbitrarily many rational points.

The second example is concerned with isotrivial curves. We work over the func-
tion fieldK = Fp(t), and construct isotrivial curves C with arbitrarily many rational
points C(K) which are not in C(Kp). In particular this implies that Proposition 3.5



Lang’s Conjectures, Fibered Powers, and Uniformity 25

and Corollary 3.7 below may have no satisfactory analogues in positive character-
istic.

1.5. Acknowledgments. We would like to thank R. Gross, F Hajir, B. Hassett
and J. Vaaler for helpful discussions, and the NSF for financial support. The second
author also thanks the Alfred P. Sloan foundation for its support.

2. Proof of Theorem 1.5

2.1. Preliminaries. Throughout subsection 2.1 we assume that the fibered
power conjecture holds, and the base field is algebraically closed.

Observe that a positive dimensional subvariety of a GeM variety is GeM; and
the normalization of an GeM variety is GeM. Note also that a variety dominating
a Lang variety is a Lang variety as well.

Proposition 2.1. Let X → B be a family of GeM varieties. Let F ⊂ X be a
reduced subscheme such that every component of F dominating B has positive fiber
dimension. Then for n sufficiently large, every component of the fibered power FnB
which dominates B is a Lang variety.

The proof will use the following lemmas:

Lemma 2.2. Let X → B and F be as above, and assume that the general fiber of
F → B is irreducible. Then for n sufficiently large, the dominant component of FnB
is a Lang variety.

Proof. Apply the fibered power conjecture to F → B, using the fact that the fibers
of F are of general type. �
Lemma 2.3. Let X → B and F be as in the proposition, with F irreducible. Then
for n sufficiently large, every component of the fibered power FnB which dominates
B is a Lang variety.

Proof. Let F̃ be the normalization of F , and let F̃ → B̃ → B be the Stein
factorization. Denote by c the degree of B̃ over B. Let G ⊂ F̃nB be a dominant

component. Then G parametrizes n-tuples of points in the fibers of F̃ over B, and
since G is irreducible, there is a decomposition {1, . . . , n} = ∪ci=1Ji and G surjects

onto the dominant component of F̃ Ji
B̃

. At least one of the subsets Ji has at least n/c

elements. Using Lemma 2.2 applied to F̃ → B̃, we see that for n/c large enough,
G is a Lang variety. �
Proof of Proposition 2.1. Let F = F1 ∪ . . . ∪ Fm be the decomposition into
irreducible components. Let G be a dominant component of FnB . Then G dominates
(F1)n1

B ×B · · · ×B (Fm)nmB . For at least one i we have ni > n/m, so applying the
previous lemma we obtain that G is a Lang variety. �
2.2. Prolongable Points. We return to the setup in Theorem 1.5.

Definition 2.4. 1. A point xn = (P1, . . . , Pn) ∈ Xn
B(K) is said to be off-

diagonal if for any 1 ≤ i < j ≤ n we have Pi 6= Pj . We extend this for
n = 0 trivially by agreeing that any point of B(K) is off-diagonal.

2. Let m > n. An off-diagonal point xn is said to be m-prolongable if there is an
off-diagonal “prolongation” xm ∈ Xm

B (K) whose first n coordinates give xn.
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Let E
(m)
n be the set of m-prolongable points on Xn

B , and let F
(m)
n be the Zariski

closure. Let Fn = ∩m>nF
(m)
n . By the Noetherian property of the Zariski topology

we have Fn = F
(m)
n for some m.

If some fiber of X → B contains a large number m of points, then E
(m)
n is

nonempty. If the number m is not bounded, then Fn is nonempty. Therefore, in
order to bound the number of rational points on each fiber, all we need to show is
Fn = ∅ for some n.

Lemma 2.5. We have a surjection Fn+1 → Fn.

Proof. The set E
(m)
n+1 surjects to E

(m)
n for any m > n+ 1. �

Lemma 2.6. Every fiber of Fn+1 → Fn is positive dimensional.

