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Spectral Approximation of Multiplication
Operators

Kent E. Morrison

Abstract. A linear operator on a Hilbert space may be approximated with
finite matrices by choosing an orthonormal basis of the Hilbert space. For
an operator that is not compact such approximations cannot converge in the
norm topology on the space of operators. Multiplication operators on spaces
of L2 functions are never compact; for them we consider how well the eigenval-
ues of the matrices approximate the spectrum of the multiplication operator,
which is the essential range of the multiplier. The choice of the orthonormal
basis strongly affects the convergence. Toeplitz matrices arise when using the
Fourier basis of exponentials exp(ikθ). We also consider the basis of Legendre
polynomials and the basis of Walsh functions.
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1. Introduction

The idea of approximating a linear operator by finite matrices is an obvious one
that must occur again and again. One can see in Fredholm’s approach to integral
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equations the use of this idea, and perhaps the first use was even earlier [15, 32].
The Galerkin method applied to linear differential operators is another early use of
the idea [17, 13]. This article considers the problems of approximating the spectra
of multiplication operators by the spectra of finite matrices.

The introduction discusses the general problem of using finite matrices to ap-
proximate bounded operators. The second section treats multiplication operators
in general and then looks at three specific bases: the Fourier basis, the basis of
Legendre polynomials, and the basis of Walsh functions. The next three sections
treat the three bases in more detail with summaries of the fundamental results and
detailed analysis of three examples including plots of the computed eigenvalues.

Some of the results described are contained in the literature, particularly for the
Fourier basis (Toeplitz operators) and the Legendre basis. An important source is
the book of Gohberg and Feldman [16], which treats the question solving equations
Ax = y, where A is an operator on a Hilbert space, by approximating A by larger
and larger matrices. Encyclopedic coverage of Toeplitz operators is contained in
Böttcher and Silbermann [9].

Let A : H → H be a bounded linear operator on a Hilbert space H. While
unbounded operators are certainly interesting and of special importance in mathe-
matical physics, the approximation questions we consider are still significant even
for bounded operators. We use the operator norm

‖A‖ = sup
‖x‖=1

‖Ax‖.

Let e0, e1, e2, . . . be an orthonormal basis of H. The operator A is represented
by the infinite matrix, also denoted by A, whose ij entry is aij = 〈Aej , ei〉. By
taking the upper left n × n corner of A we get finite matrix, denoted by An, that
we can regard as a matrix approximation of A, and one that we expect to somehow
be a better approximation as n grows larger.

Let Pn : H → H be the projection onto the span of the first n basis elements
e0, . . . , en−1. The matrix An represents the operator PnA restricted to the image of
Pn, and it is convenient to use the same notation for the matrix and the operator.
The operator PnAPn is represented by the block form[

An 0
0 0

]
.

Although we want to compare An and A, it is the operators PnAPn and A that we
can compare.

Recall that a sequence of linear operators Bn : H → H converges strongly to B
if for each x ∈ H the sequence Bnx converges to Bx. Now, for a bounded operator
A and orthonormal basis e0, e1, e2, . . . we have a sequence of finite rank operators
An and two notions of convergence: norm and strong. For strong convergence we
have this elementary, yet fundamental, result.

Theorem 1.1. If A is bounded then An converges strongly to A.

Proof. Left to the reader. �

Recall that the compact operators (on a Hilbert space) are the norm closure of
the finite rank operators. See, for example, Bonic [8, p. 77] or Douglas [11, p. 124].
For norm convergence we have the next result.
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Theorem 1.2. An converges to A in norm if and only if A is compact.

Proof. One direction follows from the characterization of the compact operators
as the closure of the finite rank operators, since An is a sequence of finite rank
operators. The other direction can be proved by first showing that it is true for finite
rank operators and then using a sequence of finite rank operators that approaches
the compact operator. �

This settles the question of approximation by finite matrices in the norm topol-
ogy: only for compact operators is the procedure valid. On the other hand, in the
strong operator topology the approximation always works. So it is between these
extremes that we pursue the natural question of approximating the spectrum of
A by the eigenvalues of An. It is the case that for a generic matrix (namely the
diagonalizable or semi-simple matrices), the eigenvalues characterize the matrix up
to equivalence. And so for an operator A we may find it quite satisfying that the
eigenvalues of An have a limit in some sense that is the spectrum of A, although
the sequence of operators does not converge in norm. We can borrow some mo-
tivation from quantum mechanics in which the knowledge of the spectrum of the
Schrödinger operator is the primary goal and for which the approximation of the
operator by matrices may give reliable information.

For the remainder of the paper we will consider multiplication operators acting
on the L2 functions on an interval. Although the operators themselves are easy to
understand, the spectral approximation questions are not. One especially important
case is that of Toeplitz matrices. They arise naturally when we use the orthogonal
basis εn(θ) = exp(inθ), for n ∈ Z, for the Hilbert space L2[0, 2π]. The asymptotic
distribution of the eigenvalues of growing Toeplitz matrices has applications in
statistical mechanics and signal processing, and much of the impetus for studying
the eigenvalue asymptotics comes from questions outside mathematics. See [14, 6,
21]. But this orthogonal basis is only one of many that we might use. Two others
that we will consider are the Walsh functions and the Legendre polynomials. These
cases have not been explored in nearly the detail as the Toeplitz matrices, and so
they provide an area in which much remains to be discovered. Some of the recent
discoveries about Toeplitz matrix eigenvalues have been discovered with the aid of
computer programs and some of the results we will show about the other orthogonal
bases will be numerical and graphical.