Proof. Suppose that over an open set in Fn the degree of the map is d. Then

E
(n+d+1)
n cannot be dense in Fn: if (y1, . . . , yn+d+1) is an off-diagonal prolongation

of (y1, . . . , yn) ∈ E(n+d+1)
n , then for n+ 1 ≤ j ≤ n+ d+ 1 we have that the points

(y1, . . . , yn, yj) ∈ E
(n+d+1)
n+1 are d+ 1 distinct points lying in a fiber of Fn+1 → Fn,

therefore the degree of the map is at least d+ 1. �

2.3. Proof of Theorem 1.5. Denote by r the fiber dimension of X → B. We
show by induction on i, that for any n and i, the dimension of any fiber of Fn+1 →
Fn is at least i + 1. This will lead to a contradiction, since by definition the fiber
dimension of Fn+1 → Fn is at most r. Lemma 2.6 shows this for i = 0. Assume
it holds true for i − 1, let n ≥ 0 and let G be a component of Fn, such that the
fiber dimension of Fn+1 over G is i. Applying the inductive assumption to each
Fn+j+1 → Fn+j , we have that the dimension of every fiber of Fn+k over Fn is
at least ik. On the other hand, by definition Fn+k is a subscheme of the fibered
power (Fn+1)kFn , so over G it has fiber dimension precisely ik. Therefore there
exists a component Hk of Fn+k dominant over G of fiber dimension ik, which is
therefore identified as a dominant component of the fibered power (Fn+1)kFn . By
Proposition 2.1, for k sufficiently large we have that Hk is a Lang variety. Lang’s
conjecture implies that Hk(K) is not dense in K, contradicting the definition of
Fn+k. �

Remark 2.7. Note that in the proof we have applied the fibered power conjecture
for families of fiber dimension i, where i is at most the fiber dimension of the family
X → B. Therefore in case the fibers of X → B are curves or surfaces, one may
apply Theorems FP 1 and FP 2 instead of the fibered power conjecture.

3. A Few Refinements and Applications in Arithmetic and
Geometry

3.1. Proof of Theorem 1.6. Assume that X → B is a family of varieties of
general type. By Hironaka’s desingularization theorem, we may assume that B is
a smooth projective variety. Let L be a very ample line bundle on B, such that
K⊗2
B ⊗L is ample as well. Let H be a smooth divisor associated to a section of L⊗2.

Let π : B1 → B be the cyclic double cover ramified along H. By adjunction, B1 is
a variety of general type: K⊗2

B1
' π∗(K⊗2

B ⊗L). Let X1 → X be the pullback of X
to B1. By the main theorem (Satz III) of [Vie], the variety X1 is of general type.
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Assuming the geometric Lang conjecture, Let Z1(X1) be the Langian exceptional

set. Let Z̃ be the image of Z1(X1) in X. Then for any b ∈ B, we have by definition

that Z(Xb) ⊂ Z̃. �
It has been noted in [CHM] that Viehweg’s work goes a long way towards proving

the fibered power conjecture. It is therefore not surprising that it may be used on
occasion to replace the assumption of fibered power conjecture.

3.2. Uniformity in Terms of the Degree of an Extension. Let X → B be a
family of GeM varieties over K. Assuming the conjectures, Theorem 1.5 gave us a
uniform bound on the number of rational points over finite extension fields in the
fibers. We will now see that this in fact implies a much stronger result, namely our
Theorem 1.7: the uniform bound only depends on the degree of the field extension.

Proof of Theorem 1.7. For n = 1 or 2, Let Yn = Symd(Xn
B), and Y0 = Symd(B).

We have natural maps pn : Yn → Yn−1. Let Γ be the branch locus of the quotient
map Xd → Y1, namely the set of points which are fixed by some permutation. If
P 6∈ Γ then p−1

2 (P ) is a GeM variety, isomorphic over K to the product of d fibers
of the family X → B. Denote Y ′1 = Y1 \ Γ1, and Y ′2 = p−1

2 Y ′1 . Then Y ′2 → Y ′1 is a
family of GeM varieties, and by Theorem 1.5 we have a bound on the cardinality
of p−1

2 (y)(K) uniformly over all y ∈ Y ′1(K).
By induction, it suffices to bound the number of points in Xb(L) over any field

L of degree d over K, which are defined over L but not over any intermediate
field. If σ1, . . . , σd are the distinct embeddings of L in K, and P ∈ Xb(L) not
defined over any intermediate field, then the points σi(P ) ∈ Xσi(b)(σi(K)) ⊂ X(K)

are distinct. If (P1, P2) ∈ X2
B(L) is a pair of such points, then the Galois orbit

{σi(P1, P2), i = 1, . . . , d} is Galois stable, therefore it gives rise to a point in Y2(K).
This point has the further property that its image in Y1 does not lie in Γ1, so it is
in Y ′2(K). The previous paragraph shows that the number of points on a fiber is
bounded. �

Applying Theorem 1.7 where X → B is the universal family over the Hilbert
scheme of 3-canonical curves of genus g (as in [CHM], Subsection 1.2), we obtain
the following:

Corollary 3.1. Assume that the weak Lang conjecture as well as the fibered power
conjecture hold. Fix integers d, g > 1 and a number field K. Then there is a
uniform bound Nd such that for any field extension L of K of degree d and every
curve C of genus g over L we have ]C(L) < Nd.

Remark 3.2. In the cases of degrees d ≤ 3 one does not need to assume the
fibered power conjecture: this was proven in [ℵ], using the fact that the fibered
power conjecture holds for families of curves or surfaces. A similar result has been
recently announced by P. Pacelli for arbitrary d.

Here is a special case: let f(x) ∈ Q(x) be a polynomial of degree > 4 with
distinct complex roots. Then, assuming the weak Lang conjecture, the number of
rational points over any quadratic field on the curve C : y2 = f(x) is bounded
uniformly. We remark that, if deg f > 6, this in fact may be deduced using a
combination of [CHM] and the following theorem of Vojta [Voj]: all but finitely
many quadratic points on C have rational x coordinate. One then applies [CHM]
which gives a uniform bound on the rational points on the twists ty2 = f(x).
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Following the suggestion of [CHM], §6 one can apply Theorem 1.5 to symmetric
powers of curves. Since the fibered power conjecture is known for surfaces, one
obtains the following (stated without proof in [CHM], Theorem 6.2):

Corollary 3.3. (Compare [CHM], Theorem 6.2) Assume that the weak Lang con-
jecture holds. Fix a number field K. Then there is a uniform bound N for the
number of quadratic points on any non-hyperelliptic, non-bielliptic curve C of genus
g over K.

Similarly, it was shown in [A-H], Lemma 1 that if the gonality of a curve C is

> 2d then Symd(C) is GeM, being a subvariety of an abelian variety not containing
translated abelian subvarieties. Recall that a closed point P on C is said to be of
degree d over K if [K(P ) : K] = d. We deduce the following:

Corollary 3.4. Assume that the weak Lang conjecture holds. Fix a number field
K and an integer d. Then there is a uniform bound N for the number of points of
degree d over K on any curve C of genus g and gonality > 2d over K.

3.3. The Geometric Case. One can use the same methods using Lang’s conjec-
ture for function fields of characteristic 0, say over C. Given a fibration X → B
where the generic fiber is a variety of general type, a rational point s ∈ X(KB)
over the function field of B is called constant if X is birational to a product X0×B
and s corresponds to a point on X0. Lang’s conjecture for function fields says that
the non-constant points are not Zariski dense.

In this section we will restrict attention to the case where the base is the pro-
jective line P1. We will only assume the following statement: if X is a variety of
general type, then the rational curves in X are not Zariski dense. It is easy to see
that this statement in fact follows from the geometric Lang conjecture, as well as
from Lang’s conjecture for function fields.

We would like to apply this conjecture to obtain geometric uniformity results.
One has to be careful here, since the geometric Lang conjecture cannot be applied
to Lang varieties, and one has to use a variety of general type directly.