When the function φ is real-valued, the multiplication operator M [φ] is Hermit-
ian or self-adjoint. One defines an Hermitian form on the Hilbert space L2[a, b]
by 〈M [φ]f, g〉. The finite matrices Mn[φ] are also Hermitian and hence have real
eigenvalues and they define Hermitian forms on finite dimensional spaces. In this
context the questions raised in this paper have been treated in work by Szegö, no-
tably in [18]. Much of the work in this field since then has extended the results,
with necessary modifications, from the case of real generating functions to the case
of complex generating functions, or in the language of operator theory, from the
self-adjoint to the non-self-adjoint setting. The problems turn out to be harder,
just as eigenvalue questions for general matrices are harder than for self-adjoint
matrices, although the intuition remains the same, since it is not at all obvious
why multiplication by a (non-real) complex valued function is any more difficult to
understand than multiplication by a real function.
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2. Multiplication operators

From now on, we stay in the following setting. Suppose I ⊂ R is an interval and
φ : I → C is a bounded measurable function. Define the multiplication operator
M [φ] : L2(I) → L2(I) : f 7→ φf . Let e0, e1, e2, . . . , en, . . . be an orthonormal
basis of L2(I). (The indexing of the basis will not always be the same.) We define
the n × n matrix Mn[φ] = (aij), 0 ≤ i, j ≤ n − 1, where aij = 〈M [φ]ej , ei〉.

Thus, aij =
∫
I
φ(x)ej(x)ei(x)dx. The infinite matrix (aij), 0 ≤ i, j, represents the

operator M [φ].
The map M is an algebra homomorphism from the algebra of L∞ functions

on I to the algebra of bounded linear operators on L2(I), and, moreover, M is
norm-preserving where the norm of a function is its essential supremum.

Theorem 2.1. Let φ be a bounded measurable function. The multiplication oper-
ator M [φ] is compact if and only if φ = 0 almost everywhere.

Proof. Left to the reader. �

2.1. Toeplitz Matrices. In this example I = [0, 2π] and the orthonormal basis
is exp(ikθ), k ∈ Z. The jk entry of the matrix representation is

ajk = 〈M [φ]ek, ej〉

=
1

2π

∫ 2π

0

φ(θ) exp(ikθ)exp(ijθ) dθ

= =
1

2π

∫ 2π

0

φ(θ) exp(i(k − j)θ) dθ

which is the (j − k)th Fourier coefficient of φ. Let the Fourier series of φ be given
by φ(θ) =

∑
k∈Z cke

ikθ. The operator M [φ] is represented by the doubly infinite
Toeplitz matrix (cj−k), where j and k range over all integers. The finite Toeplitz
matrix of size n× n 

c0 c−1 c−2 . . . c−n+1

c1 c0 c−1 . . . c−n+2

c2 c1 c0 . . . c−n+3

...
...

...
...

cn−1 cn−2 cn−3 . . . c0

(1)

is the matrix of the restriction of M [φ] to the span of ek, where −n/2+1 ≤ k ≤ n/2,
for n even, or −n/2 + 1 ≤ k ≤ n/2− 1, for n odd. In this way as n grows we will
get an improving approximation to M [φ]. It is conventional to denote the Toeplitz
matrices associated to φ by Tn[φ].

2.2. Matrices Associated to Legendre Polynomials. On the interval I =
[−1, 1] the Legendre polynomials are orthogonal with the usual inner product. Us-
ing the usual definition they are not normalized. The first five Legendre polynomials
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are

P0(x) = 1

P1(x) = x

P2(x) =
3x2 − 1

2

P3(x) =
5x3 − 3x

2

P4(x) =
35x4 − 30x2 + 3

8

Since 〈Pn, Pn〉 = 2/(2n+1) we multiply Pn by
√

(2n+ 1)/2 in order to normalize it.

Let pn denote the normalized Legendre polynomial
√

(2n+ 1)/2Pn. (As an aside, it
is useful to keep in mind that normalization is merely a convenience. Changing the
basis elements by scaling them does not change the spectrum of the finite matrices,
because they are related by a change of basis, which is, in fact, a diagonal matrix.)
For a function φ : [−1, 1] → C the multiplication operator M [φ] has a symmetric
matrix representation (with complex entries) whose ij coefficient is√

(2i+ 1)(2j + 1)

2

∫ 1

−1

φ(x)Pi(x)Pj(x)dx(2)

2.3. Walsh-Toeplitz Matrices. Let I be the interval [0, 1]. The Walsh functions
are an orthonormal basis ψ0, ψ1, . . . , ψn, . . . of step functions taking on only the
values 1 and −1 [29, 12]. The graphs of the first eight are shown in Figure 1.

ψ0

ψ2

ψ1

ψ3 ψ7

ψ6

ψ5

ψ4

Figure 1. Walsh functions.

They are often described as discrete analogues of the sine and cosine functions,
and, as such, have found applications in electrical engineering for digital signal
processing [20, 7]. Recent interest in wavelets has focused attention on the closely
related Haar functions [25, 22]. There are different ways to describe the Walsh
functions and there are alternative indexing conventions. For the purposes of this
paper the most convenient construction of the Walsh functions is obtained from
the increasing sequence of subspaces Hm ⊂ Hm+1 of L2[0, 1], m ∈ N, where Hm
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is the subspace of functions that are constant on the intervals of the partition of
I into intervals of length 1/2m. The dimension of Hm is 2m. We define a basis
ψ0, ψ1, . . . , ψ2m−1 of Hm by describing the value of ψi on each subinterval. We
identify a subinterval by its left endpoint x, which has the form x =

∑m
j=1 bk2−k,

where each bk is 0 or 1. Represent this endpoint by the sequence b = (b1, b2, . . . , bm).
Express an integer i in binary form i = α0 + α12 + . . .+ αm−12m−1 and represent
it by the sequence α = (α0, . . . , αm−1). Consider b as an element of the group Z2

m

and α as a character of the group. The value of the character α on b is

α(b) = (−1)α·b = (−1)
∑
αkbk+1(3)

This we define to be the value of ψi(x):

ψi(x) = (−1)α·b.(4)

Since characters are orthogonal and since the inner product in Hm is the same as
the inner product in the space of functions on Z2

m, we have produced an orthogonal
basis of Hm. It is, in fact, an orthonormal basis. The span of {ψn |n ∈ N} is the
union of the subspaces Hm and is easily seen to be dense in L2[0, 1].

Let α and α′ be the sequences associated to the integers i and j. Then the
product ψiψj is another basis element ψk, where k has the binary sequence α+α′,
the sum being taken in Z2

m. We call k the dyadic sum of i and j and write it as
i⊕ j. Thus, we have

ψiψj = ψi⊕j(5)

The natural numbers with dyadic sum and the Walsh functions with multiplication
are groups isomorphic to the countable sum of copies of Z2. Notice that the property
of the basis forming a group is shared by the Fourier basis einθ, but not by the basis
of Legendre polynomials.

From the point of view of harmonic analysis on groups, the Fourier series rep-
resentation sets up an isomorphism between the Hilbert spaces L2(T) and l2(Z),
where the group of integers Z is the character group of the circle group T and
vice-versa. The Walsh basis is a group isomorphic to the direct sum (coproduct) of
countably many copies of Z2. The elements are binary sequences (b1, b2, . . . , bn, . . . )
with only a finite number of 1’s. This group is the character group of the countable
product of copies of Z2. At first this group does not look like the interval [0, 1],
and, topologically, they are quite different. However the map

Z2
N → [0, 1] : b 7→

∑
bk2−k(6)

is surjective and, except for a set of measure zero, it is also injective. The difficulty
lies with the numbers that do not have a unique binary representation. The map
is 2 to 1 onto this subset. If we give Z2

N the product measure arising from the
measure on Z2 that has mass 1/2 on each element, then (6) sets up an isomorphism
of measure spaces, and therefore an isomorphism (in fact, isometry) of L2 spaces.

The Walsh basis, like the Fourier basis, has an associated fast transform. That is,

the computation of the coefficients a0, . . . , a2m−1 for a function f =
∑2m−1
k=0 akψk

can be done with a number of steps on the order of n log2 n, where n = 2m. In fact,
the multiplications are all by 1 or −1, making it even more efficient than the fast
Fourier transform, which uses nth roots of unity.
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Now consider a function φ : [0, 1]→ C and the matrices Mn[φ]. The ij entry is∫ 1

0

φ(x)ψj(x)ψi(x)dx =

∫ 1

0

φ(x)ψi⊕j(x)dx = ai⊕j

where φ =
∑∞
i=0 aiψi is the Walsh expansion of φ. Thus, similar to the Toeplitz

matrices, these Walsh-Toeplitz matrices, as we shall call them, have coefficients
that depend on the dyadic difference, which is the same as the sum, of the i and
j. Notice that they are symmetric matrices, as well. It is not so easy to recognize
a Walsh-Toeplitz matrix as it is to recognize a Toeplitz matrix. Below is a general
8 by 8 Walsh-Toeplitz matrix. The upper left corners show the Walsh-Toeplitz
matrices of smaller order. (The rows and columns are indexed from 0 to 7.)

a0 a1 a2 a3 a4 a5 a6 a7

a1 a0 a3 a2 a5 a4 a7 a6

a2 a3 a0 a1 a6 a7 a4 a5

a3 a2 a1 a0 a7 a6 a5 a4

a4 a5 a6 a7 a0 a1 a2 a3

a5 a4 a7 a6 a1 a0 a3 a2

a6 a7 a4 a5 a2 a3 a0 a1

a7 a6 a5 a4 a3 a2 a1 a0


(7)

This 8 by 8 matrix depends on 8 parameters, whereas an 8 by 8 Toeplitz matrix
depends on 15 parameters. (An 8 by 8 symmetric Toeplitz matrix depends on
8 parameters.) Notice that the 7 by 7 Walsh-Toeplitz matrix also depends on 8
parameters, as do the 5 by 5 and 6 by 6. In general, for an n by n Walsh matrix,
where 2m−1 < n ≤ 2m, there are 2m coefficients that appear in the matrix.

3. Spectral Convergence

Recall that the spectrum of a linear operatorA consists of those complex numbers
λ such that A−λI is not invertible. For a linear map on a finite dimensional space
everything in the spectrum is an eigenvalue, but in infinite dimensions the operator
A − λI can fail to be invertible for a number of reasons: it may be injective but
not surjective, surjective but not injective, or the inverse may be unbounded. It
is straightforward to identify the spectrum of a multiplication operator with the
essential range of the function.

Definition 3.1. Let (X,µ) be a measure space and φ : X → C a measurable
function. The essential range of φ, denoted by R[φ], is the set of complex numbers
w such that µ({z ∈ X : |φ(z)− w| < ε}) > 0 for every ε > 0.

Theorem 3.2. Let (X,µ) be a measure space and φ : X → C an L∞ function.
Then the spectrum of the multiplication operator M [φ] on L2(X,µ) is the essential
range of φ.

Proof. Left to the reader. �

Perhaps the most straightforward notion of convergence is that of the sets of
eigenvalues of the matrices Mn[φ] to the essential range of φ.



82 Kent E. Morrison

Definition 3.3. The set of compact subsets of C is H(C), the Hausdorff space of
C. Define the Hausdorff metric h(X,Y ) = max{d(X,Y ), d(Y,X)}, where

d(X,Y ) = sup
x∈X

inf
y∈Y
|x− y|(8)

The distance between the sets X and Y is less than ε exactly when X and Y are
each within the ε-neighborhoods of each other.

Let Λn[φ] be the set of eigenvalues of Mn[φ] and consider Λn[φ] as an element
of H(C). Let R[φ] denote the essential range of φ, also an element of H(C). One
might ask if the sequence Λn[φ] converges to R[φ].