As stated in the introduction, if X → B is a family of curves of genus > 1 the
appropriate variety W of general type dominated by Xn

B is the image Bn ⊂ Mg,n

of the moduli map Xn
B 99K Mg,n. This is used in the proof of the following

proposition:

Proposition 3.5. Assume that Lang’s conjecture for function fields holds. Fix an
integer g > 1. Then there is an integer N such that for any generically smooth
family of curves C → P1 of genus g there are at most N non-constant sections
s : P1 → C.

Proof. First note that if s : P1 → C is a nonconstant section whose image in Mg,1

is a point, then s becomes a constant section after a finite base change D → P1.
This implies that s is fixed by a nontrivial automorphism of C, and the number
of such points is bounded uniformly in terms of g. Therefore it suffices to bound
the number of sections whose image in Mg,1 is non-constant. We will call such
sections strictly non-constant.

Let B0 ⊂ Mg be a closed subvariety, and choose n such that Bn ⊂ Mg,n is of
general type. If a family C → P1 has moduli in B0, then for any n-tuple of strictly
non-constant sections si : P1 → C i = 1,≤ n, we obtain a non-constant rational
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map P1 → Bn. Let F ⊂ Bn be the Zariski closure of the images of the collection
of non-constant rational maps obtained this way.

Since Bn is of general type, Lang’s conjecture implies that F 6= Bn. Applying
Lemma 1.1 of [CHM] we obtain that there is an closed subset F0 ⊂ B0 and an
integer N such that, given a family of curve C → P1 such that the rational image
of P1 in Mg lies in B0 but not in F0, there are at most N strictly non-constant
sections of C. Noetherian induction gives the theorem. �

Choosing a coordinate t on P1 we can pull back the curve C along the map
P1 → P1 obtained by taking n-th roots of t. Let C(t1/∞) = C({t1/n, n ≥ 1}), the
field obtained by adjoining all roots of t. If one restricts attention to non-isotrivial
curves, one obtains the following amusing result:

Corollary 3.6. Assume that Lang’s conjecture for function fields holds. Fix an
integer g > 1. Then there is an integer N such that for any smooth nonisotrivial
curve C over C(t) of genus g there are at most N points in C(C(t1/∞)).

One can also try to prove uniformity results analogous to Theorem 1.7. Using
the results in [ℵ] we can refine Proposition 3.5 and obtain Theorem 1.8.

Proof of Theorem 1.8. The proof is a slight modification of the theorem of [ℵ],
keeping track of the dominant map to a variety of general type.

As in the proof of Theorem 1.7, it suffices to look at sections s : D → C which
are not pullbacks of sections of families over P1.

In an analogous way to the proof of Theorem 1.5, we say that an n-tuple of
distinct, strictly non-constant sections is m-prolongable if it may be prolonged
to an m-tuple of distinct, strictly non-constant sections, none of which being the
pullback from a family over P1. Any n-tuple of distinct sections si : D → C over a
hyperelliptic curve D gives rise to a rational map P1 → Sym2( Mg,n). We define

F
(m)
n to be the closure in Sym2( Mg,n) of the images of m-prolongable sections,

and Fn = ∩m>nF
(m)
n .

As in Lemma 2.6, we have that the relative dimension of any fiber of Fn+1 → Fn
is positive. We have two cases to consider: either for high n there is a component of
Fn+1 having fiber dimension 1 over Fn, or for all n the fiber dimension is everywhere
2.

In case the fiber dimension is 1, we will see that there is a component of Fn+k

which is a variety of general type. Assuming Lang’s conjecture for function fields
this contradicts the fact that the images of non-constant sections are dense. Fix a
general fiber f of Fn+1 over Fn. The curve f lies inside a surface isomorphic to the
product of two curves Cb1 × Cb2 . By the definition of m-prolongable sections, and
an argument identical to that of Lemma 2.6, we obtain that there is a component
f ′ of f which maps surjectively to both Cb1 and Cb2 . Therefore as the pair {b1, b2}
moves in Sym2( Mg), the curve f ′ moves in moduli as well.