A second notion of convergence is weak convergence of measures. From Λn[φ]
we define a measure on C

µn[φ] =
1

n

∑
λ∈Λn[φ]

δλ(9)

with the understanding that the eigenvalues are counted with multiplicity. This
measure is the sum of point masses concentrated at the eigenvalues, δλ being the
Dirac delta concentrated at λ ∈ C. (Note: considering Λn[φ] as counting the
eigenvalues with multiplicity should not cause any confusion when thinking of it as
a point in H(C).)

Now we define another measure in C that is supported on R[φ], namely the
push-forward measure φ∗(dx/(b−a)) where dx is Lebesgue measure on the interval
I. The measure of a subset E ⊂ C is the Lebesgue measure of φ−1(E)) divided by
b − a. Equivalently, viewing φ∗(dx/(b − a)) as a linear functional on the Banach
space of bounded continuous functions on C, we have

φ∗(m)(f) =
1

b− a

∫ b

a

f(φ(x))dx(10)

for any bounded continuous function f : C → C. As the dual of a Banach space,
the continuous linear functionals on the bounded continuous functions also form
a Banach space. However the norm topology is too strong to allow the spectral
convergence that we seek. Among the various weaker topologies we will use the
weak* topology in which we define a sequence of measures µn to converge to µ, if
limn→∞ µn(f) = µ(f) for every bounded continuous f .

In the rest of this article we will summarize what is known about spectral conver-
gence in both senses for the three examples. We will present numerical evidence for
some conjectures and suggest what may be true, although it remains unproven. It
helps to keep in mind that the holy grail in this subject is a pair of pseudo-theorems:

1. Λn[φ]→ R[φ] in H(C).
2. µn[φ]→ φ∗(m) weakly.

These are by no means true for all generating functions φ, but in some cases one
or both of them is true. There is little that can be said in great generality for all
multiplication operators and all orthonormal bases, but we do have the following.

Theorem 3.4. For all n the eigenvalues of Mn[φ] are contained in the convex hull
of R[φ].
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Proof. Let λ be in the complement of the convex hull of R[φ]. Equivalently, 0 is
not in the convex hull of R(φ− λ). Pick a line L separating 0 from the convex hull
of R(φ − λ). Multiply by a non-zero γ ∈ C in order to rotate and compress the
convex set so that the resulting set lies within the disk of radius 1 centered at 1.
This set is bounded away from 0 since the line γL separates it from 0. Thus in the
L∞ norm (the uniform norm), ‖γ(φ−λ)‖ < 1. It follows that in the operator norm
‖M [γ(φ − λ) − 1]‖ < 1. Thus, ‖γM [φ − λ] − I‖ < 1. Now multiply the operator
inside by the projection Pn on the left and restrict to the span of the first n basis
elements. The projection Pn has norm less than 1, and so ‖γMn[φ− λ]− In‖ < 1.
A geometric series argument now shows that γMn[φ − λ] is invertible, and hence
Mn[φ−λ] is, too. This, of course, is equal to Mn[φ]−λIn, so λ is not an eigenvalue
of Mn[φ]. �

4. Spectral convergence for Toeplitz matrices

Example 4.1. Let φ(θ) = eiθ. Multiplication by eiθ shifts the basis elements by
one. The Toeplitz matrices are lower triangular with 1 on the sub-diagonal. All
eigenvalues are zero; they spectacularly fail to converge to the unit circle in any
way.

If φ has no negative (resp. positive) Fourier coefficients, then Tn[φ] is lower
(resp. upper) triangular, and the spectrum consists of c0 counted n times. In the
first case φ is in H∞ and in the second φ is in H∞. In fact, if φ extends to an
analytic function on an annulus containing the unit circle, then the spectrum of the
finite matrices has little apparent relationship to the range of the function [10].

For positive results Szegö proved that if φ is real-valued, then µn[φ] → φ∗(m)
weakly [18]. Widom, whose work has been fundamental and wide-ranging in this
subject for over 30 years, has proved that µn[φ] → φ∗(m) weakly under the as-
sumption that φ is continuous and piecewise C∞ with one singularity so that it is
not C∞ [33].

For convergence of the eigenvalue sets in the space H(C) a theorem of Basor,
following work of Böttcher and Silbermann, has established that for φ a smooth
complex-valued function on T with one jump discontinuity, the sequence of sets of
eigenvalues converge to the image of the function in H(C) [4]. When the results of
Widom and Basor are combined we see that symbols that are smooth except for
one discontinuity give Toeplitz matrices whose spectra converge both as sets in the
Hausdorff metric and as measures. These results depend on the understanding of
the asymptotic behavior of det(Tn[φ]−λ) as n→∞. The conjecture of Fisher and
Hartwig [14] arising in problems of statistical mechanics has been a motivation for
much of the work in the last twenty-five years. Recently it has been shown that
the conjecture is false with some simple counter examples, the simplest of which we
consider below. A revised conjecture has been made by Basor and Tracy [5] and
some progress has been made on it [3].

The case of symbols that extend to be analytic on an annulus containing the circle
is quite interesting. Suppose φ(θ) =

∑
k cke

ikθ and that
∑
k ckz

k is convergent
for ρ < |z| < 1. Then the function φr defined on the unit circle by φr(θ) =
φ(rθ) has the property that its Toeplitz matrices have the same eigenvalues as
Tn[φ] because they are similar matrices using the diagonal matrix with entries
1, r, r2, . . . , rn−1. On the other hand, the images of φ (which is φ1) and φr are not
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the same and there is no reason to prefer the image of any one of them over the
others. The behavior for analytic functions does not appear to be typical. Widom
has conjectured [33] that for a generic (in some suitable sense) set of symbols φ
the eigenvalue measures converge weakly to φ∗(m). (This is what is meant by the
eigenvalues being canonically distributed.)

In order to see Toeplitz matrices as finite approximations to multiplication op-
erators we have to view the matrices as growing in all directions. That is, the finite
matrices are the centers of the doubly infinite matrices representing the multiplica-
tion operator using the Fourier basis indexed by n ∈ Z. If we look at the matrices
as the upper left hand corners of an infinite matrix with rows and columns indexed
by n ∈ N, then the Toeplitz matrices are finite approximations to different opera-
tors, namely Toeplitz operators. To define a Toeplitz operator recall the the Hardy
space H2(T) is the span of eikθ, k = 0, 1, 2, . . . . Let P be the projection of L2(T)
onto H2(T). Then the Toeplitz operator T [φ] : H2(T) → H2(T) is defined to be
PM [φ]|H2(T). This puts us in the ambiguous position of having a family of ma-
trices that naturally approximates two different operators, and these operators are,
in fact, quite different. Their spectral pictures are different. The spectrum of the
Toeplitz operator with symbol eiθ is the closed unit disk, while the spectrum of the
multiplication operator is the unit circle. (The Toeplitz operator is the unilateral
shift, while the multiplication operator is the bilateral shift.) The spectrum of the
Toeplitz operator with continuous symbol φ is the image of φ and its interior. (See
[11, Ch. 7 Notes] for historical notes and references.) A generalization for piecewise
continuous symbols holds [30]: connect the image of the function with straight lines
between the left and right limits at the discontinuities, giving a closed curve, which
together with its interior makes up the spectrum. In the eigenvalue pictures that
follow one sees that the eigenvalues approach the image of the symbol but stay
within the interior of the closed curve just described. There are no examples yet of
matrix eigenvalues that clearly lie outside the spectrum of the associated Toeplitz
operator. A deep theorem of Widom’s [31], still not well-understood, shows that the
spectrum of a Toeplitz operator is connected when the symbol is any L∞ function.
See [11] for an account of this theorem on the connectedness of the spectrum.

Suppose we want to approximate a Toeplitz operator by finite matrices. We
have seen that the natural thing to do is to use the basis eikθ, for k ≥ 0. But then
the matrices also approximate the multiplication operator. As the matrices grow in
size their eigenvalues tend, typically, to the spectrum of the multiplication operator
rather than to the spectrum of the Toeplitz operator. Is it, therefore, impossible to
approximate a Toeplitz operator in this way? Would it be better to use a different
basis? Could we use a different basis in a computationally effective way? What
one would like to see is a sequence of matrices whose eigenvalues begin to fill up
the interior in a uniform way. There are indications that, in some sense, only the
essential spectrum of an operator is computable. See [1, 2] for some discussion of
this. The essential spectrum of an operator A is the spectrum of A in the Banach
algebra of bounded operators modulo the closed ideal of compact operators, which
is known as the Calkin algebra. Now, the essential spectrum of T [φ] is the image of
φ [11], and so the rest of the spectrum, which is the interior, may be inaccessible
by numerical approximation. Clearly, these questions deserve further study.
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Example 4.2. Let φ(θ) = θ(cos θ + i sin θ) whose image is a spiral. There is a
single discontinuity at θ = 0. Figure 2 shows both the image (solid curve) and the
eigenvalues for n = 51. The work of Libby [19] proves that both the eigenvalue sets
and the eigenvalue measures converge as they should according to the picture.
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Figure 2. Eigenvalues of T51[φ] and the image of φ of Example 4.2.

Example 4.3.

φ(θ) =

{
π/2 if 0 < θ < π
−π/2 if −π < θ < 0

(11)

The Fourier coefficients are given by

cn =

{
0 if n is even
−i/n if n is odd

(12)

The Toeplitz matrix Tn[φ] is skew-symmetric and so for n odd there is always a
zero eigenvalue. It is impossible for the eigenvalues to converge to the image! The
multiplicity of the zero eigenvalue is one, however, and all the other eigenvalues
cluster around −π/2 and π/2, half of them at each point. When n is even, half of
the eigenvalues cluster at −π/2 and half at π/2. The eigenvalue measures approach
the expected limit which is a measure with mass 1/2 at ±π.

Example 4.4. Define

φ(θ) =

{
θ + i if 0 < θ < π
θ + 2i if π < θ < 2π

(13)

This function has two discontinuities and the range is two disjoint line segments.
Notice the difference between odd and even n and to the slight bending in the
“curves” of eigenvalues where the real part is 1/2. No theorem, as of yet, proves
the convergence of the eigenvalue measures, but we believe that as n increases there
will be more “stray” eigenvalues peeling away from the image, but not enough to
affect the convergence of the eigenvalue measures to the measure supported on the
image. The symmetry of the function enables one to show that for n odd there
is always an eigenvalue of π + 1.5i by translating the function by −(π + 1.5i),
which translates the eigenvalues by the same. Thus, the odd sized matrices are
skew-symmetric. Of course, this means the sets of eigenvalues do not converge in
H(C).
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Figure 3. Eigenvalues of T101[φ] of Example 4.4.
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Figure 4. Eigenvalues of T102[φ] of Example 4.4.

We end this section with a brief summary of circulant matrices, a special class
of Toeplitz matrices. An n× n matrix is circulant if it has the form

c0 cn−1 cn−2 · · · c1
c1 c0 cn−1 · · · c2
c2 c1 c0 · · · c3
...

...
... · · ·

...
cn−1 cn−2 cn−3 · · · c0

(14)

Each row is a cyclic permutation of the row above and so an n by n circulant
matrix depends on just n parameters. It has been known for a long time that the
eigenvalues are exactly the values of the polynomial function

∑n−1
k=0 ckz

k evaluated
at the nth roots of unity. This polynomial, thus, plays the role of the symbol with
z = eiθ, but notice that the Toeplitz matrices associated to φ(θ) =

∑n−1
k=0 cke

ikθ

are banded matrices with n non-zero diagonals and not circulant matrices. In [27]
Toeplitz introduces what we now call “Toeplitz” matrices and uses the already
understood circulant matrices to enrich his discussion of the eigenvalues of Toeplitz
matrices.