Let F ′ be a component of Fn+1 whose fibers have the above property, namely
they surject to both factors Cb1 and Cb2 . Let F ′k be any component of (F ′)kFn .
Following the proof of Proposition 2.1 one easily sees that it suffices to show that
for large k, F ′k is of general type.

If we use the moduli description of the dominant map to a variety of general type
m : F ′k 99K W constructed through Proposition 2.1, we see that if E is a general
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curve in F ′k lying in a fiber of m, then E projects to a point in Sym2( Mg); and
moreover, E projects to an off-diagonal point in Fl for some 1 ≤ l ≤ n + k. But
the fibers over off-diagonal points are GeM varieties, therefore the general fiber of
the map m is of general type. By the main theorem of [Vie], F ′k is itself a variety
of general type.

In case the map Fn+1 → Fn has fiber dimension 2, we use Proposition 1 of [ℵ]:
let B′ ⊂ Sym2( Mg). Then for high n, the inverse image B′n ⊂ Sym2( Mg,n) of
B′ is a variety of general type. Since the images of non-constant sections are dense
in Fn, this again contradicts Lang’s conjecture. �

If one restricts attentions to trivial fibrations, one obtains as an immediate corol-
lary:

Corollary 3.7. Assume that the Lang conjecture for function fields holds. Fix an
integer g > 1. Then there is an integer N such that for any curve C over C of
genus g and any hyperelliptic curve D there are at most N non-constant morphisms
f : D → C.

It should be noted that the theory of Hilbert schemes gives the existence of a
bound depending on the genus of D, which is however not as strong. As in the
arithmetic case, P. Pacelli has recently announced a generalization of these results
to the case where D is d-gonal, for fixed d.

In the special case where one considers maps induced by automophisms, a version
of the corollary above can be proven without assuming Lang’s conjecture:

Proposition 3.8. There is an integer N(g), such that if D is a hyperelliptic curve
in characteristic 0, G = Aut(D), H < G a subgroup and C = D/H is a curve of
genus g > 1, then [G : H] ≤ N(g).

Remark 3.9. We will show later that this proposition fails in positive character-
istic.

Proof. We have a commutative diagram

D
f
→ C

↓ ↓

P1 f ′

→ P1

Since g > 0, we have an embedding H ⊂ Aut(P1). By the Riemann - Hurwitz
formula we have

2g(D)− 2 = |H|(2g − 2) + r,

and on the other hand 2|H| − 2 = r′, where r′ is the degree of the ramification
divisor of f ′. Clearly r ≤ 2r′, therefore

2g(D)− 2 ≤ (2g + 2)|H|.

Since |G| < 84(g(D)−1) we get [G : H] ≤ |G|(2g+2)/(2g(D)−2) ≤ 42(2g+2). �

4. Examples in Positive Characteristic

4.1. Curves that Change Genus Can Have Arbitrarily Many Rational
Points. Let K be a global field of positive characteristic p. In other words, K is
a function field in one variable over a finite field of characteristic p. Let C be a
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projective algebraic curve defined over K. One defines the absolute genus of C,
in the usual way, by extending the field to the algebraic closure. We also define
the genus of C relative to K to be the integer gK that makes the Riemann-Roch
formula hold, that is, for any K-divisor D of C, of sufficiently large degree, the
dimension, l(D), of the K-vector space of functions of K(C) whose polar divisor is
bounded by D, is degD + 1 − gK . Since K is not perfect, the relative genus may
change under inseparable extensions. (See e.g., [Artin] or [Tate]). It was shown in
[Vol-91] that if the genus of C relative to K is different from the absolute genus of
C then C(K) is finite. The proof in [Vol-91] can be easily adapted to give an upper
bound for ]C(K), which however depends on C. In this section we give examples
of curves C/K with fixed gK for which ]C(K) is arbitrarily large.

Theorem 4.1. Let p > 2 be a prime and q = pn. Consider the curve Cn/Fp(t)
defined by

x− (t+ tq+2 + t2q+3 + · · ·+ t(p−2)q+p−1)xp = yp.