It is tempting to attempt to use the explicit knowledge of the eigenvalues of
circulant matrices to get information about the eigenvalues of general Toeplitz
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matrices by a process of approximation, but such an attempt is doomed as one can
see with the example of eiθ. If we use the Euclidean norm to measure distance,
then the circulant matrix nearest to Tn[φ] is

0 0 · · · 0 1
1 0 · · · 0 0

...
0 0 · · · 1 0

(15)

Recall that Tn[φ] is the same matrix with the upper right hand one replaced by a
zero. The eigenvalues of the circulant matrix are the nth roots of unity, while the
eigenvalues of Tn[φ] are all zero.

Theorem 4.5. Let C be a circulant matrix whose top row is c0, c1, . . . , cn−1. Then

the eigenvalues of C are the values of
∑n−1
k=0 ckz

k as z ranges over the nth roots of

unity e2πim/n, for m = 0, 1, . . . , n− 1.

Proof. Although this theorem is ancient and well-known we include a proof based
on the characters of the group Zn because of the similarity with the Walsh-Toeplitz
matrices. We consider Cn as the group algebra of Zn, i.e. the functions from Zn
to C. The characters are those functions which are homomorphisms to the group
of non-zero complex numbers. There are n characters χk, for 0 ≤ k ≤ n− 1, where
χk(m) = e2πikm/n, and they form an orthogonal basis of Cn. (Here we are thinking
of Zn as being {0, 1, 2, . . . , n− 1}.) Let f be an element of the group algebra with
f(m) = dm. Consider the linear map “multiplication by f” on the group algebra.
Using the standard basis of Cn the matrix of this linear map is the diagonal matrix
with diagonal entries dm. Now we leave it to the reader to check that with the basis
of characters the matrix of this map is the circulant matrix whose jk coefficient
is cj−k = 〈f, χj−k〉, where j − k is interpreted mod n. Then the eigenvalues are

dm = f(m) =
∑
ckχk(m) =

∑
cke

2πikm/n, which gives the theorem. �

5. Spectral Convergence with the Legendre Basis

We begin by considering the function p1(x) = φ(x) = x, which is the first
Legendre polynomial and already normalized.

Theorem 5.1. The eigenvalues of Mn[p1] are the n zeros of the Legendre polyno-
mial pn.

Proof. We consider multiplication by x on the span of p0, p1, . . . , pn−1, but we use
the basis of monomials 1, x, x2, . . . , xn−1, instead. With this basis multiplication
by x shifts the basis elements to the right except for the last one. Now we multiply
xn−1 by x and then project orthogonally. Let pn(x) =

∑n
k=0 γkx

k. Then

xn =
1

γn

(
pn(x)−

n−1∑
k=0

γkx
k

)
from which it is clear that the projection onto the span of p0, p1, . . . , pn−1 is

(1/γn)(
∑n−1
k=0 γkx

k) and the matrix is the companion matrix for this polynomial.
The eigenvalues of a companion matrix are the zeros of the polynomial and Mn[p1]
is similar to this matrix. �
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Szegö’s classic work on orthogonal polynomials [26, Theorem 12.7.2] contains a
theorem on the distribution of the zeros of orthogonal polynomials. For a fairly
general weight function w(x) on [−1, 1] the zeros of the nth orthogonal polynomial
for this weight are distributed asymptotically like the values of cos(θ) for equally
spaced values of θ in [0, π]. Translated to the language of this article we see that the
eigenvalue measures µn[p1] converge weakly to the measure µ on [−1, 1] for which
the measure of the interval [a, b] ⊂ [−1, 1] is (cos−1 b − cos−1 a)/π. The measure

µ can be characterized as dx/(π
√

1− x2), where dx denotes Lebesgue measure on
the interval.

Some idea of the truth of this can be seen in the plots of the zeros of p30 and
the values of cos(θ) for thirty equally spaced values of θ between 0 and π.

-1 -0.5 0 0.5 1

Figure 5. Eigenvalues of M30[p1] and 30 values of cos(θ) for
equally spaced θ.

It is also true that the zeros of pn converge to [−1, 1] in the space H(C), because
the zeros of orthogonal polynomials lie in the interval of orthogonality and for every
subinterval with endpoints a and b and n sufficiently large, pn has a zero in [a, b].
Again, one should refer to [26].

The results for the multiplication operator associated to p1 generalize to other
real-valued functions φ. It is shown in [18] that the spectral measures converge.

Theorem 5.2. Let φ be a real-valued L∞ function on [−1, 1]. Then the sequence
of spectral measures µn[φ] converges weakly to the measure µ defined by

µ([a, b]) =
1

π
(φ(cos−1 b)− φ(cos−1 a)).

Proof. See §6.2 in [18]. �
We have translated their statement to our language. Another way to state the

conclusion is that for every continuous function f defined on R (it is sufficient that
f be defined on the image of φ),

lim
n→∞

1

n

∑
λ∈Λn[φ]

f(λ) =
1

π

∫ 1

−1

f(φ(x))
√

1− x2
dx =

1

π

∫ π

0

f(φ(cos θ)) dθ(16)
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The limiting measure µ can also be characterized as φ∗(dx/π
√

1− x2).
The proof of this theorem and the related work of Szegö rely on the Hermitian

nature of the matrices and the self-adjointness of the multiplication operators re-
sulting from the symbols being real-valued. For complex valued φ it appears that
almost nothing is known. It may be that the work of Widom, Basor, Böttcher,
Silbermann, and others for Toeplitz matrices can be applied to the Legendre basis
setting, but so far no one has done that. In the book of Grenander and Szegö [18]
that is how the results for the Legendre basis are obtained as well as results for
the orthogonal polynomials for other weights and the orthogonal polynomials on
analytic curves, and hence it is suggestive for further work. A clear conjecture at
which to aim, is that the previous theorem is true for any complex-valued function
φ in L∞. The danger in such a wide ranging conjecture is that for Toeplitz matri-
ces the corresponding theorem holds for real-valued symbols and does not hold for
complex-valued symbols as is shown by analytic φ such as eiθ. However, there are
no clear counter-examples in the Legendre case. We consider that function in the
next example.

Example 5.3. Define φ(x) = eiπx. Of course, the image is the unit circle. The
plot shows the numerically approximated eigenvalues of M30[φ].

Figure 6. Eigenvalues of M30[φ] and the unit circle of Example 5.3.

The plot shows that the eigenvalues are more concentrated in the region of the
image for values of x near the ends of the interval. This gives some credibility
to the conjecture that the distribution of the eigenvalues approaches the measure
φ∗(dx/π

√
1− x2), but the conjecture has not been proved.

Example 5.4. Define φ(x) = π(x + 1)eiπ(x+1) for x ∈ [−1, 1]. The image is the
spiral shown in Figure 2 and the function here is the modification of the function
in that example to have the domain [−1, 1].
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Figure 7. Eigenvalues of M30[φ] and the image of φ of Example 5.4.

6. Spectral convergence for Walsh-Toeplitz matrices

Recall that we denote the Walsh functions by ψn, for n ≥ 0.

Example 6.1. Let us consider the operator M [ψ1] and its associated finite matri-
ces. Since ψ1ψk = ψ1⊕k, where ⊕ denotes dyadic addition, we see that for k even
ψ1ψk = ψk+1, while for k odd ψ1ψk = ψk−1. Thus Mn[ψ1] contains 2 by 2 diagonal
blocks of the form [

0 1
1 0

]
(17)

when n is even, and when n is odd there is an extra row and column of zeros. Each
2 by 2 block contributes eigenvalues 1 and −1, so that for n = 2p the eigenvalues of
Mn[ψ1] are 1 and −1, each with multiplicity p, and for n = 2p+ 1 the eigenvalues
are 1 and −1 each with multiplicity p and the value 0 with multiplicity 1. Thus
the eigenvalue sets do not converge in the Hausdorff metric, but the eigenvalue
distributions do converge to (δ1 + δ−1)/2, which is the push-forward of Lebesgue
measure on [0, 1] by ψ1.

The previous example suggests that we can understand the eigenvalue behavior
of Mn[ψk] for any of the Walsh functions ψk.

Theorem 6.2. The eigenvalue measures µn[ψk] converge weakly to (ψk)∗(dx). The
eigenvalue sets Λn[ψk] do not converge to R[φ] = {−1, 1} in H(C).

Proof. Assume that k is between 2m−1 and 2m. The Walsh functions ψj for
0 ≤ j < 2m form a group isomorphic to Z2

m. Thus, multiplication by ψk defines a
permutation of order two on these 2m basis elements. For each pair i and j for which
i⊕k = j there is an eigenvector ψi+ψj with eigenvalue 1 and an eigenvector ψi−ψj
with eigenvalue −1. When n is a multiple of 2m, the matrix Mn[ψk] consists of
diagonal 2m×2m blocks that are repetitions of the first block. If n is not a multiple
of 2m, then there will be some values i such that i ⊕ k > n, so that Mn[ψk] will
have a column of zeros in column i. Thus Mn[ψk] will have an equal number of 1’s
and −1’s in its spectrum and no more than 2m zeros. As n → ∞ the eigenvalue
measure converges to (δ1 + δ−1)/2, which is equal to (ψk)∗(dx). �

Now consider the finite sum φ(x) =
∑k
i=0 ciψi(x) with k < 2m. The functions

ψ0, ψ1, . . . , ψ2m−1 are a basis of the space of functions on [0, 1] that are constant
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on the subintervals of length 2−m. This space is invariant under multiplication by
φ. To compute the eigenvalues of M2m [φ] let us use a different basis, namely the
functions which take on the value 1 on one of the subintervals and 0 on the rest.
These functions are eigenfunctions for multiplication by φ with eigenvalues equal
to the values of φ on each of the subintervals. Now for n equal to a multiple of 2m

this pattern is repeated in each block of size 2m. When n is not a multiple of 2m,
then there are some other eigenvalues, but no more than 2m of them, and so as
n goes to infinity their contribution to the eigenvalue measures goes to zero. The
push-forward of Lebesgue measure by φ is the sum of point masses at the values of
φ all divided by 2m. Hence, we have proved the following theorem.

Theorem 6.3. Let φ(x) =
∑k
i=0 ciψi(x) with k less than 2m. Then

(i) µn[φ] converges weakly to φ∗(dx).
(ii) For n = 2m and m sufficiently large, Λn[φ] = R[φ].

Next we consider the question of extending these results to arbitrary continuous
functions. We have much better understanding of the matrices Mn[φ] when n is a
power of 2 because of the close relationship with the group Z2

m.

Theorem 6.4. Let Pn : L2[0, 1] → Hn where Hn is the span of ψk for 0 ≤ k ≤
n− 1 and Pn is the orthogonal projection onto this subspace. Furthermore, suppose
n = 2m. Then Pn(f) is the locally constant function whose value on the interval
[2−m(j − 1), 2−mj] is

2m
∫ 2−mj

2−m(j−1)

f(x) dx

which is the average of f on this subinterval.

Proof. Let f̄n denote this locally constant function defined by averaging. Then
〈f̄n, ψk〉 = 〈f, ψk〉 for all k between 0 and n− 1. �

For an arbitrary function φ in L∞ we have nice eigenvalue behavior for the
eigenvalue measures.

Theorem 6.5. If φ is in L∞[0, 1], then the sequence of eigenvalue measures µ2m [φ]
converges weakly to φ∗(dx) as m→∞.

Proof. Let f be any continuous function defined on C. Let φ2m = P2m(φ), recall-
ing that φ2m is a step function whose value on each of the 2m subintervals is the
average of φ on the subinterval. Now f ◦ φ2m converges pointwise almost every-
where to f ◦φ and ‖f ◦φ2m‖ ≤ ‖f ◦φ‖ . Therefore, by the Dominated Convergence
Theorem we have

lim
m→∞

∫ 1

0

f(φ2m(x)) dx =

∫ 1

0

f(φ((x)) dx .