The curve Cn has absolute genus zero but has genus relative to Fp(t) equal to (p−
1)(p− 2)/2. Furthermore ]Cn(Fp(t)) ≥ p2n/2n and ]Cn(Fp2n(t)) ≥ p2n .

Proof. We will construct points on Cn whose x-coordinate is of the form

a(t)/(tq+1 − 1),

where a(t) =
∑q−1
i=0 αit

i. We will get a point in Cn/Fp(t) if

(tq+1 − 1)p−1a(t)− (t+ tq+2 + t2q+3 + ...+ t(p−2)q+p−1)a(t)p

is a p-th power. Using the fact that (tq+1 − 1)p−1 =
∑p−1
i=0 t

(q+1)i and comparing
coefficients, this condition is equivalent to:

αi =


αp(i+q)/p i ≡ 0 (mod p)

αp(i−1)/p i ≡ 1 (mod p)

αi = 0 otherwise.

Consider the map φ(i) defined for positive integers i, i ≡ 0, 1 (mod p) by

φ(i) =

{
(i+ q)/p i ≡ 0 (mod p)
(i− 1)/p i ≡ 1 (mod p)

It has the following alternate description for i < q. If i =
∑n−1
j=0 εjp

j , 0 ≤ εj ≤ p−1,

φ(i) =
∑n−1
j=1 εjp

j−1 + δpn−1, where δ = 1 if ε0 = 0 and δ = 0 if ε0 = 1. In other

words, the digits in base p, (εn−1, . . . , ε0) are replaced by (1− ε0, εn−1, . . . , ε1). It
follows that if εj 6= 0, 1 for some j, then φr(i) 6≡ 0, 1 (mod p) for some r > 0. On
the other hand, if εj = 0, 1 for all j then φr(i) is defined for all r > 0. Moreover it
is easy to check that, in this case, φ2n(i) = i.

Returning to our αi’s, we see that αi = 0 if εj 6= 0, 1 for some j and that

αp
φ(i) = αi and αp

2n

i = αi if εj = 0, 1 for all j. If αi ∈ Fp this simply means

αφ(i) = αi. The set of polynomials a(t) ∈ Fp[t] satisfying our conditions form an
Fp-vector space and each orbit of φ contributes one dimension to it. Since each

orbit has at most 2n elements and there are 2n distinct i =
∑n−1
j=0 εjp

j , εj = 0, 1,

we obtain at least 2n/2n orbits, hence the count for Fp(t). In the case of Fp2n(t),
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an orbit of length r contributes an r-dimensional Fp-vector space. Since r|2n, the
theorem follows. �

Remark 4.2. It can be shown, using the methods of [Vol-91], that indeed the
points produced in the proof of the theorem are all the rational points of Cn.

Remark 4.3. In the case p = 3, Cn is a quasi-elliptic fibration over P1 in the sense
of the classification of surfaces ([Bo-Mum], [L]) and our result shows that the 3-rank
of the group of sections (the “Mordell-Weil” group) can be arbitrarily large. This
was also shown by Ito [Ito].

Remark 4.4. The curves Cn are the members of the family of curves x−tf(u)xp =

yp, where f(u) =
∑p−2
i=0 u

i, for u = tp
n+1. It follows from the results of [Vol-91]

that tf(u) is a p-th power in Fp(t) for only finitely many u ∈ Fp(t), so the curve
corresponding to a given u ∈ Fp(t) has finitely many points for all but finitely many
u’s, again by the results of [Vol-91]. Following [CHM] we consider the total space
of the family, that is, the surface S over Fp(t) defined by x− tf(u)xp = yp and, as
is shown in [CHM], the set of rational points of S is Zariski dense, for otherwise,
the theorem above would be violated. Since S is unirational, it is not surprising
that this holds for some extension of Fp(t), but since S cannot be covered by P2

over Fp(t), it is surprising that this occurs over Fp(t). Also, S is of general type for
p ≥ 7, thus showing that Lang’s conjecture cannot be easily transposed to positive
characteristic.