But the eigenvalues of M2m [φ] are the values of φ2m . Therefore,∫ 1

0

f(φ2m(x)) dx = 2−m
∑

λ∈Λ2m [φ]

f(λ).

�
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Theorem 6.6. If φ is continuous, then the sequence of eigenvalue sets Λ2m [φ]
converges to the image of φ in H(C) as m→∞.

Proof. The eigenvalues of M2m [φ] are the average values of φ on the subintervals of
length 2−m. Pick ε > 0. Since φ is actually uniformly continuous, for m sufficiently
large, if x and y are in the same subinterval of length 2−m, then |φ(x)− φ(y)| < ε.
Hence, every value of φ is within ε of one of the average values and every average
is within ε of a value of φ. �

What we have seen is that the eigenvalues behave as nicely as we could ever
hope as long as we use the increasing family of subspaces of L2[0, 1] spanned by the
first 2m Walsh functions, as both the eigenvalue measures and the eigenvalue sets
converge in their respective spaces to the “correct” limits for a continuous φ. For
an arbitrary bounded measurable function the eigenvalue measures converge. The
Walsh functions provide the ideal basis for numerical approximation of the spectrum
of a large family of operators. But this suggests more tantalizing questions: does
every bounded operator A have a well-adapted sequence of nested subspaces Hn,
whose union is dense in H so that the spectrum of A can be approximated by the
eigenvalues of An? (We are not insisting that the dimension of Hn be n.) This
leads us from the concrete setting of function spaces and multiplication operators
to more general operator theory. For an introduction to this fascinating and little
explored area see the recent work of Arveson dealing with self-adjoint operators [1,
2]. However, when n is not a power of 2, the eigenvalues are distributed differently
as shown by the following pictures. It is not known whether the eigenvalue measures
converge. The numerical evidence indicates that there are relatively few “stray”
eigenvalues, so one may weakly conjecture that convergence does take place.

Example 6.7. Let φ(x) = e2πix. The image of φ is the unit circle again. In each
case the outer points lie barely within the unit circle, although they appear to be
right on the circle.

Figure 8. Eigenvalues of M38[φ] in Example 6.7.
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Figure 9. Eigenvalues of M41[φ] in Example 6.7.

Figure 10. Eigenvalues of M47[φ] in Example 6.7.

7. How the computations were done

The eigenvalues of the Toeplitz matrices were computed approximately using
Mathematica running on Macintosh IIci or NeXT workstations. The Fourier co-
efficients of the generating functions were approximated by using the built-in fast
Fourier transform in Mathematica and by sampling the function at 1024 equally
spaced points from 0 to 2π. This allows hundreds of coefficients to be calculated
quickly and quite accurately. A Toeplitz matrix of size 200 by 200 would require
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401 of the Fourier coefficients, less than half of the computed coefficients. My worry
in using this approach was that the approximate coefficients would be inaccurate,
especially the higher order coefficients. But comparing the approximate coefficients
done this way with exact coefficients computed by hand for some simple examples
showed that the difference in the coefficients was less than 10−10. The coefficients
done by sampling were also compared with those computed by numerical integra-
tion (with the built-in routine) and found to differ by the same orders of magnitude.
This, of course, is no guarantee of the accuracy of the numerical approximations,
and everything done this way should be regarded as suggestive and provisional
subject to proof by traditional means or to rigorous error estimates.

Eigenvalues are particularly sensitive to slight changes in the coefficients of the
matrix. Interesting work along these lines deals with the pseudo-eigenvalues and
pseudo-spectrum of matrices and operators [28, 24]. These results indicate that the
pseudo-spectra of the finite Toeplitz matrices approximate the pseudo-spectrum of
the Toeplitz operator.

As an example, consider φ(θ) = eiθ, whose associated Toeplitz matrices have a
multiple eigenvalue of 0. When the Fourier coefficients are approximated by the
discrete Fourier transform with 1024 sample points, we find |ck| < 10−18, for k 6= 1,
but ck is not exactly 0. One would expect the eigenvalues of the approximate Tn[φ]
clustered closely around 0. However, for n = 50 the eigenvalues lie in a circle of
radius 0.4. For smaller n the circle is smaller and for larger n the circle is larger. If
n = 1024 then the matrix becomes a full circulant matrix and the eigenvalues are
exactly the sample points.

Figure 11. Spurious eigenvalues of T50[eiθ] and the unit circle.

There is no fast “Legendre transform” that approximates the Legendre basis
coefficients of a function from sampled values. In order to compute the eigenvalues
of M30[φ] the numerical integration function of Mathematica was used along with
the Legendre polynomials. This required for each function the evaluation of 900
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integrals, but the symmetry reduced the number by half. The computation was
done remotely on a Sun workstation and required several hours for each of the two
examples. Then the matrix was saved to a file and transported to a Macintosh where
the eigenvalue computation was done in Mathematica and the output plotted.

The Walsh examples were done with a combination of resources. I had earlier
written a fast Walsh transform in True BASIC (to use in an engineering mathemat-
ics class) by modifying the fast Fourier transform algorithm in Numerical Recipes
[23]. It takes a couple of seconds to perform a 1024 point real transform on a
Quadra. So I used this for the real and imaginary parts separately and wrote the
output to files. In Mathematica I read in the files and combined them to form the
complex vector of coefficients. The rest was done in Mathematica and required a
dyadic sum function and a function to construct the Walsh-Toeplitz matrix from
the Walsh coefficients. The eigenvalues and plotting used the built-in functions.

It seemed prudent to cross-check the results obtained with Mathematica because
the built-in functions, such as the eigenvalue routine, must be used as black boxes.
One Toeplitz eigenvalue example, not used in this article but similar, was re-done
using MATLAB and the numerical results were almost identical.
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