4.2. Hyperelliptic Curves Over Fp(t) Can Have Arbitrarily Many Frobe-
nius - Orbits of Nonconstant Points. Let p > 3 be a prime, and let q = pn.
Let Cn be the curve over K = Fp(t) defined by the equation

y2 = (xp − x)(tq − t).

The curve Cn is hyperelliptic of genus (p − 1)/2 > 1. For each b ∈ F×q let a = b2,
and define

xb(t) =
n−1∑
i=0

(at)p
i

; yb(t) = b(tq − t).

Since aq = a we have that xb(t)
p − xb(t) = atq − at = a(tq − t), therefore yb(t)

2 =
(xb(t)

p − xb(t))(t
q − t), namely (xb(t), yb(t)) ∈ Cn(K). We thus obtained q − 1

different non-constant points on Cn, and since none of them is defined over Kp,
they belong to different Frobenius orbits.

This example can be used to show at the same time that Corollary 3.7 fails in
positive characteristic. For let C be the curve y2 = xp − x and let Dn be the curve
u2 = tq − t. Then for any b ∈ F×q we obtain a separable morphism fb : D → C via

x =
∑n−1
i=0 (at)p

i

; y = bu.
Notice that one has fb = f1 ◦ σb where σb : D → D is the automorphism

(t, u)→ (b2t, bu). Moreover, C is the quotient of D under the action a group H as
follows:

H = {τ ∈ Aut(D)|τ(u, v) = (u+ c, v) for some c ∈ Fq, c+ cp + · · ·+ cp
n−1

= 0}.

Therefore this example contradicts Proposition 3.8 above as well.
Another geometric phenomenon arising from this example is the following: let

C be an isotrivial hyperelliptic curve given by y2 = f(x). Let i : C → C be the
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hyperelliptic involution. Let S = C × C/i × i be the quotient by the involution
acting diagonally, which is a surface of general type. We can describe S using the
equation z2 = f(x1)f(x2). There are many rational curves on the surface S: for
instance, the diagonal x2 = x1, z = f(x1), and the “graphs of Frobenius” x2 = xq1,

z = f(x1)(q+1)/2. Notice that these curves lie in the same orbit of the inseparable
birational endomorphism

(x1, x2, z) 7→ (x1, x
p
2, z

pf(x1)(1−p)/2).

If we now come back to C given by y2 = xp− x, then S has many more rational

curves, for instance x1 =
∑n−1
i=0 t

pi , x2 =
∑n−1
i=0 (at)p

i

, z = b(tq − t). One may ask
whether they are also related via endomorphisms of S. The answer turns out to be
“yes” in a very strong sense:

Proposition 4.5. The surface S : z2 = (xp1 − x1)(xp2 − x2) is unirational.

First a lemma:

Lemma 4.6. For an arbitrary polynomial A, the variety xp+1 + yp+1 = A is bira-
tionally isomorphic over Fp to Avp+1 = up + u.

Proof. Let c ∈ Fp satisfy cp+1 = −1. Define z = x−cy, so x = z+cy. Substituting
gives A = zp+1 + cpypz + cyzp. Now divide by zp+1 and let v = 1/z, u = cy/z + b,
where bp + b = 1, and the lemma follows. �

Proof of Proposition 4.5. It was proven by Serre that the Fermat surface xp+1+
yp+1 = tp+1+1 is unirational (see a general result by Shioda in [Shioda], Proposition
4.2). The proof is a change of coordinates just as above. Apply Lemma 4.6 with
A = tp+1 + 1, to conclude that the Fermat surface is birationally isomorphic to
(tp+1 + 1)vp+1 = up − u. Let w = tv so the last surface is wp+1 + vp+1 = up + u.
Apply Lemma 4.6 again with A = up+u and get that the last surface is birationally
isomorphic to rp+1(up + u) = sp + s. If γ ∈ Fp is such that γp−1 = −1, then this

last surface maps to S by z = r(p+1)/2/(up + u), x1 = γu, x2 = γs. �
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